1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
unregister_binfmt(struct linux_binfmt * fmt)95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
put_binfmt(struct linux_binfmt * fmt)104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 module_put(fmt->module);
107 }
108
path_noexec(const struct path * path)109 bool path_noexec(const struct path *path)
110 {
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from the file itself.
121 */
SYSCALL_DEFINE1(uselib,const char __user *,library)122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172 exit:
173 fput(file);
174 out:
175 return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200 {
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211 #endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 mmap_read_lock(bprm->mm);
221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 mmap_read_unlock(bprm->mm);
224 if (ret <= 0)
225 return NULL;
226
227 if (write)
228 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230 return page;
231 }
232
put_arg_page(struct page * page)233 static void put_arg_page(struct page *page)
234 {
235 put_page(page);
236 }
237
free_arg_pages(struct linux_binprm * bprm)238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 struct page *page)
244 {
245 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
__bprm_mm_init(struct linux_binprm * bprm)248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 int err;
251 struct vm_area_struct *vma = NULL;
252 struct mm_struct *mm = bprm->mm;
253
254 bprm->vma = vma = vm_area_alloc(mm);
255 if (!vma)
256 return -ENOMEM;
257 vma_set_anonymous(vma);
258
259 if (mmap_write_lock_killable(mm)) {
260 err = -EINTR;
261 goto err_free;
262 }
263
264 /*
265 * Place the stack at the largest stack address the architecture
266 * supports. Later, we'll move this to an appropriate place. We don't
267 * use STACK_TOP because that can depend on attributes which aren't
268 * configured yet.
269 */
270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 vma->vm_end = STACK_TOP_MAX;
272 vma->vm_start = vma->vm_end - PAGE_SIZE;
273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276 err = insert_vm_struct(mm, vma);
277 if (err)
278 goto err;
279
280 mm->stack_vm = mm->total_vm = 1;
281 mmap_write_unlock(mm);
282 bprm->p = vma->vm_end - sizeof(void *);
283 return 0;
284 err:
285 mmap_write_unlock(mm);
286 err_free:
287 bprm->vma = NULL;
288 vm_area_free(vma);
289 return err;
290 }
291
valid_arg_len(struct linux_binprm * bprm,long len)292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 int write)
305 {
306 struct page *page;
307
308 page = bprm->page[pos / PAGE_SIZE];
309 if (!page && write) {
310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 if (!page)
312 return NULL;
313 bprm->page[pos / PAGE_SIZE] = page;
314 }
315
316 return page;
317 }
318
put_arg_page(struct page * page)319 static void put_arg_page(struct page *page)
320 {
321 }
322
free_arg_page(struct linux_binprm * bprm,int i)323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 if (bprm->page[i]) {
326 __free_page(bprm->page[i]);
327 bprm->page[i] = NULL;
328 }
329 }
330
free_arg_pages(struct linux_binprm * bprm)331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 int i;
334
335 for (i = 0; i < MAX_ARG_PAGES; i++)
336 free_arg_page(bprm, i);
337 }
338
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 struct page *page)
341 {
342 }
343
__bprm_mm_init(struct linux_binprm * bprm)344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 return 0;
348 }
349
valid_arg_len(struct linux_binprm * bprm,long len)350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358 * Create a new mm_struct and populate it with a temporary stack
359 * vm_area_struct. We don't have enough context at this point to set the stack
360 * flags, permissions, and offset, so we use temporary values. We'll update
361 * them later in setup_arg_pages().
362 */
bprm_mm_init(struct linux_binprm * bprm)363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 int err;
366 struct mm_struct *mm = NULL;
367
368 bprm->mm = mm = mm_alloc();
369 err = -ENOMEM;
370 if (!mm)
371 goto err;
372
373 /* Save current stack limit for all calculations made during exec. */
374 task_lock(current->group_leader);
375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 task_unlock(current->group_leader);
377
378 err = __bprm_mm_init(bprm);
379 if (err)
380 goto err;
381
382 return 0;
383
384 err:
385 if (mm) {
386 bprm->mm = NULL;
387 mmdrop(mm);
388 }
389
390 return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 bool is_compat;
396 #endif
397 union {
398 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 const compat_uptr_t __user *compat;
401 #endif
402 } ptr;
403 };
404
get_user_arg_ptr(struct user_arg_ptr argv,int nr)405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410 if (unlikely(argv.is_compat)) {
411 compat_uptr_t compat;
412
413 if (get_user(compat, argv.ptr.compat + nr))
414 return ERR_PTR(-EFAULT);
415
416 return compat_ptr(compat);
417 }
418 #endif
419
420 if (get_user(native, argv.ptr.native + nr))
421 return ERR_PTR(-EFAULT);
422
423 return native;
424 }
425
426 /*
427 * count() counts the number of strings in array ARGV.
428 */
count(struct user_arg_ptr argv,int max)429 static int count(struct user_arg_ptr argv, int max)
430 {
431 int i = 0;
432
433 if (argv.ptr.native != NULL) {
434 for (;;) {
435 const char __user *p = get_user_arg_ptr(argv, i);
436
437 if (!p)
438 break;
439
440 if (IS_ERR(p))
441 return -EFAULT;
442
443 if (i >= max)
444 return -E2BIG;
445 ++i;
446
447 if (fatal_signal_pending(current))
448 return -ERESTARTNOHAND;
449 cond_resched();
450 }
451 }
452 return i;
453 }
454
count_strings_kernel(const char * const * argv)455 static int count_strings_kernel(const char *const *argv)
456 {
457 int i;
458
459 if (!argv)
460 return 0;
461
462 for (i = 0; argv[i]; ++i) {
463 if (i >= MAX_ARG_STRINGS)
464 return -E2BIG;
465 if (fatal_signal_pending(current))
466 return -ERESTARTNOHAND;
467 cond_resched();
468 }
469 return i;
470 }
471
bprm_stack_limits(struct linux_binprm * bprm)472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 unsigned long limit, ptr_size;
475
476 /*
477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 * (whichever is smaller) for the argv+env strings.
479 * This ensures that:
480 * - the remaining binfmt code will not run out of stack space,
481 * - the program will have a reasonable amount of stack left
482 * to work from.
483 */
484 limit = _STK_LIM / 4 * 3;
485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 /*
487 * We've historically supported up to 32 pages (ARG_MAX)
488 * of argument strings even with small stacks
489 */
490 limit = max_t(unsigned long, limit, ARG_MAX);
491 /*
492 * We must account for the size of all the argv and envp pointers to
493 * the argv and envp strings, since they will also take up space in
494 * the stack. They aren't stored until much later when we can't
495 * signal to the parent that the child has run out of stack space.
496 * Instead, calculate it here so it's possible to fail gracefully.
497 *
498 * In the case of argc = 0, make sure there is space for adding a
499 * empty string (which will bump argc to 1), to ensure confused
500 * userspace programs don't start processing from argv[1], thinking
501 * argc can never be 0, to keep them from walking envp by accident.
502 * See do_execveat_common().
503 */
504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 if (limit <= ptr_size)
506 return -E2BIG;
507 limit -= ptr_size;
508
509 bprm->argmin = bprm->p - limit;
510 return 0;
511 }
512
513 /*
514 * 'copy_strings()' copies argument/environment strings from the old
515 * processes's memory to the new process's stack. The call to get_user_pages()
516 * ensures the destination page is created and not swapped out.
517 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 struct linux_binprm *bprm)
520 {
521 struct page *kmapped_page = NULL;
522 char *kaddr = NULL;
523 unsigned long kpos = 0;
524 int ret;
525
526 while (argc-- > 0) {
527 const char __user *str;
528 int len;
529 unsigned long pos;
530
531 ret = -EFAULT;
532 str = get_user_arg_ptr(argv, argc);
533 if (IS_ERR(str))
534 goto out;
535
536 len = strnlen_user(str, MAX_ARG_STRLEN);
537 if (!len)
538 goto out;
539
540 ret = -E2BIG;
541 if (!valid_arg_len(bprm, len))
542 goto out;
543
544 /* We're going to work our way backwards. */
545 pos = bprm->p;
546 str += len;
547 bprm->p -= len;
548 #ifdef CONFIG_MMU
549 if (bprm->p < bprm->argmin)
550 goto out;
551 #endif
552
553 while (len > 0) {
554 int offset, bytes_to_copy;
555
556 if (fatal_signal_pending(current)) {
557 ret = -ERESTARTNOHAND;
558 goto out;
559 }
560 cond_resched();
561
562 offset = pos % PAGE_SIZE;
563 if (offset == 0)
564 offset = PAGE_SIZE;
565
566 bytes_to_copy = offset;
567 if (bytes_to_copy > len)
568 bytes_to_copy = len;
569
570 offset -= bytes_to_copy;
571 pos -= bytes_to_copy;
572 str -= bytes_to_copy;
573 len -= bytes_to_copy;
574
575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 struct page *page;
577
578 page = get_arg_page(bprm, pos, 1);
579 if (!page) {
580 ret = -E2BIG;
581 goto out;
582 }
583
584 if (kmapped_page) {
585 flush_dcache_page(kmapped_page);
586 kunmap(kmapped_page);
587 put_arg_page(kmapped_page);
588 }
589 kmapped_page = page;
590 kaddr = kmap(kmapped_page);
591 kpos = pos & PAGE_MASK;
592 flush_arg_page(bprm, kpos, kmapped_page);
593 }
594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 ret = -EFAULT;
596 goto out;
597 }
598 }
599 }
600 ret = 0;
601 out:
602 if (kmapped_page) {
603 flush_dcache_page(kmapped_page);
604 kunmap(kmapped_page);
605 put_arg_page(kmapped_page);
606 }
607 return ret;
608 }
609
610 /*
611 * Copy and argument/environment string from the kernel to the processes stack.
612 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 unsigned long pos = bprm->p;
617
618 if (len == 0)
619 return -EFAULT;
620 if (!valid_arg_len(bprm, len))
621 return -E2BIG;
622
623 /* We're going to work our way backwards. */
624 arg += len;
625 bprm->p -= len;
626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 return -E2BIG;
628
629 while (len > 0) {
630 unsigned int bytes_to_copy = min_t(unsigned int, len,
631 min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 struct page *page;
633 char *kaddr;
634
635 pos -= bytes_to_copy;
636 arg -= bytes_to_copy;
637 len -= bytes_to_copy;
638
639 page = get_arg_page(bprm, pos, 1);
640 if (!page)
641 return -E2BIG;
642 kaddr = kmap_atomic(page);
643 flush_arg_page(bprm, pos & PAGE_MASK, page);
644 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645 flush_dcache_page(page);
646 kunmap_atomic(kaddr);
647 put_arg_page(page);
648 }
649
650 return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)654 static int copy_strings_kernel(int argc, const char *const *argv,
655 struct linux_binprm *bprm)
656 {
657 while (argc-- > 0) {
658 int ret = copy_string_kernel(argv[argc], bprm);
659 if (ret < 0)
660 return ret;
661 if (fatal_signal_pending(current))
662 return -ERESTARTNOHAND;
663 cond_resched();
664 }
665 return 0;
666 }
667
668 #ifdef CONFIG_MMU
669
670 /*
671 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
672 * the binfmt code determines where the new stack should reside, we shift it to
673 * its final location. The process proceeds as follows:
674 *
675 * 1) Use shift to calculate the new vma endpoints.
676 * 2) Extend vma to cover both the old and new ranges. This ensures the
677 * arguments passed to subsequent functions are consistent.
678 * 3) Move vma's page tables to the new range.
679 * 4) Free up any cleared pgd range.
680 * 5) Shrink the vma to cover only the new range.
681 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684 struct mm_struct *mm = vma->vm_mm;
685 unsigned long old_start = vma->vm_start;
686 unsigned long old_end = vma->vm_end;
687 unsigned long length = old_end - old_start;
688 unsigned long new_start = old_start - shift;
689 unsigned long new_end = old_end - shift;
690 struct mmu_gather tlb;
691
692 BUG_ON(new_start > new_end);
693
694 /*
695 * ensure there are no vmas between where we want to go
696 * and where we are
697 */
698 if (vma != find_vma(mm, new_start))
699 return -EFAULT;
700
701 /*
702 * cover the whole range: [new_start, old_end)
703 */
704 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705 return -ENOMEM;
706
707 /*
708 * move the page tables downwards, on failure we rely on
709 * process cleanup to remove whatever mess we made.
710 */
711 if (length != move_page_tables(vma, old_start,
712 vma, new_start, length, false))
713 return -ENOMEM;
714
715 lru_add_drain();
716 tlb_gather_mmu(&tlb, mm);
717 if (new_end > old_start) {
718 /*
719 * when the old and new regions overlap clear from new_end.
720 */
721 free_pgd_range(&tlb, new_end, old_end, new_end,
722 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723 } else {
724 /*
725 * otherwise, clean from old_start; this is done to not touch
726 * the address space in [new_end, old_start) some architectures
727 * have constraints on va-space that make this illegal (IA64) -
728 * for the others its just a little faster.
729 */
730 free_pgd_range(&tlb, old_start, old_end, new_end,
731 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732 }
733 tlb_finish_mmu(&tlb);
734
735 /*
736 * Shrink the vma to just the new range. Always succeeds.
737 */
738 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739
740 return 0;
741 }
742
743 /*
744 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745 * the stack is optionally relocated, and some extra space is added.
746 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)747 int setup_arg_pages(struct linux_binprm *bprm,
748 unsigned long stack_top,
749 int executable_stack)
750 {
751 unsigned long ret;
752 unsigned long stack_shift;
753 struct mm_struct *mm = current->mm;
754 struct vm_area_struct *vma = bprm->vma;
755 struct vm_area_struct *prev = NULL;
756 unsigned long vm_flags;
757 unsigned long stack_base;
758 unsigned long stack_size;
759 unsigned long stack_expand;
760 unsigned long rlim_stack;
761 struct mmu_gather tlb;
762
763 #ifdef CONFIG_STACK_GROWSUP
764 /* Limit stack size */
765 stack_base = bprm->rlim_stack.rlim_max;
766
767 stack_base = calc_max_stack_size(stack_base);
768
769 /* Add space for stack randomization. */
770 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771
772 /* Make sure we didn't let the argument array grow too large. */
773 if (vma->vm_end - vma->vm_start > stack_base)
774 return -ENOMEM;
775
776 stack_base = PAGE_ALIGN(stack_top - stack_base);
777
778 stack_shift = vma->vm_start - stack_base;
779 mm->arg_start = bprm->p - stack_shift;
780 bprm->p = vma->vm_end - stack_shift;
781 #else
782 stack_top = arch_align_stack(stack_top);
783 stack_top = PAGE_ALIGN(stack_top);
784
785 if (unlikely(stack_top < mmap_min_addr) ||
786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787 return -ENOMEM;
788
789 stack_shift = vma->vm_end - stack_top;
790
791 bprm->p -= stack_shift;
792 mm->arg_start = bprm->p;
793 #endif
794
795 if (bprm->loader)
796 bprm->loader -= stack_shift;
797 bprm->exec -= stack_shift;
798
799 if (mmap_write_lock_killable(mm))
800 return -EINTR;
801
802 vm_flags = VM_STACK_FLAGS;
803
804 /*
805 * Adjust stack execute permissions; explicitly enable for
806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807 * (arch default) otherwise.
808 */
809 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810 vm_flags |= VM_EXEC;
811 else if (executable_stack == EXSTACK_DISABLE_X)
812 vm_flags &= ~VM_EXEC;
813 vm_flags |= mm->def_flags;
814 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815
816 tlb_gather_mmu(&tlb, mm);
817 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
818 vm_flags);
819 tlb_finish_mmu(&tlb);
820
821 if (ret)
822 goto out_unlock;
823 BUG_ON(prev != vma);
824
825 if (unlikely(vm_flags & VM_EXEC)) {
826 pr_warn_once("process '%pD4' started with executable stack\n",
827 bprm->file);
828 }
829
830 /* Move stack pages down in memory. */
831 if (stack_shift) {
832 ret = shift_arg_pages(vma, stack_shift);
833 if (ret)
834 goto out_unlock;
835 }
836
837 /* mprotect_fixup is overkill to remove the temporary stack flags */
838 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
839
840 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
841 stack_size = vma->vm_end - vma->vm_start;
842 /*
843 * Align this down to a page boundary as expand_stack
844 * will align it up.
845 */
846 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
847 #ifdef CONFIG_STACK_GROWSUP
848 if (stack_size + stack_expand > rlim_stack)
849 stack_base = vma->vm_start + rlim_stack;
850 else
851 stack_base = vma->vm_end + stack_expand;
852 #else
853 if (stack_size + stack_expand > rlim_stack)
854 stack_base = vma->vm_end - rlim_stack;
855 else
856 stack_base = vma->vm_start - stack_expand;
857 #endif
858 current->mm->start_stack = bprm->p;
859 ret = expand_stack(vma, stack_base);
860 if (ret)
861 ret = -EFAULT;
862
863 out_unlock:
864 mmap_write_unlock(mm);
865 return ret;
866 }
867 EXPORT_SYMBOL(setup_arg_pages);
868
869 #else
870
871 /*
872 * Transfer the program arguments and environment from the holding pages
873 * onto the stack. The provided stack pointer is adjusted accordingly.
874 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)875 int transfer_args_to_stack(struct linux_binprm *bprm,
876 unsigned long *sp_location)
877 {
878 unsigned long index, stop, sp;
879 int ret = 0;
880
881 stop = bprm->p >> PAGE_SHIFT;
882 sp = *sp_location;
883
884 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
885 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
886 char *src = kmap(bprm->page[index]) + offset;
887 sp -= PAGE_SIZE - offset;
888 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
889 ret = -EFAULT;
890 kunmap(bprm->page[index]);
891 if (ret)
892 goto out;
893 }
894
895 *sp_location = sp;
896
897 out:
898 return ret;
899 }
900 EXPORT_SYMBOL(transfer_args_to_stack);
901
902 #endif /* CONFIG_MMU */
903
do_open_execat(int fd,struct filename * name,int flags)904 static struct file *do_open_execat(int fd, struct filename *name, int flags)
905 {
906 struct file *file;
907 int err;
908 struct open_flags open_exec_flags = {
909 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
910 .acc_mode = MAY_EXEC,
911 .intent = LOOKUP_OPEN,
912 .lookup_flags = LOOKUP_FOLLOW,
913 };
914
915 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
916 return ERR_PTR(-EINVAL);
917 if (flags & AT_SYMLINK_NOFOLLOW)
918 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
919 if (flags & AT_EMPTY_PATH)
920 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
921
922 file = do_filp_open(fd, name, &open_exec_flags);
923 if (IS_ERR(file))
924 goto out;
925
926 /*
927 * may_open() has already checked for this, so it should be
928 * impossible to trip now. But we need to be extra cautious
929 * and check again at the very end too.
930 */
931 err = -EACCES;
932 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
933 path_noexec(&file->f_path)))
934 goto exit;
935
936 err = deny_write_access(file);
937 if (err)
938 goto exit;
939
940 if (name->name[0] != '\0')
941 fsnotify_open(file);
942
943 out:
944 return file;
945
946 exit:
947 fput(file);
948 return ERR_PTR(err);
949 }
950
open_exec(const char * name)951 struct file *open_exec(const char *name)
952 {
953 struct filename *filename = getname_kernel(name);
954 struct file *f = ERR_CAST(filename);
955
956 if (!IS_ERR(filename)) {
957 f = do_open_execat(AT_FDCWD, filename, 0);
958 putname(filename);
959 }
960 return f;
961 }
962 EXPORT_SYMBOL(open_exec);
963
964 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
965 defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)966 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
967 {
968 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
969 if (res > 0)
970 flush_icache_user_range(addr, addr + len);
971 return res;
972 }
973 EXPORT_SYMBOL(read_code);
974 #endif
975
976 /*
977 * Maps the mm_struct mm into the current task struct.
978 * On success, this function returns with exec_update_lock
979 * held for writing.
980 */
exec_mmap(struct mm_struct * mm)981 static int exec_mmap(struct mm_struct *mm)
982 {
983 struct task_struct *tsk;
984 struct mm_struct *old_mm, *active_mm;
985 int ret;
986
987 /* Notify parent that we're no longer interested in the old VM */
988 tsk = current;
989 old_mm = current->mm;
990 exec_mm_release(tsk, old_mm);
991 if (old_mm)
992 sync_mm_rss(old_mm);
993
994 ret = down_write_killable(&tsk->signal->exec_update_lock);
995 if (ret)
996 return ret;
997
998 if (old_mm) {
999 /*
1000 * If there is a pending fatal signal perhaps a signal
1001 * whose default action is to create a coredump get
1002 * out and die instead of going through with the exec.
1003 */
1004 ret = mmap_read_lock_killable(old_mm);
1005 if (ret) {
1006 up_write(&tsk->signal->exec_update_lock);
1007 return ret;
1008 }
1009 }
1010
1011 task_lock(tsk);
1012 membarrier_exec_mmap(mm);
1013
1014 local_irq_disable();
1015 active_mm = tsk->active_mm;
1016 tsk->active_mm = mm;
1017 tsk->mm = mm;
1018 /*
1019 * This prevents preemption while active_mm is being loaded and
1020 * it and mm are being updated, which could cause problems for
1021 * lazy tlb mm refcounting when these are updated by context
1022 * switches. Not all architectures can handle irqs off over
1023 * activate_mm yet.
1024 */
1025 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 local_irq_enable();
1027 activate_mm(active_mm, mm);
1028 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 local_irq_enable();
1030 tsk->mm->vmacache_seqnum = 0;
1031 vmacache_flush(tsk);
1032 task_unlock(tsk);
1033 if (old_mm) {
1034 mmap_read_unlock(old_mm);
1035 BUG_ON(active_mm != old_mm);
1036 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037 mm_update_next_owner(old_mm);
1038 mmput(old_mm);
1039 return 0;
1040 }
1041 mmdrop(active_mm);
1042 return 0;
1043 }
1044
de_thread(struct task_struct * tsk)1045 static int de_thread(struct task_struct *tsk)
1046 {
1047 struct signal_struct *sig = tsk->signal;
1048 struct sighand_struct *oldsighand = tsk->sighand;
1049 spinlock_t *lock = &oldsighand->siglock;
1050
1051 if (thread_group_empty(tsk))
1052 goto no_thread_group;
1053
1054 /*
1055 * Kill all other threads in the thread group.
1056 */
1057 spin_lock_irq(lock);
1058 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1059 /*
1060 * Another group action in progress, just
1061 * return so that the signal is processed.
1062 */
1063 spin_unlock_irq(lock);
1064 return -EAGAIN;
1065 }
1066
1067 sig->group_exec_task = tsk;
1068 sig->notify_count = zap_other_threads(tsk);
1069 if (!thread_group_leader(tsk))
1070 sig->notify_count--;
1071
1072 while (sig->notify_count) {
1073 __set_current_state(TASK_KILLABLE);
1074 spin_unlock_irq(lock);
1075 schedule();
1076 if (__fatal_signal_pending(tsk))
1077 goto killed;
1078 spin_lock_irq(lock);
1079 }
1080 spin_unlock_irq(lock);
1081
1082 /*
1083 * At this point all other threads have exited, all we have to
1084 * do is to wait for the thread group leader to become inactive,
1085 * and to assume its PID:
1086 */
1087 if (!thread_group_leader(tsk)) {
1088 struct task_struct *leader = tsk->group_leader;
1089
1090 for (;;) {
1091 cgroup_threadgroup_change_begin(tsk);
1092 write_lock_irq(&tasklist_lock);
1093 /*
1094 * Do this under tasklist_lock to ensure that
1095 * exit_notify() can't miss ->group_exec_task
1096 */
1097 sig->notify_count = -1;
1098 if (likely(leader->exit_state))
1099 break;
1100 __set_current_state(TASK_KILLABLE);
1101 write_unlock_irq(&tasklist_lock);
1102 cgroup_threadgroup_change_end(tsk);
1103 schedule();
1104 if (__fatal_signal_pending(tsk))
1105 goto killed;
1106 }
1107
1108 /*
1109 * The only record we have of the real-time age of a
1110 * process, regardless of execs it's done, is start_time.
1111 * All the past CPU time is accumulated in signal_struct
1112 * from sister threads now dead. But in this non-leader
1113 * exec, nothing survives from the original leader thread,
1114 * whose birth marks the true age of this process now.
1115 * When we take on its identity by switching to its PID, we
1116 * also take its birthdate (always earlier than our own).
1117 */
1118 tsk->start_time = leader->start_time;
1119 tsk->start_boottime = leader->start_boottime;
1120
1121 BUG_ON(!same_thread_group(leader, tsk));
1122 /*
1123 * An exec() starts a new thread group with the
1124 * TGID of the previous thread group. Rehash the
1125 * two threads with a switched PID, and release
1126 * the former thread group leader:
1127 */
1128
1129 /* Become a process group leader with the old leader's pid.
1130 * The old leader becomes a thread of the this thread group.
1131 */
1132 exchange_tids(tsk, leader);
1133 transfer_pid(leader, tsk, PIDTYPE_TGID);
1134 transfer_pid(leader, tsk, PIDTYPE_PGID);
1135 transfer_pid(leader, tsk, PIDTYPE_SID);
1136
1137 list_replace_rcu(&leader->tasks, &tsk->tasks);
1138 list_replace_init(&leader->sibling, &tsk->sibling);
1139
1140 tsk->group_leader = tsk;
1141 leader->group_leader = tsk;
1142
1143 tsk->exit_signal = SIGCHLD;
1144 leader->exit_signal = -1;
1145
1146 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147 leader->exit_state = EXIT_DEAD;
1148
1149 /*
1150 * We are going to release_task()->ptrace_unlink() silently,
1151 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152 * the tracer wont't block again waiting for this thread.
1153 */
1154 if (unlikely(leader->ptrace))
1155 __wake_up_parent(leader, leader->parent);
1156 write_unlock_irq(&tasklist_lock);
1157 cgroup_threadgroup_change_end(tsk);
1158
1159 release_task(leader);
1160 }
1161
1162 sig->group_exec_task = NULL;
1163 sig->notify_count = 0;
1164
1165 no_thread_group:
1166 /* we have changed execution domain */
1167 tsk->exit_signal = SIGCHLD;
1168
1169 BUG_ON(!thread_group_leader(tsk));
1170 return 0;
1171
1172 killed:
1173 /* protects against exit_notify() and __exit_signal() */
1174 read_lock(&tasklist_lock);
1175 sig->group_exec_task = NULL;
1176 sig->notify_count = 0;
1177 read_unlock(&tasklist_lock);
1178 return -EAGAIN;
1179 }
1180
1181
1182 /*
1183 * This function makes sure the current process has its own signal table,
1184 * so that flush_signal_handlers can later reset the handlers without
1185 * disturbing other processes. (Other processes might share the signal
1186 * table via the CLONE_SIGHAND option to clone().)
1187 */
unshare_sighand(struct task_struct * me)1188 static int unshare_sighand(struct task_struct *me)
1189 {
1190 struct sighand_struct *oldsighand = me->sighand;
1191
1192 if (refcount_read(&oldsighand->count) != 1) {
1193 struct sighand_struct *newsighand;
1194 /*
1195 * This ->sighand is shared with the CLONE_SIGHAND
1196 * but not CLONE_THREAD task, switch to the new one.
1197 */
1198 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199 if (!newsighand)
1200 return -ENOMEM;
1201
1202 refcount_set(&newsighand->count, 1);
1203 memcpy(newsighand->action, oldsighand->action,
1204 sizeof(newsighand->action));
1205
1206 write_lock_irq(&tasklist_lock);
1207 spin_lock(&oldsighand->siglock);
1208 rcu_assign_pointer(me->sighand, newsighand);
1209 spin_unlock(&oldsighand->siglock);
1210 write_unlock_irq(&tasklist_lock);
1211
1212 __cleanup_sighand(oldsighand);
1213 }
1214 return 0;
1215 }
1216
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218 {
1219 task_lock(tsk);
1220 /* Always NUL terminated and zero-padded */
1221 strscpy_pad(buf, tsk->comm, buf_size);
1222 task_unlock(tsk);
1223 return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(__get_task_comm);
1226
1227 /*
1228 * These functions flushes out all traces of the currently running executable
1229 * so that a new one can be started
1230 */
1231
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234 task_lock(tsk);
1235 trace_task_rename(tsk, buf);
1236 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1237 task_unlock(tsk);
1238 perf_event_comm(tsk, exec);
1239 }
1240
1241 /*
1242 * Calling this is the point of no return. None of the failures will be
1243 * seen by userspace since either the process is already taking a fatal
1244 * signal (via de_thread() or coredump), or will have SEGV raised
1245 * (after exec_mmap()) by search_binary_handler (see below).
1246 */
begin_new_exec(struct linux_binprm * bprm)1247 int begin_new_exec(struct linux_binprm * bprm)
1248 {
1249 struct task_struct *me = current;
1250 int retval;
1251
1252 /* Once we are committed compute the creds */
1253 retval = bprm_creds_from_file(bprm);
1254 if (retval)
1255 return retval;
1256
1257 /*
1258 * Ensure all future errors are fatal.
1259 */
1260 bprm->point_of_no_return = true;
1261
1262 /*
1263 * Make this the only thread in the thread group.
1264 */
1265 retval = de_thread(me);
1266 if (retval)
1267 goto out;
1268
1269 /*
1270 * Cancel any io_uring activity across execve
1271 */
1272 io_uring_task_cancel();
1273
1274 /* Ensure the files table is not shared. */
1275 retval = unshare_files();
1276 if (retval)
1277 goto out;
1278
1279 /*
1280 * Must be called _before_ exec_mmap() as bprm->mm is
1281 * not visible until then. This also enables the update
1282 * to be lockless.
1283 */
1284 retval = set_mm_exe_file(bprm->mm, bprm->file);
1285 if (retval)
1286 goto out;
1287
1288 /* If the binary is not readable then enforce mm->dumpable=0 */
1289 would_dump(bprm, bprm->file);
1290 if (bprm->have_execfd)
1291 would_dump(bprm, bprm->executable);
1292
1293 /*
1294 * Release all of the old mmap stuff
1295 */
1296 acct_arg_size(bprm, 0);
1297 retval = exec_mmap(bprm->mm);
1298 if (retval)
1299 goto out;
1300
1301 bprm->mm = NULL;
1302
1303 #ifdef CONFIG_POSIX_TIMERS
1304 spin_lock_irq(&me->sighand->siglock);
1305 posix_cpu_timers_exit(me);
1306 spin_unlock_irq(&me->sighand->siglock);
1307 exit_itimers(me);
1308 flush_itimer_signals();
1309 #endif
1310
1311 /*
1312 * Make the signal table private.
1313 */
1314 retval = unshare_sighand(me);
1315 if (retval)
1316 goto out_unlock;
1317
1318 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1319 PF_NOFREEZE | PF_NO_SETAFFINITY);
1320 flush_thread();
1321 me->personality &= ~bprm->per_clear;
1322
1323 clear_syscall_work_syscall_user_dispatch(me);
1324
1325 /*
1326 * We have to apply CLOEXEC before we change whether the process is
1327 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1328 * trying to access the should-be-closed file descriptors of a process
1329 * undergoing exec(2).
1330 */
1331 do_close_on_exec(me->files);
1332
1333 if (bprm->secureexec) {
1334 /* Make sure parent cannot signal privileged process. */
1335 me->pdeath_signal = 0;
1336
1337 /*
1338 * For secureexec, reset the stack limit to sane default to
1339 * avoid bad behavior from the prior rlimits. This has to
1340 * happen before arch_pick_mmap_layout(), which examines
1341 * RLIMIT_STACK, but after the point of no return to avoid
1342 * needing to clean up the change on failure.
1343 */
1344 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1345 bprm->rlim_stack.rlim_cur = _STK_LIM;
1346 }
1347
1348 me->sas_ss_sp = me->sas_ss_size = 0;
1349
1350 /*
1351 * Figure out dumpability. Note that this checking only of current
1352 * is wrong, but userspace depends on it. This should be testing
1353 * bprm->secureexec instead.
1354 */
1355 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1356 !(uid_eq(current_euid(), current_uid()) &&
1357 gid_eq(current_egid(), current_gid())))
1358 set_dumpable(current->mm, suid_dumpable);
1359 else
1360 set_dumpable(current->mm, SUID_DUMP_USER);
1361
1362 perf_event_exec();
1363 __set_task_comm(me, kbasename(bprm->filename), true);
1364
1365 /* An exec changes our domain. We are no longer part of the thread
1366 group */
1367 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1368 flush_signal_handlers(me, 0);
1369
1370 retval = set_cred_ucounts(bprm->cred);
1371 if (retval < 0)
1372 goto out_unlock;
1373
1374 /*
1375 * install the new credentials for this executable
1376 */
1377 security_bprm_committing_creds(bprm);
1378
1379 commit_creds(bprm->cred);
1380 bprm->cred = NULL;
1381
1382 /*
1383 * Disable monitoring for regular users
1384 * when executing setuid binaries. Must
1385 * wait until new credentials are committed
1386 * by commit_creds() above
1387 */
1388 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1389 perf_event_exit_task(me);
1390 /*
1391 * cred_guard_mutex must be held at least to this point to prevent
1392 * ptrace_attach() from altering our determination of the task's
1393 * credentials; any time after this it may be unlocked.
1394 */
1395 security_bprm_committed_creds(bprm);
1396
1397 /* Pass the opened binary to the interpreter. */
1398 if (bprm->have_execfd) {
1399 retval = get_unused_fd_flags(0);
1400 if (retval < 0)
1401 goto out_unlock;
1402 fd_install(retval, bprm->executable);
1403 bprm->executable = NULL;
1404 bprm->execfd = retval;
1405 }
1406 return 0;
1407
1408 out_unlock:
1409 up_write(&me->signal->exec_update_lock);
1410 out:
1411 return retval;
1412 }
1413 EXPORT_SYMBOL(begin_new_exec);
1414
would_dump(struct linux_binprm * bprm,struct file * file)1415 void would_dump(struct linux_binprm *bprm, struct file *file)
1416 {
1417 struct inode *inode = file_inode(file);
1418 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1419 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1420 struct user_namespace *old, *user_ns;
1421 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1422
1423 /* Ensure mm->user_ns contains the executable */
1424 user_ns = old = bprm->mm->user_ns;
1425 while ((user_ns != &init_user_ns) &&
1426 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1427 user_ns = user_ns->parent;
1428
1429 if (old != user_ns) {
1430 bprm->mm->user_ns = get_user_ns(user_ns);
1431 put_user_ns(old);
1432 }
1433 }
1434 }
1435 EXPORT_SYMBOL(would_dump);
1436
setup_new_exec(struct linux_binprm * bprm)1437 void setup_new_exec(struct linux_binprm * bprm)
1438 {
1439 /* Setup things that can depend upon the personality */
1440 struct task_struct *me = current;
1441
1442 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1443
1444 arch_setup_new_exec();
1445
1446 /* Set the new mm task size. We have to do that late because it may
1447 * depend on TIF_32BIT which is only updated in flush_thread() on
1448 * some architectures like powerpc
1449 */
1450 me->mm->task_size = TASK_SIZE;
1451 up_write(&me->signal->exec_update_lock);
1452 mutex_unlock(&me->signal->cred_guard_mutex);
1453 }
1454 EXPORT_SYMBOL(setup_new_exec);
1455
1456 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1457 void finalize_exec(struct linux_binprm *bprm)
1458 {
1459 /* Store any stack rlimit changes before starting thread. */
1460 task_lock(current->group_leader);
1461 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1462 task_unlock(current->group_leader);
1463 }
1464 EXPORT_SYMBOL(finalize_exec);
1465
1466 /*
1467 * Prepare credentials and lock ->cred_guard_mutex.
1468 * setup_new_exec() commits the new creds and drops the lock.
1469 * Or, if exec fails before, free_bprm() should release ->cred
1470 * and unlock.
1471 */
prepare_bprm_creds(struct linux_binprm * bprm)1472 static int prepare_bprm_creds(struct linux_binprm *bprm)
1473 {
1474 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1475 return -ERESTARTNOINTR;
1476
1477 bprm->cred = prepare_exec_creds();
1478 if (likely(bprm->cred))
1479 return 0;
1480
1481 mutex_unlock(¤t->signal->cred_guard_mutex);
1482 return -ENOMEM;
1483 }
1484
free_bprm(struct linux_binprm * bprm)1485 static void free_bprm(struct linux_binprm *bprm)
1486 {
1487 if (bprm->mm) {
1488 acct_arg_size(bprm, 0);
1489 mmput(bprm->mm);
1490 }
1491 free_arg_pages(bprm);
1492 if (bprm->cred) {
1493 mutex_unlock(¤t->signal->cred_guard_mutex);
1494 abort_creds(bprm->cred);
1495 }
1496 if (bprm->file) {
1497 allow_write_access(bprm->file);
1498 fput(bprm->file);
1499 }
1500 if (bprm->executable)
1501 fput(bprm->executable);
1502 /* If a binfmt changed the interp, free it. */
1503 if (bprm->interp != bprm->filename)
1504 kfree(bprm->interp);
1505 kfree(bprm->fdpath);
1506 kfree(bprm);
1507 }
1508
alloc_bprm(int fd,struct filename * filename)1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1510 {
1511 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512 int retval = -ENOMEM;
1513 if (!bprm)
1514 goto out;
1515
1516 if (fd == AT_FDCWD || filename->name[0] == '/') {
1517 bprm->filename = filename->name;
1518 } else {
1519 if (filename->name[0] == '\0')
1520 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1521 else
1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1523 fd, filename->name);
1524 if (!bprm->fdpath)
1525 goto out_free;
1526
1527 bprm->filename = bprm->fdpath;
1528 }
1529 bprm->interp = bprm->filename;
1530
1531 retval = bprm_mm_init(bprm);
1532 if (retval)
1533 goto out_free;
1534 return bprm;
1535
1536 out_free:
1537 free_bprm(bprm);
1538 out:
1539 return ERR_PTR(retval);
1540 }
1541
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1543 {
1544 /* If a binfmt changed the interp, free it first. */
1545 if (bprm->interp != bprm->filename)
1546 kfree(bprm->interp);
1547 bprm->interp = kstrdup(interp, GFP_KERNEL);
1548 if (!bprm->interp)
1549 return -ENOMEM;
1550 return 0;
1551 }
1552 EXPORT_SYMBOL(bprm_change_interp);
1553
1554 /*
1555 * determine how safe it is to execute the proposed program
1556 * - the caller must hold ->cred_guard_mutex to protect against
1557 * PTRACE_ATTACH or seccomp thread-sync
1558 */
check_unsafe_exec(struct linux_binprm * bprm)1559 static void check_unsafe_exec(struct linux_binprm *bprm)
1560 {
1561 struct task_struct *p = current, *t;
1562 unsigned n_fs;
1563
1564 if (p->ptrace)
1565 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1566
1567 /*
1568 * This isn't strictly necessary, but it makes it harder for LSMs to
1569 * mess up.
1570 */
1571 if (task_no_new_privs(current))
1572 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1573
1574 t = p;
1575 n_fs = 1;
1576 spin_lock(&p->fs->lock);
1577 rcu_read_lock();
1578 while_each_thread(p, t) {
1579 if (t->fs == p->fs)
1580 n_fs++;
1581 }
1582 rcu_read_unlock();
1583
1584 if (p->fs->users > n_fs)
1585 bprm->unsafe |= LSM_UNSAFE_SHARE;
1586 else
1587 p->fs->in_exec = 1;
1588 spin_unlock(&p->fs->lock);
1589 }
1590
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1591 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1592 {
1593 /* Handle suid and sgid on files */
1594 struct user_namespace *mnt_userns;
1595 struct inode *inode;
1596 unsigned int mode;
1597 kuid_t uid;
1598 kgid_t gid;
1599
1600 if (!mnt_may_suid(file->f_path.mnt))
1601 return;
1602
1603 if (task_no_new_privs(current))
1604 return;
1605
1606 inode = file->f_path.dentry->d_inode;
1607 mode = READ_ONCE(inode->i_mode);
1608 if (!(mode & (S_ISUID|S_ISGID)))
1609 return;
1610
1611 mnt_userns = file_mnt_user_ns(file);
1612
1613 /* Be careful if suid/sgid is set */
1614 inode_lock(inode);
1615
1616 /* reload atomically mode/uid/gid now that lock held */
1617 mode = inode->i_mode;
1618 uid = i_uid_into_mnt(mnt_userns, inode);
1619 gid = i_gid_into_mnt(mnt_userns, inode);
1620 inode_unlock(inode);
1621
1622 /* We ignore suid/sgid if there are no mappings for them in the ns */
1623 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1624 !kgid_has_mapping(bprm->cred->user_ns, gid))
1625 return;
1626
1627 if (mode & S_ISUID) {
1628 bprm->per_clear |= PER_CLEAR_ON_SETID;
1629 bprm->cred->euid = uid;
1630 }
1631
1632 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1633 bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 bprm->cred->egid = gid;
1635 }
1636 }
1637
1638 /*
1639 * Compute brpm->cred based upon the final binary.
1640 */
bprm_creds_from_file(struct linux_binprm * bprm)1641 static int bprm_creds_from_file(struct linux_binprm *bprm)
1642 {
1643 /* Compute creds based on which file? */
1644 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1645
1646 bprm_fill_uid(bprm, file);
1647 return security_bprm_creds_from_file(bprm, file);
1648 }
1649
1650 /*
1651 * Fill the binprm structure from the inode.
1652 * Read the first BINPRM_BUF_SIZE bytes
1653 *
1654 * This may be called multiple times for binary chains (scripts for example).
1655 */
prepare_binprm(struct linux_binprm * bprm)1656 static int prepare_binprm(struct linux_binprm *bprm)
1657 {
1658 loff_t pos = 0;
1659
1660 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1661 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1662 }
1663
1664 /*
1665 * Arguments are '\0' separated strings found at the location bprm->p
1666 * points to; chop off the first by relocating brpm->p to right after
1667 * the first '\0' encountered.
1668 */
remove_arg_zero(struct linux_binprm * bprm)1669 int remove_arg_zero(struct linux_binprm *bprm)
1670 {
1671 int ret = 0;
1672 unsigned long offset;
1673 char *kaddr;
1674 struct page *page;
1675
1676 if (!bprm->argc)
1677 return 0;
1678
1679 do {
1680 offset = bprm->p & ~PAGE_MASK;
1681 page = get_arg_page(bprm, bprm->p, 0);
1682 if (!page) {
1683 ret = -EFAULT;
1684 goto out;
1685 }
1686 kaddr = kmap_atomic(page);
1687
1688 for (; offset < PAGE_SIZE && kaddr[offset];
1689 offset++, bprm->p++)
1690 ;
1691
1692 kunmap_atomic(kaddr);
1693 put_arg_page(page);
1694 } while (offset == PAGE_SIZE);
1695
1696 bprm->p++;
1697 bprm->argc--;
1698 ret = 0;
1699
1700 out:
1701 return ret;
1702 }
1703 EXPORT_SYMBOL(remove_arg_zero);
1704
1705 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1706 /*
1707 * cycle the list of binary formats handler, until one recognizes the image
1708 */
search_binary_handler(struct linux_binprm * bprm)1709 static int search_binary_handler(struct linux_binprm *bprm)
1710 {
1711 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1712 struct linux_binfmt *fmt;
1713 int retval;
1714
1715 retval = prepare_binprm(bprm);
1716 if (retval < 0)
1717 return retval;
1718
1719 retval = security_bprm_check(bprm);
1720 if (retval)
1721 return retval;
1722
1723 retval = -ENOENT;
1724 retry:
1725 read_lock(&binfmt_lock);
1726 list_for_each_entry(fmt, &formats, lh) {
1727 if (!try_module_get(fmt->module))
1728 continue;
1729 read_unlock(&binfmt_lock);
1730
1731 retval = fmt->load_binary(bprm);
1732
1733 read_lock(&binfmt_lock);
1734 put_binfmt(fmt);
1735 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1736 read_unlock(&binfmt_lock);
1737 return retval;
1738 }
1739 }
1740 read_unlock(&binfmt_lock);
1741
1742 if (need_retry) {
1743 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1744 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1745 return retval;
1746 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1747 return retval;
1748 need_retry = false;
1749 goto retry;
1750 }
1751
1752 return retval;
1753 }
1754
exec_binprm(struct linux_binprm * bprm)1755 static int exec_binprm(struct linux_binprm *bprm)
1756 {
1757 pid_t old_pid, old_vpid;
1758 int ret, depth;
1759
1760 /* Need to fetch pid before load_binary changes it */
1761 old_pid = current->pid;
1762 rcu_read_lock();
1763 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1764 rcu_read_unlock();
1765
1766 /* This allows 4 levels of binfmt rewrites before failing hard. */
1767 for (depth = 0;; depth++) {
1768 struct file *exec;
1769 if (depth > 5)
1770 return -ELOOP;
1771
1772 ret = search_binary_handler(bprm);
1773 if (ret < 0)
1774 return ret;
1775 if (!bprm->interpreter)
1776 break;
1777
1778 exec = bprm->file;
1779 bprm->file = bprm->interpreter;
1780 bprm->interpreter = NULL;
1781
1782 allow_write_access(exec);
1783 if (unlikely(bprm->have_execfd)) {
1784 if (bprm->executable) {
1785 fput(exec);
1786 return -ENOEXEC;
1787 }
1788 bprm->executable = exec;
1789 } else
1790 fput(exec);
1791 }
1792
1793 audit_bprm(bprm);
1794 trace_sched_process_exec(current, old_pid, bprm);
1795 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1796 proc_exec_connector(current);
1797 return 0;
1798 }
1799
1800 /*
1801 * sys_execve() executes a new program.
1802 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1803 static int bprm_execve(struct linux_binprm *bprm,
1804 int fd, struct filename *filename, int flags)
1805 {
1806 struct file *file;
1807 int retval;
1808
1809 retval = prepare_bprm_creds(bprm);
1810 if (retval)
1811 return retval;
1812
1813 check_unsafe_exec(bprm);
1814 current->in_execve = 1;
1815
1816 file = do_open_execat(fd, filename, flags);
1817 retval = PTR_ERR(file);
1818 if (IS_ERR(file))
1819 goto out_unmark;
1820
1821 sched_exec();
1822
1823 bprm->file = file;
1824 /*
1825 * Record that a name derived from an O_CLOEXEC fd will be
1826 * inaccessible after exec. This allows the code in exec to
1827 * choose to fail when the executable is not mmaped into the
1828 * interpreter and an open file descriptor is not passed to
1829 * the interpreter. This makes for a better user experience
1830 * than having the interpreter start and then immediately fail
1831 * when it finds the executable is inaccessible.
1832 */
1833 if (bprm->fdpath && get_close_on_exec(fd))
1834 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1835
1836 /* Set the unchanging part of bprm->cred */
1837 retval = security_bprm_creds_for_exec(bprm);
1838 if (retval)
1839 goto out;
1840
1841 retval = exec_binprm(bprm);
1842 if (retval < 0)
1843 goto out;
1844
1845 /* execve succeeded */
1846 current->fs->in_exec = 0;
1847 current->in_execve = 0;
1848 rseq_execve(current);
1849 acct_update_integrals(current);
1850 task_numa_free(current, false);
1851 return retval;
1852
1853 out:
1854 /*
1855 * If past the point of no return ensure the code never
1856 * returns to the userspace process. Use an existing fatal
1857 * signal if present otherwise terminate the process with
1858 * SIGSEGV.
1859 */
1860 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1861 force_fatal_sig(SIGSEGV);
1862
1863 out_unmark:
1864 current->fs->in_exec = 0;
1865 current->in_execve = 0;
1866
1867 return retval;
1868 }
1869
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1870 static int do_execveat_common(int fd, struct filename *filename,
1871 struct user_arg_ptr argv,
1872 struct user_arg_ptr envp,
1873 int flags)
1874 {
1875 struct linux_binprm *bprm;
1876 int retval;
1877
1878 if (IS_ERR(filename))
1879 return PTR_ERR(filename);
1880
1881 /*
1882 * We move the actual failure in case of RLIMIT_NPROC excess from
1883 * set*uid() to execve() because too many poorly written programs
1884 * don't check setuid() return code. Here we additionally recheck
1885 * whether NPROC limit is still exceeded.
1886 */
1887 if ((current->flags & PF_NPROC_EXCEEDED) &&
1888 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1889 retval = -EAGAIN;
1890 goto out_ret;
1891 }
1892
1893 /* We're below the limit (still or again), so we don't want to make
1894 * further execve() calls fail. */
1895 current->flags &= ~PF_NPROC_EXCEEDED;
1896
1897 bprm = alloc_bprm(fd, filename);
1898 if (IS_ERR(bprm)) {
1899 retval = PTR_ERR(bprm);
1900 goto out_ret;
1901 }
1902
1903 retval = count(argv, MAX_ARG_STRINGS);
1904 if (retval == 0)
1905 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1906 current->comm, bprm->filename);
1907 if (retval < 0)
1908 goto out_free;
1909 bprm->argc = retval;
1910
1911 retval = count(envp, MAX_ARG_STRINGS);
1912 if (retval < 0)
1913 goto out_free;
1914 bprm->envc = retval;
1915
1916 retval = bprm_stack_limits(bprm);
1917 if (retval < 0)
1918 goto out_free;
1919
1920 retval = copy_string_kernel(bprm->filename, bprm);
1921 if (retval < 0)
1922 goto out_free;
1923 bprm->exec = bprm->p;
1924
1925 retval = copy_strings(bprm->envc, envp, bprm);
1926 if (retval < 0)
1927 goto out_free;
1928
1929 retval = copy_strings(bprm->argc, argv, bprm);
1930 if (retval < 0)
1931 goto out_free;
1932
1933 /*
1934 * When argv is empty, add an empty string ("") as argv[0] to
1935 * ensure confused userspace programs that start processing
1936 * from argv[1] won't end up walking envp. See also
1937 * bprm_stack_limits().
1938 */
1939 if (bprm->argc == 0) {
1940 retval = copy_string_kernel("", bprm);
1941 if (retval < 0)
1942 goto out_free;
1943 bprm->argc = 1;
1944 }
1945
1946 retval = bprm_execve(bprm, fd, filename, flags);
1947 out_free:
1948 free_bprm(bprm);
1949
1950 out_ret:
1951 putname(filename);
1952 return retval;
1953 }
1954
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1955 int kernel_execve(const char *kernel_filename,
1956 const char *const *argv, const char *const *envp)
1957 {
1958 struct filename *filename;
1959 struct linux_binprm *bprm;
1960 int fd = AT_FDCWD;
1961 int retval;
1962
1963 /* It is non-sense for kernel threads to call execve */
1964 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1965 return -EINVAL;
1966
1967 filename = getname_kernel(kernel_filename);
1968 if (IS_ERR(filename))
1969 return PTR_ERR(filename);
1970
1971 bprm = alloc_bprm(fd, filename);
1972 if (IS_ERR(bprm)) {
1973 retval = PTR_ERR(bprm);
1974 goto out_ret;
1975 }
1976
1977 retval = count_strings_kernel(argv);
1978 if (WARN_ON_ONCE(retval == 0))
1979 retval = -EINVAL;
1980 if (retval < 0)
1981 goto out_free;
1982 bprm->argc = retval;
1983
1984 retval = count_strings_kernel(envp);
1985 if (retval < 0)
1986 goto out_free;
1987 bprm->envc = retval;
1988
1989 retval = bprm_stack_limits(bprm);
1990 if (retval < 0)
1991 goto out_free;
1992
1993 retval = copy_string_kernel(bprm->filename, bprm);
1994 if (retval < 0)
1995 goto out_free;
1996 bprm->exec = bprm->p;
1997
1998 retval = copy_strings_kernel(bprm->envc, envp, bprm);
1999 if (retval < 0)
2000 goto out_free;
2001
2002 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2003 if (retval < 0)
2004 goto out_free;
2005
2006 retval = bprm_execve(bprm, fd, filename, 0);
2007 out_free:
2008 free_bprm(bprm);
2009 out_ret:
2010 putname(filename);
2011 return retval;
2012 }
2013
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2014 static int do_execve(struct filename *filename,
2015 const char __user *const __user *__argv,
2016 const char __user *const __user *__envp)
2017 {
2018 struct user_arg_ptr argv = { .ptr.native = __argv };
2019 struct user_arg_ptr envp = { .ptr.native = __envp };
2020 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2021 }
2022
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2023 static int do_execveat(int fd, struct filename *filename,
2024 const char __user *const __user *__argv,
2025 const char __user *const __user *__envp,
2026 int flags)
2027 {
2028 struct user_arg_ptr argv = { .ptr.native = __argv };
2029 struct user_arg_ptr envp = { .ptr.native = __envp };
2030
2031 return do_execveat_common(fd, filename, argv, envp, flags);
2032 }
2033
2034 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2035 static int compat_do_execve(struct filename *filename,
2036 const compat_uptr_t __user *__argv,
2037 const compat_uptr_t __user *__envp)
2038 {
2039 struct user_arg_ptr argv = {
2040 .is_compat = true,
2041 .ptr.compat = __argv,
2042 };
2043 struct user_arg_ptr envp = {
2044 .is_compat = true,
2045 .ptr.compat = __envp,
2046 };
2047 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2048 }
2049
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2050 static int compat_do_execveat(int fd, struct filename *filename,
2051 const compat_uptr_t __user *__argv,
2052 const compat_uptr_t __user *__envp,
2053 int flags)
2054 {
2055 struct user_arg_ptr argv = {
2056 .is_compat = true,
2057 .ptr.compat = __argv,
2058 };
2059 struct user_arg_ptr envp = {
2060 .is_compat = true,
2061 .ptr.compat = __envp,
2062 };
2063 return do_execveat_common(fd, filename, argv, envp, flags);
2064 }
2065 #endif
2066
set_binfmt(struct linux_binfmt * new)2067 void set_binfmt(struct linux_binfmt *new)
2068 {
2069 struct mm_struct *mm = current->mm;
2070
2071 if (mm->binfmt)
2072 module_put(mm->binfmt->module);
2073
2074 mm->binfmt = new;
2075 if (new)
2076 __module_get(new->module);
2077 }
2078 EXPORT_SYMBOL(set_binfmt);
2079
2080 /*
2081 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2082 */
set_dumpable(struct mm_struct * mm,int value)2083 void set_dumpable(struct mm_struct *mm, int value)
2084 {
2085 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2086 return;
2087
2088 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2089 }
2090
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2091 SYSCALL_DEFINE3(execve,
2092 const char __user *, filename,
2093 const char __user *const __user *, argv,
2094 const char __user *const __user *, envp)
2095 {
2096 return do_execve(getname(filename), argv, envp);
2097 }
2098
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2099 SYSCALL_DEFINE5(execveat,
2100 int, fd, const char __user *, filename,
2101 const char __user *const __user *, argv,
2102 const char __user *const __user *, envp,
2103 int, flags)
2104 {
2105 return do_execveat(fd,
2106 getname_uflags(filename, flags),
2107 argv, envp, flags);
2108 }
2109
2110 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2111 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2112 const compat_uptr_t __user *, argv,
2113 const compat_uptr_t __user *, envp)
2114 {
2115 return compat_do_execve(getname(filename), argv, envp);
2116 }
2117
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2118 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2119 const char __user *, filename,
2120 const compat_uptr_t __user *, argv,
2121 const compat_uptr_t __user *, envp,
2122 int, flags)
2123 {
2124 return compat_do_execveat(fd,
2125 getname_uflags(filename, flags),
2126 argv, envp, flags);
2127 }
2128 #endif
2129
2130 #ifdef CONFIG_SYSCTL
2131
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2132 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2133 void *buffer, size_t *lenp, loff_t *ppos)
2134 {
2135 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2136
2137 if (!error)
2138 validate_coredump_safety();
2139 return error;
2140 }
2141
2142 static struct ctl_table fs_exec_sysctls[] = {
2143 {
2144 .procname = "suid_dumpable",
2145 .data = &suid_dumpable,
2146 .maxlen = sizeof(int),
2147 .mode = 0644,
2148 .proc_handler = proc_dointvec_minmax_coredump,
2149 .extra1 = SYSCTL_ZERO,
2150 .extra2 = SYSCTL_TWO,
2151 },
2152 { }
2153 };
2154
init_fs_exec_sysctls(void)2155 static int __init init_fs_exec_sysctls(void)
2156 {
2157 register_sysctl_init("fs", fs_exec_sysctls);
2158 return 0;
2159 }
2160
2161 fs_initcall(init_fs_exec_sysctls);
2162 #endif /* CONFIG_SYSCTL */
2163