1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
init_buffer(struct buffer_head * bh,bh_end_io_t * handler,void * private)50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
sleep_on_buffer(void * word)57 static int sleep_on_buffer(void *word)
58 {
59 	io_schedule();
60 	return 0;
61 }
62 
__lock_buffer(struct buffer_head * bh)63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 							TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
unlock_buffer(struct buffer_head * bh)70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_clear_bit();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Block until a buffer comes unlocked.  This doesn't stop it
80  * from becoming locked again - you have to lock it yourself
81  * if you want to preserve its state.
82  */
__wait_on_buffer(struct buffer_head * bh)83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88 
89 static void
__clear_page_buffers(struct page * page)90 __clear_page_buffers(struct page *page)
91 {
92 	ClearPagePrivate(page);
93 	set_page_private(page, 0);
94 	page_cache_release(page);
95 }
96 
97 
quiet_error(struct buffer_head * bh)98 static int quiet_error(struct buffer_head *bh)
99 {
100 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 		return 0;
102 	return 1;
103 }
104 
105 
buffer_io_error(struct buffer_head * bh)106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 	char b[BDEVNAME_SIZE];
109 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 			bdevname(bh->b_bdev, b),
111 			(unsigned long long)bh->b_blocknr);
112 }
113 
114 /*
115  * End-of-IO handler helper function which does not touch the bh after
116  * unlocking it.
117  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118  * a race there is benign: unlock_buffer() only use the bh's address for
119  * hashing after unlocking the buffer, so it doesn't actually touch the bh
120  * itself.
121  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 	if (uptodate) {
125 		set_buffer_uptodate(bh);
126 	} else {
127 		/* This happens, due to failed READA attempts. */
128 		clear_buffer_uptodate(bh);
129 	}
130 	unlock_buffer(bh);
131 }
132 
133 /*
134  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
135  * unlock the buffer. This is what ll_rw_block uses too.
136  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 	__end_buffer_read_notouch(bh, uptodate);
140 	put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 	char b[BDEVNAME_SIZE];
147 
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		if (!quiet_error(bh)) {
152 			buffer_io_error(bh);
153 			printk(KERN_WARNING "lost page write due to "
154 					"I/O error on %s\n",
155 				       bdevname(bh->b_bdev, b));
156 		}
157 		set_buffer_write_io_error(bh);
158 		clear_buffer_uptodate(bh);
159 	}
160 	unlock_buffer(bh);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164 
165 /*
166  * Various filesystems appear to want __find_get_block to be non-blocking.
167  * But it's the page lock which protects the buffers.  To get around this,
168  * we get exclusion from try_to_free_buffers with the blockdev mapping's
169  * private_lock.
170  *
171  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172  * may be quite high.  This code could TryLock the page, and if that
173  * succeeds, there is no need to take private_lock. (But if
174  * private_lock is contended then so is mapping->tree_lock).
175  */
176 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 	struct inode *bd_inode = bdev->bd_inode;
180 	struct address_space *bd_mapping = bd_inode->i_mapping;
181 	struct buffer_head *ret = NULL;
182 	pgoff_t index;
183 	struct buffer_head *bh;
184 	struct buffer_head *head;
185 	struct page *page;
186 	int all_mapped = 1;
187 
188 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 	page = find_get_page(bd_mapping, index);
190 	if (!page)
191 		goto out;
192 
193 	spin_lock(&bd_mapping->private_lock);
194 	if (!page_has_buffers(page))
195 		goto out_unlock;
196 	head = page_buffers(page);
197 	bh = head;
198 	do {
199 		if (!buffer_mapped(bh))
200 			all_mapped = 0;
201 		else if (bh->b_blocknr == block) {
202 			ret = bh;
203 			get_bh(bh);
204 			goto out_unlock;
205 		}
206 		bh = bh->b_this_page;
207 	} while (bh != head);
208 
209 	/* we might be here because some of the buffers on this page are
210 	 * not mapped.  This is due to various races between
211 	 * file io on the block device and getblk.  It gets dealt with
212 	 * elsewhere, don't buffer_error if we had some unmapped buffers
213 	 */
214 	if (all_mapped) {
215 		char b[BDEVNAME_SIZE];
216 
217 		printk("__find_get_block_slow() failed. "
218 			"block=%llu, b_blocknr=%llu\n",
219 			(unsigned long long)block,
220 			(unsigned long long)bh->b_blocknr);
221 		printk("b_state=0x%08lx, b_size=%zu\n",
222 			bh->b_state, bh->b_size);
223 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 			1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /*
234  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235  */
free_more_memory(void)236 static void free_more_memory(void)
237 {
238 	struct zone *zone;
239 	int nid;
240 
241 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 	yield();
243 
244 	for_each_online_node(nid) {
245 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 						gfp_zone(GFP_NOFS), NULL,
247 						&zone);
248 		if (zone)
249 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 						GFP_NOFS, NULL);
251 	}
252 }
253 
254 /*
255  * I/O completion handler for block_read_full_page() - pages
256  * which come unlocked at the end of I/O.
257  */
end_buffer_async_read(struct buffer_head * bh,int uptodate)258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 	unsigned long flags;
261 	struct buffer_head *first;
262 	struct buffer_head *tmp;
263 	struct page *page;
264 	int page_uptodate = 1;
265 
266 	BUG_ON(!buffer_async_read(bh));
267 
268 	page = bh->b_page;
269 	if (uptodate) {
270 		set_buffer_uptodate(bh);
271 	} else {
272 		clear_buffer_uptodate(bh);
273 		if (!quiet_error(bh))
274 			buffer_io_error(bh);
275 		SetPageError(page);
276 	}
277 
278 	/*
279 	 * Be _very_ careful from here on. Bad things can happen if
280 	 * two buffer heads end IO at almost the same time and both
281 	 * decide that the page is now completely done.
282 	 */
283 	first = page_buffers(page);
284 	local_irq_save(flags);
285 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 	clear_buffer_async_read(bh);
287 	unlock_buffer(bh);
288 	tmp = bh;
289 	do {
290 		if (!buffer_uptodate(tmp))
291 			page_uptodate = 0;
292 		if (buffer_async_read(tmp)) {
293 			BUG_ON(!buffer_locked(tmp));
294 			goto still_busy;
295 		}
296 		tmp = tmp->b_this_page;
297 	} while (tmp != bh);
298 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 	local_irq_restore(flags);
300 
301 	/*
302 	 * If none of the buffers had errors and they are all
303 	 * uptodate then we can set the page uptodate.
304 	 */
305 	if (page_uptodate && !PageError(page))
306 		SetPageUptodate(page);
307 	unlock_page(page);
308 	return;
309 
310 still_busy:
311 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 	local_irq_restore(flags);
313 	return;
314 }
315 
316 /*
317  * Completion handler for block_write_full_page() - pages which are unlocked
318  * during I/O, and which have PageWriteback cleared upon I/O completion.
319  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 	char b[BDEVNAME_SIZE];
323 	unsigned long flags;
324 	struct buffer_head *first;
325 	struct buffer_head *tmp;
326 	struct page *page;
327 
328 	BUG_ON(!buffer_async_write(bh));
329 
330 	page = bh->b_page;
331 	if (uptodate) {
332 		set_buffer_uptodate(bh);
333 	} else {
334 		if (!quiet_error(bh)) {
335 			buffer_io_error(bh);
336 			printk(KERN_WARNING "lost page write due to "
337 					"I/O error on %s\n",
338 			       bdevname(bh->b_bdev, b));
339 		}
340 		set_bit(AS_EIO, &page->mapping->flags);
341 		set_buffer_write_io_error(bh);
342 		clear_buffer_uptodate(bh);
343 		SetPageError(page);
344 	}
345 
346 	first = page_buffers(page);
347 	local_irq_save(flags);
348 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349 
350 	clear_buffer_async_write(bh);
351 	unlock_buffer(bh);
352 	tmp = bh->b_this_page;
353 	while (tmp != bh) {
354 		if (buffer_async_write(tmp)) {
355 			BUG_ON(!buffer_locked(tmp));
356 			goto still_busy;
357 		}
358 		tmp = tmp->b_this_page;
359 	}
360 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 	local_irq_restore(flags);
362 	end_page_writeback(page);
363 	return;
364 
365 still_busy:
366 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 	local_irq_restore(flags);
368 	return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371 
372 /*
373  * If a page's buffers are under async readin (end_buffer_async_read
374  * completion) then there is a possibility that another thread of
375  * control could lock one of the buffers after it has completed
376  * but while some of the other buffers have not completed.  This
377  * locked buffer would confuse end_buffer_async_read() into not unlocking
378  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
379  * that this buffer is not under async I/O.
380  *
381  * The page comes unlocked when it has no locked buffer_async buffers
382  * left.
383  *
384  * PageLocked prevents anyone starting new async I/O reads any of
385  * the buffers.
386  *
387  * PageWriteback is used to prevent simultaneous writeout of the same
388  * page.
389  *
390  * PageLocked prevents anyone from starting writeback of a page which is
391  * under read I/O (PageWriteback is only ever set against a locked page).
392  */
mark_buffer_async_read(struct buffer_head * bh)393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 	bh->b_end_io = end_buffer_async_read;
396 	set_buffer_async_read(bh);
397 }
398 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 					  bh_end_io_t *handler)
401 {
402 	bh->b_end_io = handler;
403 	set_buffer_async_write(bh);
404 }
405 
mark_buffer_async_write(struct buffer_head * bh)406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411 
412 
413 /*
414  * fs/buffer.c contains helper functions for buffer-backed address space's
415  * fsync functions.  A common requirement for buffer-based filesystems is
416  * that certain data from the backing blockdev needs to be written out for
417  * a successful fsync().  For example, ext2 indirect blocks need to be
418  * written back and waited upon before fsync() returns.
419  *
420  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422  * management of a list of dependent buffers at ->i_mapping->private_list.
423  *
424  * Locking is a little subtle: try_to_free_buffers() will remove buffers
425  * from their controlling inode's queue when they are being freed.  But
426  * try_to_free_buffers() will be operating against the *blockdev* mapping
427  * at the time, not against the S_ISREG file which depends on those buffers.
428  * So the locking for private_list is via the private_lock in the address_space
429  * which backs the buffers.  Which is different from the address_space
430  * against which the buffers are listed.  So for a particular address_space,
431  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
432  * mapping->private_list will always be protected by the backing blockdev's
433  * ->private_lock.
434  *
435  * Which introduces a requirement: all buffers on an address_space's
436  * ->private_list must be from the same address_space: the blockdev's.
437  *
438  * address_spaces which do not place buffers at ->private_list via these
439  * utility functions are free to use private_lock and private_list for
440  * whatever they want.  The only requirement is that list_empty(private_list)
441  * be true at clear_inode() time.
442  *
443  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
444  * filesystems should do that.  invalidate_inode_buffers() should just go
445  * BUG_ON(!list_empty).
446  *
447  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
448  * take an address_space, not an inode.  And it should be called
449  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450  * queued up.
451  *
452  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453  * list if it is already on a list.  Because if the buffer is on a list,
454  * it *must* already be on the right one.  If not, the filesystem is being
455  * silly.  This will save a ton of locking.  But first we have to ensure
456  * that buffers are taken *off* the old inode's list when they are freed
457  * (presumably in truncate).  That requires careful auditing of all
458  * filesystems (do it inside bforget()).  It could also be done by bringing
459  * b_inode back.
460  */
461 
462 /*
463  * The buffer's backing address_space's private_lock must be held
464  */
__remove_assoc_queue(struct buffer_head * bh)465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 	list_del_init(&bh->b_assoc_buffers);
468 	WARN_ON(!bh->b_assoc_map);
469 	if (buffer_write_io_error(bh))
470 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 	bh->b_assoc_map = NULL;
472 }
473 
inode_has_buffers(struct inode * inode)474 int inode_has_buffers(struct inode *inode)
475 {
476 	return !list_empty(&inode->i_data.private_list);
477 }
478 
479 /*
480  * osync is designed to support O_SYNC io.  It waits synchronously for
481  * all already-submitted IO to complete, but does not queue any new
482  * writes to the disk.
483  *
484  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485  * you dirty the buffers, and then use osync_inode_buffers to wait for
486  * completion.  Any other dirty buffers which are not yet queued for
487  * write will not be flushed to disk by the osync.
488  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 	struct buffer_head *bh;
492 	struct list_head *p;
493 	int err = 0;
494 
495 	spin_lock(lock);
496 repeat:
497 	list_for_each_prev(p, list) {
498 		bh = BH_ENTRY(p);
499 		if (buffer_locked(bh)) {
500 			get_bh(bh);
501 			spin_unlock(lock);
502 			wait_on_buffer(bh);
503 			if (!buffer_uptodate(bh))
504 				err = -EIO;
505 			brelse(bh);
506 			spin_lock(lock);
507 			goto repeat;
508 		}
509 	}
510 	spin_unlock(lock);
511 	return err;
512 }
513 
do_thaw_one(struct super_block * sb,void * unused)514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 	char b[BDEVNAME_SIZE];
517 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 		printk(KERN_WARNING "Emergency Thaw on %s\n",
519 		       bdevname(sb->s_bdev, b));
520 }
521 
do_thaw_all(struct work_struct * work)522 static void do_thaw_all(struct work_struct *work)
523 {
524 	iterate_supers(do_thaw_one, NULL);
525 	kfree(work);
526 	printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528 
529 /**
530  * emergency_thaw_all -- forcibly thaw every frozen filesystem
531  *
532  * Used for emergency unfreeze of all filesystems via SysRq
533  */
emergency_thaw_all(void)534 void emergency_thaw_all(void)
535 {
536 	struct work_struct *work;
537 
538 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 	if (work) {
540 		INIT_WORK(work, do_thaw_all);
541 		schedule_work(work);
542 	}
543 }
544 
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
sync_mapping_buffers(struct address_space * mapping)556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 	struct address_space *buffer_mapping = mapping->assoc_mapping;
559 
560 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 		return 0;
562 
563 	return fsync_buffers_list(&buffer_mapping->private_lock,
564 					&mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567 
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)574 void write_boundary_block(struct block_device *bdev,
575 			sector_t bblock, unsigned blocksize)
576 {
577 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 	if (bh) {
579 		if (buffer_dirty(bh))
580 			ll_rw_block(WRITE, 1, &bh);
581 		put_bh(bh);
582 	}
583 }
584 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 	struct address_space *mapping = inode->i_mapping;
588 	struct address_space *buffer_mapping = bh->b_page->mapping;
589 
590 	mark_buffer_dirty(bh);
591 	if (!mapping->assoc_mapping) {
592 		mapping->assoc_mapping = buffer_mapping;
593 	} else {
594 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
595 	}
596 	if (!bh->b_assoc_map) {
597 		spin_lock(&buffer_mapping->private_lock);
598 		list_move_tail(&bh->b_assoc_buffers,
599 				&mapping->private_list);
600 		bh->b_assoc_map = mapping;
601 		spin_unlock(&buffer_mapping->private_lock);
602 	}
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605 
606 /*
607  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)613 static void __set_page_dirty(struct page *page,
614 		struct address_space *mapping, int warn)
615 {
616 	unsigned long flags;
617 
618 	spin_lock_irqsave(&mapping->tree_lock, flags);
619 	if (page->mapping) {	/* Race with truncate? */
620 		WARN_ON_ONCE(warn && !PageUptodate(page));
621 		account_page_dirtied(page, mapping);
622 		radix_tree_tag_set(&mapping->page_tree,
623 				page_index(page), PAGECACHE_TAG_DIRTY);
624 	}
625 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
626 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
627 }
628 
629 /*
630  * Add a page to the dirty page list.
631  *
632  * It is a sad fact of life that this function is called from several places
633  * deeply under spinlocking.  It may not sleep.
634  *
635  * If the page has buffers, the uptodate buffers are set dirty, to preserve
636  * dirty-state coherency between the page and the buffers.  It the page does
637  * not have buffers then when they are later attached they will all be set
638  * dirty.
639  *
640  * The buffers are dirtied before the page is dirtied.  There's a small race
641  * window in which a writepage caller may see the page cleanness but not the
642  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
643  * before the buffers, a concurrent writepage caller could clear the page dirty
644  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
645  * page on the dirty page list.
646  *
647  * We use private_lock to lock against try_to_free_buffers while using the
648  * page's buffer list.  Also use this to protect against clean buffers being
649  * added to the page after it was set dirty.
650  *
651  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
652  * address_space though.
653  */
__set_page_dirty_buffers(struct page * page)654 int __set_page_dirty_buffers(struct page *page)
655 {
656 	int newly_dirty;
657 	struct address_space *mapping = page_mapping(page);
658 
659 	if (unlikely(!mapping))
660 		return !TestSetPageDirty(page);
661 
662 	spin_lock(&mapping->private_lock);
663 	if (page_has_buffers(page)) {
664 		struct buffer_head *head = page_buffers(page);
665 		struct buffer_head *bh = head;
666 
667 		do {
668 			set_buffer_dirty(bh);
669 			bh = bh->b_this_page;
670 		} while (bh != head);
671 	}
672 	newly_dirty = !TestSetPageDirty(page);
673 	spin_unlock(&mapping->private_lock);
674 
675 	if (newly_dirty)
676 		__set_page_dirty(page, mapping, 1);
677 	return newly_dirty;
678 }
679 EXPORT_SYMBOL(__set_page_dirty_buffers);
680 
681 /*
682  * Write out and wait upon a list of buffers.
683  *
684  * We have conflicting pressures: we want to make sure that all
685  * initially dirty buffers get waited on, but that any subsequently
686  * dirtied buffers don't.  After all, we don't want fsync to last
687  * forever if somebody is actively writing to the file.
688  *
689  * Do this in two main stages: first we copy dirty buffers to a
690  * temporary inode list, queueing the writes as we go.  Then we clean
691  * up, waiting for those writes to complete.
692  *
693  * During this second stage, any subsequent updates to the file may end
694  * up refiling the buffer on the original inode's dirty list again, so
695  * there is a chance we will end up with a buffer queued for write but
696  * not yet completed on that list.  So, as a final cleanup we go through
697  * the osync code to catch these locked, dirty buffers without requeuing
698  * any newly dirty buffers for write.
699  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)700 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
701 {
702 	struct buffer_head *bh;
703 	struct list_head tmp;
704 	struct address_space *mapping;
705 	int err = 0, err2;
706 	struct blk_plug plug;
707 
708 	INIT_LIST_HEAD(&tmp);
709 	blk_start_plug(&plug);
710 
711 	spin_lock(lock);
712 	while (!list_empty(list)) {
713 		bh = BH_ENTRY(list->next);
714 		mapping = bh->b_assoc_map;
715 		__remove_assoc_queue(bh);
716 		/* Avoid race with mark_buffer_dirty_inode() which does
717 		 * a lockless check and we rely on seeing the dirty bit */
718 		smp_mb();
719 		if (buffer_dirty(bh) || buffer_locked(bh)) {
720 			list_add(&bh->b_assoc_buffers, &tmp);
721 			bh->b_assoc_map = mapping;
722 			if (buffer_dirty(bh)) {
723 				get_bh(bh);
724 				spin_unlock(lock);
725 				/*
726 				 * Ensure any pending I/O completes so that
727 				 * write_dirty_buffer() actually writes the
728 				 * current contents - it is a noop if I/O is
729 				 * still in flight on potentially older
730 				 * contents.
731 				 */
732 				write_dirty_buffer(bh, WRITE_SYNC);
733 
734 				/*
735 				 * Kick off IO for the previous mapping. Note
736 				 * that we will not run the very last mapping,
737 				 * wait_on_buffer() will do that for us
738 				 * through sync_buffer().
739 				 */
740 				brelse(bh);
741 				spin_lock(lock);
742 			}
743 		}
744 	}
745 
746 	spin_unlock(lock);
747 	blk_finish_plug(&plug);
748 	spin_lock(lock);
749 
750 	while (!list_empty(&tmp)) {
751 		bh = BH_ENTRY(tmp.prev);
752 		get_bh(bh);
753 		mapping = bh->b_assoc_map;
754 		__remove_assoc_queue(bh);
755 		/* Avoid race with mark_buffer_dirty_inode() which does
756 		 * a lockless check and we rely on seeing the dirty bit */
757 		smp_mb();
758 		if (buffer_dirty(bh)) {
759 			list_add(&bh->b_assoc_buffers,
760 				 &mapping->private_list);
761 			bh->b_assoc_map = mapping;
762 		}
763 		spin_unlock(lock);
764 		wait_on_buffer(bh);
765 		if (!buffer_uptodate(bh))
766 			err = -EIO;
767 		brelse(bh);
768 		spin_lock(lock);
769 	}
770 
771 	spin_unlock(lock);
772 	err2 = osync_buffers_list(lock, list);
773 	if (err)
774 		return err;
775 	else
776 		return err2;
777 }
778 
779 /*
780  * Invalidate any and all dirty buffers on a given inode.  We are
781  * probably unmounting the fs, but that doesn't mean we have already
782  * done a sync().  Just drop the buffers from the inode list.
783  *
784  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
785  * assumes that all the buffers are against the blockdev.  Not true
786  * for reiserfs.
787  */
invalidate_inode_buffers(struct inode * inode)788 void invalidate_inode_buffers(struct inode *inode)
789 {
790 	if (inode_has_buffers(inode)) {
791 		struct address_space *mapping = &inode->i_data;
792 		struct list_head *list = &mapping->private_list;
793 		struct address_space *buffer_mapping = mapping->assoc_mapping;
794 
795 		spin_lock(&buffer_mapping->private_lock);
796 		while (!list_empty(list))
797 			__remove_assoc_queue(BH_ENTRY(list->next));
798 		spin_unlock(&buffer_mapping->private_lock);
799 	}
800 }
801 EXPORT_SYMBOL(invalidate_inode_buffers);
802 
803 /*
804  * Remove any clean buffers from the inode's buffer list.  This is called
805  * when we're trying to free the inode itself.  Those buffers can pin it.
806  *
807  * Returns true if all buffers were removed.
808  */
remove_inode_buffers(struct inode * inode)809 int remove_inode_buffers(struct inode *inode)
810 {
811 	int ret = 1;
812 
813 	if (inode_has_buffers(inode)) {
814 		struct address_space *mapping = &inode->i_data;
815 		struct list_head *list = &mapping->private_list;
816 		struct address_space *buffer_mapping = mapping->assoc_mapping;
817 
818 		spin_lock(&buffer_mapping->private_lock);
819 		while (!list_empty(list)) {
820 			struct buffer_head *bh = BH_ENTRY(list->next);
821 			if (buffer_dirty(bh)) {
822 				ret = 0;
823 				break;
824 			}
825 			__remove_assoc_queue(bh);
826 		}
827 		spin_unlock(&buffer_mapping->private_lock);
828 	}
829 	return ret;
830 }
831 
832 /*
833  * Create the appropriate buffers when given a page for data area and
834  * the size of each buffer.. Use the bh->b_this_page linked list to
835  * follow the buffers created.  Return NULL if unable to create more
836  * buffers.
837  *
838  * The retry flag is used to differentiate async IO (paging, swapping)
839  * which may not fail from ordinary buffer allocations.
840  */
alloc_page_buffers(struct page * page,unsigned long size,int retry)841 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
842 		int retry)
843 {
844 	struct buffer_head *bh, *head;
845 	long offset;
846 
847 try_again:
848 	head = NULL;
849 	offset = PAGE_SIZE;
850 	while ((offset -= size) >= 0) {
851 		bh = alloc_buffer_head(GFP_NOFS);
852 		if (!bh)
853 			goto no_grow;
854 
855 		bh->b_bdev = NULL;
856 		bh->b_this_page = head;
857 		bh->b_blocknr = -1;
858 		head = bh;
859 
860 		bh->b_state = 0;
861 		atomic_set(&bh->b_count, 0);
862 		bh->b_size = size;
863 
864 		/* Link the buffer to its page */
865 		set_bh_page(bh, page, offset);
866 
867 		init_buffer(bh, NULL, NULL);
868 	}
869 	return head;
870 /*
871  * In case anything failed, we just free everything we got.
872  */
873 no_grow:
874 	if (head) {
875 		do {
876 			bh = head;
877 			head = head->b_this_page;
878 			free_buffer_head(bh);
879 		} while (head);
880 	}
881 
882 	/*
883 	 * Return failure for non-async IO requests.  Async IO requests
884 	 * are not allowed to fail, so we have to wait until buffer heads
885 	 * become available.  But we don't want tasks sleeping with
886 	 * partially complete buffers, so all were released above.
887 	 */
888 	if (!retry)
889 		return NULL;
890 
891 	/* We're _really_ low on memory. Now we just
892 	 * wait for old buffer heads to become free due to
893 	 * finishing IO.  Since this is an async request and
894 	 * the reserve list is empty, we're sure there are
895 	 * async buffer heads in use.
896 	 */
897 	free_more_memory();
898 	goto try_again;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901 
902 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905 	struct buffer_head *bh, *tail;
906 
907 	bh = head;
908 	do {
909 		tail = bh;
910 		bh = bh->b_this_page;
911 	} while (bh);
912 	tail->b_this_page = head;
913 	attach_page_buffers(page, head);
914 }
915 
916 /*
917  * Initialise the state of a blockdev page's buffers.
918  */
919 static sector_t
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)920 init_page_buffers(struct page *page, struct block_device *bdev,
921 			sector_t block, int size)
922 {
923 	struct buffer_head *head = page_buffers(page);
924 	struct buffer_head *bh = head;
925 	int uptodate = PageUptodate(page);
926 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
927 
928 	do {
929 		if (!buffer_mapped(bh)) {
930 			init_buffer(bh, NULL, NULL);
931 			bh->b_bdev = bdev;
932 			bh->b_blocknr = block;
933 			if (uptodate)
934 				set_buffer_uptodate(bh);
935 			if (block < end_block)
936 				set_buffer_mapped(bh);
937 		}
938 		block++;
939 		bh = bh->b_this_page;
940 	} while (bh != head);
941 
942 	/*
943 	 * Caller needs to validate requested block against end of device.
944 	 */
945 	return end_block;
946 }
947 
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size,int sizebits)954 grow_dev_page(struct block_device *bdev, sector_t block,
955 		pgoff_t index, int size, int sizebits)
956 {
957 	struct inode *inode = bdev->bd_inode;
958 	struct page *page;
959 	struct buffer_head *bh;
960 	sector_t end_block;
961 	int ret = 0;		/* Will call free_more_memory() */
962 
963 	page = find_or_create_page(inode->i_mapping, index,
964 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
965 	if (!page)
966 		return ret;
967 
968 	BUG_ON(!PageLocked(page));
969 
970 	if (page_has_buffers(page)) {
971 		bh = page_buffers(page);
972 		if (bh->b_size == size) {
973 			end_block = init_page_buffers(page, bdev,
974 						index << sizebits, size);
975 			goto done;
976 		}
977 		if (!try_to_free_buffers(page))
978 			goto failed;
979 	}
980 
981 	/*
982 	 * Allocate some buffers for this page
983 	 */
984 	bh = alloc_page_buffers(page, size, 0);
985 	if (!bh)
986 		goto failed;
987 
988 	/*
989 	 * Link the page to the buffers and initialise them.  Take the
990 	 * lock to be atomic wrt __find_get_block(), which does not
991 	 * run under the page lock.
992 	 */
993 	spin_lock(&inode->i_mapping->private_lock);
994 	link_dev_buffers(page, bh);
995 	end_block = init_page_buffers(page, bdev, index << sizebits, size);
996 	spin_unlock(&inode->i_mapping->private_lock);
997 done:
998 	ret = (block < end_block) ? 1 : -ENXIO;
999 failed:
1000 	unlock_page(page);
1001 	page_cache_release(page);
1002 	return ret;
1003 }
1004 
1005 /*
1006  * Create buffers for the specified block device block's page.  If
1007  * that page was dirty, the buffers are set dirty also.
1008  */
1009 static int
grow_buffers(struct block_device * bdev,sector_t block,int size)1010 grow_buffers(struct block_device *bdev, sector_t block, int size)
1011 {
1012 	pgoff_t index;
1013 	int sizebits;
1014 
1015 	sizebits = -1;
1016 	do {
1017 		sizebits++;
1018 	} while ((size << sizebits) < PAGE_SIZE);
1019 
1020 	index = block >> sizebits;
1021 
1022 	/*
1023 	 * Check for a block which wants to lie outside our maximum possible
1024 	 * pagecache index.  (this comparison is done using sector_t types).
1025 	 */
1026 	if (unlikely(index != block >> sizebits)) {
1027 		char b[BDEVNAME_SIZE];
1028 
1029 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1030 			"device %s\n",
1031 			__func__, (unsigned long long)block,
1032 			bdevname(bdev, b));
1033 		return -EIO;
1034 	}
1035 
1036 	/* Create a page with the proper size buffers.. */
1037 	return grow_dev_page(bdev, block, index, size, sizebits);
1038 }
1039 
1040 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,int size)1041 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1042 {
1043 	/* Size must be multiple of hard sectorsize */
1044 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1045 			(size < 512 || size > PAGE_SIZE))) {
1046 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1047 					size);
1048 		printk(KERN_ERR "logical block size: %d\n",
1049 					bdev_logical_block_size(bdev));
1050 
1051 		dump_stack();
1052 		return NULL;
1053 	}
1054 
1055 	for (;;) {
1056 		struct buffer_head *bh;
1057 		int ret;
1058 
1059 		bh = __find_get_block(bdev, block, size);
1060 		if (bh)
1061 			return bh;
1062 
1063 		ret = grow_buffers(bdev, block, size);
1064 		if (ret < 0)
1065 			return NULL;
1066 		if (ret == 0)
1067 			free_more_memory();
1068 	}
1069 }
1070 
1071 /*
1072  * The relationship between dirty buffers and dirty pages:
1073  *
1074  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075  * the page is tagged dirty in its radix tree.
1076  *
1077  * At all times, the dirtiness of the buffers represents the dirtiness of
1078  * subsections of the page.  If the page has buffers, the page dirty bit is
1079  * merely a hint about the true dirty state.
1080  *
1081  * When a page is set dirty in its entirety, all its buffers are marked dirty
1082  * (if the page has buffers).
1083  *
1084  * When a buffer is marked dirty, its page is dirtied, but the page's other
1085  * buffers are not.
1086  *
1087  * Also.  When blockdev buffers are explicitly read with bread(), they
1088  * individually become uptodate.  But their backing page remains not
1089  * uptodate - even if all of its buffers are uptodate.  A subsequent
1090  * block_read_full_page() against that page will discover all the uptodate
1091  * buffers, will set the page uptodate and will perform no I/O.
1092  */
1093 
1094 /**
1095  * mark_buffer_dirty - mark a buffer_head as needing writeout
1096  * @bh: the buffer_head to mark dirty
1097  *
1098  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099  * backing page dirty, then tag the page as dirty in its address_space's radix
1100  * tree and then attach the address_space's inode to its superblock's dirty
1101  * inode list.
1102  *
1103  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1104  * mapping->tree_lock and mapping->host->i_lock.
1105  */
mark_buffer_dirty(struct buffer_head * bh)1106 void mark_buffer_dirty(struct buffer_head *bh)
1107 {
1108 	WARN_ON_ONCE(!buffer_uptodate(bh));
1109 
1110 	/*
1111 	 * Very *carefully* optimize the it-is-already-dirty case.
1112 	 *
1113 	 * Don't let the final "is it dirty" escape to before we
1114 	 * perhaps modified the buffer.
1115 	 */
1116 	if (buffer_dirty(bh)) {
1117 		smp_mb();
1118 		if (buffer_dirty(bh))
1119 			return;
1120 	}
1121 
1122 	if (!test_set_buffer_dirty(bh)) {
1123 		struct page *page = bh->b_page;
1124 		if (!TestSetPageDirty(page)) {
1125 			struct address_space *mapping = page_mapping(page);
1126 			if (mapping)
1127 				__set_page_dirty(page, mapping, 0);
1128 		}
1129 	}
1130 }
1131 EXPORT_SYMBOL(mark_buffer_dirty);
1132 
1133 /*
1134  * Decrement a buffer_head's reference count.  If all buffers against a page
1135  * have zero reference count, are clean and unlocked, and if the page is clean
1136  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1137  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1138  * a page but it ends up not being freed, and buffers may later be reattached).
1139  */
__brelse(struct buffer_head * buf)1140 void __brelse(struct buffer_head * buf)
1141 {
1142 	if (atomic_read(&buf->b_count)) {
1143 		put_bh(buf);
1144 		return;
1145 	}
1146 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1147 }
1148 EXPORT_SYMBOL(__brelse);
1149 
1150 /*
1151  * bforget() is like brelse(), except it discards any
1152  * potentially dirty data.
1153  */
__bforget(struct buffer_head * bh)1154 void __bforget(struct buffer_head *bh)
1155 {
1156 	clear_buffer_dirty(bh);
1157 	if (bh->b_assoc_map) {
1158 		struct address_space *buffer_mapping = bh->b_page->mapping;
1159 
1160 		spin_lock(&buffer_mapping->private_lock);
1161 		list_del_init(&bh->b_assoc_buffers);
1162 		bh->b_assoc_map = NULL;
1163 		spin_unlock(&buffer_mapping->private_lock);
1164 	}
1165 	__brelse(bh);
1166 }
1167 EXPORT_SYMBOL(__bforget);
1168 
__bread_slow(struct buffer_head * bh)1169 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1170 {
1171 	lock_buffer(bh);
1172 	if (buffer_uptodate(bh)) {
1173 		unlock_buffer(bh);
1174 		return bh;
1175 	} else {
1176 		get_bh(bh);
1177 		bh->b_end_io = end_buffer_read_sync;
1178 		submit_bh(READ, bh);
1179 		wait_on_buffer(bh);
1180 		if (buffer_uptodate(bh))
1181 			return bh;
1182 	}
1183 	brelse(bh);
1184 	return NULL;
1185 }
1186 
1187 /*
1188  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1189  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1190  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1191  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1192  * CPU's LRUs at the same time.
1193  *
1194  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1195  * sb_find_get_block().
1196  *
1197  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1198  * a local interrupt disable for that.
1199  */
1200 
1201 #define BH_LRU_SIZE	8
1202 
1203 struct bh_lru {
1204 	struct buffer_head *bhs[BH_LRU_SIZE];
1205 };
1206 
1207 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1208 
1209 #ifdef CONFIG_SMP
1210 #define bh_lru_lock()	local_irq_disable()
1211 #define bh_lru_unlock()	local_irq_enable()
1212 #else
1213 #define bh_lru_lock()	preempt_disable()
1214 #define bh_lru_unlock()	preempt_enable()
1215 #endif
1216 
check_irqs_on(void)1217 static inline void check_irqs_on(void)
1218 {
1219 #ifdef irqs_disabled
1220 	BUG_ON(irqs_disabled());
1221 #endif
1222 }
1223 
1224 /*
1225  * The LRU management algorithm is dopey-but-simple.  Sorry.
1226  */
bh_lru_install(struct buffer_head * bh)1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229 	struct buffer_head *evictee = NULL;
1230 
1231 	check_irqs_on();
1232 	bh_lru_lock();
1233 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1234 		struct buffer_head *bhs[BH_LRU_SIZE];
1235 		int in;
1236 		int out = 0;
1237 
1238 		get_bh(bh);
1239 		bhs[out++] = bh;
1240 		for (in = 0; in < BH_LRU_SIZE; in++) {
1241 			struct buffer_head *bh2 =
1242 				__this_cpu_read(bh_lrus.bhs[in]);
1243 
1244 			if (bh2 == bh) {
1245 				__brelse(bh2);
1246 			} else {
1247 				if (out >= BH_LRU_SIZE) {
1248 					BUG_ON(evictee != NULL);
1249 					evictee = bh2;
1250 				} else {
1251 					bhs[out++] = bh2;
1252 				}
1253 			}
1254 		}
1255 		while (out < BH_LRU_SIZE)
1256 			bhs[out++] = NULL;
1257 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1258 	}
1259 	bh_lru_unlock();
1260 
1261 	if (evictee)
1262 		__brelse(evictee);
1263 }
1264 
1265 /*
1266  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1267  */
1268 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 	struct buffer_head *ret = NULL;
1272 	unsigned int i;
1273 
1274 	check_irqs_on();
1275 	bh_lru_lock();
1276 	for (i = 0; i < BH_LRU_SIZE; i++) {
1277 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278 
1279 		if (bh && bh->b_bdev == bdev &&
1280 				bh->b_blocknr == block && bh->b_size == size) {
1281 			if (i) {
1282 				while (i) {
1283 					__this_cpu_write(bh_lrus.bhs[i],
1284 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1285 					i--;
1286 				}
1287 				__this_cpu_write(bh_lrus.bhs[0], bh);
1288 			}
1289 			get_bh(bh);
1290 			ret = bh;
1291 			break;
1292 		}
1293 	}
1294 	bh_lru_unlock();
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1300  * it in the LRU and mark it as accessed.  If it is not present then return
1301  * NULL
1302  */
1303 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307 
1308 	if (bh == NULL) {
1309 		bh = __find_get_block_slow(bdev, block);
1310 		if (bh)
1311 			bh_lru_install(bh);
1312 	}
1313 	if (bh)
1314 		touch_buffer(bh);
1315 	return bh;
1316 }
1317 EXPORT_SYMBOL(__find_get_block);
1318 
1319 /*
1320  * __getblk will locate (and, if necessary, create) the buffer_head
1321  * which corresponds to the passed block_device, block and size. The
1322  * returned buffer has its reference count incremented.
1323  *
1324  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1325  * attempt is failing.  FIXME, perhaps?
1326  */
1327 struct buffer_head *
__getblk(struct block_device * bdev,sector_t block,unsigned size)1328 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1331 
1332 	might_sleep();
1333 	if (bh == NULL)
1334 		bh = __getblk_slow(bdev, block, size);
1335 	return bh;
1336 }
1337 EXPORT_SYMBOL(__getblk);
1338 
1339 /*
1340  * Do async read-ahead on a buffer..
1341  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1342 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343 {
1344 	struct buffer_head *bh = __getblk(bdev, block, size);
1345 	if (likely(bh)) {
1346 		ll_rw_block(READA, 1, &bh);
1347 		brelse(bh);
1348 	}
1349 }
1350 EXPORT_SYMBOL(__breadahead);
1351 
1352 /**
1353  *  __bread() - reads a specified block and returns the bh
1354  *  @bdev: the block_device to read from
1355  *  @block: number of block
1356  *  @size: size (in bytes) to read
1357  *
1358  *  Reads a specified block, and returns buffer head that contains it.
1359  *  It returns NULL if the block was unreadable.
1360  */
1361 struct buffer_head *
__bread(struct block_device * bdev,sector_t block,unsigned size)1362 __bread(struct block_device *bdev, sector_t block, unsigned size)
1363 {
1364 	struct buffer_head *bh = __getblk(bdev, block, size);
1365 
1366 	if (likely(bh) && !buffer_uptodate(bh))
1367 		bh = __bread_slow(bh);
1368 	return bh;
1369 }
1370 EXPORT_SYMBOL(__bread);
1371 
1372 /*
1373  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1374  * This doesn't race because it runs in each cpu either in irq
1375  * or with preempt disabled.
1376  */
invalidate_bh_lru(void * arg)1377 static void invalidate_bh_lru(void *arg)
1378 {
1379 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1380 	int i;
1381 
1382 	for (i = 0; i < BH_LRU_SIZE; i++) {
1383 		brelse(b->bhs[i]);
1384 		b->bhs[i] = NULL;
1385 	}
1386 	put_cpu_var(bh_lrus);
1387 }
1388 
has_bh_in_lru(int cpu,void * dummy)1389 static bool has_bh_in_lru(int cpu, void *dummy)
1390 {
1391 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1392 	int i;
1393 
1394 	for (i = 0; i < BH_LRU_SIZE; i++) {
1395 		if (b->bhs[i])
1396 			return 1;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
invalidate_bh_lrus(void)1402 void invalidate_bh_lrus(void)
1403 {
1404 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1405 }
1406 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1407 
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1408 void set_bh_page(struct buffer_head *bh,
1409 		struct page *page, unsigned long offset)
1410 {
1411 	bh->b_page = page;
1412 	BUG_ON(offset >= PAGE_SIZE);
1413 	if (PageHighMem(page))
1414 		/*
1415 		 * This catches illegal uses and preserves the offset:
1416 		 */
1417 		bh->b_data = (char *)(0 + offset);
1418 	else
1419 		bh->b_data = page_address(page) + offset;
1420 }
1421 EXPORT_SYMBOL(set_bh_page);
1422 
1423 /*
1424  * Called when truncating a buffer on a page completely.
1425  */
discard_buffer(struct buffer_head * bh)1426 static void discard_buffer(struct buffer_head * bh)
1427 {
1428 	lock_buffer(bh);
1429 	clear_buffer_dirty(bh);
1430 	bh->b_bdev = NULL;
1431 	clear_buffer_mapped(bh);
1432 	clear_buffer_req(bh);
1433 	clear_buffer_new(bh);
1434 	clear_buffer_delay(bh);
1435 	clear_buffer_unwritten(bh);
1436 	unlock_buffer(bh);
1437 }
1438 
1439 /**
1440  * block_invalidatepage - invalidate part or all of a buffer-backed page
1441  *
1442  * @page: the page which is affected
1443  * @offset: the index of the truncation point
1444  *
1445  * block_invalidatepage() is called when all or part of the page has become
1446  * invalidated by a truncate operation.
1447  *
1448  * block_invalidatepage() does not have to release all buffers, but it must
1449  * ensure that no dirty buffer is left outside @offset and that no I/O
1450  * is underway against any of the blocks which are outside the truncation
1451  * point.  Because the caller is about to free (and possibly reuse) those
1452  * blocks on-disk.
1453  */
block_invalidatepage(struct page * page,unsigned long offset)1454 void block_invalidatepage(struct page *page, unsigned long offset)
1455 {
1456 	struct buffer_head *head, *bh, *next;
1457 	unsigned int curr_off = 0;
1458 
1459 	BUG_ON(!PageLocked(page));
1460 	if (!page_has_buffers(page))
1461 		goto out;
1462 
1463 	head = page_buffers(page);
1464 	bh = head;
1465 	do {
1466 		unsigned int next_off = curr_off + bh->b_size;
1467 		next = bh->b_this_page;
1468 
1469 		/*
1470 		 * is this block fully invalidated?
1471 		 */
1472 		if (offset <= curr_off)
1473 			discard_buffer(bh);
1474 		curr_off = next_off;
1475 		bh = next;
1476 	} while (bh != head);
1477 
1478 	/*
1479 	 * We release buffers only if the entire page is being invalidated.
1480 	 * The get_block cached value has been unconditionally invalidated,
1481 	 * so real IO is not possible anymore.
1482 	 */
1483 	if (offset == 0)
1484 		try_to_release_page(page, 0);
1485 out:
1486 	return;
1487 }
1488 EXPORT_SYMBOL(block_invalidatepage);
1489 
1490 /*
1491  * We attach and possibly dirty the buffers atomically wrt
1492  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1493  * is already excluded via the page lock.
1494  */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1495 void create_empty_buffers(struct page *page,
1496 			unsigned long blocksize, unsigned long b_state)
1497 {
1498 	struct buffer_head *bh, *head, *tail;
1499 
1500 	head = alloc_page_buffers(page, blocksize, 1);
1501 	bh = head;
1502 	do {
1503 		bh->b_state |= b_state;
1504 		tail = bh;
1505 		bh = bh->b_this_page;
1506 	} while (bh);
1507 	tail->b_this_page = head;
1508 
1509 	spin_lock(&page->mapping->private_lock);
1510 	if (PageUptodate(page) || PageDirty(page)) {
1511 		bh = head;
1512 		do {
1513 			if (PageDirty(page))
1514 				set_buffer_dirty(bh);
1515 			if (PageUptodate(page))
1516 				set_buffer_uptodate(bh);
1517 			bh = bh->b_this_page;
1518 		} while (bh != head);
1519 	}
1520 	attach_page_buffers(page, head);
1521 	spin_unlock(&page->mapping->private_lock);
1522 }
1523 EXPORT_SYMBOL(create_empty_buffers);
1524 
1525 /*
1526  * We are taking a block for data and we don't want any output from any
1527  * buffer-cache aliases starting from return from that function and
1528  * until the moment when something will explicitly mark the buffer
1529  * dirty (hopefully that will not happen until we will free that block ;-)
1530  * We don't even need to mark it not-uptodate - nobody can expect
1531  * anything from a newly allocated buffer anyway. We used to used
1532  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1533  * don't want to mark the alias unmapped, for example - it would confuse
1534  * anyone who might pick it with bread() afterwards...
1535  *
1536  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1537  * be writeout I/O going on against recently-freed buffers.  We don't
1538  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1539  * only if we really need to.  That happens here.
1540  */
unmap_underlying_metadata(struct block_device * bdev,sector_t block)1541 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1542 {
1543 	struct buffer_head *old_bh;
1544 
1545 	might_sleep();
1546 
1547 	old_bh = __find_get_block_slow(bdev, block);
1548 	if (old_bh) {
1549 		clear_buffer_dirty(old_bh);
1550 		wait_on_buffer(old_bh);
1551 		clear_buffer_req(old_bh);
1552 		__brelse(old_bh);
1553 	}
1554 }
1555 EXPORT_SYMBOL(unmap_underlying_metadata);
1556 
1557 /*
1558  * NOTE! All mapped/uptodate combinations are valid:
1559  *
1560  *	Mapped	Uptodate	Meaning
1561  *
1562  *	No	No		"unknown" - must do get_block()
1563  *	No	Yes		"hole" - zero-filled
1564  *	Yes	No		"allocated" - allocated on disk, not read in
1565  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1566  *
1567  * "Dirty" is valid only with the last case (mapped+uptodate).
1568  */
1569 
1570 /*
1571  * While block_write_full_page is writing back the dirty buffers under
1572  * the page lock, whoever dirtied the buffers may decide to clean them
1573  * again at any time.  We handle that by only looking at the buffer
1574  * state inside lock_buffer().
1575  *
1576  * If block_write_full_page() is called for regular writeback
1577  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1578  * locked buffer.   This only can happen if someone has written the buffer
1579  * directly, with submit_bh().  At the address_space level PageWriteback
1580  * prevents this contention from occurring.
1581  *
1582  * If block_write_full_page() is called with wbc->sync_mode ==
1583  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1584  * causes the writes to be flagged as synchronous writes.
1585  */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)1586 static int __block_write_full_page(struct inode *inode, struct page *page,
1587 			get_block_t *get_block, struct writeback_control *wbc,
1588 			bh_end_io_t *handler)
1589 {
1590 	int err;
1591 	sector_t block;
1592 	sector_t last_block;
1593 	struct buffer_head *bh, *head;
1594 	const unsigned blocksize = 1 << inode->i_blkbits;
1595 	int nr_underway = 0;
1596 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1597 			WRITE_SYNC : WRITE);
1598 
1599 	BUG_ON(!PageLocked(page));
1600 
1601 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1602 
1603 	if (!page_has_buffers(page)) {
1604 		create_empty_buffers(page, blocksize,
1605 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1606 	}
1607 
1608 	/*
1609 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1610 	 * here, and the (potentially unmapped) buffers may become dirty at
1611 	 * any time.  If a buffer becomes dirty here after we've inspected it
1612 	 * then we just miss that fact, and the page stays dirty.
1613 	 *
1614 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1615 	 * handle that here by just cleaning them.
1616 	 */
1617 
1618 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1619 	head = page_buffers(page);
1620 	bh = head;
1621 
1622 	/*
1623 	 * Get all the dirty buffers mapped to disk addresses and
1624 	 * handle any aliases from the underlying blockdev's mapping.
1625 	 */
1626 	do {
1627 		if (block > last_block) {
1628 			/*
1629 			 * mapped buffers outside i_size will occur, because
1630 			 * this page can be outside i_size when there is a
1631 			 * truncate in progress.
1632 			 */
1633 			/*
1634 			 * The buffer was zeroed by block_write_full_page()
1635 			 */
1636 			clear_buffer_dirty(bh);
1637 			set_buffer_uptodate(bh);
1638 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1639 			   buffer_dirty(bh)) {
1640 			WARN_ON(bh->b_size != blocksize);
1641 			err = get_block(inode, block, bh, 1);
1642 			if (err)
1643 				goto recover;
1644 			clear_buffer_delay(bh);
1645 			if (buffer_new(bh)) {
1646 				/* blockdev mappings never come here */
1647 				clear_buffer_new(bh);
1648 				unmap_underlying_metadata(bh->b_bdev,
1649 							bh->b_blocknr);
1650 			}
1651 		}
1652 		bh = bh->b_this_page;
1653 		block++;
1654 	} while (bh != head);
1655 
1656 	do {
1657 		if (!buffer_mapped(bh))
1658 			continue;
1659 		/*
1660 		 * If it's a fully non-blocking write attempt and we cannot
1661 		 * lock the buffer then redirty the page.  Note that this can
1662 		 * potentially cause a busy-wait loop from writeback threads
1663 		 * and kswapd activity, but those code paths have their own
1664 		 * higher-level throttling.
1665 		 */
1666 		if (wbc->sync_mode != WB_SYNC_NONE) {
1667 			lock_buffer(bh);
1668 		} else if (!trylock_buffer(bh)) {
1669 			redirty_page_for_writepage(wbc, page);
1670 			continue;
1671 		}
1672 		if (test_clear_buffer_dirty(bh)) {
1673 			mark_buffer_async_write_endio(bh, handler);
1674 		} else {
1675 			unlock_buffer(bh);
1676 		}
1677 	} while ((bh = bh->b_this_page) != head);
1678 
1679 	/*
1680 	 * The page and its buffers are protected by PageWriteback(), so we can
1681 	 * drop the bh refcounts early.
1682 	 */
1683 	BUG_ON(PageWriteback(page));
1684 	set_page_writeback(page);
1685 
1686 	do {
1687 		struct buffer_head *next = bh->b_this_page;
1688 		if (buffer_async_write(bh)) {
1689 			submit_bh(write_op, bh);
1690 			nr_underway++;
1691 		}
1692 		bh = next;
1693 	} while (bh != head);
1694 	unlock_page(page);
1695 
1696 	err = 0;
1697 done:
1698 	if (nr_underway == 0) {
1699 		/*
1700 		 * The page was marked dirty, but the buffers were
1701 		 * clean.  Someone wrote them back by hand with
1702 		 * ll_rw_block/submit_bh.  A rare case.
1703 		 */
1704 		end_page_writeback(page);
1705 
1706 		/*
1707 		 * The page and buffer_heads can be released at any time from
1708 		 * here on.
1709 		 */
1710 	}
1711 	return err;
1712 
1713 recover:
1714 	/*
1715 	 * ENOSPC, or some other error.  We may already have added some
1716 	 * blocks to the file, so we need to write these out to avoid
1717 	 * exposing stale data.
1718 	 * The page is currently locked and not marked for writeback
1719 	 */
1720 	bh = head;
1721 	/* Recovery: lock and submit the mapped buffers */
1722 	do {
1723 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1724 		    !buffer_delay(bh)) {
1725 			lock_buffer(bh);
1726 			mark_buffer_async_write_endio(bh, handler);
1727 		} else {
1728 			/*
1729 			 * The buffer may have been set dirty during
1730 			 * attachment to a dirty page.
1731 			 */
1732 			clear_buffer_dirty(bh);
1733 		}
1734 	} while ((bh = bh->b_this_page) != head);
1735 	SetPageError(page);
1736 	BUG_ON(PageWriteback(page));
1737 	mapping_set_error(page->mapping, err);
1738 	set_page_writeback(page);
1739 	do {
1740 		struct buffer_head *next = bh->b_this_page;
1741 		if (buffer_async_write(bh)) {
1742 			clear_buffer_dirty(bh);
1743 			submit_bh(write_op, bh);
1744 			nr_underway++;
1745 		}
1746 		bh = next;
1747 	} while (bh != head);
1748 	unlock_page(page);
1749 	goto done;
1750 }
1751 
1752 /*
1753  * If a page has any new buffers, zero them out here, and mark them uptodate
1754  * and dirty so they'll be written out (in order to prevent uninitialised
1755  * block data from leaking). And clear the new bit.
1756  */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1757 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1758 {
1759 	unsigned int block_start, block_end;
1760 	struct buffer_head *head, *bh;
1761 
1762 	BUG_ON(!PageLocked(page));
1763 	if (!page_has_buffers(page))
1764 		return;
1765 
1766 	bh = head = page_buffers(page);
1767 	block_start = 0;
1768 	do {
1769 		block_end = block_start + bh->b_size;
1770 
1771 		if (buffer_new(bh)) {
1772 			if (block_end > from && block_start < to) {
1773 				if (!PageUptodate(page)) {
1774 					unsigned start, size;
1775 
1776 					start = max(from, block_start);
1777 					size = min(to, block_end) - start;
1778 
1779 					zero_user(page, start, size);
1780 					set_buffer_uptodate(bh);
1781 				}
1782 
1783 				clear_buffer_new(bh);
1784 				mark_buffer_dirty(bh);
1785 			}
1786 		}
1787 
1788 		block_start = block_end;
1789 		bh = bh->b_this_page;
1790 	} while (bh != head);
1791 }
1792 EXPORT_SYMBOL(page_zero_new_buffers);
1793 
__block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1794 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1795 		get_block_t *get_block)
1796 {
1797 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1798 	unsigned to = from + len;
1799 	struct inode *inode = page->mapping->host;
1800 	unsigned block_start, block_end;
1801 	sector_t block;
1802 	int err = 0;
1803 	unsigned blocksize, bbits;
1804 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1805 
1806 	BUG_ON(!PageLocked(page));
1807 	BUG_ON(from > PAGE_CACHE_SIZE);
1808 	BUG_ON(to > PAGE_CACHE_SIZE);
1809 	BUG_ON(from > to);
1810 
1811 	blocksize = 1 << inode->i_blkbits;
1812 	if (!page_has_buffers(page))
1813 		create_empty_buffers(page, blocksize, 0);
1814 	head = page_buffers(page);
1815 
1816 	bbits = inode->i_blkbits;
1817 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1818 
1819 	for(bh = head, block_start = 0; bh != head || !block_start;
1820 	    block++, block_start=block_end, bh = bh->b_this_page) {
1821 		block_end = block_start + blocksize;
1822 		if (block_end <= from || block_start >= to) {
1823 			if (PageUptodate(page)) {
1824 				if (!buffer_uptodate(bh))
1825 					set_buffer_uptodate(bh);
1826 			}
1827 			continue;
1828 		}
1829 		if (buffer_new(bh))
1830 			clear_buffer_new(bh);
1831 		if (!buffer_mapped(bh)) {
1832 			WARN_ON(bh->b_size != blocksize);
1833 			err = get_block(inode, block, bh, 1);
1834 			if (err)
1835 				break;
1836 			if (buffer_new(bh)) {
1837 				unmap_underlying_metadata(bh->b_bdev,
1838 							bh->b_blocknr);
1839 				if (PageUptodate(page)) {
1840 					clear_buffer_new(bh);
1841 					set_buffer_uptodate(bh);
1842 					mark_buffer_dirty(bh);
1843 					continue;
1844 				}
1845 				if (block_end > to || block_start < from)
1846 					zero_user_segments(page,
1847 						to, block_end,
1848 						block_start, from);
1849 				continue;
1850 			}
1851 		}
1852 		if (PageUptodate(page)) {
1853 			if (!buffer_uptodate(bh))
1854 				set_buffer_uptodate(bh);
1855 			continue;
1856 		}
1857 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1858 		    !buffer_unwritten(bh) &&
1859 		     (block_start < from || block_end > to)) {
1860 			ll_rw_block(READ, 1, &bh);
1861 			*wait_bh++=bh;
1862 		}
1863 	}
1864 	/*
1865 	 * If we issued read requests - let them complete.
1866 	 */
1867 	while(wait_bh > wait) {
1868 		wait_on_buffer(*--wait_bh);
1869 		if (!buffer_uptodate(*wait_bh))
1870 			err = -EIO;
1871 	}
1872 	if (unlikely(err))
1873 		page_zero_new_buffers(page, from, to);
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(__block_write_begin);
1877 
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)1878 static int __block_commit_write(struct inode *inode, struct page *page,
1879 		unsigned from, unsigned to)
1880 {
1881 	unsigned block_start, block_end;
1882 	int partial = 0;
1883 	unsigned blocksize;
1884 	struct buffer_head *bh, *head;
1885 
1886 	blocksize = 1 << inode->i_blkbits;
1887 
1888 	for(bh = head = page_buffers(page), block_start = 0;
1889 	    bh != head || !block_start;
1890 	    block_start=block_end, bh = bh->b_this_page) {
1891 		block_end = block_start + blocksize;
1892 		if (block_end <= from || block_start >= to) {
1893 			if (!buffer_uptodate(bh))
1894 				partial = 1;
1895 		} else {
1896 			set_buffer_uptodate(bh);
1897 			mark_buffer_dirty(bh);
1898 		}
1899 		clear_buffer_new(bh);
1900 	}
1901 
1902 	/*
1903 	 * If this is a partial write which happened to make all buffers
1904 	 * uptodate then we can optimize away a bogus readpage() for
1905 	 * the next read(). Here we 'discover' whether the page went
1906 	 * uptodate as a result of this (potentially partial) write.
1907 	 */
1908 	if (!partial)
1909 		SetPageUptodate(page);
1910 	return 0;
1911 }
1912 
1913 /*
1914  * block_write_begin takes care of the basic task of block allocation and
1915  * bringing partial write blocks uptodate first.
1916  *
1917  * The filesystem needs to handle block truncation upon failure.
1918  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,get_block_t * get_block)1919 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1920 		unsigned flags, struct page **pagep, get_block_t *get_block)
1921 {
1922 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1923 	struct page *page;
1924 	int status;
1925 
1926 	page = grab_cache_page_write_begin(mapping, index, flags);
1927 	if (!page)
1928 		return -ENOMEM;
1929 
1930 	status = __block_write_begin(page, pos, len, get_block);
1931 	if (unlikely(status)) {
1932 		unlock_page(page);
1933 		page_cache_release(page);
1934 		page = NULL;
1935 	}
1936 
1937 	*pagep = page;
1938 	return status;
1939 }
1940 EXPORT_SYMBOL(block_write_begin);
1941 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1942 int block_write_end(struct file *file, struct address_space *mapping,
1943 			loff_t pos, unsigned len, unsigned copied,
1944 			struct page *page, void *fsdata)
1945 {
1946 	struct inode *inode = mapping->host;
1947 	unsigned start;
1948 
1949 	start = pos & (PAGE_CACHE_SIZE - 1);
1950 
1951 	if (unlikely(copied < len)) {
1952 		/*
1953 		 * The buffers that were written will now be uptodate, so we
1954 		 * don't have to worry about a readpage reading them and
1955 		 * overwriting a partial write. However if we have encountered
1956 		 * a short write and only partially written into a buffer, it
1957 		 * will not be marked uptodate, so a readpage might come in and
1958 		 * destroy our partial write.
1959 		 *
1960 		 * Do the simplest thing, and just treat any short write to a
1961 		 * non uptodate page as a zero-length write, and force the
1962 		 * caller to redo the whole thing.
1963 		 */
1964 		if (!PageUptodate(page))
1965 			copied = 0;
1966 
1967 		page_zero_new_buffers(page, start+copied, start+len);
1968 	}
1969 	flush_dcache_page(page);
1970 
1971 	/* This could be a short (even 0-length) commit */
1972 	__block_commit_write(inode, page, start, start+copied);
1973 
1974 	return copied;
1975 }
1976 EXPORT_SYMBOL(block_write_end);
1977 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1978 int generic_write_end(struct file *file, struct address_space *mapping,
1979 			loff_t pos, unsigned len, unsigned copied,
1980 			struct page *page, void *fsdata)
1981 {
1982 	struct inode *inode = mapping->host;
1983 	int i_size_changed = 0;
1984 
1985 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1986 
1987 	/*
1988 	 * No need to use i_size_read() here, the i_size
1989 	 * cannot change under us because we hold i_mutex.
1990 	 *
1991 	 * But it's important to update i_size while still holding page lock:
1992 	 * page writeout could otherwise come in and zero beyond i_size.
1993 	 */
1994 	if (pos+copied > inode->i_size) {
1995 		i_size_write(inode, pos+copied);
1996 		i_size_changed = 1;
1997 	}
1998 
1999 	unlock_page(page);
2000 	page_cache_release(page);
2001 
2002 	/*
2003 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2004 	 * makes the holding time of page lock longer. Second, it forces lock
2005 	 * ordering of page lock and transaction start for journaling
2006 	 * filesystems.
2007 	 */
2008 	if (i_size_changed)
2009 		mark_inode_dirty(inode);
2010 
2011 	return copied;
2012 }
2013 EXPORT_SYMBOL(generic_write_end);
2014 
2015 /*
2016  * block_is_partially_uptodate checks whether buffers within a page are
2017  * uptodate or not.
2018  *
2019  * Returns true if all buffers which correspond to a file portion
2020  * we want to read are uptodate.
2021  */
block_is_partially_uptodate(struct page * page,read_descriptor_t * desc,unsigned long from)2022 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2023 					unsigned long from)
2024 {
2025 	struct inode *inode = page->mapping->host;
2026 	unsigned block_start, block_end, blocksize;
2027 	unsigned to;
2028 	struct buffer_head *bh, *head;
2029 	int ret = 1;
2030 
2031 	if (!page_has_buffers(page))
2032 		return 0;
2033 
2034 	blocksize = 1 << inode->i_blkbits;
2035 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2036 	to = from + to;
2037 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2038 		return 0;
2039 
2040 	head = page_buffers(page);
2041 	bh = head;
2042 	block_start = 0;
2043 	do {
2044 		block_end = block_start + blocksize;
2045 		if (block_end > from && block_start < to) {
2046 			if (!buffer_uptodate(bh)) {
2047 				ret = 0;
2048 				break;
2049 			}
2050 			if (block_end >= to)
2051 				break;
2052 		}
2053 		block_start = block_end;
2054 		bh = bh->b_this_page;
2055 	} while (bh != head);
2056 
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL(block_is_partially_uptodate);
2060 
2061 /*
2062  * Generic "read page" function for block devices that have the normal
2063  * get_block functionality. This is most of the block device filesystems.
2064  * Reads the page asynchronously --- the unlock_buffer() and
2065  * set/clear_buffer_uptodate() functions propagate buffer state into the
2066  * page struct once IO has completed.
2067  */
block_read_full_page(struct page * page,get_block_t * get_block)2068 int block_read_full_page(struct page *page, get_block_t *get_block)
2069 {
2070 	struct inode *inode = page->mapping->host;
2071 	sector_t iblock, lblock;
2072 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2073 	unsigned int blocksize;
2074 	int nr, i;
2075 	int fully_mapped = 1;
2076 
2077 	BUG_ON(!PageLocked(page));
2078 	blocksize = 1 << inode->i_blkbits;
2079 	if (!page_has_buffers(page))
2080 		create_empty_buffers(page, blocksize, 0);
2081 	head = page_buffers(page);
2082 
2083 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2085 	bh = head;
2086 	nr = 0;
2087 	i = 0;
2088 
2089 	do {
2090 		if (buffer_uptodate(bh))
2091 			continue;
2092 
2093 		if (!buffer_mapped(bh)) {
2094 			int err = 0;
2095 
2096 			fully_mapped = 0;
2097 			if (iblock < lblock) {
2098 				WARN_ON(bh->b_size != blocksize);
2099 				err = get_block(inode, iblock, bh, 0);
2100 				if (err)
2101 					SetPageError(page);
2102 			}
2103 			if (!buffer_mapped(bh)) {
2104 				zero_user(page, i * blocksize, blocksize);
2105 				if (!err)
2106 					set_buffer_uptodate(bh);
2107 				continue;
2108 			}
2109 			/*
2110 			 * get_block() might have updated the buffer
2111 			 * synchronously
2112 			 */
2113 			if (buffer_uptodate(bh))
2114 				continue;
2115 		}
2116 		arr[nr++] = bh;
2117 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2118 
2119 	if (fully_mapped)
2120 		SetPageMappedToDisk(page);
2121 
2122 	if (!nr) {
2123 		/*
2124 		 * All buffers are uptodate - we can set the page uptodate
2125 		 * as well. But not if get_block() returned an error.
2126 		 */
2127 		if (!PageError(page))
2128 			SetPageUptodate(page);
2129 		unlock_page(page);
2130 		return 0;
2131 	}
2132 
2133 	/* Stage two: lock the buffers */
2134 	for (i = 0; i < nr; i++) {
2135 		bh = arr[i];
2136 		lock_buffer(bh);
2137 		mark_buffer_async_read(bh);
2138 	}
2139 
2140 	/*
2141 	 * Stage 3: start the IO.  Check for uptodateness
2142 	 * inside the buffer lock in case another process reading
2143 	 * the underlying blockdev brought it uptodate (the sct fix).
2144 	 */
2145 	for (i = 0; i < nr; i++) {
2146 		bh = arr[i];
2147 		if (buffer_uptodate(bh))
2148 			end_buffer_async_read(bh, 1);
2149 		else
2150 			submit_bh(READ, bh);
2151 	}
2152 	return 0;
2153 }
2154 EXPORT_SYMBOL(block_read_full_page);
2155 
2156 /* utility function for filesystems that need to do work on expanding
2157  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2158  * deal with the hole.
2159  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2160 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2161 {
2162 	struct address_space *mapping = inode->i_mapping;
2163 	struct page *page;
2164 	void *fsdata;
2165 	int err;
2166 
2167 	err = inode_newsize_ok(inode, size);
2168 	if (err)
2169 		goto out;
2170 
2171 	err = pagecache_write_begin(NULL, mapping, size, 0,
2172 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2173 				&page, &fsdata);
2174 	if (err)
2175 		goto out;
2176 
2177 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2178 	BUG_ON(err > 0);
2179 
2180 out:
2181 	return err;
2182 }
2183 EXPORT_SYMBOL(generic_cont_expand_simple);
2184 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2185 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2186 			    loff_t pos, loff_t *bytes)
2187 {
2188 	struct inode *inode = mapping->host;
2189 	unsigned blocksize = 1 << inode->i_blkbits;
2190 	struct page *page;
2191 	void *fsdata;
2192 	pgoff_t index, curidx;
2193 	loff_t curpos;
2194 	unsigned zerofrom, offset, len;
2195 	int err = 0;
2196 
2197 	index = pos >> PAGE_CACHE_SHIFT;
2198 	offset = pos & ~PAGE_CACHE_MASK;
2199 
2200 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2201 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2202 		if (zerofrom & (blocksize-1)) {
2203 			*bytes |= (blocksize-1);
2204 			(*bytes)++;
2205 		}
2206 		len = PAGE_CACHE_SIZE - zerofrom;
2207 
2208 		err = pagecache_write_begin(file, mapping, curpos, len,
2209 						AOP_FLAG_UNINTERRUPTIBLE,
2210 						&page, &fsdata);
2211 		if (err)
2212 			goto out;
2213 		zero_user(page, zerofrom, len);
2214 		err = pagecache_write_end(file, mapping, curpos, len, len,
2215 						page, fsdata);
2216 		if (err < 0)
2217 			goto out;
2218 		BUG_ON(err != len);
2219 		err = 0;
2220 
2221 		balance_dirty_pages_ratelimited(mapping);
2222 	}
2223 
2224 	/* page covers the boundary, find the boundary offset */
2225 	if (index == curidx) {
2226 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2227 		/* if we will expand the thing last block will be filled */
2228 		if (offset <= zerofrom) {
2229 			goto out;
2230 		}
2231 		if (zerofrom & (blocksize-1)) {
2232 			*bytes |= (blocksize-1);
2233 			(*bytes)++;
2234 		}
2235 		len = offset - zerofrom;
2236 
2237 		err = pagecache_write_begin(file, mapping, curpos, len,
2238 						AOP_FLAG_UNINTERRUPTIBLE,
2239 						&page, &fsdata);
2240 		if (err)
2241 			goto out;
2242 		zero_user(page, zerofrom, len);
2243 		err = pagecache_write_end(file, mapping, curpos, len, len,
2244 						page, fsdata);
2245 		if (err < 0)
2246 			goto out;
2247 		BUG_ON(err != len);
2248 		err = 0;
2249 	}
2250 out:
2251 	return err;
2252 }
2253 
2254 /*
2255  * For moronic filesystems that do not allow holes in file.
2256  * We may have to extend the file.
2257  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2258 int cont_write_begin(struct file *file, struct address_space *mapping,
2259 			loff_t pos, unsigned len, unsigned flags,
2260 			struct page **pagep, void **fsdata,
2261 			get_block_t *get_block, loff_t *bytes)
2262 {
2263 	struct inode *inode = mapping->host;
2264 	unsigned blocksize = 1 << inode->i_blkbits;
2265 	unsigned zerofrom;
2266 	int err;
2267 
2268 	err = cont_expand_zero(file, mapping, pos, bytes);
2269 	if (err)
2270 		return err;
2271 
2272 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2273 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2274 		*bytes |= (blocksize-1);
2275 		(*bytes)++;
2276 	}
2277 
2278 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2279 }
2280 EXPORT_SYMBOL(cont_write_begin);
2281 
block_commit_write(struct page * page,unsigned from,unsigned to)2282 int block_commit_write(struct page *page, unsigned from, unsigned to)
2283 {
2284 	struct inode *inode = page->mapping->host;
2285 	__block_commit_write(inode,page,from,to);
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(block_commit_write);
2289 
2290 /*
2291  * block_page_mkwrite() is not allowed to change the file size as it gets
2292  * called from a page fault handler when a page is first dirtied. Hence we must
2293  * be careful to check for EOF conditions here. We set the page up correctly
2294  * for a written page which means we get ENOSPC checking when writing into
2295  * holes and correct delalloc and unwritten extent mapping on filesystems that
2296  * support these features.
2297  *
2298  * We are not allowed to take the i_mutex here so we have to play games to
2299  * protect against truncate races as the page could now be beyond EOF.  Because
2300  * truncate writes the inode size before removing pages, once we have the
2301  * page lock we can determine safely if the page is beyond EOF. If it is not
2302  * beyond EOF, then the page is guaranteed safe against truncation until we
2303  * unlock the page.
2304  *
2305  * Direct callers of this function should call vfs_check_frozen() so that page
2306  * fault does not busyloop until the fs is thawed.
2307  */
__block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2308 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2309 			 get_block_t get_block)
2310 {
2311 	struct page *page = vmf->page;
2312 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2313 	unsigned long end;
2314 	loff_t size;
2315 	int ret;
2316 
2317 	lock_page(page);
2318 	size = i_size_read(inode);
2319 	if ((page->mapping != inode->i_mapping) ||
2320 	    (page_offset(page) > size)) {
2321 		/* We overload EFAULT to mean page got truncated */
2322 		ret = -EFAULT;
2323 		goto out_unlock;
2324 	}
2325 
2326 	/* page is wholly or partially inside EOF */
2327 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2328 		end = size & ~PAGE_CACHE_MASK;
2329 	else
2330 		end = PAGE_CACHE_SIZE;
2331 
2332 	ret = __block_write_begin(page, 0, end, get_block);
2333 	if (!ret)
2334 		ret = block_commit_write(page, 0, end);
2335 
2336 	if (unlikely(ret < 0))
2337 		goto out_unlock;
2338 	/*
2339 	 * Freezing in progress? We check after the page is marked dirty and
2340 	 * with page lock held so if the test here fails, we are sure freezing
2341 	 * code will wait during syncing until the page fault is done - at that
2342 	 * point page will be dirty and unlocked so freezing code will write it
2343 	 * and writeprotect it again.
2344 	 */
2345 	set_page_dirty(page);
2346 	if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2347 		ret = -EAGAIN;
2348 		goto out_unlock;
2349 	}
2350 	wait_on_page_writeback(page);
2351 	return 0;
2352 out_unlock:
2353 	unlock_page(page);
2354 	return ret;
2355 }
2356 EXPORT_SYMBOL(__block_page_mkwrite);
2357 
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2358 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2359 		   get_block_t get_block)
2360 {
2361 	int ret;
2362 	struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2363 
2364 	/*
2365 	 * This check is racy but catches the common case. The check in
2366 	 * __block_page_mkwrite() is reliable.
2367 	 */
2368 	vfs_check_frozen(sb, SB_FREEZE_WRITE);
2369 	ret = __block_page_mkwrite(vma, vmf, get_block);
2370 	return block_page_mkwrite_return(ret);
2371 }
2372 EXPORT_SYMBOL(block_page_mkwrite);
2373 
2374 /*
2375  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2376  * immediately, while under the page lock.  So it needs a special end_io
2377  * handler which does not touch the bh after unlocking it.
2378  */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2379 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2380 {
2381 	__end_buffer_read_notouch(bh, uptodate);
2382 }
2383 
2384 /*
2385  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2386  * the page (converting it to circular linked list and taking care of page
2387  * dirty races).
2388  */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2389 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2390 {
2391 	struct buffer_head *bh;
2392 
2393 	BUG_ON(!PageLocked(page));
2394 
2395 	spin_lock(&page->mapping->private_lock);
2396 	bh = head;
2397 	do {
2398 		if (PageDirty(page))
2399 			set_buffer_dirty(bh);
2400 		if (!bh->b_this_page)
2401 			bh->b_this_page = head;
2402 		bh = bh->b_this_page;
2403 	} while (bh != head);
2404 	attach_page_buffers(page, head);
2405 	spin_unlock(&page->mapping->private_lock);
2406 }
2407 
2408 /*
2409  * On entry, the page is fully not uptodate.
2410  * On exit the page is fully uptodate in the areas outside (from,to)
2411  * The filesystem needs to handle block truncation upon failure.
2412  */
nobh_write_begin(struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2413 int nobh_write_begin(struct address_space *mapping,
2414 			loff_t pos, unsigned len, unsigned flags,
2415 			struct page **pagep, void **fsdata,
2416 			get_block_t *get_block)
2417 {
2418 	struct inode *inode = mapping->host;
2419 	const unsigned blkbits = inode->i_blkbits;
2420 	const unsigned blocksize = 1 << blkbits;
2421 	struct buffer_head *head, *bh;
2422 	struct page *page;
2423 	pgoff_t index;
2424 	unsigned from, to;
2425 	unsigned block_in_page;
2426 	unsigned block_start, block_end;
2427 	sector_t block_in_file;
2428 	int nr_reads = 0;
2429 	int ret = 0;
2430 	int is_mapped_to_disk = 1;
2431 
2432 	index = pos >> PAGE_CACHE_SHIFT;
2433 	from = pos & (PAGE_CACHE_SIZE - 1);
2434 	to = from + len;
2435 
2436 	page = grab_cache_page_write_begin(mapping, index, flags);
2437 	if (!page)
2438 		return -ENOMEM;
2439 	*pagep = page;
2440 	*fsdata = NULL;
2441 
2442 	if (page_has_buffers(page)) {
2443 		ret = __block_write_begin(page, pos, len, get_block);
2444 		if (unlikely(ret))
2445 			goto out_release;
2446 		return ret;
2447 	}
2448 
2449 	if (PageMappedToDisk(page))
2450 		return 0;
2451 
2452 	/*
2453 	 * Allocate buffers so that we can keep track of state, and potentially
2454 	 * attach them to the page if an error occurs. In the common case of
2455 	 * no error, they will just be freed again without ever being attached
2456 	 * to the page (which is all OK, because we're under the page lock).
2457 	 *
2458 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2459 	 * than the circular one we're used to.
2460 	 */
2461 	head = alloc_page_buffers(page, blocksize, 0);
2462 	if (!head) {
2463 		ret = -ENOMEM;
2464 		goto out_release;
2465 	}
2466 
2467 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2468 
2469 	/*
2470 	 * We loop across all blocks in the page, whether or not they are
2471 	 * part of the affected region.  This is so we can discover if the
2472 	 * page is fully mapped-to-disk.
2473 	 */
2474 	for (block_start = 0, block_in_page = 0, bh = head;
2475 		  block_start < PAGE_CACHE_SIZE;
2476 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2477 		int create;
2478 
2479 		block_end = block_start + blocksize;
2480 		bh->b_state = 0;
2481 		create = 1;
2482 		if (block_start >= to)
2483 			create = 0;
2484 		ret = get_block(inode, block_in_file + block_in_page,
2485 					bh, create);
2486 		if (ret)
2487 			goto failed;
2488 		if (!buffer_mapped(bh))
2489 			is_mapped_to_disk = 0;
2490 		if (buffer_new(bh))
2491 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2492 		if (PageUptodate(page)) {
2493 			set_buffer_uptodate(bh);
2494 			continue;
2495 		}
2496 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2497 			zero_user_segments(page, block_start, from,
2498 							to, block_end);
2499 			continue;
2500 		}
2501 		if (buffer_uptodate(bh))
2502 			continue;	/* reiserfs does this */
2503 		if (block_start < from || block_end > to) {
2504 			lock_buffer(bh);
2505 			bh->b_end_io = end_buffer_read_nobh;
2506 			submit_bh(READ, bh);
2507 			nr_reads++;
2508 		}
2509 	}
2510 
2511 	if (nr_reads) {
2512 		/*
2513 		 * The page is locked, so these buffers are protected from
2514 		 * any VM or truncate activity.  Hence we don't need to care
2515 		 * for the buffer_head refcounts.
2516 		 */
2517 		for (bh = head; bh; bh = bh->b_this_page) {
2518 			wait_on_buffer(bh);
2519 			if (!buffer_uptodate(bh))
2520 				ret = -EIO;
2521 		}
2522 		if (ret)
2523 			goto failed;
2524 	}
2525 
2526 	if (is_mapped_to_disk)
2527 		SetPageMappedToDisk(page);
2528 
2529 	*fsdata = head; /* to be released by nobh_write_end */
2530 
2531 	return 0;
2532 
2533 failed:
2534 	BUG_ON(!ret);
2535 	/*
2536 	 * Error recovery is a bit difficult. We need to zero out blocks that
2537 	 * were newly allocated, and dirty them to ensure they get written out.
2538 	 * Buffers need to be attached to the page at this point, otherwise
2539 	 * the handling of potential IO errors during writeout would be hard
2540 	 * (could try doing synchronous writeout, but what if that fails too?)
2541 	 */
2542 	attach_nobh_buffers(page, head);
2543 	page_zero_new_buffers(page, from, to);
2544 
2545 out_release:
2546 	unlock_page(page);
2547 	page_cache_release(page);
2548 	*pagep = NULL;
2549 
2550 	return ret;
2551 }
2552 EXPORT_SYMBOL(nobh_write_begin);
2553 
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2554 int nobh_write_end(struct file *file, struct address_space *mapping,
2555 			loff_t pos, unsigned len, unsigned copied,
2556 			struct page *page, void *fsdata)
2557 {
2558 	struct inode *inode = page->mapping->host;
2559 	struct buffer_head *head = fsdata;
2560 	struct buffer_head *bh;
2561 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2562 
2563 	if (unlikely(copied < len) && head)
2564 		attach_nobh_buffers(page, head);
2565 	if (page_has_buffers(page))
2566 		return generic_write_end(file, mapping, pos, len,
2567 					copied, page, fsdata);
2568 
2569 	SetPageUptodate(page);
2570 	set_page_dirty(page);
2571 	if (pos+copied > inode->i_size) {
2572 		i_size_write(inode, pos+copied);
2573 		mark_inode_dirty(inode);
2574 	}
2575 
2576 	unlock_page(page);
2577 	page_cache_release(page);
2578 
2579 	while (head) {
2580 		bh = head;
2581 		head = head->b_this_page;
2582 		free_buffer_head(bh);
2583 	}
2584 
2585 	return copied;
2586 }
2587 EXPORT_SYMBOL(nobh_write_end);
2588 
2589 /*
2590  * nobh_writepage() - based on block_full_write_page() except
2591  * that it tries to operate without attaching bufferheads to
2592  * the page.
2593  */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2594 int nobh_writepage(struct page *page, get_block_t *get_block,
2595 			struct writeback_control *wbc)
2596 {
2597 	struct inode * const inode = page->mapping->host;
2598 	loff_t i_size = i_size_read(inode);
2599 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2600 	unsigned offset;
2601 	int ret;
2602 
2603 	/* Is the page fully inside i_size? */
2604 	if (page->index < end_index)
2605 		goto out;
2606 
2607 	/* Is the page fully outside i_size? (truncate in progress) */
2608 	offset = i_size & (PAGE_CACHE_SIZE-1);
2609 	if (page->index >= end_index+1 || !offset) {
2610 		/*
2611 		 * The page may have dirty, unmapped buffers.  For example,
2612 		 * they may have been added in ext3_writepage().  Make them
2613 		 * freeable here, so the page does not leak.
2614 		 */
2615 #if 0
2616 		/* Not really sure about this  - do we need this ? */
2617 		if (page->mapping->a_ops->invalidatepage)
2618 			page->mapping->a_ops->invalidatepage(page, offset);
2619 #endif
2620 		unlock_page(page);
2621 		return 0; /* don't care */
2622 	}
2623 
2624 	/*
2625 	 * The page straddles i_size.  It must be zeroed out on each and every
2626 	 * writepage invocation because it may be mmapped.  "A file is mapped
2627 	 * in multiples of the page size.  For a file that is not a multiple of
2628 	 * the  page size, the remaining memory is zeroed when mapped, and
2629 	 * writes to that region are not written out to the file."
2630 	 */
2631 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2632 out:
2633 	ret = mpage_writepage(page, get_block, wbc);
2634 	if (ret == -EAGAIN)
2635 		ret = __block_write_full_page(inode, page, get_block, wbc,
2636 					      end_buffer_async_write);
2637 	return ret;
2638 }
2639 EXPORT_SYMBOL(nobh_writepage);
2640 
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2641 int nobh_truncate_page(struct address_space *mapping,
2642 			loff_t from, get_block_t *get_block)
2643 {
2644 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2645 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2646 	unsigned blocksize;
2647 	sector_t iblock;
2648 	unsigned length, pos;
2649 	struct inode *inode = mapping->host;
2650 	struct page *page;
2651 	struct buffer_head map_bh;
2652 	int err;
2653 
2654 	blocksize = 1 << inode->i_blkbits;
2655 	length = offset & (blocksize - 1);
2656 
2657 	/* Block boundary? Nothing to do */
2658 	if (!length)
2659 		return 0;
2660 
2661 	length = blocksize - length;
2662 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2663 
2664 	page = grab_cache_page(mapping, index);
2665 	err = -ENOMEM;
2666 	if (!page)
2667 		goto out;
2668 
2669 	if (page_has_buffers(page)) {
2670 has_buffers:
2671 		unlock_page(page);
2672 		page_cache_release(page);
2673 		return block_truncate_page(mapping, from, get_block);
2674 	}
2675 
2676 	/* Find the buffer that contains "offset" */
2677 	pos = blocksize;
2678 	while (offset >= pos) {
2679 		iblock++;
2680 		pos += blocksize;
2681 	}
2682 
2683 	map_bh.b_size = blocksize;
2684 	map_bh.b_state = 0;
2685 	err = get_block(inode, iblock, &map_bh, 0);
2686 	if (err)
2687 		goto unlock;
2688 	/* unmapped? It's a hole - nothing to do */
2689 	if (!buffer_mapped(&map_bh))
2690 		goto unlock;
2691 
2692 	/* Ok, it's mapped. Make sure it's up-to-date */
2693 	if (!PageUptodate(page)) {
2694 		err = mapping->a_ops->readpage(NULL, page);
2695 		if (err) {
2696 			page_cache_release(page);
2697 			goto out;
2698 		}
2699 		lock_page(page);
2700 		if (!PageUptodate(page)) {
2701 			err = -EIO;
2702 			goto unlock;
2703 		}
2704 		if (page_has_buffers(page))
2705 			goto has_buffers;
2706 	}
2707 	zero_user(page, offset, length);
2708 	set_page_dirty(page);
2709 	err = 0;
2710 
2711 unlock:
2712 	unlock_page(page);
2713 	page_cache_release(page);
2714 out:
2715 	return err;
2716 }
2717 EXPORT_SYMBOL(nobh_truncate_page);
2718 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2719 int block_truncate_page(struct address_space *mapping,
2720 			loff_t from, get_block_t *get_block)
2721 {
2722 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2723 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2724 	unsigned blocksize;
2725 	sector_t iblock;
2726 	unsigned length, pos;
2727 	struct inode *inode = mapping->host;
2728 	struct page *page;
2729 	struct buffer_head *bh;
2730 	int err;
2731 
2732 	blocksize = 1 << inode->i_blkbits;
2733 	length = offset & (blocksize - 1);
2734 
2735 	/* Block boundary? Nothing to do */
2736 	if (!length)
2737 		return 0;
2738 
2739 	length = blocksize - length;
2740 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2741 
2742 	page = grab_cache_page(mapping, index);
2743 	err = -ENOMEM;
2744 	if (!page)
2745 		goto out;
2746 
2747 	if (!page_has_buffers(page))
2748 		create_empty_buffers(page, blocksize, 0);
2749 
2750 	/* Find the buffer that contains "offset" */
2751 	bh = page_buffers(page);
2752 	pos = blocksize;
2753 	while (offset >= pos) {
2754 		bh = bh->b_this_page;
2755 		iblock++;
2756 		pos += blocksize;
2757 	}
2758 
2759 	err = 0;
2760 	if (!buffer_mapped(bh)) {
2761 		WARN_ON(bh->b_size != blocksize);
2762 		err = get_block(inode, iblock, bh, 0);
2763 		if (err)
2764 			goto unlock;
2765 		/* unmapped? It's a hole - nothing to do */
2766 		if (!buffer_mapped(bh))
2767 			goto unlock;
2768 	}
2769 
2770 	/* Ok, it's mapped. Make sure it's up-to-date */
2771 	if (PageUptodate(page))
2772 		set_buffer_uptodate(bh);
2773 
2774 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2775 		err = -EIO;
2776 		ll_rw_block(READ, 1, &bh);
2777 		wait_on_buffer(bh);
2778 		/* Uhhuh. Read error. Complain and punt. */
2779 		if (!buffer_uptodate(bh))
2780 			goto unlock;
2781 	}
2782 
2783 	zero_user(page, offset, length);
2784 	mark_buffer_dirty(bh);
2785 	err = 0;
2786 
2787 unlock:
2788 	unlock_page(page);
2789 	page_cache_release(page);
2790 out:
2791 	return err;
2792 }
2793 EXPORT_SYMBOL(block_truncate_page);
2794 
2795 /*
2796  * The generic ->writepage function for buffer-backed address_spaces
2797  * this form passes in the end_io handler used to finish the IO.
2798  */
block_write_full_page_endio(struct page * page,get_block_t * get_block,struct writeback_control * wbc,bh_end_io_t * handler)2799 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2800 			struct writeback_control *wbc, bh_end_io_t *handler)
2801 {
2802 	struct inode * const inode = page->mapping->host;
2803 	loff_t i_size = i_size_read(inode);
2804 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2805 	unsigned offset;
2806 
2807 	/* Is the page fully inside i_size? */
2808 	if (page->index < end_index)
2809 		return __block_write_full_page(inode, page, get_block, wbc,
2810 					       handler);
2811 
2812 	/* Is the page fully outside i_size? (truncate in progress) */
2813 	offset = i_size & (PAGE_CACHE_SIZE-1);
2814 	if (page->index >= end_index+1 || !offset) {
2815 		/*
2816 		 * The page may have dirty, unmapped buffers.  For example,
2817 		 * they may have been added in ext3_writepage().  Make them
2818 		 * freeable here, so the page does not leak.
2819 		 */
2820 		do_invalidatepage(page, 0);
2821 		unlock_page(page);
2822 		return 0; /* don't care */
2823 	}
2824 
2825 	/*
2826 	 * The page straddles i_size.  It must be zeroed out on each and every
2827 	 * writepage invocation because it may be mmapped.  "A file is mapped
2828 	 * in multiples of the page size.  For a file that is not a multiple of
2829 	 * the  page size, the remaining memory is zeroed when mapped, and
2830 	 * writes to that region are not written out to the file."
2831 	 */
2832 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2833 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2834 }
2835 EXPORT_SYMBOL(block_write_full_page_endio);
2836 
2837 /*
2838  * The generic ->writepage function for buffer-backed address_spaces
2839  */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2840 int block_write_full_page(struct page *page, get_block_t *get_block,
2841 			struct writeback_control *wbc)
2842 {
2843 	return block_write_full_page_endio(page, get_block, wbc,
2844 					   end_buffer_async_write);
2845 }
2846 EXPORT_SYMBOL(block_write_full_page);
2847 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2848 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2849 			    get_block_t *get_block)
2850 {
2851 	struct buffer_head tmp;
2852 	struct inode *inode = mapping->host;
2853 	tmp.b_state = 0;
2854 	tmp.b_blocknr = 0;
2855 	tmp.b_size = 1 << inode->i_blkbits;
2856 	get_block(inode, block, &tmp, 0);
2857 	return tmp.b_blocknr;
2858 }
2859 EXPORT_SYMBOL(generic_block_bmap);
2860 
end_bio_bh_io_sync(struct bio * bio,int err)2861 static void end_bio_bh_io_sync(struct bio *bio, int err)
2862 {
2863 	struct buffer_head *bh = bio->bi_private;
2864 
2865 	if (err == -EOPNOTSUPP) {
2866 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2867 	}
2868 
2869 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2870 		set_bit(BH_Quiet, &bh->b_state);
2871 
2872 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2873 	bio_put(bio);
2874 }
2875 
submit_bh(int rw,struct buffer_head * bh)2876 int submit_bh(int rw, struct buffer_head * bh)
2877 {
2878 	struct bio *bio;
2879 	int ret = 0;
2880 
2881 	BUG_ON(!buffer_locked(bh));
2882 	BUG_ON(!buffer_mapped(bh));
2883 	BUG_ON(!bh->b_end_io);
2884 	BUG_ON(buffer_delay(bh));
2885 	BUG_ON(buffer_unwritten(bh));
2886 
2887 	/*
2888 	 * Only clear out a write error when rewriting
2889 	 */
2890 	if (test_set_buffer_req(bh) && (rw & WRITE))
2891 		clear_buffer_write_io_error(bh);
2892 
2893 	/*
2894 	 * from here on down, it's all bio -- do the initial mapping,
2895 	 * submit_bio -> generic_make_request may further map this bio around
2896 	 */
2897 	bio = bio_alloc(GFP_NOIO, 1);
2898 
2899 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2900 	bio->bi_bdev = bh->b_bdev;
2901 	bio->bi_io_vec[0].bv_page = bh->b_page;
2902 	bio->bi_io_vec[0].bv_len = bh->b_size;
2903 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2904 
2905 	bio->bi_vcnt = 1;
2906 	bio->bi_idx = 0;
2907 	bio->bi_size = bh->b_size;
2908 
2909 	bio->bi_end_io = end_bio_bh_io_sync;
2910 	bio->bi_private = bh;
2911 
2912 	bio_get(bio);
2913 	submit_bio(rw, bio);
2914 
2915 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2916 		ret = -EOPNOTSUPP;
2917 
2918 	bio_put(bio);
2919 	return ret;
2920 }
2921 EXPORT_SYMBOL(submit_bh);
2922 
2923 /**
2924  * ll_rw_block: low-level access to block devices (DEPRECATED)
2925  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2926  * @nr: number of &struct buffer_heads in the array
2927  * @bhs: array of pointers to &struct buffer_head
2928  *
2929  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2930  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2931  * %READA option is described in the documentation for generic_make_request()
2932  * which ll_rw_block() calls.
2933  *
2934  * This function drops any buffer that it cannot get a lock on (with the
2935  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2936  * request, and any buffer that appears to be up-to-date when doing read
2937  * request.  Further it marks as clean buffers that are processed for
2938  * writing (the buffer cache won't assume that they are actually clean
2939  * until the buffer gets unlocked).
2940  *
2941  * ll_rw_block sets b_end_io to simple completion handler that marks
2942  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2943  * any waiters.
2944  *
2945  * All of the buffers must be for the same device, and must also be a
2946  * multiple of the current approved size for the device.
2947  */
ll_rw_block(int rw,int nr,struct buffer_head * bhs[])2948 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2949 {
2950 	int i;
2951 
2952 	for (i = 0; i < nr; i++) {
2953 		struct buffer_head *bh = bhs[i];
2954 
2955 		if (!trylock_buffer(bh))
2956 			continue;
2957 		if (rw == WRITE) {
2958 			if (test_clear_buffer_dirty(bh)) {
2959 				bh->b_end_io = end_buffer_write_sync;
2960 				get_bh(bh);
2961 				submit_bh(WRITE, bh);
2962 				continue;
2963 			}
2964 		} else {
2965 			if (!buffer_uptodate(bh)) {
2966 				bh->b_end_io = end_buffer_read_sync;
2967 				get_bh(bh);
2968 				submit_bh(rw, bh);
2969 				continue;
2970 			}
2971 		}
2972 		unlock_buffer(bh);
2973 	}
2974 }
2975 EXPORT_SYMBOL(ll_rw_block);
2976 
write_dirty_buffer(struct buffer_head * bh,int rw)2977 void write_dirty_buffer(struct buffer_head *bh, int rw)
2978 {
2979 	lock_buffer(bh);
2980 	if (!test_clear_buffer_dirty(bh)) {
2981 		unlock_buffer(bh);
2982 		return;
2983 	}
2984 	bh->b_end_io = end_buffer_write_sync;
2985 	get_bh(bh);
2986 	submit_bh(rw, bh);
2987 }
2988 EXPORT_SYMBOL(write_dirty_buffer);
2989 
2990 /*
2991  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2992  * and then start new I/O and then wait upon it.  The caller must have a ref on
2993  * the buffer_head.
2994  */
__sync_dirty_buffer(struct buffer_head * bh,int rw)2995 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2996 {
2997 	int ret = 0;
2998 
2999 	WARN_ON(atomic_read(&bh->b_count) < 1);
3000 	lock_buffer(bh);
3001 	if (test_clear_buffer_dirty(bh)) {
3002 		get_bh(bh);
3003 		bh->b_end_io = end_buffer_write_sync;
3004 		ret = submit_bh(rw, bh);
3005 		wait_on_buffer(bh);
3006 		if (!ret && !buffer_uptodate(bh))
3007 			ret = -EIO;
3008 	} else {
3009 		unlock_buffer(bh);
3010 	}
3011 	return ret;
3012 }
3013 EXPORT_SYMBOL(__sync_dirty_buffer);
3014 
sync_dirty_buffer(struct buffer_head * bh)3015 int sync_dirty_buffer(struct buffer_head *bh)
3016 {
3017 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3018 }
3019 EXPORT_SYMBOL(sync_dirty_buffer);
3020 
3021 /*
3022  * try_to_free_buffers() checks if all the buffers on this particular page
3023  * are unused, and releases them if so.
3024  *
3025  * Exclusion against try_to_free_buffers may be obtained by either
3026  * locking the page or by holding its mapping's private_lock.
3027  *
3028  * If the page is dirty but all the buffers are clean then we need to
3029  * be sure to mark the page clean as well.  This is because the page
3030  * may be against a block device, and a later reattachment of buffers
3031  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3032  * filesystem data on the same device.
3033  *
3034  * The same applies to regular filesystem pages: if all the buffers are
3035  * clean then we set the page clean and proceed.  To do that, we require
3036  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3037  * private_lock.
3038  *
3039  * try_to_free_buffers() is non-blocking.
3040  */
buffer_busy(struct buffer_head * bh)3041 static inline int buffer_busy(struct buffer_head *bh)
3042 {
3043 	return atomic_read(&bh->b_count) |
3044 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3045 }
3046 
3047 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3048 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3049 {
3050 	struct buffer_head *head = page_buffers(page);
3051 	struct buffer_head *bh;
3052 
3053 	bh = head;
3054 	do {
3055 		if (buffer_write_io_error(bh) && page->mapping)
3056 			set_bit(AS_EIO, &page->mapping->flags);
3057 		if (buffer_busy(bh))
3058 			goto failed;
3059 		bh = bh->b_this_page;
3060 	} while (bh != head);
3061 
3062 	do {
3063 		struct buffer_head *next = bh->b_this_page;
3064 
3065 		if (bh->b_assoc_map)
3066 			__remove_assoc_queue(bh);
3067 		bh = next;
3068 	} while (bh != head);
3069 	*buffers_to_free = head;
3070 	__clear_page_buffers(page);
3071 	return 1;
3072 failed:
3073 	return 0;
3074 }
3075 
try_to_free_buffers(struct page * page)3076 int try_to_free_buffers(struct page *page)
3077 {
3078 	struct address_space * const mapping = page->mapping;
3079 	struct buffer_head *buffers_to_free = NULL;
3080 	int ret = 0;
3081 
3082 	BUG_ON(!PageLocked(page));
3083 	if (PageWriteback(page))
3084 		return 0;
3085 
3086 	if (mapping == NULL) {		/* can this still happen? */
3087 		ret = drop_buffers(page, &buffers_to_free);
3088 		goto out;
3089 	}
3090 
3091 	spin_lock(&mapping->private_lock);
3092 	ret = drop_buffers(page, &buffers_to_free);
3093 
3094 	/*
3095 	 * If the filesystem writes its buffers by hand (eg ext3)
3096 	 * then we can have clean buffers against a dirty page.  We
3097 	 * clean the page here; otherwise the VM will never notice
3098 	 * that the filesystem did any IO at all.
3099 	 *
3100 	 * Also, during truncate, discard_buffer will have marked all
3101 	 * the page's buffers clean.  We discover that here and clean
3102 	 * the page also.
3103 	 *
3104 	 * private_lock must be held over this entire operation in order
3105 	 * to synchronise against __set_page_dirty_buffers and prevent the
3106 	 * dirty bit from being lost.
3107 	 */
3108 	if (ret)
3109 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3110 	spin_unlock(&mapping->private_lock);
3111 out:
3112 	if (buffers_to_free) {
3113 		struct buffer_head *bh = buffers_to_free;
3114 
3115 		do {
3116 			struct buffer_head *next = bh->b_this_page;
3117 			free_buffer_head(bh);
3118 			bh = next;
3119 		} while (bh != buffers_to_free);
3120 	}
3121 	return ret;
3122 }
3123 EXPORT_SYMBOL(try_to_free_buffers);
3124 
3125 /*
3126  * There are no bdflush tunables left.  But distributions are
3127  * still running obsolete flush daemons, so we terminate them here.
3128  *
3129  * Use of bdflush() is deprecated and will be removed in a future kernel.
3130  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3131  */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3132 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3133 {
3134 	static int msg_count;
3135 
3136 	if (!capable(CAP_SYS_ADMIN))
3137 		return -EPERM;
3138 
3139 	if (msg_count < 5) {
3140 		msg_count++;
3141 		printk(KERN_INFO
3142 			"warning: process `%s' used the obsolete bdflush"
3143 			" system call\n", current->comm);
3144 		printk(KERN_INFO "Fix your initscripts?\n");
3145 	}
3146 
3147 	if (func == 1)
3148 		do_exit(0);
3149 	return 0;
3150 }
3151 
3152 /*
3153  * Buffer-head allocation
3154  */
3155 static struct kmem_cache *bh_cachep;
3156 
3157 /*
3158  * Once the number of bh's in the machine exceeds this level, we start
3159  * stripping them in writeback.
3160  */
3161 static int max_buffer_heads;
3162 
3163 int buffer_heads_over_limit;
3164 
3165 struct bh_accounting {
3166 	int nr;			/* Number of live bh's */
3167 	int ratelimit;		/* Limit cacheline bouncing */
3168 };
3169 
3170 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3171 
recalc_bh_state(void)3172 static void recalc_bh_state(void)
3173 {
3174 	int i;
3175 	int tot = 0;
3176 
3177 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3178 		return;
3179 	__this_cpu_write(bh_accounting.ratelimit, 0);
3180 	for_each_online_cpu(i)
3181 		tot += per_cpu(bh_accounting, i).nr;
3182 	buffer_heads_over_limit = (tot > max_buffer_heads);
3183 }
3184 
alloc_buffer_head(gfp_t gfp_flags)3185 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3186 {
3187 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3188 	if (ret) {
3189 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3190 		preempt_disable();
3191 		__this_cpu_inc(bh_accounting.nr);
3192 		recalc_bh_state();
3193 		preempt_enable();
3194 	}
3195 	return ret;
3196 }
3197 EXPORT_SYMBOL(alloc_buffer_head);
3198 
free_buffer_head(struct buffer_head * bh)3199 void free_buffer_head(struct buffer_head *bh)
3200 {
3201 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3202 	kmem_cache_free(bh_cachep, bh);
3203 	preempt_disable();
3204 	__this_cpu_dec(bh_accounting.nr);
3205 	recalc_bh_state();
3206 	preempt_enable();
3207 }
3208 EXPORT_SYMBOL(free_buffer_head);
3209 
buffer_exit_cpu(int cpu)3210 static void buffer_exit_cpu(int cpu)
3211 {
3212 	int i;
3213 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3214 
3215 	for (i = 0; i < BH_LRU_SIZE; i++) {
3216 		brelse(b->bhs[i]);
3217 		b->bhs[i] = NULL;
3218 	}
3219 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3220 	per_cpu(bh_accounting, cpu).nr = 0;
3221 }
3222 
buffer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3223 static int buffer_cpu_notify(struct notifier_block *self,
3224 			      unsigned long action, void *hcpu)
3225 {
3226 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3227 		buffer_exit_cpu((unsigned long)hcpu);
3228 	return NOTIFY_OK;
3229 }
3230 
3231 /**
3232  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3233  * @bh: struct buffer_head
3234  *
3235  * Return true if the buffer is up-to-date and false,
3236  * with the buffer locked, if not.
3237  */
bh_uptodate_or_lock(struct buffer_head * bh)3238 int bh_uptodate_or_lock(struct buffer_head *bh)
3239 {
3240 	if (!buffer_uptodate(bh)) {
3241 		lock_buffer(bh);
3242 		if (!buffer_uptodate(bh))
3243 			return 0;
3244 		unlock_buffer(bh);
3245 	}
3246 	return 1;
3247 }
3248 EXPORT_SYMBOL(bh_uptodate_or_lock);
3249 
3250 /**
3251  * bh_submit_read - Submit a locked buffer for reading
3252  * @bh: struct buffer_head
3253  *
3254  * Returns zero on success and -EIO on error.
3255  */
bh_submit_read(struct buffer_head * bh)3256 int bh_submit_read(struct buffer_head *bh)
3257 {
3258 	BUG_ON(!buffer_locked(bh));
3259 
3260 	if (buffer_uptodate(bh)) {
3261 		unlock_buffer(bh);
3262 		return 0;
3263 	}
3264 
3265 	get_bh(bh);
3266 	bh->b_end_io = end_buffer_read_sync;
3267 	submit_bh(READ, bh);
3268 	wait_on_buffer(bh);
3269 	if (buffer_uptodate(bh))
3270 		return 0;
3271 	return -EIO;
3272 }
3273 EXPORT_SYMBOL(bh_submit_read);
3274 
buffer_init(void)3275 void __init buffer_init(void)
3276 {
3277 	int nrpages;
3278 
3279 	bh_cachep = kmem_cache_create("buffer_head",
3280 			sizeof(struct buffer_head), 0,
3281 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3282 				SLAB_MEM_SPREAD),
3283 				NULL);
3284 
3285 	/*
3286 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3287 	 */
3288 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3289 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3290 	hotcpu_notifier(buffer_cpu_notify, 0);
3291 }
3292