1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *	on the Au1550.  I started with dma.c, but I think all that is
6  *	left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *	dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/sysdev.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
42 
43 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
44 
45 /*
46  * The Descriptor Based DMA supports up to 16 channels.
47  *
48  * There are 32 devices defined. We keep an internal structure
49  * of devices using these channels, along with additional
50  * information.
51  *
52  * We allocate the descriptors and allow access to them through various
53  * functions.  The drivers allocate the data buffers and assign them
54  * to the descriptors.
55  */
56 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
57 
58 /* I couldn't find a macro that did this... */
59 #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
60 
61 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
62 static int dbdma_initialized;
63 
64 static dbdev_tab_t dbdev_tab[] = {
65 #ifdef CONFIG_SOC_AU1550
66 	/* UARTS */
67 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
68 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
69 	{ DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
70 	{ DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
71 
72 	/* EXT DMA */
73 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
74 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
75 	{ DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
76 	{ DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
77 
78 	/* USB DEV */
79 	{ DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
80 	{ DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
81 	{ DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
82 	{ DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
83 	{ DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
84 	{ DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
85 
86 	/* PSC 0 */
87 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
88 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
89 
90 	/* PSC 1 */
91 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
92 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
93 
94 	/* PSC 2 */
95 	{ DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
96 	{ DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
97 
98 	/* PSC 3 */
99 	{ DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
100 	{ DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
101 
102 	{ DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },	/* PCI */
103 	{ DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },	/* NAND */
104 
105 	/* MAC 0 */
106 	{ DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
107 	{ DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
108 
109 	/* MAC 1 */
110 	{ DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
111 	{ DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
112 
113 #endif /* CONFIG_SOC_AU1550 */
114 
115 #ifdef CONFIG_SOC_AU1200
116 	{ DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
117 	{ DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
118 	{ DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
119 	{ DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
120 
121 	{ DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
122 	{ DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
123 
124 	{ DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125 	{ DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 	{ DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127 	{ DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
128 
129 	{ DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
130 	{ DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
131 	{ DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
132 	{ DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
133 
134 	{ DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
135 	{ DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
136 
137 	{ DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
138 	{ DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
139 	{ DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
140 
141 	{ DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
142 	{ DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
143 	{ DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
144 
145 	{ DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
146 	{ DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
147 	{ DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
148 	{ DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149 
150 	{ DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
151 
152 #endif /* CONFIG_SOC_AU1200 */
153 
154 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
155 	{ DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 
157 	/* Provide 16 user definable device types */
158 	{ ~0, 0, 0, 0, 0, 0, 0 },
159 	{ ~0, 0, 0, 0, 0, 0, 0 },
160 	{ ~0, 0, 0, 0, 0, 0, 0 },
161 	{ ~0, 0, 0, 0, 0, 0, 0 },
162 	{ ~0, 0, 0, 0, 0, 0, 0 },
163 	{ ~0, 0, 0, 0, 0, 0, 0 },
164 	{ ~0, 0, 0, 0, 0, 0, 0 },
165 	{ ~0, 0, 0, 0, 0, 0, 0 },
166 	{ ~0, 0, 0, 0, 0, 0, 0 },
167 	{ ~0, 0, 0, 0, 0, 0, 0 },
168 	{ ~0, 0, 0, 0, 0, 0, 0 },
169 	{ ~0, 0, 0, 0, 0, 0, 0 },
170 	{ ~0, 0, 0, 0, 0, 0, 0 },
171 	{ ~0, 0, 0, 0, 0, 0, 0 },
172 	{ ~0, 0, 0, 0, 0, 0, 0 },
173 	{ ~0, 0, 0, 0, 0, 0, 0 },
174 };
175 
176 #define DBDEV_TAB_SIZE	ARRAY_SIZE(dbdev_tab)
177 
178 
179 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
180 
find_dbdev_id(u32 id)181 static dbdev_tab_t *find_dbdev_id(u32 id)
182 {
183 	int i;
184 	dbdev_tab_t *p;
185 	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
186 		p = &dbdev_tab[i];
187 		if (p->dev_id == id)
188 			return p;
189 	}
190 	return NULL;
191 }
192 
au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t * dp)193 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
194 {
195 	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
196 }
197 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
198 
au1xxx_ddma_add_device(dbdev_tab_t * dev)199 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
200 {
201 	u32 ret = 0;
202 	dbdev_tab_t *p;
203 	static u16 new_id = 0x1000;
204 
205 	p = find_dbdev_id(~0);
206 	if (NULL != p) {
207 		memcpy(p, dev, sizeof(dbdev_tab_t));
208 		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
209 		ret = p->dev_id;
210 		new_id++;
211 #if 0
212 		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
213 				  p->dev_id, p->dev_flags, p->dev_physaddr);
214 #endif
215 	}
216 
217 	return ret;
218 }
219 EXPORT_SYMBOL(au1xxx_ddma_add_device);
220 
au1xxx_ddma_del_device(u32 devid)221 void au1xxx_ddma_del_device(u32 devid)
222 {
223 	dbdev_tab_t *p = find_dbdev_id(devid);
224 
225 	if (p != NULL) {
226 		memset(p, 0, sizeof(dbdev_tab_t));
227 		p->dev_id = ~0;
228 	}
229 }
230 EXPORT_SYMBOL(au1xxx_ddma_del_device);
231 
232 /* Allocate a channel and return a non-zero descriptor if successful. */
au1xxx_dbdma_chan_alloc(u32 srcid,u32 destid,void (* callback)(int,void *),void * callparam)233 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
234        void (*callback)(int, void *), void *callparam)
235 {
236 	unsigned long   flags;
237 	u32		used, chan;
238 	u32		dcp;
239 	int		i;
240 	dbdev_tab_t	*stp, *dtp;
241 	chan_tab_t	*ctp;
242 	au1x_dma_chan_t *cp;
243 
244 	/*
245 	 * We do the intialization on the first channel allocation.
246 	 * We have to wait because of the interrupt handler initialization
247 	 * which can't be done successfully during board set up.
248 	 */
249 	if (!dbdma_initialized)
250 		return 0;
251 
252 	stp = find_dbdev_id(srcid);
253 	if (stp == NULL)
254 		return 0;
255 	dtp = find_dbdev_id(destid);
256 	if (dtp == NULL)
257 		return 0;
258 
259 	used = 0;
260 
261 	/* Check to see if we can get both channels. */
262 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
263 	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
264 	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
265 		/* Got source */
266 		stp->dev_flags |= DEV_FLAGS_INUSE;
267 		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
268 		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
269 			/* Got destination */
270 			dtp->dev_flags |= DEV_FLAGS_INUSE;
271 		} else {
272 			/* Can't get dest.  Release src. */
273 			stp->dev_flags &= ~DEV_FLAGS_INUSE;
274 			used++;
275 		}
276 	} else
277 		used++;
278 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
279 
280 	if (used)
281 		return 0;
282 
283 	/* Let's see if we can allocate a channel for it. */
284 	ctp = NULL;
285 	chan = 0;
286 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
287 	for (i = 0; i < NUM_DBDMA_CHANS; i++)
288 		if (chan_tab_ptr[i] == NULL) {
289 			/*
290 			 * If kmalloc fails, it is caught below same
291 			 * as a channel not available.
292 			 */
293 			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
294 			chan_tab_ptr[i] = ctp;
295 			break;
296 		}
297 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
298 
299 	if (ctp != NULL) {
300 		memset(ctp, 0, sizeof(chan_tab_t));
301 		ctp->chan_index = chan = i;
302 		dcp = DDMA_CHANNEL_BASE;
303 		dcp += (0x0100 * chan);
304 		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
305 		cp = (au1x_dma_chan_t *)dcp;
306 		ctp->chan_src = stp;
307 		ctp->chan_dest = dtp;
308 		ctp->chan_callback = callback;
309 		ctp->chan_callparam = callparam;
310 
311 		/* Initialize channel configuration. */
312 		i = 0;
313 		if (stp->dev_intlevel)
314 			i |= DDMA_CFG_SED;
315 		if (stp->dev_intpolarity)
316 			i |= DDMA_CFG_SP;
317 		if (dtp->dev_intlevel)
318 			i |= DDMA_CFG_DED;
319 		if (dtp->dev_intpolarity)
320 			i |= DDMA_CFG_DP;
321 		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
322 			(dtp->dev_flags & DEV_FLAGS_SYNC))
323 				i |= DDMA_CFG_SYNC;
324 		cp->ddma_cfg = i;
325 		au_sync();
326 
327 		/*
328 		 * Return a non-zero value that can be used to find the channel
329 		 * information in subsequent operations.
330 		 */
331 		return (u32)(&chan_tab_ptr[chan]);
332 	}
333 
334 	/* Release devices */
335 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
336 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
337 
338 	return 0;
339 }
340 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
341 
342 /*
343  * Set the device width if source or destination is a FIFO.
344  * Should be 8, 16, or 32 bits.
345  */
au1xxx_dbdma_set_devwidth(u32 chanid,int bits)346 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
347 {
348 	u32		rv;
349 	chan_tab_t	*ctp;
350 	dbdev_tab_t	*stp, *dtp;
351 
352 	ctp = *((chan_tab_t **)chanid);
353 	stp = ctp->chan_src;
354 	dtp = ctp->chan_dest;
355 	rv = 0;
356 
357 	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
358 		rv = stp->dev_devwidth;
359 		stp->dev_devwidth = bits;
360 	}
361 	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
362 		rv = dtp->dev_devwidth;
363 		dtp->dev_devwidth = bits;
364 	}
365 
366 	return rv;
367 }
368 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
369 
370 /* Allocate a descriptor ring, initializing as much as possible. */
au1xxx_dbdma_ring_alloc(u32 chanid,int entries)371 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
372 {
373 	int			i;
374 	u32			desc_base, srcid, destid;
375 	u32			cmd0, cmd1, src1, dest1;
376 	u32			src0, dest0;
377 	chan_tab_t		*ctp;
378 	dbdev_tab_t		*stp, *dtp;
379 	au1x_ddma_desc_t	*dp;
380 
381 	/*
382 	 * I guess we could check this to be within the
383 	 * range of the table......
384 	 */
385 	ctp = *((chan_tab_t **)chanid);
386 	stp = ctp->chan_src;
387 	dtp = ctp->chan_dest;
388 
389 	/*
390 	 * The descriptors must be 32-byte aligned.  There is a
391 	 * possibility the allocation will give us such an address,
392 	 * and if we try that first we are likely to not waste larger
393 	 * slabs of memory.
394 	 */
395 	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
396 				 GFP_KERNEL|GFP_DMA);
397 	if (desc_base == 0)
398 		return 0;
399 
400 	if (desc_base & 0x1f) {
401 		/*
402 		 * Lost....do it again, allocate extra, and round
403 		 * the address base.
404 		 */
405 		kfree((const void *)desc_base);
406 		i = entries * sizeof(au1x_ddma_desc_t);
407 		i += (sizeof(au1x_ddma_desc_t) - 1);
408 		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
409 		if (desc_base == 0)
410 			return 0;
411 
412 		ctp->cdb_membase = desc_base;
413 		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
414 	} else
415 		ctp->cdb_membase = desc_base;
416 
417 	dp = (au1x_ddma_desc_t *)desc_base;
418 
419 	/* Keep track of the base descriptor. */
420 	ctp->chan_desc_base = dp;
421 
422 	/* Initialize the rings with as much information as we know. */
423 	srcid = stp->dev_id;
424 	destid = dtp->dev_id;
425 
426 	cmd0 = cmd1 = src1 = dest1 = 0;
427 	src0 = dest0 = 0;
428 
429 	cmd0 |= DSCR_CMD0_SID(srcid);
430 	cmd0 |= DSCR_CMD0_DID(destid);
431 	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
432 	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
433 
434 	/* Is it mem to mem transfer? */
435 	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
436 	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
437 	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
438 	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
439 		cmd0 |= DSCR_CMD0_MEM;
440 
441 	switch (stp->dev_devwidth) {
442 	case 8:
443 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
444 		break;
445 	case 16:
446 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
447 		break;
448 	case 32:
449 	default:
450 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
451 		break;
452 	}
453 
454 	switch (dtp->dev_devwidth) {
455 	case 8:
456 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
457 		break;
458 	case 16:
459 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
460 		break;
461 	case 32:
462 	default:
463 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
464 		break;
465 	}
466 
467 	/*
468 	 * If the device is marked as an in/out FIFO, ensure it is
469 	 * set non-coherent.
470 	 */
471 	if (stp->dev_flags & DEV_FLAGS_IN)
472 		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
473 	if (dtp->dev_flags & DEV_FLAGS_OUT)
474 		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
475 
476 	/*
477 	 * Set up source1.  For now, assume no stride and increment.
478 	 * A channel attribute update can change this later.
479 	 */
480 	switch (stp->dev_tsize) {
481 	case 1:
482 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
483 		break;
484 	case 2:
485 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
486 		break;
487 	case 4:
488 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
489 		break;
490 	case 8:
491 	default:
492 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
493 		break;
494 	}
495 
496 	/* If source input is FIFO, set static address.	*/
497 	if (stp->dev_flags & DEV_FLAGS_IN) {
498 		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
499 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
500 		else
501 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
502 	}
503 
504 	if (stp->dev_physaddr)
505 		src0 = stp->dev_physaddr;
506 
507 	/*
508 	 * Set up dest1.  For now, assume no stride and increment.
509 	 * A channel attribute update can change this later.
510 	 */
511 	switch (dtp->dev_tsize) {
512 	case 1:
513 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
514 		break;
515 	case 2:
516 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
517 		break;
518 	case 4:
519 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
520 		break;
521 	case 8:
522 	default:
523 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
524 		break;
525 	}
526 
527 	/* If destination output is FIFO, set static address. */
528 	if (dtp->dev_flags & DEV_FLAGS_OUT) {
529 		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
530 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
531 		else
532 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
533 	}
534 
535 	if (dtp->dev_physaddr)
536 		dest0 = dtp->dev_physaddr;
537 
538 #if 0
539 		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
540 				  "source1:%x dest0:%x dest1:%x\n",
541 				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
542 				  src1, dest0, dest1);
543 #endif
544 	for (i = 0; i < entries; i++) {
545 		dp->dscr_cmd0 = cmd0;
546 		dp->dscr_cmd1 = cmd1;
547 		dp->dscr_source0 = src0;
548 		dp->dscr_source1 = src1;
549 		dp->dscr_dest0 = dest0;
550 		dp->dscr_dest1 = dest1;
551 		dp->dscr_stat = 0;
552 		dp->sw_context = 0;
553 		dp->sw_status = 0;
554 		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
555 		dp++;
556 	}
557 
558 	/* Make last descrptor point to the first. */
559 	dp--;
560 	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
561 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
562 
563 	return (u32)ctp->chan_desc_base;
564 }
565 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
566 
567 /*
568  * Put a source buffer into the DMA ring.
569  * This updates the source pointer and byte count.  Normally used
570  * for memory to fifo transfers.
571  */
au1xxx_dbdma_put_source(u32 chanid,dma_addr_t buf,int nbytes,u32 flags)572 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
573 {
574 	chan_tab_t		*ctp;
575 	au1x_ddma_desc_t	*dp;
576 
577 	/*
578 	 * I guess we could check this to be within the
579 	 * range of the table......
580 	 */
581 	ctp = *(chan_tab_t **)chanid;
582 
583 	/*
584 	 * We should have multiple callers for a particular channel,
585 	 * an interrupt doesn't affect this pointer nor the descriptor,
586 	 * so no locking should be needed.
587 	 */
588 	dp = ctp->put_ptr;
589 
590 	/*
591 	 * If the descriptor is valid, we are way ahead of the DMA
592 	 * engine, so just return an error condition.
593 	 */
594 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
595 		return 0;
596 
597 	/* Load up buffer address and byte count. */
598 	dp->dscr_source0 = buf & ~0UL;
599 	dp->dscr_cmd1 = nbytes;
600 	/* Check flags */
601 	if (flags & DDMA_FLAGS_IE)
602 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
603 	if (flags & DDMA_FLAGS_NOIE)
604 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
605 
606 	/*
607 	 * There is an errata on the Au1200/Au1550 parts that could result
608 	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
609 	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
610 	 * these parts. If it is fixed in the future, these dma_cache_inv will
611 	 * just be nothing more than empty macros. See io.h.
612 	 */
613 	dma_cache_wback_inv((unsigned long)buf, nbytes);
614 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
615 	au_sync();
616 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
617 	ctp->chan_ptr->ddma_dbell = 0;
618 
619 	/* Get next descriptor pointer.	*/
620 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
621 
622 	/* Return something non-zero. */
623 	return nbytes;
624 }
625 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
626 
627 /* Put a destination buffer into the DMA ring.
628  * This updates the destination pointer and byte count.  Normally used
629  * to place an empty buffer into the ring for fifo to memory transfers.
630  */
au1xxx_dbdma_put_dest(u32 chanid,dma_addr_t buf,int nbytes,u32 flags)631 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
632 {
633 	chan_tab_t		*ctp;
634 	au1x_ddma_desc_t	*dp;
635 
636 	/* I guess we could check this to be within the
637 	 * range of the table......
638 	 */
639 	ctp = *((chan_tab_t **)chanid);
640 
641 	/* We should have multiple callers for a particular channel,
642 	 * an interrupt doesn't affect this pointer nor the descriptor,
643 	 * so no locking should be needed.
644 	 */
645 	dp = ctp->put_ptr;
646 
647 	/* If the descriptor is valid, we are way ahead of the DMA
648 	 * engine, so just return an error condition.
649 	 */
650 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
651 		return 0;
652 
653 	/* Load up buffer address and byte count */
654 
655 	/* Check flags  */
656 	if (flags & DDMA_FLAGS_IE)
657 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
658 	if (flags & DDMA_FLAGS_NOIE)
659 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
660 
661 	dp->dscr_dest0 = buf & ~0UL;
662 	dp->dscr_cmd1 = nbytes;
663 #if 0
664 	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
665 			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
666 			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
667 #endif
668 	/*
669 	 * There is an errata on the Au1200/Au1550 parts that could result in
670 	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
671 	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
672 	 * parts. If it is fixed in the future, these dma_cache_inv will just
673 	 * be nothing more than empty macros. See io.h.
674 	 */
675 	dma_cache_inv((unsigned long)buf, nbytes);
676 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
677 	au_sync();
678 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
679 	ctp->chan_ptr->ddma_dbell = 0;
680 
681 	/* Get next descriptor pointer.	*/
682 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
683 
684 	/* Return something non-zero. */
685 	return nbytes;
686 }
687 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
688 
689 /*
690  * Get a destination buffer into the DMA ring.
691  * Normally used to get a full buffer from the ring during fifo
692  * to memory transfers.  This does not set the valid bit, you will
693  * have to put another destination buffer to keep the DMA going.
694  */
au1xxx_dbdma_get_dest(u32 chanid,void ** buf,int * nbytes)695 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
696 {
697 	chan_tab_t		*ctp;
698 	au1x_ddma_desc_t	*dp;
699 	u32			rv;
700 
701 	/*
702 	 * I guess we could check this to be within the
703 	 * range of the table......
704 	 */
705 	ctp = *((chan_tab_t **)chanid);
706 
707 	/*
708 	 * We should have multiple callers for a particular channel,
709 	 * an interrupt doesn't affect this pointer nor the descriptor,
710 	 * so no locking should be needed.
711 	 */
712 	dp = ctp->get_ptr;
713 
714 	/*
715 	 * If the descriptor is valid, we are way ahead of the DMA
716 	 * engine, so just return an error condition.
717 	 */
718 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
719 		return 0;
720 
721 	/* Return buffer address and byte count. */
722 	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
723 	*nbytes = dp->dscr_cmd1;
724 	rv = dp->dscr_stat;
725 
726 	/* Get next descriptor pointer.	*/
727 	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
728 
729 	/* Return something non-zero. */
730 	return rv;
731 }
732 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
733 
au1xxx_dbdma_stop(u32 chanid)734 void au1xxx_dbdma_stop(u32 chanid)
735 {
736 	chan_tab_t	*ctp;
737 	au1x_dma_chan_t *cp;
738 	int halt_timeout = 0;
739 
740 	ctp = *((chan_tab_t **)chanid);
741 
742 	cp = ctp->chan_ptr;
743 	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
744 	au_sync();
745 	while (!(cp->ddma_stat & DDMA_STAT_H)) {
746 		udelay(1);
747 		halt_timeout++;
748 		if (halt_timeout > 100) {
749 			printk(KERN_WARNING "warning: DMA channel won't halt\n");
750 			break;
751 		}
752 	}
753 	/* clear current desc valid and doorbell */
754 	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
755 	au_sync();
756 }
757 EXPORT_SYMBOL(au1xxx_dbdma_stop);
758 
759 /*
760  * Start using the current descriptor pointer.  If the DBDMA encounters
761  * a non-valid descriptor, it will stop.  In this case, we can just
762  * continue by adding a buffer to the list and starting again.
763  */
au1xxx_dbdma_start(u32 chanid)764 void au1xxx_dbdma_start(u32 chanid)
765 {
766 	chan_tab_t	*ctp;
767 	au1x_dma_chan_t *cp;
768 
769 	ctp = *((chan_tab_t **)chanid);
770 	cp = ctp->chan_ptr;
771 	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
772 	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
773 	au_sync();
774 	cp->ddma_dbell = 0;
775 	au_sync();
776 }
777 EXPORT_SYMBOL(au1xxx_dbdma_start);
778 
au1xxx_dbdma_reset(u32 chanid)779 void au1xxx_dbdma_reset(u32 chanid)
780 {
781 	chan_tab_t		*ctp;
782 	au1x_ddma_desc_t	*dp;
783 
784 	au1xxx_dbdma_stop(chanid);
785 
786 	ctp = *((chan_tab_t **)chanid);
787 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
788 
789 	/* Run through the descriptors and reset the valid indicator. */
790 	dp = ctp->chan_desc_base;
791 
792 	do {
793 		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
794 		/*
795 		 * Reset our software status -- this is used to determine
796 		 * if a descriptor is in use by upper level software. Since
797 		 * posting can reset 'V' bit.
798 		 */
799 		dp->sw_status = 0;
800 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
801 	} while (dp != ctp->chan_desc_base);
802 }
803 EXPORT_SYMBOL(au1xxx_dbdma_reset);
804 
au1xxx_get_dma_residue(u32 chanid)805 u32 au1xxx_get_dma_residue(u32 chanid)
806 {
807 	chan_tab_t	*ctp;
808 	au1x_dma_chan_t *cp;
809 	u32		rv;
810 
811 	ctp = *((chan_tab_t **)chanid);
812 	cp = ctp->chan_ptr;
813 
814 	/* This is only valid if the channel is stopped. */
815 	rv = cp->ddma_bytecnt;
816 	au_sync();
817 
818 	return rv;
819 }
820 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
821 
au1xxx_dbdma_chan_free(u32 chanid)822 void au1xxx_dbdma_chan_free(u32 chanid)
823 {
824 	chan_tab_t	*ctp;
825 	dbdev_tab_t	*stp, *dtp;
826 
827 	ctp = *((chan_tab_t **)chanid);
828 	stp = ctp->chan_src;
829 	dtp = ctp->chan_dest;
830 
831 	au1xxx_dbdma_stop(chanid);
832 
833 	kfree((void *)ctp->cdb_membase);
834 
835 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
836 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
837 	chan_tab_ptr[ctp->chan_index] = NULL;
838 
839 	kfree(ctp);
840 }
841 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
842 
dbdma_interrupt(int irq,void * dev_id)843 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
844 {
845 	u32 intstat;
846 	u32 chan_index;
847 	chan_tab_t		*ctp;
848 	au1x_ddma_desc_t	*dp;
849 	au1x_dma_chan_t *cp;
850 
851 	intstat = dbdma_gptr->ddma_intstat;
852 	au_sync();
853 	chan_index = __ffs(intstat);
854 
855 	ctp = chan_tab_ptr[chan_index];
856 	cp = ctp->chan_ptr;
857 	dp = ctp->cur_ptr;
858 
859 	/* Reset interrupt. */
860 	cp->ddma_irq = 0;
861 	au_sync();
862 
863 	if (ctp->chan_callback)
864 		ctp->chan_callback(irq, ctp->chan_callparam);
865 
866 	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
867 	return IRQ_RETVAL(1);
868 }
869 
au1xxx_dbdma_dump(u32 chanid)870 void au1xxx_dbdma_dump(u32 chanid)
871 {
872 	chan_tab_t	 *ctp;
873 	au1x_ddma_desc_t *dp;
874 	dbdev_tab_t	 *stp, *dtp;
875 	au1x_dma_chan_t  *cp;
876 	u32 i		 = 0;
877 
878 	ctp = *((chan_tab_t **)chanid);
879 	stp = ctp->chan_src;
880 	dtp = ctp->chan_dest;
881 	cp = ctp->chan_ptr;
882 
883 	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
884 			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
885 			  dtp - dbdev_tab);
886 	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
887 			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
888 			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
889 
890 	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
891 	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
892 			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
893 	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
894 			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
895 			  cp->ddma_bytecnt);
896 
897 	/* Run through the descriptors */
898 	dp = ctp->chan_desc_base;
899 
900 	do {
901 		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
902 				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
903 		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
904 				  dp->dscr_source0, dp->dscr_source1,
905 				  dp->dscr_dest0, dp->dscr_dest1);
906 		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
907 				  dp->dscr_stat, dp->dscr_nxtptr);
908 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
909 	} while (dp != ctp->chan_desc_base);
910 }
911 
912 /* Put a descriptor into the DMA ring.
913  * This updates the source/destination pointers and byte count.
914  */
au1xxx_dbdma_put_dscr(u32 chanid,au1x_ddma_desc_t * dscr)915 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
916 {
917 	chan_tab_t *ctp;
918 	au1x_ddma_desc_t *dp;
919 	u32 nbytes = 0;
920 
921 	/*
922 	 * I guess we could check this to be within the
923 	 * range of the table......
924 	 */
925 	ctp = *((chan_tab_t **)chanid);
926 
927 	/*
928 	 * We should have multiple callers for a particular channel,
929 	 * an interrupt doesn't affect this pointer nor the descriptor,
930 	 * so no locking should be needed.
931 	 */
932 	dp = ctp->put_ptr;
933 
934 	/*
935 	 * If the descriptor is valid, we are way ahead of the DMA
936 	 * engine, so just return an error condition.
937 	 */
938 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
939 		return 0;
940 
941 	/* Load up buffer addresses and byte count. */
942 	dp->dscr_dest0 = dscr->dscr_dest0;
943 	dp->dscr_source0 = dscr->dscr_source0;
944 	dp->dscr_dest1 = dscr->dscr_dest1;
945 	dp->dscr_source1 = dscr->dscr_source1;
946 	dp->dscr_cmd1 = dscr->dscr_cmd1;
947 	nbytes = dscr->dscr_cmd1;
948 	/* Allow the caller to specifiy if an interrupt is generated */
949 	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
950 	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
951 	ctp->chan_ptr->ddma_dbell = 0;
952 
953 	/* Get next descriptor pointer.	*/
954 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
955 
956 	/* Return something non-zero. */
957 	return nbytes;
958 }
959 
960 
961 struct alchemy_dbdma_sysdev {
962 	struct sys_device sysdev;
963 	u32 pm_regs[NUM_DBDMA_CHANS + 1][6];
964 };
965 
alchemy_dbdma_suspend(struct sys_device * dev,pm_message_t state)966 static int alchemy_dbdma_suspend(struct sys_device *dev,
967 				 pm_message_t state)
968 {
969 	struct alchemy_dbdma_sysdev *sdev =
970 		container_of(dev, struct alchemy_dbdma_sysdev, sysdev);
971 	int i;
972 	u32 addr;
973 
974 	addr = DDMA_GLOBAL_BASE;
975 	sdev->pm_regs[0][0] = au_readl(addr + 0x00);
976 	sdev->pm_regs[0][1] = au_readl(addr + 0x04);
977 	sdev->pm_regs[0][2] = au_readl(addr + 0x08);
978 	sdev->pm_regs[0][3] = au_readl(addr + 0x0c);
979 
980 	/* save channel configurations */
981 	for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) {
982 		sdev->pm_regs[i][0] = au_readl(addr + 0x00);
983 		sdev->pm_regs[i][1] = au_readl(addr + 0x04);
984 		sdev->pm_regs[i][2] = au_readl(addr + 0x08);
985 		sdev->pm_regs[i][3] = au_readl(addr + 0x0c);
986 		sdev->pm_regs[i][4] = au_readl(addr + 0x10);
987 		sdev->pm_regs[i][5] = au_readl(addr + 0x14);
988 
989 		/* halt channel */
990 		au_writel(sdev->pm_regs[i][0] & ~1, addr + 0x00);
991 		au_sync();
992 		while (!(au_readl(addr + 0x14) & 1))
993 			au_sync();
994 
995 		addr += 0x100;	/* next channel base */
996 	}
997 	/* disable channel interrupts */
998 	au_writel(0, DDMA_GLOBAL_BASE + 0x0c);
999 	au_sync();
1000 
1001 	return 0;
1002 }
1003 
alchemy_dbdma_resume(struct sys_device * dev)1004 static int alchemy_dbdma_resume(struct sys_device *dev)
1005 {
1006 	struct alchemy_dbdma_sysdev *sdev =
1007 		container_of(dev, struct alchemy_dbdma_sysdev, sysdev);
1008 	int i;
1009 	u32 addr;
1010 
1011 	addr = DDMA_GLOBAL_BASE;
1012 	au_writel(sdev->pm_regs[0][0], addr + 0x00);
1013 	au_writel(sdev->pm_regs[0][1], addr + 0x04);
1014 	au_writel(sdev->pm_regs[0][2], addr + 0x08);
1015 	au_writel(sdev->pm_regs[0][3], addr + 0x0c);
1016 
1017 	/* restore channel configurations */
1018 	for (i = 1, addr = DDMA_CHANNEL_BASE; i <= NUM_DBDMA_CHANS; i++) {
1019 		au_writel(sdev->pm_regs[i][0], addr + 0x00);
1020 		au_writel(sdev->pm_regs[i][1], addr + 0x04);
1021 		au_writel(sdev->pm_regs[i][2], addr + 0x08);
1022 		au_writel(sdev->pm_regs[i][3], addr + 0x0c);
1023 		au_writel(sdev->pm_regs[i][4], addr + 0x10);
1024 		au_writel(sdev->pm_regs[i][5], addr + 0x14);
1025 		au_sync();
1026 		addr += 0x100;	/* next channel base */
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static struct sysdev_class alchemy_dbdma_sysdev_class = {
1033 	.name		= "dbdma",
1034 	.suspend	= alchemy_dbdma_suspend,
1035 	.resume		= alchemy_dbdma_resume,
1036 };
1037 
alchemy_dbdma_sysdev_init(void)1038 static int __init alchemy_dbdma_sysdev_init(void)
1039 {
1040 	struct alchemy_dbdma_sysdev *sdev;
1041 	int ret;
1042 
1043 	ret = sysdev_class_register(&alchemy_dbdma_sysdev_class);
1044 	if (ret)
1045 		return ret;
1046 
1047 	sdev = kzalloc(sizeof(struct alchemy_dbdma_sysdev), GFP_KERNEL);
1048 	if (!sdev)
1049 		return -ENOMEM;
1050 
1051 	sdev->sysdev.id = -1;
1052 	sdev->sysdev.cls = &alchemy_dbdma_sysdev_class;
1053 	ret = sysdev_register(&sdev->sysdev);
1054 	if (ret)
1055 		kfree(sdev);
1056 
1057 	return ret;
1058 }
1059 
au1xxx_dbdma_init(void)1060 static int __init au1xxx_dbdma_init(void)
1061 {
1062 	int irq_nr, ret;
1063 
1064 	dbdma_gptr->ddma_config = 0;
1065 	dbdma_gptr->ddma_throttle = 0;
1066 	dbdma_gptr->ddma_inten = 0xffff;
1067 	au_sync();
1068 
1069 	switch (alchemy_get_cputype()) {
1070 	case ALCHEMY_CPU_AU1550:
1071 		irq_nr = AU1550_DDMA_INT;
1072 		break;
1073 	case ALCHEMY_CPU_AU1200:
1074 		irq_nr = AU1200_DDMA_INT;
1075 		break;
1076 	default:
1077 		return -ENODEV;
1078 	}
1079 
1080 	ret = request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
1081 			"Au1xxx dbdma", (void *)dbdma_gptr);
1082 	if (ret)
1083 		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1084 	else {
1085 		dbdma_initialized = 1;
1086 		printk(KERN_INFO "Alchemy DBDMA initialized\n");
1087 		ret = alchemy_dbdma_sysdev_init();
1088 		if (ret) {
1089 			printk(KERN_ERR "DBDMA PM init failed\n");
1090 			ret = 0;
1091 		}
1092 	}
1093 
1094 	return ret;
1095 }
1096 subsys_initcall(au1xxx_dbdma_init);
1097 
1098 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */
1099