1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Page table allocation functions
4 *
5 * Copyright IBM Corp. 2016
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17
18 #ifdef CONFIG_PGSTE
19
20 int page_table_allocate_pgste = 0;
21 EXPORT_SYMBOL(page_table_allocate_pgste);
22
23 static struct ctl_table page_table_sysctl[] = {
24 {
25 .procname = "allocate_pgste",
26 .data = &page_table_allocate_pgste,
27 .maxlen = sizeof(int),
28 .mode = S_IRUGO | S_IWUSR,
29 .proc_handler = proc_dointvec_minmax,
30 .extra1 = SYSCTL_ZERO,
31 .extra2 = SYSCTL_ONE,
32 },
33 { }
34 };
35
36 static struct ctl_table page_table_sysctl_dir[] = {
37 {
38 .procname = "vm",
39 .maxlen = 0,
40 .mode = 0555,
41 .child = page_table_sysctl,
42 },
43 { }
44 };
45
page_table_register_sysctl(void)46 static int __init page_table_register_sysctl(void)
47 {
48 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
49 }
50 __initcall(page_table_register_sysctl);
51
52 #endif /* CONFIG_PGSTE */
53
crst_table_alloc(struct mm_struct * mm)54 unsigned long *crst_table_alloc(struct mm_struct *mm)
55 {
56 struct page *page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
57
58 if (!page)
59 return NULL;
60 arch_set_page_dat(page, CRST_ALLOC_ORDER);
61 return (unsigned long *) page_to_virt(page);
62 }
63
crst_table_free(struct mm_struct * mm,unsigned long * table)64 void crst_table_free(struct mm_struct *mm, unsigned long *table)
65 {
66 free_pages((unsigned long)table, CRST_ALLOC_ORDER);
67 }
68
__crst_table_upgrade(void * arg)69 static void __crst_table_upgrade(void *arg)
70 {
71 struct mm_struct *mm = arg;
72
73 /* change all active ASCEs to avoid the creation of new TLBs */
74 if (current->active_mm == mm) {
75 S390_lowcore.user_asce = mm->context.asce;
76 __ctl_load(S390_lowcore.user_asce, 7, 7);
77 }
78 __tlb_flush_local();
79 }
80
crst_table_upgrade(struct mm_struct * mm,unsigned long end)81 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
82 {
83 unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
84 unsigned long asce_limit = mm->context.asce_limit;
85
86 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
87 VM_BUG_ON(asce_limit < _REGION2_SIZE);
88
89 if (end <= asce_limit)
90 return 0;
91
92 if (asce_limit == _REGION2_SIZE) {
93 p4d = crst_table_alloc(mm);
94 if (unlikely(!p4d))
95 goto err_p4d;
96 crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
97 }
98 if (end > _REGION1_SIZE) {
99 pgd = crst_table_alloc(mm);
100 if (unlikely(!pgd))
101 goto err_pgd;
102 crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
103 }
104
105 spin_lock_bh(&mm->page_table_lock);
106
107 /*
108 * This routine gets called with mmap_lock lock held and there is
109 * no reason to optimize for the case of otherwise. However, if
110 * that would ever change, the below check will let us know.
111 */
112 VM_BUG_ON(asce_limit != mm->context.asce_limit);
113
114 if (p4d) {
115 __pgd = (unsigned long *) mm->pgd;
116 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
117 mm->pgd = (pgd_t *) p4d;
118 mm->context.asce_limit = _REGION1_SIZE;
119 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
120 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
121 mm_inc_nr_puds(mm);
122 }
123 if (pgd) {
124 __pgd = (unsigned long *) mm->pgd;
125 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
126 mm->pgd = (pgd_t *) pgd;
127 mm->context.asce_limit = TASK_SIZE_MAX;
128 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
129 _ASCE_USER_BITS | _ASCE_TYPE_REGION1;
130 }
131
132 spin_unlock_bh(&mm->page_table_lock);
133
134 on_each_cpu(__crst_table_upgrade, mm, 0);
135
136 return 0;
137
138 err_pgd:
139 crst_table_free(mm, p4d);
140 err_p4d:
141 return -ENOMEM;
142 }
143
atomic_xor_bits(atomic_t * v,unsigned int bits)144 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
145 {
146 unsigned int old, new;
147
148 do {
149 old = atomic_read(v);
150 new = old ^ bits;
151 } while (atomic_cmpxchg(v, old, new) != old);
152 return new;
153 }
154
155 #ifdef CONFIG_PGSTE
156
page_table_alloc_pgste(struct mm_struct * mm)157 struct page *page_table_alloc_pgste(struct mm_struct *mm)
158 {
159 struct page *page;
160 u64 *table;
161
162 page = alloc_page(GFP_KERNEL);
163 if (page) {
164 table = (u64 *)page_to_virt(page);
165 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
166 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
167 }
168 return page;
169 }
170
page_table_free_pgste(struct page * page)171 void page_table_free_pgste(struct page *page)
172 {
173 __free_page(page);
174 }
175
176 #endif /* CONFIG_PGSTE */
177
178 /*
179 * A 2KB-pgtable is either upper or lower half of a normal page.
180 * The second half of the page may be unused or used as another
181 * 2KB-pgtable.
182 *
183 * Whenever possible the parent page for a new 2KB-pgtable is picked
184 * from the list of partially allocated pages mm_context_t::pgtable_list.
185 * In case the list is empty a new parent page is allocated and added to
186 * the list.
187 *
188 * When a parent page gets fully allocated it contains 2KB-pgtables in both
189 * upper and lower halves and is removed from mm_context_t::pgtable_list.
190 *
191 * When 2KB-pgtable is freed from to fully allocated parent page that
192 * page turns partially allocated and added to mm_context_t::pgtable_list.
193 *
194 * If 2KB-pgtable is freed from the partially allocated parent page that
195 * page turns unused and gets removed from mm_context_t::pgtable_list.
196 * Furthermore, the unused parent page is released.
197 *
198 * As follows from the above, no unallocated or fully allocated parent
199 * pages are contained in mm_context_t::pgtable_list.
200 *
201 * The upper byte (bits 24-31) of the parent page _refcount is used
202 * for tracking contained 2KB-pgtables and has the following format:
203 *
204 * PP AA
205 * 01234567 upper byte (bits 24-31) of struct page::_refcount
206 * || ||
207 * || |+--- upper 2KB-pgtable is allocated
208 * || +---- lower 2KB-pgtable is allocated
209 * |+------- upper 2KB-pgtable is pending for removal
210 * +-------- lower 2KB-pgtable is pending for removal
211 *
212 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
213 * using _refcount is possible).
214 *
215 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
216 * The parent page is either:
217 * - added to mm_context_t::pgtable_list in case the second half of the
218 * parent page is still unallocated;
219 * - removed from mm_context_t::pgtable_list in case both hales of the
220 * parent page are allocated;
221 * These operations are protected with mm_context_t::lock.
222 *
223 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
224 * and the corresponding PP bit is set to 1 in a single atomic operation.
225 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
226 * exclusive and may never be both set to 1!
227 * The parent page is either:
228 * - added to mm_context_t::pgtable_list in case the second half of the
229 * parent page is still allocated;
230 * - removed from mm_context_t::pgtable_list in case the second half of
231 * the parent page is unallocated;
232 * These operations are protected with mm_context_t::lock.
233 *
234 * It is important to understand that mm_context_t::lock only protects
235 * mm_context_t::pgtable_list and AA bits, but not the parent page itself
236 * and PP bits.
237 *
238 * Releasing the parent page happens whenever the PP bit turns from 1 to 0,
239 * while both AA bits and the second PP bit are already unset. Then the
240 * parent page does not contain any 2KB-pgtable fragment anymore, and it has
241 * also been removed from mm_context_t::pgtable_list. It is safe to release
242 * the page therefore.
243 *
244 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the
245 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
246 * while the PP bits are never used, nor such a page is added to or removed
247 * from mm_context_t::pgtable_list.
248 */
page_table_alloc(struct mm_struct * mm)249 unsigned long *page_table_alloc(struct mm_struct *mm)
250 {
251 unsigned long *table;
252 struct page *page;
253 unsigned int mask, bit;
254
255 /* Try to get a fragment of a 4K page as a 2K page table */
256 if (!mm_alloc_pgste(mm)) {
257 table = NULL;
258 spin_lock_bh(&mm->context.lock);
259 if (!list_empty(&mm->context.pgtable_list)) {
260 page = list_first_entry(&mm->context.pgtable_list,
261 struct page, lru);
262 mask = atomic_read(&page->_refcount) >> 24;
263 /*
264 * The pending removal bits must also be checked.
265 * Failure to do so might lead to an impossible
266 * value of (i.e 0x13 or 0x23) written to _refcount.
267 * Such values violate the assumption that pending and
268 * allocation bits are mutually exclusive, and the rest
269 * of the code unrails as result. That could lead to
270 * a whole bunch of races and corruptions.
271 */
272 mask = (mask | (mask >> 4)) & 0x03U;
273 if (mask != 0x03U) {
274 table = (unsigned long *) page_to_virt(page);
275 bit = mask & 1; /* =1 -> second 2K */
276 if (bit)
277 table += PTRS_PER_PTE;
278 atomic_xor_bits(&page->_refcount,
279 0x01U << (bit + 24));
280 list_del(&page->lru);
281 }
282 }
283 spin_unlock_bh(&mm->context.lock);
284 if (table)
285 return table;
286 }
287 /* Allocate a fresh page */
288 page = alloc_page(GFP_KERNEL);
289 if (!page)
290 return NULL;
291 if (!pgtable_pte_page_ctor(page)) {
292 __free_page(page);
293 return NULL;
294 }
295 arch_set_page_dat(page, 0);
296 /* Initialize page table */
297 table = (unsigned long *) page_to_virt(page);
298 if (mm_alloc_pgste(mm)) {
299 /* Return 4K page table with PGSTEs */
300 atomic_xor_bits(&page->_refcount, 0x03U << 24);
301 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
302 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
303 } else {
304 /* Return the first 2K fragment of the page */
305 atomic_xor_bits(&page->_refcount, 0x01U << 24);
306 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
307 spin_lock_bh(&mm->context.lock);
308 list_add(&page->lru, &mm->context.pgtable_list);
309 spin_unlock_bh(&mm->context.lock);
310 }
311 return table;
312 }
313
page_table_release_check(struct page * page,void * table,unsigned int half,unsigned int mask)314 static void page_table_release_check(struct page *page, void *table,
315 unsigned int half, unsigned int mask)
316 {
317 char msg[128];
318
319 if (!IS_ENABLED(CONFIG_DEBUG_VM) || !mask)
320 return;
321 snprintf(msg, sizeof(msg),
322 "Invalid pgtable %p release half 0x%02x mask 0x%02x",
323 table, half, mask);
324 dump_page(page, msg);
325 }
326
page_table_free(struct mm_struct * mm,unsigned long * table)327 void page_table_free(struct mm_struct *mm, unsigned long *table)
328 {
329 unsigned int mask, bit, half;
330 struct page *page;
331
332 page = virt_to_page(table);
333 if (!mm_alloc_pgste(mm)) {
334 /* Free 2K page table fragment of a 4K page */
335 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
336 spin_lock_bh(&mm->context.lock);
337 /*
338 * Mark the page for delayed release. The actual release
339 * will happen outside of the critical section from this
340 * function or from __tlb_remove_table()
341 */
342 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
343 mask >>= 24;
344 if (mask & 0x03U)
345 list_add(&page->lru, &mm->context.pgtable_list);
346 else
347 list_del(&page->lru);
348 spin_unlock_bh(&mm->context.lock);
349 mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24));
350 mask >>= 24;
351 if (mask != 0x00U)
352 return;
353 half = 0x01U << bit;
354 } else {
355 half = 0x03U;
356 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
357 mask >>= 24;
358 }
359
360 page_table_release_check(page, table, half, mask);
361 pgtable_pte_page_dtor(page);
362 __free_page(page);
363 }
364
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)365 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
366 unsigned long vmaddr)
367 {
368 struct mm_struct *mm;
369 struct page *page;
370 unsigned int bit, mask;
371
372 mm = tlb->mm;
373 page = virt_to_page(table);
374 if (mm_alloc_pgste(mm)) {
375 gmap_unlink(mm, table, vmaddr);
376 table = (unsigned long *) ((unsigned long)table | 0x03U);
377 tlb_remove_table(tlb, table);
378 return;
379 }
380 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
381 spin_lock_bh(&mm->context.lock);
382 /*
383 * Mark the page for delayed release. The actual release will happen
384 * outside of the critical section from __tlb_remove_table() or from
385 * page_table_free()
386 */
387 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
388 mask >>= 24;
389 if (mask & 0x03U)
390 list_add_tail(&page->lru, &mm->context.pgtable_list);
391 else
392 list_del(&page->lru);
393 spin_unlock_bh(&mm->context.lock);
394 table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
395 tlb_remove_table(tlb, table);
396 }
397
__tlb_remove_table(void * _table)398 void __tlb_remove_table(void *_table)
399 {
400 unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
401 void *table = (void *)((unsigned long) _table ^ mask);
402 struct page *page = virt_to_page(table);
403
404 switch (half) {
405 case 0x00U: /* pmd, pud, or p4d */
406 free_pages((unsigned long)table, CRST_ALLOC_ORDER);
407 return;
408 case 0x01U: /* lower 2K of a 4K page table */
409 case 0x02U: /* higher 2K of a 4K page table */
410 mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
411 mask >>= 24;
412 if (mask != 0x00U)
413 return;
414 break;
415 case 0x03U: /* 4K page table with pgstes */
416 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24);
417 mask >>= 24;
418 break;
419 }
420
421 page_table_release_check(page, table, half, mask);
422 pgtable_pte_page_dtor(page);
423 __free_page(page);
424 }
425
426 /*
427 * Base infrastructure required to generate basic asces, region, segment,
428 * and page tables that do not make use of enhanced features like EDAT1.
429 */
430
431 static struct kmem_cache *base_pgt_cache;
432
base_pgt_alloc(void)433 static unsigned long *base_pgt_alloc(void)
434 {
435 unsigned long *table;
436
437 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
438 if (table)
439 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
440 return table;
441 }
442
base_pgt_free(unsigned long * table)443 static void base_pgt_free(unsigned long *table)
444 {
445 kmem_cache_free(base_pgt_cache, table);
446 }
447
base_crst_alloc(unsigned long val)448 static unsigned long *base_crst_alloc(unsigned long val)
449 {
450 unsigned long *table;
451
452 table = (unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
453 if (table)
454 crst_table_init(table, val);
455 return table;
456 }
457
base_crst_free(unsigned long * table)458 static void base_crst_free(unsigned long *table)
459 {
460 free_pages((unsigned long)table, CRST_ALLOC_ORDER);
461 }
462
463 #define BASE_ADDR_END_FUNC(NAME, SIZE) \
464 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
465 unsigned long end) \
466 { \
467 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
468 \
469 return (next - 1) < (end - 1) ? next : end; \
470 }
471
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)472 BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
473 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
474 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
475 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
476 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
477
478 static inline unsigned long base_lra(unsigned long address)
479 {
480 unsigned long real;
481
482 asm volatile(
483 " lra %0,0(%1)\n"
484 : "=d" (real) : "a" (address) : "cc");
485 return real;
486 }
487
base_page_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)488 static int base_page_walk(unsigned long *origin, unsigned long addr,
489 unsigned long end, int alloc)
490 {
491 unsigned long *pte, next;
492
493 if (!alloc)
494 return 0;
495 pte = origin;
496 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
497 do {
498 next = base_page_addr_end(addr, end);
499 *pte = base_lra(addr);
500 } while (pte++, addr = next, addr < end);
501 return 0;
502 }
503
base_segment_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)504 static int base_segment_walk(unsigned long *origin, unsigned long addr,
505 unsigned long end, int alloc)
506 {
507 unsigned long *ste, next, *table;
508 int rc;
509
510 ste = origin;
511 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
512 do {
513 next = base_segment_addr_end(addr, end);
514 if (*ste & _SEGMENT_ENTRY_INVALID) {
515 if (!alloc)
516 continue;
517 table = base_pgt_alloc();
518 if (!table)
519 return -ENOMEM;
520 *ste = __pa(table) | _SEGMENT_ENTRY;
521 }
522 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
523 rc = base_page_walk(table, addr, next, alloc);
524 if (rc)
525 return rc;
526 if (!alloc)
527 base_pgt_free(table);
528 cond_resched();
529 } while (ste++, addr = next, addr < end);
530 return 0;
531 }
532
base_region3_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)533 static int base_region3_walk(unsigned long *origin, unsigned long addr,
534 unsigned long end, int alloc)
535 {
536 unsigned long *rtte, next, *table;
537 int rc;
538
539 rtte = origin;
540 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
541 do {
542 next = base_region3_addr_end(addr, end);
543 if (*rtte & _REGION_ENTRY_INVALID) {
544 if (!alloc)
545 continue;
546 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
547 if (!table)
548 return -ENOMEM;
549 *rtte = __pa(table) | _REGION3_ENTRY;
550 }
551 table = __va(*rtte & _REGION_ENTRY_ORIGIN);
552 rc = base_segment_walk(table, addr, next, alloc);
553 if (rc)
554 return rc;
555 if (!alloc)
556 base_crst_free(table);
557 } while (rtte++, addr = next, addr < end);
558 return 0;
559 }
560
base_region2_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)561 static int base_region2_walk(unsigned long *origin, unsigned long addr,
562 unsigned long end, int alloc)
563 {
564 unsigned long *rste, next, *table;
565 int rc;
566
567 rste = origin;
568 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
569 do {
570 next = base_region2_addr_end(addr, end);
571 if (*rste & _REGION_ENTRY_INVALID) {
572 if (!alloc)
573 continue;
574 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
575 if (!table)
576 return -ENOMEM;
577 *rste = __pa(table) | _REGION2_ENTRY;
578 }
579 table = __va(*rste & _REGION_ENTRY_ORIGIN);
580 rc = base_region3_walk(table, addr, next, alloc);
581 if (rc)
582 return rc;
583 if (!alloc)
584 base_crst_free(table);
585 } while (rste++, addr = next, addr < end);
586 return 0;
587 }
588
base_region1_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)589 static int base_region1_walk(unsigned long *origin, unsigned long addr,
590 unsigned long end, int alloc)
591 {
592 unsigned long *rfte, next, *table;
593 int rc;
594
595 rfte = origin;
596 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
597 do {
598 next = base_region1_addr_end(addr, end);
599 if (*rfte & _REGION_ENTRY_INVALID) {
600 if (!alloc)
601 continue;
602 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
603 if (!table)
604 return -ENOMEM;
605 *rfte = __pa(table) | _REGION1_ENTRY;
606 }
607 table = __va(*rfte & _REGION_ENTRY_ORIGIN);
608 rc = base_region2_walk(table, addr, next, alloc);
609 if (rc)
610 return rc;
611 if (!alloc)
612 base_crst_free(table);
613 } while (rfte++, addr = next, addr < end);
614 return 0;
615 }
616
617 /**
618 * base_asce_free - free asce and tables returned from base_asce_alloc()
619 * @asce: asce to be freed
620 *
621 * Frees all region, segment, and page tables that were allocated with a
622 * corresponding base_asce_alloc() call.
623 */
base_asce_free(unsigned long asce)624 void base_asce_free(unsigned long asce)
625 {
626 unsigned long *table = __va(asce & _ASCE_ORIGIN);
627
628 if (!asce)
629 return;
630 switch (asce & _ASCE_TYPE_MASK) {
631 case _ASCE_TYPE_SEGMENT:
632 base_segment_walk(table, 0, _REGION3_SIZE, 0);
633 break;
634 case _ASCE_TYPE_REGION3:
635 base_region3_walk(table, 0, _REGION2_SIZE, 0);
636 break;
637 case _ASCE_TYPE_REGION2:
638 base_region2_walk(table, 0, _REGION1_SIZE, 0);
639 break;
640 case _ASCE_TYPE_REGION1:
641 base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
642 break;
643 }
644 base_crst_free(table);
645 }
646
base_pgt_cache_init(void)647 static int base_pgt_cache_init(void)
648 {
649 static DEFINE_MUTEX(base_pgt_cache_mutex);
650 unsigned long sz = _PAGE_TABLE_SIZE;
651
652 if (base_pgt_cache)
653 return 0;
654 mutex_lock(&base_pgt_cache_mutex);
655 if (!base_pgt_cache)
656 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
657 mutex_unlock(&base_pgt_cache_mutex);
658 return base_pgt_cache ? 0 : -ENOMEM;
659 }
660
661 /**
662 * base_asce_alloc - create kernel mapping without enhanced DAT features
663 * @addr: virtual start address of kernel mapping
664 * @num_pages: number of consecutive pages
665 *
666 * Generate an asce, including all required region, segment and page tables,
667 * that can be used to access the virtual kernel mapping. The difference is
668 * that the returned asce does not make use of any enhanced DAT features like
669 * e.g. large pages. This is required for some I/O functions that pass an
670 * asce, like e.g. some service call requests.
671 *
672 * Note: the returned asce may NEVER be attached to any cpu. It may only be
673 * used for I/O requests. tlb entries that might result because the
674 * asce was attached to a cpu won't be cleared.
675 */
base_asce_alloc(unsigned long addr,unsigned long num_pages)676 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
677 {
678 unsigned long asce, *table, end;
679 int rc;
680
681 if (base_pgt_cache_init())
682 return 0;
683 end = addr + num_pages * PAGE_SIZE;
684 if (end <= _REGION3_SIZE) {
685 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
686 if (!table)
687 return 0;
688 rc = base_segment_walk(table, addr, end, 1);
689 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
690 } else if (end <= _REGION2_SIZE) {
691 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
692 if (!table)
693 return 0;
694 rc = base_region3_walk(table, addr, end, 1);
695 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
696 } else if (end <= _REGION1_SIZE) {
697 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
698 if (!table)
699 return 0;
700 rc = base_region2_walk(table, addr, end, 1);
701 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
702 } else {
703 table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
704 if (!table)
705 return 0;
706 rc = base_region1_walk(table, addr, end, 1);
707 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
708 }
709 if (rc) {
710 base_asce_free(asce);
711 asce = 0;
712 }
713 return asce;
714 }
715