1 /*
2  * arch/arm/kernel/kprobes-test.c
3  *
4  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 /*
12  * This file contains test code for ARM kprobes.
13  *
14  * The top level function run_all_tests() executes tests for all of the
15  * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
16  * fall into two categories; run_api_tests() checks basic functionality of the
17  * kprobes API, and run_test_cases() is a comprehensive test for kprobes
18  * instruction decoding and simulation.
19  *
20  * run_test_cases() first checks the kprobes decoding table for self consistency
21  * (using table_test()) then executes a series of test cases for each of the CPU
22  * instruction forms. coverage_start() and coverage_end() are used to verify
23  * that these test cases cover all of the possible combinations of instructions
24  * described by the kprobes decoding tables.
25  *
26  * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
27  * which use the macros defined in kprobes-test.h. The rest of this
28  * documentation will describe the operation of the framework used by these
29  * test cases.
30  */
31 
32 /*
33  * TESTING METHODOLOGY
34  * -------------------
35  *
36  * The methodology used to test an ARM instruction 'test_insn' is to use
37  * inline assembler like:
38  *
39  * test_before: nop
40  * test_case:	test_insn
41  * test_after:	nop
42  *
43  * When the test case is run a kprobe is placed of each nop. The
44  * post-handler of the test_before probe is used to modify the saved CPU
45  * register context to that which we require for the test case. The
46  * pre-handler of the of the test_after probe saves a copy of the CPU
47  * register context. In this way we can execute test_insn with a specific
48  * register context and see the results afterwards.
49  *
50  * To actually test the kprobes instruction emulation we perform the above
51  * step a second time but with an additional kprobe on the test_case
52  * instruction itself. If the emulation is accurate then the results seen
53  * by the test_after probe will be identical to the first run which didn't
54  * have a probe on test_case.
55  *
56  * Each test case is run several times with a variety of variations in the
57  * flags value of stored in CPSR, and for Thumb code, different ITState.
58  *
59  * For instructions which can modify PC, a second test_after probe is used
60  * like this:
61  *
62  * test_before: nop
63  * test_case:	test_insn
64  * test_after:	nop
65  *		b test_done
66  * test_after2: nop
67  * test_done:
68  *
69  * The test case is constructed such that test_insn branches to
70  * test_after2, or, if testing a conditional instruction, it may just
71  * continue to test_after. The probes inserted at both locations let us
72  * determine which happened. A similar approach is used for testing
73  * backwards branches...
74  *
75  *		b test_before
76  *		b test_done  @ helps to cope with off by 1 branches
77  * test_after2: nop
78  *		b test_done
79  * test_before: nop
80  * test_case:	test_insn
81  * test_after:	nop
82  * test_done:
83  *
84  * The macros used to generate the assembler instructions describe above
85  * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
86  * (branch backwards). In these, the local variables numbered 1, 50, 2 and
87  * 99 represent: test_before, test_case, test_after2 and test_done.
88  *
89  * FRAMEWORK
90  * ---------
91  *
92  * Each test case is wrapped between the pair of macros TESTCASE_START and
93  * TESTCASE_END. As well as performing the inline assembler boilerplate,
94  * these call out to the kprobes_test_case_start() and
95  * kprobes_test_case_end() functions which drive the execution of the test
96  * case. The specific arguments to use for each test case are stored as
97  * inline data constructed using the various TEST_ARG_* macros. Putting
98  * this all together, a simple test case may look like:
99  *
100  *	TESTCASE_START("Testing mov r0, r7")
101  *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
102  *	TEST_ARG_END("")
103  *	TEST_INSTRUCTION("mov r0, r7")
104  *	TESTCASE_END
105  *
106  * Note, in practice the single convenience macro TEST_R would be used for this
107  * instead.
108  *
109  * The above would expand to assembler looking something like:
110  *
111  *	@ TESTCASE_START
112  *	bl	__kprobes_test_case_start
113  *	@ start of inline data...
114  *	.ascii "mov r0, r7"	@ text title for test case
115  *	.byte	0
116  *	.align	2
117  *
118  *	@ TEST_ARG_REG
119  *	.byte	ARG_TYPE_REG
120  *	.byte	7
121  *	.short	0
122  *	.word	0x1234567
123  *
124  *	@ TEST_ARG_END
125  *	.byte	ARG_TYPE_END
126  *	.byte	TEST_ISA	@ flags, including ISA being tested
127  *	.short	50f-0f		@ offset of 'test_before'
128  *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
129  *	.short	99f-0f		@ offset of 'test_done'
130  *	@ start of test case code...
131  *	0:
132  *	.code	TEST_ISA	@ switch to ISA being tested
133  *
134  *	@ TEST_INSTRUCTION
135  *	50:	nop		@ location for 'test_before' probe
136  *	1:	mov r0, r7	@ the test case instruction 'test_insn'
137  *		nop		@ location for 'test_after' probe
138  *
139  *	// TESTCASE_END
140  *	2:
141  *	99:	bl __kprobes_test_case_end_##TEST_ISA
142  *	.code	NONMAL_ISA
143  *
144  * When the above is execute the following happens...
145  *
146  * __kprobes_test_case_start() is an assembler wrapper which sets up space
147  * for a stack buffer and calls the C function kprobes_test_case_start().
148  * This C function will do some initial processing of the inline data and
149  * setup some global state. It then inserts the test_before and test_after
150  * kprobes and returns a value which causes the assembler wrapper to jump
151  * to the start of the test case code, (local label '0').
152  *
153  * When the test case code executes, the test_before probe will be hit and
154  * test_before_post_handler will call setup_test_context(). This fills the
155  * stack buffer and CPU registers with a test pattern and then processes
156  * the test case arguments. In our example there is one TEST_ARG_REG which
157  * indicates that R7 should be loaded with the value 0x12345678.
158  *
159  * When the test_before probe ends, the test case continues and executes
160  * the "mov r0, r7" instruction. It then hits the test_after probe and the
161  * pre-handler for this (test_after_pre_handler) will save a copy of the
162  * CPU register context. This should now have R0 holding the same value as
163  * R7.
164  *
165  * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166  * an assembler wrapper which switches back to the ISA used by the test
167  * code and calls the C function kprobes_test_case_end().
168  *
169  * For each run through the test case, test_case_run_count is incremented
170  * by one. For even runs, kprobes_test_case_end() saves a copy of the
171  * register and stack buffer contents from the test case just run. It then
172  * inserts a kprobe on the test case instruction 'test_insn' and returns a
173  * value to cause the test case code to be re-run.
174  *
175  * For odd numbered runs, kprobes_test_case_end() compares the register and
176  * stack buffer contents to those that were saved on the previous even
177  * numbered run (the one without the kprobe on test_insn). These should be
178  * the same if the kprobe instruction simulation routine is correct.
179  *
180  * The pair of test case runs is repeated with different combinations of
181  * flag values in CPSR and, for Thumb, different ITState. This is
182  * controlled by test_context_cpsr().
183  *
184  * BUILDING TEST CASES
185  * -------------------
186  *
187  *
188  * As an aid to building test cases, the stack buffer is initialised with
189  * some special values:
190  *
191  *   [SP+13*4]	Contains SP+120. This can be used to test instructions
192  *		which load a value into SP.
193  *
194  *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
195  *		this holds the target address of the branch, 'test_after2'.
196  *		This can be used to test instructions which load a PC value
197  *		from memory.
198  */
199 
200 #include <linux/kernel.h>
201 #include <linux/module.h>
202 #include <linux/slab.h>
203 #include <linux/kprobes.h>
204 
205 #include <asm/opcodes.h>
206 
207 #include "kprobes.h"
208 #include "kprobes-test.h"
209 
210 
211 #define BENCHMARKING	1
212 
213 
214 /*
215  * Test basic API
216  */
217 
218 static bool test_regs_ok;
219 static int test_func_instance;
220 static int pre_handler_called;
221 static int post_handler_called;
222 static int jprobe_func_called;
223 static int kretprobe_handler_called;
224 
225 #define FUNC_ARG1 0x12345678
226 #define FUNC_ARG2 0xabcdef
227 
228 
229 #ifndef CONFIG_THUMB2_KERNEL
230 
231 long arm_func(long r0, long r1);
232 
__arm_kprobes_test_func(void)233 static void __used __naked __arm_kprobes_test_func(void)
234 {
235 	__asm__ __volatile__ (
236 		".arm					\n\t"
237 		".type arm_func, %%function		\n\t"
238 		"arm_func:				\n\t"
239 		"adds	r0, r0, r1			\n\t"
240 		"bx	lr				\n\t"
241 		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
242 		: : : "r0", "r1", "cc"
243 	);
244 }
245 
246 #else /* CONFIG_THUMB2_KERNEL */
247 
248 long thumb16_func(long r0, long r1);
249 long thumb32even_func(long r0, long r1);
250 long thumb32odd_func(long r0, long r1);
251 
__thumb_kprobes_test_funcs(void)252 static void __used __naked __thumb_kprobes_test_funcs(void)
253 {
254 	__asm__ __volatile__ (
255 		".type thumb16_func, %%function		\n\t"
256 		"thumb16_func:				\n\t"
257 		"adds.n	r0, r0, r1			\n\t"
258 		"bx	lr				\n\t"
259 
260 		".align					\n\t"
261 		".type thumb32even_func, %%function	\n\t"
262 		"thumb32even_func:			\n\t"
263 		"adds.w	r0, r0, r1			\n\t"
264 		"bx	lr				\n\t"
265 
266 		".align					\n\t"
267 		"nop.n					\n\t"
268 		".type thumb32odd_func, %%function	\n\t"
269 		"thumb32odd_func:			\n\t"
270 		"adds.w	r0, r0, r1			\n\t"
271 		"bx	lr				\n\t"
272 
273 		: : : "r0", "r1", "cc"
274 	);
275 }
276 
277 #endif /* CONFIG_THUMB2_KERNEL */
278 
279 
call_test_func(long (* func)(long,long),bool check_test_regs)280 static int call_test_func(long (*func)(long, long), bool check_test_regs)
281 {
282 	long ret;
283 
284 	++test_func_instance;
285 	test_regs_ok = false;
286 
287 	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
288 	if (ret != FUNC_ARG1 + FUNC_ARG2) {
289 		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
290 		return false;
291 	}
292 
293 	if (check_test_regs && !test_regs_ok) {
294 		pr_err("FAIL: test regs not OK\n");
295 		return false;
296 	}
297 
298 	return true;
299 }
300 
pre_handler(struct kprobe * p,struct pt_regs * regs)301 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
302 {
303 	pre_handler_called = test_func_instance;
304 	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
305 		test_regs_ok = true;
306 	return 0;
307 }
308 
post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)309 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
310 				unsigned long flags)
311 {
312 	post_handler_called = test_func_instance;
313 	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
314 		test_regs_ok = false;
315 }
316 
317 static struct kprobe the_kprobe = {
318 	.addr		= 0,
319 	.pre_handler	= pre_handler,
320 	.post_handler	= post_handler
321 };
322 
test_kprobe(long (* func)(long,long))323 static int test_kprobe(long (*func)(long, long))
324 {
325 	int ret;
326 
327 	the_kprobe.addr = (kprobe_opcode_t *)func;
328 	ret = register_kprobe(&the_kprobe);
329 	if (ret < 0) {
330 		pr_err("FAIL: register_kprobe failed with %d\n", ret);
331 		return ret;
332 	}
333 
334 	ret = call_test_func(func, true);
335 
336 	unregister_kprobe(&the_kprobe);
337 	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
338 
339 	if (!ret)
340 		return -EINVAL;
341 	if (pre_handler_called != test_func_instance) {
342 		pr_err("FAIL: kprobe pre_handler not called\n");
343 		return -EINVAL;
344 	}
345 	if (post_handler_called != test_func_instance) {
346 		pr_err("FAIL: kprobe post_handler not called\n");
347 		return -EINVAL;
348 	}
349 	if (!call_test_func(func, false))
350 		return -EINVAL;
351 	if (pre_handler_called == test_func_instance ||
352 				post_handler_called == test_func_instance) {
353 		pr_err("FAIL: probe called after unregistering\n");
354 		return -EINVAL;
355 	}
356 
357 	return 0;
358 }
359 
jprobe_func(long r0,long r1)360 static void __kprobes jprobe_func(long r0, long r1)
361 {
362 	jprobe_func_called = test_func_instance;
363 	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
364 		test_regs_ok = true;
365 	jprobe_return();
366 }
367 
368 static struct jprobe the_jprobe = {
369 	.entry		= jprobe_func,
370 };
371 
test_jprobe(long (* func)(long,long))372 static int test_jprobe(long (*func)(long, long))
373 {
374 	int ret;
375 
376 	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
377 	ret = register_jprobe(&the_jprobe);
378 	if (ret < 0) {
379 		pr_err("FAIL: register_jprobe failed with %d\n", ret);
380 		return ret;
381 	}
382 
383 	ret = call_test_func(func, true);
384 
385 	unregister_jprobe(&the_jprobe);
386 	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
387 
388 	if (!ret)
389 		return -EINVAL;
390 	if (jprobe_func_called != test_func_instance) {
391 		pr_err("FAIL: jprobe handler function not called\n");
392 		return -EINVAL;
393 	}
394 	if (!call_test_func(func, false))
395 		return -EINVAL;
396 	if (jprobe_func_called == test_func_instance) {
397 		pr_err("FAIL: probe called after unregistering\n");
398 		return -EINVAL;
399 	}
400 
401 	return 0;
402 }
403 
404 static int __kprobes
kretprobe_handler(struct kretprobe_instance * ri,struct pt_regs * regs)405 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
406 {
407 	kretprobe_handler_called = test_func_instance;
408 	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
409 		test_regs_ok = true;
410 	return 0;
411 }
412 
413 static struct kretprobe the_kretprobe = {
414 	.handler	= kretprobe_handler,
415 };
416 
test_kretprobe(long (* func)(long,long))417 static int test_kretprobe(long (*func)(long, long))
418 {
419 	int ret;
420 
421 	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
422 	ret = register_kretprobe(&the_kretprobe);
423 	if (ret < 0) {
424 		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
425 		return ret;
426 	}
427 
428 	ret = call_test_func(func, true);
429 
430 	unregister_kretprobe(&the_kretprobe);
431 	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
432 
433 	if (!ret)
434 		return -EINVAL;
435 	if (kretprobe_handler_called != test_func_instance) {
436 		pr_err("FAIL: kretprobe handler not called\n");
437 		return -EINVAL;
438 	}
439 	if (!call_test_func(func, false))
440 		return -EINVAL;
441 	if (jprobe_func_called == test_func_instance) {
442 		pr_err("FAIL: kretprobe called after unregistering\n");
443 		return -EINVAL;
444 	}
445 
446 	return 0;
447 }
448 
run_api_tests(long (* func)(long,long))449 static int run_api_tests(long (*func)(long, long))
450 {
451 	int ret;
452 
453 	pr_info("    kprobe\n");
454 	ret = test_kprobe(func);
455 	if (ret < 0)
456 		return ret;
457 
458 	pr_info("    jprobe\n");
459 	ret = test_jprobe(func);
460 	if (ret < 0)
461 		return ret;
462 
463 	pr_info("    kretprobe\n");
464 	ret = test_kretprobe(func);
465 	if (ret < 0)
466 		return ret;
467 
468 	return 0;
469 }
470 
471 
472 /*
473  * Benchmarking
474  */
475 
476 #if BENCHMARKING
477 
benchmark_nop(void)478 static void __naked benchmark_nop(void)
479 {
480 	__asm__ __volatile__ (
481 		"nop		\n\t"
482 		"bx	lr"
483 	);
484 }
485 
486 #ifdef CONFIG_THUMB2_KERNEL
487 #define wide ".w"
488 #else
489 #define wide
490 #endif
491 
benchmark_pushpop1(void)492 static void __naked benchmark_pushpop1(void)
493 {
494 	__asm__ __volatile__ (
495 		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
496 		"ldmia"wide"	sp!, {r3-r11,pc}"
497 	);
498 }
499 
benchmark_pushpop2(void)500 static void __naked benchmark_pushpop2(void)
501 {
502 	__asm__ __volatile__ (
503 		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
504 		"ldmia"wide"	sp!, {r0-r8,pc}"
505 	);
506 }
507 
benchmark_pushpop3(void)508 static void __naked benchmark_pushpop3(void)
509 {
510 	__asm__ __volatile__ (
511 		"stmdb"wide"	sp!, {r4,lr}  \n\t"
512 		"ldmia"wide"	sp!, {r4,pc}"
513 	);
514 }
515 
benchmark_pushpop4(void)516 static void __naked benchmark_pushpop4(void)
517 {
518 	__asm__ __volatile__ (
519 		"stmdb"wide"	sp!, {r0,lr}  \n\t"
520 		"ldmia"wide"	sp!, {r0,pc}"
521 	);
522 }
523 
524 
525 #ifdef CONFIG_THUMB2_KERNEL
526 
benchmark_pushpop_thumb(void)527 static void __naked benchmark_pushpop_thumb(void)
528 {
529 	__asm__ __volatile__ (
530 		"push.n	{r0-r7,lr}  \n\t"
531 		"pop.n	{r0-r7,pc}"
532 	);
533 }
534 
535 #endif
536 
537 static int __kprobes
benchmark_pre_handler(struct kprobe * p,struct pt_regs * regs)538 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
539 {
540 	return 0;
541 }
542 
benchmark(void (* fn)(void))543 static int benchmark(void(*fn)(void))
544 {
545 	unsigned n, i, t, t0;
546 
547 	for (n = 1000; ; n *= 2) {
548 		t0 = sched_clock();
549 		for (i = n; i > 0; --i)
550 			fn();
551 		t = sched_clock() - t0;
552 		if (t >= 250000000)
553 			break; /* Stop once we took more than 0.25 seconds */
554 	}
555 	return t / n; /* Time for one iteration in nanoseconds */
556 };
557 
kprobe_benchmark(void (* fn)(void),unsigned offset)558 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
559 {
560 	struct kprobe k = {
561 		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
562 		.pre_handler	= benchmark_pre_handler,
563 	};
564 
565 	int ret = register_kprobe(&k);
566 	if (ret < 0) {
567 		pr_err("FAIL: register_kprobe failed with %d\n", ret);
568 		return ret;
569 	}
570 
571 	ret = benchmark(fn);
572 
573 	unregister_kprobe(&k);
574 	return ret;
575 };
576 
577 struct benchmarks {
578 	void		(*fn)(void);
579 	unsigned	offset;
580 	const char	*title;
581 };
582 
run_benchmarks(void)583 static int run_benchmarks(void)
584 {
585 	int ret;
586 	struct benchmarks list[] = {
587 		{&benchmark_nop, 0, "nop"},
588 		/*
589 		 * benchmark_pushpop{1,3} will have the optimised
590 		 * instruction emulation, whilst benchmark_pushpop{2,4} will
591 		 * be the equivalent unoptimised instructions.
592 		 */
593 		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
594 		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
595 		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
596 		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
597 		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
598 		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
599 		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
600 		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
601 #ifdef CONFIG_THUMB2_KERNEL
602 		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
603 		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
604 #endif
605 		{0}
606 	};
607 
608 	struct benchmarks *b;
609 	for (b = list; b->fn; ++b) {
610 		ret = kprobe_benchmark(b->fn, b->offset);
611 		if (ret < 0)
612 			return ret;
613 		pr_info("    %dns for kprobe %s\n", ret, b->title);
614 	}
615 
616 	pr_info("\n");
617 	return 0;
618 }
619 
620 #endif /* BENCHMARKING */
621 
622 
623 /*
624  * Decoding table self-consistency tests
625  */
626 
627 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
628 	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
629 	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
630 	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
631 	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
632 	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
633 	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
634 };
635 
table_iter(const union decode_item * table,int (* fn)(const struct decode_header *,void *),void * args)636 static int table_iter(const union decode_item *table,
637 			int (*fn)(const struct decode_header *, void *),
638 			void *args)
639 {
640 	const struct decode_header *h = (struct decode_header *)table;
641 	int result;
642 
643 	for (;;) {
644 		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
645 
646 		if (type == DECODE_TYPE_END)
647 			return 0;
648 
649 		result = fn(h, args);
650 		if (result)
651 			return result;
652 
653 		h = (struct decode_header *)
654 			((uintptr_t)h + decode_struct_sizes[type]);
655 
656 	}
657 }
658 
table_test_fail(const struct decode_header * h,const char * message)659 static int table_test_fail(const struct decode_header *h, const char* message)
660 {
661 
662 	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
663 					message, h->mask.bits, h->value.bits);
664 	return -EINVAL;
665 }
666 
667 struct table_test_args {
668 	const union decode_item *root_table;
669 	u32			parent_mask;
670 	u32			parent_value;
671 };
672 
table_test_fn(const struct decode_header * h,void * args)673 static int table_test_fn(const struct decode_header *h, void *args)
674 {
675 	struct table_test_args *a = (struct table_test_args *)args;
676 	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
677 
678 	if (h->value.bits & ~h->mask.bits)
679 		return table_test_fail(h, "Match value has bits not in mask");
680 
681 	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
682 		return table_test_fail(h, "Mask has bits not in parent mask");
683 
684 	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
685 		return table_test_fail(h, "Value is inconsistent with parent");
686 
687 	if (type == DECODE_TYPE_TABLE) {
688 		struct decode_table *d = (struct decode_table *)h;
689 		struct table_test_args args2 = *a;
690 		args2.parent_mask = h->mask.bits;
691 		args2.parent_value = h->value.bits;
692 		return table_iter(d->table.table, table_test_fn, &args2);
693 	}
694 
695 	return 0;
696 }
697 
table_test(const union decode_item * table)698 static int table_test(const union decode_item *table)
699 {
700 	struct table_test_args args = {
701 		.root_table	= table,
702 		.parent_mask	= 0,
703 		.parent_value	= 0
704 	};
705 	return table_iter(args.root_table, table_test_fn, &args);
706 }
707 
708 
709 /*
710  * Decoding table test coverage analysis
711  *
712  * coverage_start() builds a coverage_table which contains a list of
713  * coverage_entry's to match each entry in the specified kprobes instruction
714  * decoding table.
715  *
716  * When test cases are run, coverage_add() is called to process each case.
717  * This looks up the corresponding entry in the coverage_table and sets it as
718  * being matched, as well as clearing the regs flag appropriate for the test.
719  *
720  * After all test cases have been run, coverage_end() is called to check that
721  * all entries in coverage_table have been matched and that all regs flags are
722  * cleared. I.e. that all possible combinations of instructions described by
723  * the kprobes decoding tables have had a test case executed for them.
724  */
725 
726 bool coverage_fail;
727 
728 #define MAX_COVERAGE_ENTRIES 256
729 
730 struct coverage_entry {
731 	const struct decode_header	*header;
732 	unsigned			regs;
733 	unsigned			nesting;
734 	char				matched;
735 };
736 
737 struct coverage_table {
738 	struct coverage_entry	*base;
739 	unsigned		num_entries;
740 	unsigned		nesting;
741 };
742 
743 struct coverage_table coverage;
744 
745 #define COVERAGE_ANY_REG	(1<<0)
746 #define COVERAGE_SP		(1<<1)
747 #define COVERAGE_PC		(1<<2)
748 #define COVERAGE_PCWB		(1<<3)
749 
750 static const char coverage_register_lookup[16] = {
751 	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
752 	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
753 	[REG_TYPE_SP]		= COVERAGE_SP,
754 	[REG_TYPE_PC]		= COVERAGE_PC,
755 	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
756 	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
757 	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
758 	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
759 	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
760 	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
761 };
762 
coverage_start_registers(const struct decode_header * h)763 unsigned coverage_start_registers(const struct decode_header *h)
764 {
765 	unsigned regs = 0;
766 	int i;
767 	for (i = 0; i < 20; i += 4) {
768 		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
769 		regs |= coverage_register_lookup[r] << i;
770 	}
771 	return regs;
772 }
773 
coverage_start_fn(const struct decode_header * h,void * args)774 static int coverage_start_fn(const struct decode_header *h, void *args)
775 {
776 	struct coverage_table *coverage = (struct coverage_table *)args;
777 	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
778 	struct coverage_entry *entry = coverage->base + coverage->num_entries;
779 
780 	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
781 		pr_err("FAIL: Out of space for test coverage data");
782 		return -ENOMEM;
783 	}
784 
785 	++coverage->num_entries;
786 
787 	entry->header = h;
788 	entry->regs = coverage_start_registers(h);
789 	entry->nesting = coverage->nesting;
790 	entry->matched = false;
791 
792 	if (type == DECODE_TYPE_TABLE) {
793 		struct decode_table *d = (struct decode_table *)h;
794 		int ret;
795 		++coverage->nesting;
796 		ret = table_iter(d->table.table, coverage_start_fn, coverage);
797 		--coverage->nesting;
798 		return ret;
799 	}
800 
801 	return 0;
802 }
803 
coverage_start(const union decode_item * table)804 static int coverage_start(const union decode_item *table)
805 {
806 	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
807 				sizeof(struct coverage_entry), GFP_KERNEL);
808 	coverage.num_entries = 0;
809 	coverage.nesting = 0;
810 	return table_iter(table, coverage_start_fn, &coverage);
811 }
812 
813 static void
coverage_add_registers(struct coverage_entry * entry,kprobe_opcode_t insn)814 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
815 {
816 	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
817 	int i;
818 	for (i = 0; i < 20; i += 4) {
819 		enum decode_reg_type reg_type = (regs >> i) & 0xf;
820 		int reg = (insn >> i) & 0xf;
821 		int flag;
822 
823 		if (!reg_type)
824 			continue;
825 
826 		if (reg == 13)
827 			flag = COVERAGE_SP;
828 		else if (reg == 15)
829 			flag = COVERAGE_PC;
830 		else
831 			flag = COVERAGE_ANY_REG;
832 		entry->regs &= ~(flag << i);
833 
834 		switch (reg_type) {
835 
836 		case REG_TYPE_NONE:
837 		case REG_TYPE_ANY:
838 		case REG_TYPE_SAMEAS16:
839 			break;
840 
841 		case REG_TYPE_SP:
842 			if (reg != 13)
843 				return;
844 			break;
845 
846 		case REG_TYPE_PC:
847 			if (reg != 15)
848 				return;
849 			break;
850 
851 		case REG_TYPE_NOSP:
852 			if (reg == 13)
853 				return;
854 			break;
855 
856 		case REG_TYPE_NOSPPC:
857 		case REG_TYPE_NOSPPCX:
858 			if (reg == 13 || reg == 15)
859 				return;
860 			break;
861 
862 		case REG_TYPE_NOPCWB:
863 			if (!is_writeback(insn))
864 				break;
865 			if (reg == 15) {
866 				entry->regs &= ~(COVERAGE_PCWB << i);
867 				return;
868 			}
869 			break;
870 
871 		case REG_TYPE_NOPC:
872 		case REG_TYPE_NOPCX:
873 			if (reg == 15)
874 				return;
875 			break;
876 		}
877 
878 	}
879 }
880 
coverage_add(kprobe_opcode_t insn)881 static void coverage_add(kprobe_opcode_t insn)
882 {
883 	struct coverage_entry *entry = coverage.base;
884 	struct coverage_entry *end = coverage.base + coverage.num_entries;
885 	bool matched = false;
886 	unsigned nesting = 0;
887 
888 	for (; entry < end; ++entry) {
889 		const struct decode_header *h = entry->header;
890 		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
891 
892 		if (entry->nesting > nesting)
893 			continue; /* Skip sub-table we didn't match */
894 
895 		if (entry->nesting < nesting)
896 			break; /* End of sub-table we were scanning */
897 
898 		if (!matched) {
899 			if ((insn & h->mask.bits) != h->value.bits)
900 				continue;
901 			entry->matched = true;
902 		}
903 
904 		switch (type) {
905 
906 		case DECODE_TYPE_TABLE:
907 			++nesting;
908 			break;
909 
910 		case DECODE_TYPE_CUSTOM:
911 		case DECODE_TYPE_SIMULATE:
912 		case DECODE_TYPE_EMULATE:
913 			coverage_add_registers(entry, insn);
914 			return;
915 
916 		case DECODE_TYPE_OR:
917 			matched = true;
918 			break;
919 
920 		case DECODE_TYPE_REJECT:
921 		default:
922 			return;
923 		}
924 
925 	}
926 }
927 
coverage_end(void)928 static void coverage_end(void)
929 {
930 	struct coverage_entry *entry = coverage.base;
931 	struct coverage_entry *end = coverage.base + coverage.num_entries;
932 
933 	for (; entry < end; ++entry) {
934 		u32 mask = entry->header->mask.bits;
935 		u32 value = entry->header->value.bits;
936 
937 		if (entry->regs) {
938 			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
939 				mask, value, entry->regs);
940 			coverage_fail = true;
941 		}
942 		if (!entry->matched) {
943 			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
944 				mask, value);
945 			coverage_fail = true;
946 		}
947 	}
948 
949 	kfree(coverage.base);
950 }
951 
952 
953 /*
954  * Framework for instruction set test cases
955  */
956 
__kprobes_test_case_start(void)957 void __naked __kprobes_test_case_start(void)
958 {
959 	__asm__ __volatile__ (
960 		"stmdb	sp!, {r4-r11}				\n\t"
961 		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
962 		"bic	r0, lr, #1  @ r0 = inline title string	\n\t"
963 		"mov	r1, sp					\n\t"
964 		"bl	kprobes_test_case_start			\n\t"
965 		"bx	r0					\n\t"
966 	);
967 }
968 
969 #ifndef CONFIG_THUMB2_KERNEL
970 
__kprobes_test_case_end_32(void)971 void __naked __kprobes_test_case_end_32(void)
972 {
973 	__asm__ __volatile__ (
974 		"mov	r4, lr					\n\t"
975 		"bl	kprobes_test_case_end			\n\t"
976 		"cmp	r0, #0					\n\t"
977 		"movne	pc, r0					\n\t"
978 		"mov	r0, r4					\n\t"
979 		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
980 		"ldmia	sp!, {r4-r11}				\n\t"
981 		"mov	pc, r0					\n\t"
982 	);
983 }
984 
985 #else /* CONFIG_THUMB2_KERNEL */
986 
__kprobes_test_case_end_16(void)987 void __naked __kprobes_test_case_end_16(void)
988 {
989 	__asm__ __volatile__ (
990 		"mov	r4, lr					\n\t"
991 		"bl	kprobes_test_case_end			\n\t"
992 		"cmp	r0, #0					\n\t"
993 		"bxne	r0					\n\t"
994 		"mov	r0, r4					\n\t"
995 		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
996 		"ldmia	sp!, {r4-r11}				\n\t"
997 		"bx	r0					\n\t"
998 	);
999 }
1000 
__kprobes_test_case_end_32(void)1001 void __naked __kprobes_test_case_end_32(void)
1002 {
1003 	__asm__ __volatile__ (
1004 		".arm						\n\t"
1005 		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
1006 		"ldr	pc, 1f					\n\t"
1007 		"1:						\n\t"
1008 		".word	__kprobes_test_case_end_16		\n\t"
1009 	);
1010 }
1011 
1012 #endif
1013 
1014 
1015 int kprobe_test_flags;
1016 int kprobe_test_cc_position;
1017 
1018 static int test_try_count;
1019 static int test_pass_count;
1020 static int test_fail_count;
1021 
1022 static struct pt_regs initial_regs;
1023 static struct pt_regs expected_regs;
1024 static struct pt_regs result_regs;
1025 
1026 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1027 
1028 static const char *current_title;
1029 static struct test_arg *current_args;
1030 static u32 *current_stack;
1031 static uintptr_t current_branch_target;
1032 
1033 static uintptr_t current_code_start;
1034 static kprobe_opcode_t current_instruction;
1035 
1036 
1037 #define TEST_CASE_PASSED -1
1038 #define TEST_CASE_FAILED -2
1039 
1040 static int test_case_run_count;
1041 static bool test_case_is_thumb;
1042 static int test_instance;
1043 
1044 /*
1045  * We ignore the state of the imprecise abort disable flag (CPSR.A) because this
1046  * can change randomly as the kernel doesn't take care to preserve or initialise
1047  * this across context switches. Also, with Security Extentions, the flag may
1048  * not be under control of the kernel; for this reason we ignore the state of
1049  * the FIQ disable flag CPSR.F as well.
1050  */
1051 #define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
1052 
test_check_cc(int cc,unsigned long cpsr)1053 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1054 {
1055 	int ret = arm_check_condition(cc << 28, cpsr);
1056 
1057 	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1058 }
1059 
1060 static int is_last_scenario;
1061 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1062 static int memory_needs_checking;
1063 
test_context_cpsr(int scenario)1064 static unsigned long test_context_cpsr(int scenario)
1065 {
1066 	unsigned long cpsr;
1067 
1068 	probe_should_run = 1;
1069 
1070 	/* Default case is that we cycle through 16 combinations of flags */
1071 	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1072 	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1073 	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1074 
1075 	if (!test_case_is_thumb) {
1076 		/* Testing ARM code */
1077 		int cc = current_instruction >> 28;
1078 
1079 		probe_should_run = test_check_cc(cc, cpsr) != 0;
1080 		if (scenario == 15)
1081 			is_last_scenario = true;
1082 
1083 	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1084 		/* Testing Thumb code without setting ITSTATE */
1085 		if (kprobe_test_cc_position) {
1086 			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1087 			probe_should_run = test_check_cc(cc, cpsr) != 0;
1088 		}
1089 
1090 		if (scenario == 15)
1091 			is_last_scenario = true;
1092 
1093 	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1094 		/* Testing Thumb code with all combinations of ITSTATE */
1095 		unsigned x = (scenario >> 4);
1096 		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1097 		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1098 
1099 		if (mask > 0x1f) {
1100 			/* Finish by testing state from instruction 'itt al' */
1101 			cond_base = 7;
1102 			mask = 0x4;
1103 			if ((scenario & 0xf) == 0xf)
1104 				is_last_scenario = true;
1105 		}
1106 
1107 		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1108 		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1109 		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1110 		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1111 		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1112 		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1113 
1114 		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1115 
1116 	} else {
1117 		/* Testing Thumb code with several combinations of ITSTATE */
1118 		switch (scenario) {
1119 		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1120 			cpsr = 0x00000800;
1121 			probe_should_run = 0;
1122 			break;
1123 		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1124 			cpsr = 0xf0007800;
1125 			probe_should_run = 0;
1126 			break;
1127 		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1128 			cpsr = 0x00009800;
1129 			break;
1130 		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1131 			cpsr = 0xf0002800;
1132 			is_last_scenario = true;
1133 			break;
1134 		}
1135 	}
1136 
1137 	return cpsr;
1138 }
1139 
setup_test_context(struct pt_regs * regs)1140 static void setup_test_context(struct pt_regs *regs)
1141 {
1142 	int scenario = test_case_run_count>>1;
1143 	unsigned long val;
1144 	struct test_arg *args;
1145 	int i;
1146 
1147 	is_last_scenario = false;
1148 	memory_needs_checking = false;
1149 
1150 	/* Initialise test memory on stack */
1151 	val = (scenario & 1) ? VALM : ~VALM;
1152 	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1153 		current_stack[i] = val + (i << 8);
1154 	/* Put target of branch on stack for tests which load PC from memory */
1155 	if (current_branch_target)
1156 		current_stack[15] = current_branch_target;
1157 	/* Put a value for SP on stack for tests which load SP from memory */
1158 	current_stack[13] = (u32)current_stack + 120;
1159 
1160 	/* Initialise register values to their default state */
1161 	val = (scenario & 2) ? VALR : ~VALR;
1162 	for (i = 0; i < 13; ++i)
1163 		regs->uregs[i] = val ^ (i << 8);
1164 	regs->ARM_lr = val ^ (14 << 8);
1165 	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1166 	regs->ARM_cpsr |= test_context_cpsr(scenario);
1167 
1168 	/* Perform testcase specific register setup  */
1169 	args = current_args;
1170 	for (; args[0].type != ARG_TYPE_END; ++args)
1171 		switch (args[0].type) {
1172 		case ARG_TYPE_REG: {
1173 			struct test_arg_regptr *arg =
1174 				(struct test_arg_regptr *)args;
1175 			regs->uregs[arg->reg] = arg->val;
1176 			break;
1177 		}
1178 		case ARG_TYPE_PTR: {
1179 			struct test_arg_regptr *arg =
1180 				(struct test_arg_regptr *)args;
1181 			regs->uregs[arg->reg] =
1182 				(unsigned long)current_stack + arg->val;
1183 			memory_needs_checking = true;
1184 			break;
1185 		}
1186 		case ARG_TYPE_MEM: {
1187 			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1188 			current_stack[arg->index] = arg->val;
1189 			break;
1190 		}
1191 		default:
1192 			break;
1193 		}
1194 }
1195 
1196 struct test_probe {
1197 	struct kprobe	kprobe;
1198 	bool		registered;
1199 	int		hit;
1200 };
1201 
unregister_test_probe(struct test_probe * probe)1202 static void unregister_test_probe(struct test_probe *probe)
1203 {
1204 	if (probe->registered) {
1205 		unregister_kprobe(&probe->kprobe);
1206 		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1207 	}
1208 	probe->registered = false;
1209 }
1210 
register_test_probe(struct test_probe * probe)1211 static int register_test_probe(struct test_probe *probe)
1212 {
1213 	int ret;
1214 
1215 	if (probe->registered)
1216 		BUG();
1217 
1218 	ret = register_kprobe(&probe->kprobe);
1219 	if (ret >= 0) {
1220 		probe->registered = true;
1221 		probe->hit = -1;
1222 	}
1223 	return ret;
1224 }
1225 
1226 static int __kprobes
test_before_pre_handler(struct kprobe * p,struct pt_regs * regs)1227 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1228 {
1229 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1230 	return 0;
1231 }
1232 
1233 static void __kprobes
test_before_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1234 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1235 							unsigned long flags)
1236 {
1237 	setup_test_context(regs);
1238 	initial_regs = *regs;
1239 	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1240 }
1241 
1242 static int __kprobes
test_case_pre_handler(struct kprobe * p,struct pt_regs * regs)1243 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1244 {
1245 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1246 	return 0;
1247 }
1248 
1249 static int __kprobes
test_after_pre_handler(struct kprobe * p,struct pt_regs * regs)1250 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1251 {
1252 	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1253 		return 0; /* Already run for this test instance */
1254 
1255 	result_regs = *regs;
1256 	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1257 
1258 	/* Undo any changes done to SP by the test case */
1259 	regs->ARM_sp = (unsigned long)current_stack;
1260 
1261 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1262 	return 0;
1263 }
1264 
1265 static struct test_probe test_before_probe = {
1266 	.kprobe.pre_handler	= test_before_pre_handler,
1267 	.kprobe.post_handler	= test_before_post_handler,
1268 };
1269 
1270 static struct test_probe test_case_probe = {
1271 	.kprobe.pre_handler	= test_case_pre_handler,
1272 };
1273 
1274 static struct test_probe test_after_probe = {
1275 	.kprobe.pre_handler	= test_after_pre_handler,
1276 };
1277 
1278 static struct test_probe test_after2_probe = {
1279 	.kprobe.pre_handler	= test_after_pre_handler,
1280 };
1281 
test_case_cleanup(void)1282 static void test_case_cleanup(void)
1283 {
1284 	unregister_test_probe(&test_before_probe);
1285 	unregister_test_probe(&test_case_probe);
1286 	unregister_test_probe(&test_after_probe);
1287 	unregister_test_probe(&test_after2_probe);
1288 }
1289 
print_registers(struct pt_regs * regs)1290 static void print_registers(struct pt_regs *regs)
1291 {
1292 	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1293 		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1294 	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1295 		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1296 	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1297 		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1298 	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1299 		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1300 	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1301 }
1302 
print_memory(u32 * mem,size_t size)1303 static void print_memory(u32 *mem, size_t size)
1304 {
1305 	int i;
1306 	for (i = 0; i < size / sizeof(u32); i += 4)
1307 		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1308 						mem[i+2], mem[i+3]);
1309 }
1310 
expected_memory_size(u32 * sp)1311 static size_t expected_memory_size(u32 *sp)
1312 {
1313 	size_t size = sizeof(expected_memory);
1314 	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1315 	if (offset > 0)
1316 		size -= offset;
1317 	return size;
1318 }
1319 
test_case_failed(const char * message)1320 static void test_case_failed(const char *message)
1321 {
1322 	test_case_cleanup();
1323 
1324 	pr_err("FAIL: %s\n", message);
1325 	pr_err("FAIL: Test %s\n", current_title);
1326 	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1327 }
1328 
next_instruction(unsigned long pc)1329 static unsigned long next_instruction(unsigned long pc)
1330 {
1331 #ifdef CONFIG_THUMB2_KERNEL
1332 	if ((pc & 1) && !is_wide_instruction(*(u16 *)(pc - 1)))
1333 		return pc + 2;
1334 	else
1335 #endif
1336 	return pc + 4;
1337 }
1338 
kprobes_test_case_start(const char * title,void * stack)1339 static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
1340 {
1341 	struct test_arg *args;
1342 	struct test_arg_end *end_arg;
1343 	unsigned long test_code;
1344 
1345 	args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
1346 
1347 	current_title = title;
1348 	current_args = args;
1349 	current_stack = stack;
1350 
1351 	++test_try_count;
1352 
1353 	while (args->type != ARG_TYPE_END)
1354 		++args;
1355 	end_arg = (struct test_arg_end *)args;
1356 
1357 	test_code = (unsigned long)(args + 1); /* Code starts after args */
1358 
1359 	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1360 	if (test_case_is_thumb)
1361 		test_code |= 1;
1362 
1363 	current_code_start = test_code;
1364 
1365 	current_branch_target = 0;
1366 	if (end_arg->branch_offset != end_arg->end_offset)
1367 		current_branch_target = test_code + end_arg->branch_offset;
1368 
1369 	test_code += end_arg->code_offset;
1370 	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371 
1372 	test_code = next_instruction(test_code);
1373 	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1374 
1375 	if (test_case_is_thumb) {
1376 		u16 *p = (u16 *)(test_code & ~1);
1377 		current_instruction = p[0];
1378 		if (is_wide_instruction(current_instruction)) {
1379 			current_instruction <<= 16;
1380 			current_instruction |= p[1];
1381 		}
1382 	} else {
1383 		current_instruction = *(u32 *)test_code;
1384 	}
1385 
1386 	if (current_title[0] == '.')
1387 		verbose("%s\n", current_title);
1388 	else
1389 		verbose("%s\t@ %0*x\n", current_title,
1390 					test_case_is_thumb ? 4 : 8,
1391 					current_instruction);
1392 
1393 	test_code = next_instruction(test_code);
1394 	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1395 
1396 	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1397 		if (!test_case_is_thumb ||
1398 			is_wide_instruction(current_instruction)) {
1399 				test_case_failed("expected 16-bit instruction");
1400 				goto fail;
1401 		}
1402 	} else {
1403 		if (test_case_is_thumb &&
1404 			!is_wide_instruction(current_instruction)) {
1405 				test_case_failed("expected 32-bit instruction");
1406 				goto fail;
1407 		}
1408 	}
1409 
1410 	coverage_add(current_instruction);
1411 
1412 	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1413 		if (register_test_probe(&test_case_probe) < 0)
1414 			goto pass;
1415 		test_case_failed("registered probe for unsupported instruction");
1416 		goto fail;
1417 	}
1418 
1419 	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1420 		if (register_test_probe(&test_case_probe) >= 0)
1421 			goto pass;
1422 		test_case_failed("couldn't register probe for supported instruction");
1423 		goto fail;
1424 	}
1425 
1426 	if (register_test_probe(&test_before_probe) < 0) {
1427 		test_case_failed("register test_before_probe failed");
1428 		goto fail;
1429 	}
1430 	if (register_test_probe(&test_after_probe) < 0) {
1431 		test_case_failed("register test_after_probe failed");
1432 		goto fail;
1433 	}
1434 	if (current_branch_target) {
1435 		test_after2_probe.kprobe.addr =
1436 				(kprobe_opcode_t *)current_branch_target;
1437 		if (register_test_probe(&test_after2_probe) < 0) {
1438 			test_case_failed("register test_after2_probe failed");
1439 			goto fail;
1440 		}
1441 	}
1442 
1443 	/* Start first run of test case */
1444 	test_case_run_count = 0;
1445 	++test_instance;
1446 	return current_code_start;
1447 pass:
1448 	test_case_run_count = TEST_CASE_PASSED;
1449 	return (uintptr_t)test_after_probe.kprobe.addr;
1450 fail:
1451 	test_case_run_count = TEST_CASE_FAILED;
1452 	return (uintptr_t)test_after_probe.kprobe.addr;
1453 }
1454 
check_test_results(void)1455 static bool check_test_results(void)
1456 {
1457 	size_t mem_size = 0;
1458 	u32 *mem = 0;
1459 
1460 	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1461 		test_case_failed("registers differ");
1462 		goto fail;
1463 	}
1464 
1465 	if (memory_needs_checking) {
1466 		mem = (u32 *)result_regs.ARM_sp;
1467 		mem_size = expected_memory_size(mem);
1468 		if (memcmp(expected_memory, mem, mem_size)) {
1469 			test_case_failed("test memory differs");
1470 			goto fail;
1471 		}
1472 	}
1473 
1474 	return true;
1475 
1476 fail:
1477 	pr_err("initial_regs:\n");
1478 	print_registers(&initial_regs);
1479 	pr_err("expected_regs:\n");
1480 	print_registers(&expected_regs);
1481 	pr_err("result_regs:\n");
1482 	print_registers(&result_regs);
1483 
1484 	if (mem) {
1485 		pr_err("current_stack=%p\n", current_stack);
1486 		pr_err("expected_memory:\n");
1487 		print_memory(expected_memory, mem_size);
1488 		pr_err("result_memory:\n");
1489 		print_memory(mem, mem_size);
1490 	}
1491 
1492 	return false;
1493 }
1494 
kprobes_test_case_end(void)1495 static uintptr_t __used kprobes_test_case_end(void)
1496 {
1497 	if (test_case_run_count < 0) {
1498 		if (test_case_run_count == TEST_CASE_PASSED)
1499 			/* kprobes_test_case_start did all the needed testing */
1500 			goto pass;
1501 		else
1502 			/* kprobes_test_case_start failed */
1503 			goto fail;
1504 	}
1505 
1506 	if (test_before_probe.hit != test_instance) {
1507 		test_case_failed("test_before_handler not run");
1508 		goto fail;
1509 	}
1510 
1511 	if (test_after_probe.hit != test_instance &&
1512 				test_after2_probe.hit != test_instance) {
1513 		test_case_failed("test_after_handler not run");
1514 		goto fail;
1515 	}
1516 
1517 	/*
1518 	 * Even numbered test runs ran without a probe on the test case so
1519 	 * we can gather reference results. The subsequent odd numbered run
1520 	 * will have the probe inserted.
1521 	*/
1522 	if ((test_case_run_count & 1) == 0) {
1523 		/* Save results from run without probe */
1524 		u32 *mem = (u32 *)result_regs.ARM_sp;
1525 		expected_regs = result_regs;
1526 		memcpy(expected_memory, mem, expected_memory_size(mem));
1527 
1528 		/* Insert probe onto test case instruction */
1529 		if (register_test_probe(&test_case_probe) < 0) {
1530 			test_case_failed("register test_case_probe failed");
1531 			goto fail;
1532 		}
1533 	} else {
1534 		/* Check probe ran as expected */
1535 		if (probe_should_run == 1) {
1536 			if (test_case_probe.hit != test_instance) {
1537 				test_case_failed("test_case_handler not run");
1538 				goto fail;
1539 			}
1540 		} else if (probe_should_run == 0) {
1541 			if (test_case_probe.hit == test_instance) {
1542 				test_case_failed("test_case_handler ran");
1543 				goto fail;
1544 			}
1545 		}
1546 
1547 		/* Remove probe for any subsequent reference run */
1548 		unregister_test_probe(&test_case_probe);
1549 
1550 		if (!check_test_results())
1551 			goto fail;
1552 
1553 		if (is_last_scenario)
1554 			goto pass;
1555 	}
1556 
1557 	/* Do next test run */
1558 	++test_case_run_count;
1559 	++test_instance;
1560 	return current_code_start;
1561 fail:
1562 	++test_fail_count;
1563 	goto end;
1564 pass:
1565 	++test_pass_count;
1566 end:
1567 	test_case_cleanup();
1568 	return 0;
1569 }
1570 
1571 
1572 /*
1573  * Top level test functions
1574  */
1575 
run_test_cases(void (* tests)(void),const union decode_item * table)1576 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1577 {
1578 	int ret;
1579 
1580 	pr_info("    Check decoding tables\n");
1581 	ret = table_test(table);
1582 	if (ret)
1583 		return ret;
1584 
1585 	pr_info("    Run test cases\n");
1586 	ret = coverage_start(table);
1587 	if (ret)
1588 		return ret;
1589 
1590 	tests();
1591 
1592 	coverage_end();
1593 	return 0;
1594 }
1595 
1596 
run_all_tests(void)1597 static int __init run_all_tests(void)
1598 {
1599 	int ret = 0;
1600 
1601 	pr_info("Begining kprobe tests...\n");
1602 
1603 #ifndef CONFIG_THUMB2_KERNEL
1604 
1605 	pr_info("Probe ARM code\n");
1606 	ret = run_api_tests(arm_func);
1607 	if (ret)
1608 		goto out;
1609 
1610 	pr_info("ARM instruction simulation\n");
1611 	ret = run_test_cases(kprobe_arm_test_cases, kprobe_decode_arm_table);
1612 	if (ret)
1613 		goto out;
1614 
1615 #else /* CONFIG_THUMB2_KERNEL */
1616 
1617 	pr_info("Probe 16-bit Thumb code\n");
1618 	ret = run_api_tests(thumb16_func);
1619 	if (ret)
1620 		goto out;
1621 
1622 	pr_info("Probe 32-bit Thumb code, even halfword\n");
1623 	ret = run_api_tests(thumb32even_func);
1624 	if (ret)
1625 		goto out;
1626 
1627 	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1628 	ret = run_api_tests(thumb32odd_func);
1629 	if (ret)
1630 		goto out;
1631 
1632 	pr_info("16-bit Thumb instruction simulation\n");
1633 	ret = run_test_cases(kprobe_thumb16_test_cases,
1634 				kprobe_decode_thumb16_table);
1635 	if (ret)
1636 		goto out;
1637 
1638 	pr_info("32-bit Thumb instruction simulation\n");
1639 	ret = run_test_cases(kprobe_thumb32_test_cases,
1640 				kprobe_decode_thumb32_table);
1641 	if (ret)
1642 		goto out;
1643 #endif
1644 
1645 	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1646 		test_try_count, test_pass_count, test_fail_count);
1647 	if (test_fail_count) {
1648 		ret = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 #if BENCHMARKING
1653 	pr_info("Benchmarks\n");
1654 	ret = run_benchmarks();
1655 	if (ret)
1656 		goto out;
1657 #endif
1658 
1659 #if __LINUX_ARM_ARCH__ >= 7
1660 	/* We are able to run all test cases so coverage should be complete */
1661 	if (coverage_fail) {
1662 		pr_err("FAIL: Test coverage checks failed\n");
1663 		ret = -EINVAL;
1664 		goto out;
1665 	}
1666 #endif
1667 
1668 out:
1669 	if (ret == 0)
1670 		pr_info("Finished kprobe tests OK\n");
1671 	else
1672 		pr_err("kprobe tests failed\n");
1673 
1674 	return ret;
1675 }
1676 
1677 
1678 /*
1679  * Module setup
1680  */
1681 
1682 #ifdef MODULE
1683 
kprobe_test_exit(void)1684 static void __exit kprobe_test_exit(void)
1685 {
1686 }
1687 
1688 module_init(run_all_tests)
1689 module_exit(kprobe_test_exit)
1690 MODULE_LICENSE("GPL");
1691 
1692 #else /* !MODULE */
1693 
1694 late_initcall(run_all_tests);
1695 
1696 #endif
1697