1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include "atom.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "cgs_common.h"
31 #include "ppevvmath.h"
32
33 #define MEM_ID_MASK 0xff000000
34 #define MEM_ID_SHIFT 24
35 #define CLOCK_RANGE_MASK 0x00ffffff
36 #define CLOCK_RANGE_SHIFT 0
37 #define LOW_NIBBLE_MASK 0xf
38 #define DATA_EQU_PREV 0
39 #define DATA_FROM_TABLE 4
40
41 union voltage_object_info {
42 struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46
atomctrl_retrieve_ac_timing(uint8_t index,ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)47 static int atomctrl_retrieve_ac_timing(
48 uint8_t index,
49 ATOM_INIT_REG_BLOCK *reg_block,
50 pp_atomctrl_mc_reg_table *table)
51 {
52 uint32_t i, j;
53 uint8_t tmem_id;
54 ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56
57 uint8_t num_ranges = 0;
58
59 while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62
63 if (index == tmem_id) {
64 table->mc_reg_table_entry[num_ranges].mclk_max =
65 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 CLOCK_RANGE_SHIFT);
67
68 for (i = 0, j = 1; i < table->last; i++) {
69 if ((table->mc_reg_address[i].uc_pre_reg_data &
70 LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 (uint32_t)*((uint32_t *)reg_data + j);
73 j++;
74 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 }
79 }
80 num_ranges++;
81 }
82
83 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 }
86
87 PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 "Invalid VramInfo table.", return -1);
89 table->num_entries = num_ranges;
90
91 return 0;
92 }
93
94 /**
95 * atomctrl_set_mc_reg_address_table - Get memory clock AC timing registers index from VBIOS table
96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97 * @reg_block: the address ATOM_INIT_REG_BLOCK
98 * @table: the address of MCRegTable
99 * Return: 0
100 */
atomctrl_set_mc_reg_address_table(ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)101 static int atomctrl_set_mc_reg_address_table(
102 ATOM_INIT_REG_BLOCK *reg_block,
103 pp_atomctrl_mc_reg_table *table)
104 {
105 uint8_t i = 0;
106 uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 ATOM_INIT_REG_INDEX_FORMAT *format = ®_block->asRegIndexBuf[0];
109
110 num_entries--; /* subtract 1 data end mark entry */
111
112 PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 "Invalid VramInfo table.", return -1);
114
115 /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 (i < num_entries)) {
118 table->mc_reg_address[i].s1 =
119 (uint16_t)(le16_to_cpu(format->usRegIndex));
120 table->mc_reg_address[i].uc_pre_reg_data =
121 format->ucPreRegDataLength;
122
123 i++;
124 format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 }
127
128 table->last = i;
129 return 0;
130 }
131
atomctrl_initialize_mc_reg_table(struct pp_hwmgr * hwmgr,uint8_t module_index,pp_atomctrl_mc_reg_table * table)132 int atomctrl_initialize_mc_reg_table(
133 struct pp_hwmgr *hwmgr,
134 uint8_t module_index,
135 pp_atomctrl_mc_reg_table *table)
136 {
137 ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138 ATOM_INIT_REG_BLOCK *reg_block;
139 int result = 0;
140 u8 frev, crev;
141 u16 size;
142
143 vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144 smu_atom_get_data_table(hwmgr->adev,
145 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146
147 if (module_index >= vram_info->ucNumOfVRAMModule) {
148 pr_err("Invalid VramInfo table.");
149 result = -1;
150 } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151 pr_err("Invalid VramInfo table.");
152 result = -1;
153 }
154
155 if (0 == result) {
156 reg_block = (ATOM_INIT_REG_BLOCK *)
157 ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158 result = atomctrl_set_mc_reg_address_table(reg_block, table);
159 }
160
161 if (0 == result) {
162 result = atomctrl_retrieve_ac_timing(module_index,
163 reg_block, table);
164 }
165
166 return result;
167 }
168
atomctrl_initialize_mc_reg_table_v2_2(struct pp_hwmgr * hwmgr,uint8_t module_index,pp_atomctrl_mc_reg_table * table)169 int atomctrl_initialize_mc_reg_table_v2_2(
170 struct pp_hwmgr *hwmgr,
171 uint8_t module_index,
172 pp_atomctrl_mc_reg_table *table)
173 {
174 ATOM_VRAM_INFO_HEADER_V2_2 *vram_info;
175 ATOM_INIT_REG_BLOCK *reg_block;
176 int result = 0;
177 u8 frev, crev;
178 u16 size;
179
180 vram_info = (ATOM_VRAM_INFO_HEADER_V2_2 *)
181 smu_atom_get_data_table(hwmgr->adev,
182 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
183
184 if (module_index >= vram_info->ucNumOfVRAMModule) {
185 pr_err("Invalid VramInfo table.");
186 result = -1;
187 } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
188 pr_err("Invalid VramInfo table.");
189 result = -1;
190 }
191
192 if (0 == result) {
193 reg_block = (ATOM_INIT_REG_BLOCK *)
194 ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
195 result = atomctrl_set_mc_reg_address_table(reg_block, table);
196 }
197
198 if (0 == result) {
199 result = atomctrl_retrieve_ac_timing(module_index,
200 reg_block, table);
201 }
202
203 return result;
204 }
205
206 /*
207 * Set DRAM timings based on engine clock and memory clock.
208 */
atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock)209 int atomctrl_set_engine_dram_timings_rv770(
210 struct pp_hwmgr *hwmgr,
211 uint32_t engine_clock,
212 uint32_t memory_clock)
213 {
214 struct amdgpu_device *adev = hwmgr->adev;
215
216 SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
217
218 /* They are both in 10KHz Units. */
219 engine_clock_parameters.ulTargetEngineClock =
220 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
221 ((COMPUTE_ENGINE_PLL_PARAM << 24)));
222
223 /* in 10 khz units.*/
224 engine_clock_parameters.sReserved.ulClock =
225 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
226
227 return amdgpu_atom_execute_table(adev->mode_info.atom_context,
228 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
229 (uint32_t *)&engine_clock_parameters);
230 }
231
232 /*
233 * Private Function to get the PowerPlay Table Address.
234 * WARNING: The tabled returned by this function is in
235 * dynamically allocated memory.
236 * The caller has to release if by calling kfree.
237 */
get_voltage_info_table(void * device)238 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
239 {
240 int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
241 u8 frev, crev;
242 u16 size;
243 union voltage_object_info *voltage_info;
244
245 voltage_info = (union voltage_object_info *)
246 smu_atom_get_data_table(device, index,
247 &size, &frev, &crev);
248
249 if (voltage_info != NULL)
250 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
251 else
252 return NULL;
253 }
254
atomctrl_lookup_voltage_type_v3(const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,uint8_t voltage_type,uint8_t voltage_mode)255 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
256 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
257 uint8_t voltage_type, uint8_t voltage_mode)
258 {
259 unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
260 unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
261 uint8_t *start = (uint8_t *)voltage_object_info_table;
262
263 while (offset < size) {
264 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
265 (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
266
267 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
268 voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
269 return voltage_object;
270
271 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
272 }
273
274 return NULL;
275 }
276
277 /**
278 * atomctrl_get_memory_pll_dividers_si
279 *
280 * @hwmgr: input parameter: pointer to HwMgr
281 * @clock_value: input parameter: memory clock
282 * @mpll_param: output parameter: memory clock parameters
283 * @strobe_mode: input parameter: 1 for strobe mode, 0 for performance mode
284 */
atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param,bool strobe_mode)285 int atomctrl_get_memory_pll_dividers_si(
286 struct pp_hwmgr *hwmgr,
287 uint32_t clock_value,
288 pp_atomctrl_memory_clock_param *mpll_param,
289 bool strobe_mode)
290 {
291 struct amdgpu_device *adev = hwmgr->adev;
292 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
293 int result;
294
295 mpll_parameters.ulClock = cpu_to_le32(clock_value);
296 mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
297
298 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
299 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
300 (uint32_t *)&mpll_parameters);
301
302 if (0 == result) {
303 mpll_param->mpll_fb_divider.clk_frac =
304 le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
305 mpll_param->mpll_fb_divider.cl_kf =
306 le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
307 mpll_param->mpll_post_divider =
308 (uint32_t)mpll_parameters.ucPostDiv;
309 mpll_param->vco_mode =
310 (uint32_t)(mpll_parameters.ucPllCntlFlag &
311 MPLL_CNTL_FLAG_VCO_MODE_MASK);
312 mpll_param->yclk_sel =
313 (uint32_t)((mpll_parameters.ucPllCntlFlag &
314 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
315 mpll_param->qdr =
316 (uint32_t)((mpll_parameters.ucPllCntlFlag &
317 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
318 mpll_param->half_rate =
319 (uint32_t)((mpll_parameters.ucPllCntlFlag &
320 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
321 mpll_param->dll_speed =
322 (uint32_t)(mpll_parameters.ucDllSpeed);
323 mpll_param->bw_ctrl =
324 (uint32_t)(mpll_parameters.ucBWCntl);
325 }
326
327 return result;
328 }
329
330 /**
331 * atomctrl_get_memory_pll_dividers_vi
332 *
333 * @hwmgr: input parameter: pointer to HwMgr
334 * @clock_value: input parameter: memory clock
335 * @mpll_param: output parameter: memory clock parameters
336 */
atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param)337 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
338 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
339 {
340 struct amdgpu_device *adev = hwmgr->adev;
341 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
342 int result;
343
344 mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
345
346 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
347 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
348 (uint32_t *)&mpll_parameters);
349
350 if (!result)
351 mpll_param->mpll_post_divider =
352 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
353
354 return result;
355 }
356
atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param_ai * mpll_param)357 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
358 uint32_t clock_value,
359 pp_atomctrl_memory_clock_param_ai *mpll_param)
360 {
361 struct amdgpu_device *adev = hwmgr->adev;
362 COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
363 int result;
364
365 mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
366
367 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
368 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
369 (uint32_t *)&mpll_parameters);
370
371 /* VEGAM's mpll takes sometime to finish computing */
372 udelay(10);
373
374 if (!result) {
375 mpll_param->ulMclk_fcw_int =
376 le16_to_cpu(mpll_parameters.usMclk_fcw_int);
377 mpll_param->ulMclk_fcw_frac =
378 le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
379 mpll_param->ulClock =
380 le32_to_cpu(mpll_parameters.ulClock.ulClock);
381 mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
382 }
383
384 return result;
385 }
386
atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_kong * dividers)387 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
388 uint32_t clock_value,
389 pp_atomctrl_clock_dividers_kong *dividers)
390 {
391 struct amdgpu_device *adev = hwmgr->adev;
392 COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
393 int result;
394
395 pll_parameters.ulClock = cpu_to_le32(clock_value);
396
397 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
398 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
399 (uint32_t *)&pll_parameters);
400
401 if (0 == result) {
402 dividers->pll_post_divider = pll_parameters.ucPostDiv;
403 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
404 }
405
406 return result;
407 }
408
atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)409 int atomctrl_get_engine_pll_dividers_vi(
410 struct pp_hwmgr *hwmgr,
411 uint32_t clock_value,
412 pp_atomctrl_clock_dividers_vi *dividers)
413 {
414 struct amdgpu_device *adev = hwmgr->adev;
415 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
416 int result;
417
418 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
419 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
420
421 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
422 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
423 (uint32_t *)&pll_patameters);
424
425 if (0 == result) {
426 dividers->pll_post_divider =
427 pll_patameters.ulClock.ucPostDiv;
428 dividers->real_clock =
429 le32_to_cpu(pll_patameters.ulClock.ulClock);
430
431 dividers->ul_fb_div.ul_fb_div_frac =
432 le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
433 dividers->ul_fb_div.ul_fb_div =
434 le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
435
436 dividers->uc_pll_ref_div =
437 pll_patameters.ucPllRefDiv;
438 dividers->uc_pll_post_div =
439 pll_patameters.ucPllPostDiv;
440 dividers->uc_pll_cntl_flag =
441 pll_patameters.ucPllCntlFlag;
442 }
443
444 return result;
445 }
446
atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_ai * dividers)447 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
448 uint32_t clock_value,
449 pp_atomctrl_clock_dividers_ai *dividers)
450 {
451 struct amdgpu_device *adev = hwmgr->adev;
452 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
453 int result;
454
455 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
456 pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
457
458 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
459 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
460 (uint32_t *)&pll_patameters);
461
462 if (0 == result) {
463 dividers->usSclk_fcw_frac = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
464 dividers->usSclk_fcw_int = le16_to_cpu(pll_patameters.usSclk_fcw_int);
465 dividers->ucSclkPostDiv = pll_patameters.ucSclkPostDiv;
466 dividers->ucSclkVcoMode = pll_patameters.ucSclkVcoMode;
467 dividers->ucSclkPllRange = pll_patameters.ucSclkPllRange;
468 dividers->ucSscEnable = pll_patameters.ucSscEnable;
469 dividers->usSsc_fcw1_frac = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
470 dividers->usSsc_fcw1_int = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
471 dividers->usPcc_fcw_int = le16_to_cpu(pll_patameters.usPcc_fcw_int);
472 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
473 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
474 }
475 return result;
476 }
477
atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)478 int atomctrl_get_dfs_pll_dividers_vi(
479 struct pp_hwmgr *hwmgr,
480 uint32_t clock_value,
481 pp_atomctrl_clock_dividers_vi *dividers)
482 {
483 struct amdgpu_device *adev = hwmgr->adev;
484 COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
485 int result;
486
487 pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
488 pll_patameters.ulClock.ucPostDiv =
489 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
490
491 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
492 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
493 (uint32_t *)&pll_patameters);
494
495 if (0 == result) {
496 dividers->pll_post_divider =
497 pll_patameters.ulClock.ucPostDiv;
498 dividers->real_clock =
499 le32_to_cpu(pll_patameters.ulClock.ulClock);
500
501 dividers->ul_fb_div.ul_fb_div_frac =
502 le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
503 dividers->ul_fb_div.ul_fb_div =
504 le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
505
506 dividers->uc_pll_ref_div =
507 pll_patameters.ucPllRefDiv;
508 dividers->uc_pll_post_div =
509 pll_patameters.ucPllPostDiv;
510 dividers->uc_pll_cntl_flag =
511 pll_patameters.ucPllCntlFlag;
512 }
513
514 return result;
515 }
516
517 /*
518 * Get the reference clock in 10KHz
519 */
atomctrl_get_reference_clock(struct pp_hwmgr * hwmgr)520 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
521 {
522 ATOM_FIRMWARE_INFO *fw_info;
523 u8 frev, crev;
524 u16 size;
525 uint32_t clock;
526
527 fw_info = (ATOM_FIRMWARE_INFO *)
528 smu_atom_get_data_table(hwmgr->adev,
529 GetIndexIntoMasterTable(DATA, FirmwareInfo),
530 &size, &frev, &crev);
531
532 if (fw_info == NULL)
533 clock = 2700;
534 else
535 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
536
537 return clock;
538 }
539
540 /*
541 * Returns true if the given voltage type is controlled by GPIO pins.
542 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
543 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
544 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
545 */
atomctrl_is_voltage_controlled_by_gpio_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode)546 bool atomctrl_is_voltage_controlled_by_gpio_v3(
547 struct pp_hwmgr *hwmgr,
548 uint8_t voltage_type,
549 uint8_t voltage_mode)
550 {
551 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
552 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
553 bool ret;
554
555 PP_ASSERT_WITH_CODE((NULL != voltage_info),
556 "Could not find Voltage Table in BIOS.", return false;);
557
558 ret = (NULL != atomctrl_lookup_voltage_type_v3
559 (voltage_info, voltage_type, voltage_mode)) ? true : false;
560
561 return ret;
562 }
563
atomctrl_get_voltage_table_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode,pp_atomctrl_voltage_table * voltage_table)564 int atomctrl_get_voltage_table_v3(
565 struct pp_hwmgr *hwmgr,
566 uint8_t voltage_type,
567 uint8_t voltage_mode,
568 pp_atomctrl_voltage_table *voltage_table)
569 {
570 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
571 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
572 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
573 unsigned int i;
574
575 PP_ASSERT_WITH_CODE((NULL != voltage_info),
576 "Could not find Voltage Table in BIOS.", return -1;);
577
578 voltage_object = atomctrl_lookup_voltage_type_v3
579 (voltage_info, voltage_type, voltage_mode);
580
581 if (voltage_object == NULL)
582 return -1;
583
584 PP_ASSERT_WITH_CODE(
585 (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
586 PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
587 "Too many voltage entries!",
588 return -1;
589 );
590
591 for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
592 voltage_table->entries[i].value =
593 le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
594 voltage_table->entries[i].smio_low =
595 le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
596 }
597
598 voltage_table->mask_low =
599 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
600 voltage_table->count =
601 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
602 voltage_table->phase_delay =
603 voltage_object->asGpioVoltageObj.ucPhaseDelay;
604
605 return 0;
606 }
607
atomctrl_lookup_gpio_pin(ATOM_GPIO_PIN_LUT * gpio_lookup_table,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)608 static bool atomctrl_lookup_gpio_pin(
609 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
610 const uint32_t pinId,
611 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
612 {
613 unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
614 unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
615 uint8_t *start = (uint8_t *)gpio_lookup_table;
616
617 while (offset < size) {
618 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
619 (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
620
621 if (pinId == pin_assignment->ucGPIO_ID) {
622 gpio_pin_assignment->uc_gpio_pin_bit_shift =
623 pin_assignment->ucGpioPinBitShift;
624 gpio_pin_assignment->us_gpio_pin_aindex =
625 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
626 return true;
627 }
628
629 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
630 }
631
632 return false;
633 }
634
635 /*
636 * Private Function to get the PowerPlay Table Address.
637 * WARNING: The tabled returned by this function is in
638 * dynamically allocated memory.
639 * The caller has to release if by calling kfree.
640 */
get_gpio_lookup_table(void * device)641 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
642 {
643 u8 frev, crev;
644 u16 size;
645 void *table_address;
646
647 table_address = (ATOM_GPIO_PIN_LUT *)
648 smu_atom_get_data_table(device,
649 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
650 &size, &frev, &crev);
651
652 PP_ASSERT_WITH_CODE((NULL != table_address),
653 "Error retrieving BIOS Table Address!", return NULL;);
654
655 return (ATOM_GPIO_PIN_LUT *)table_address;
656 }
657
658 /*
659 * Returns 1 if the given pin id find in lookup table.
660 */
atomctrl_get_pp_assign_pin(struct pp_hwmgr * hwmgr,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)661 bool atomctrl_get_pp_assign_pin(
662 struct pp_hwmgr *hwmgr,
663 const uint32_t pinId,
664 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
665 {
666 bool bRet = false;
667 ATOM_GPIO_PIN_LUT *gpio_lookup_table =
668 get_gpio_lookup_table(hwmgr->adev);
669
670 PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
671 "Could not find GPIO lookup Table in BIOS.", return false);
672
673 bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
674 gpio_pin_assignment);
675
676 return bRet;
677 }
678
atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage,uint16_t dpm_level,bool debug)679 int atomctrl_calculate_voltage_evv_on_sclk(
680 struct pp_hwmgr *hwmgr,
681 uint8_t voltage_type,
682 uint32_t sclk,
683 uint16_t virtual_voltage_Id,
684 uint16_t *voltage,
685 uint16_t dpm_level,
686 bool debug)
687 {
688 ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
689 struct amdgpu_device *adev = hwmgr->adev;
690 EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
691 EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
692 EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
693 EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
694 EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
695 EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
696 EFUSE_INPUT_PARAMETER sInput_FuseValues;
697 READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
698
699 uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
700 fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
701 fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
702 fInt fLkg_FT, repeat;
703 fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
704 fInt fRLL_LoadLine, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
705 fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
706 fInt fSclk_margin, fSclk, fEVV_V;
707 fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
708 uint32_t ul_FT_Lkg_V0NORM;
709 fInt fLn_MaxDivMin, fMin, fAverage, fRange;
710 fInt fRoots[2];
711 fInt fStepSize = GetScaledFraction(625, 100000);
712
713 int result;
714
715 getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
716 smu_atom_get_data_table(hwmgr->adev,
717 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
718 NULL, NULL, NULL);
719
720 if (!getASICProfilingInfo)
721 return -1;
722
723 if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
724 (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
725 getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
726 return -1;
727
728 /*-----------------------------------------------------------
729 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
730 *-----------------------------------------------------------
731 */
732 fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
733
734 switch (dpm_level) {
735 case 1:
736 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
737 break;
738 case 2:
739 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
740 break;
741 case 3:
742 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
743 break;
744 case 4:
745 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
746 break;
747 case 5:
748 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
749 break;
750 case 6:
751 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
752 break;
753 case 7:
754 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
755 break;
756 default:
757 pr_err("DPM Level not supported\n");
758 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
759 }
760
761 /*-------------------------
762 * DECODING FUSE VALUES
763 * ------------------------
764 */
765 /*Decode RO_Fused*/
766 sRO_fuse = getASICProfilingInfo->sRoFuse;
767
768 sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
769 sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
770 sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
771
772 sOutput_FuseValues.sEfuse = sInput_FuseValues;
773
774 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
775 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
776 (uint32_t *)&sOutput_FuseValues);
777
778 if (result)
779 return result;
780
781 /* Finally, the actual fuse value */
782 ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
783 fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
784 fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
785 fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
786
787 sCACm_fuse = getASICProfilingInfo->sCACm;
788
789 sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
790 sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
791 sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
792
793 sOutput_FuseValues.sEfuse = sInput_FuseValues;
794
795 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
796 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
797 (uint32_t *)&sOutput_FuseValues);
798
799 if (result)
800 return result;
801
802 ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
803 fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
804 fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
805
806 fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
807
808 sCACb_fuse = getASICProfilingInfo->sCACb;
809
810 sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
811 sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
812 sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
813 sOutput_FuseValues.sEfuse = sInput_FuseValues;
814
815 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
816 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
817 (uint32_t *)&sOutput_FuseValues);
818
819 if (result)
820 return result;
821
822 ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
823 fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
824 fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
825
826 fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
827
828 sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
829
830 sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
831 sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
832 sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
833
834 sOutput_FuseValues.sEfuse = sInput_FuseValues;
835
836 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
837 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
838 (uint32_t *)&sOutput_FuseValues);
839
840 if (result)
841 return result;
842
843 ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
844 fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
845 fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
846
847 fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
848 fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
849
850 sKv_m_fuse = getASICProfilingInfo->sKv_m;
851
852 sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
853 sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
854 sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
855
856 sOutput_FuseValues.sEfuse = sInput_FuseValues;
857
858 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
859 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
860 (uint32_t *)&sOutput_FuseValues);
861 if (result)
862 return result;
863
864 ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
865 fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
866 fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
867 fRange = fMultiply(fRange, ConvertToFraction(-1));
868
869 fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
870 fAverage, fRange, sKv_m_fuse.ucEfuseLength);
871
872 sKv_b_fuse = getASICProfilingInfo->sKv_b;
873
874 sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
875 sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
876 sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
877 sOutput_FuseValues.sEfuse = sInput_FuseValues;
878
879 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
880 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
881 (uint32_t *)&sOutput_FuseValues);
882
883 if (result)
884 return result;
885
886 ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
887 fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
888 fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
889
890 fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
891 fAverage, fRange, sKv_b_fuse.ucEfuseLength);
892
893 /* Decoding the Leakage - No special struct container */
894 /*
895 * usLkgEuseIndex=56
896 * ucLkgEfuseBitLSB=6
897 * ucLkgEfuseLength=10
898 * ulLkgEncodeLn_MaxDivMin=69077
899 * ulLkgEncodeMax=1000000
900 * ulLkgEncodeMin=1000
901 * ulEfuseLogisticAlpha=13
902 */
903
904 sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
905 sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
906 sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
907
908 sOutput_FuseValues.sEfuse = sInput_FuseValues;
909
910 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
911 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
912 (uint32_t *)&sOutput_FuseValues);
913
914 if (result)
915 return result;
916
917 ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
918 fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
919 fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
920
921 fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
922 fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
923 fLkg_FT = fFT_Lkg_V0NORM;
924
925 /*-------------------------------------------
926 * PART 2 - Grabbing all required values
927 *-------------------------------------------
928 */
929 fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
930 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
931 fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
932 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
933 fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
934 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
935 fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
936 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
937 fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
938 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
939 fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
940 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
941 fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
942 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
943 fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
944 ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
945
946 fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
947 fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
948 fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
949
950 fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
951
952 fMargin_FMAX_mean = GetScaledFraction(
953 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
954 fMargin_Plat_mean = GetScaledFraction(
955 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
956 fMargin_FMAX_sigma = GetScaledFraction(
957 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
958 fMargin_Plat_sigma = GetScaledFraction(
959 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
960
961 fMargin_DC_sigma = GetScaledFraction(
962 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
963 fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
964
965 fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
966 fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
967 fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
968 fKv_m_fused = fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
969 fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
970
971 fSclk = GetScaledFraction(sclk, 100);
972
973 fV_max = fDivide(GetScaledFraction(
974 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
975 fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
976 fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
977 fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
978 fV_FT = fDivide(GetScaledFraction(
979 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
980 fV_min = fDivide(GetScaledFraction(
981 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
982
983 /*-----------------------
984 * PART 3
985 *-----------------------
986 */
987
988 fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
989 fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
990 fC_Term = fAdd(fMargin_RO_c,
991 fAdd(fMultiply(fSM_A0, fLkg_FT),
992 fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
993 fAdd(fMultiply(fSM_A3, fSclk),
994 fSubtract(fSM_A7, fRO_fused)))));
995
996 fVDDC_base = fSubtract(fRO_fused,
997 fSubtract(fMargin_RO_c,
998 fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
999 fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
1000
1001 repeat = fSubtract(fVDDC_base,
1002 fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
1003
1004 fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
1005 fGetSquare(repeat)),
1006 fAdd(fMultiply(fMargin_RO_b, repeat),
1007 fMargin_RO_c));
1008
1009 fDC_SCLK = fSubtract(fRO_fused,
1010 fSubtract(fRO_DC_margin,
1011 fSubtract(fSM_A3,
1012 fMultiply(fSM_A2, repeat))));
1013 fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
1014
1015 fSigma_DC = fSubtract(fSclk, fDC_SCLK);
1016
1017 fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
1018 fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
1019 fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
1020 fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
1021
1022 fSquared_Sigma_DC = fGetSquare(fSigma_DC);
1023 fSquared_Sigma_CR = fGetSquare(fSigma_CR);
1024 fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
1025
1026 fSclk_margin = fAdd(fMicro_FMAX,
1027 fAdd(fMicro_CR,
1028 fAdd(fMargin_fixed,
1029 fSqrt(fAdd(fSquared_Sigma_FMAX,
1030 fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1031 /*
1032 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1033 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1034 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1035 */
1036
1037 fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1038 fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1039 fC_Term = fAdd(fRO_DC_margin,
1040 fAdd(fMultiply(fSM_A0, fLkg_FT),
1041 fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1042 fAdd(fSclk, fSclk_margin)),
1043 fAdd(fMultiply(fSM_A3,
1044 fAdd(fSclk, fSclk_margin)),
1045 fSubtract(fSM_A7, fRO_fused)))));
1046
1047 SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1048
1049 if (GreaterThan(fRoots[0], fRoots[1]))
1050 fEVV_V = fRoots[1];
1051 else
1052 fEVV_V = fRoots[0];
1053
1054 if (GreaterThan(fV_min, fEVV_V))
1055 fEVV_V = fV_min;
1056 else if (GreaterThan(fEVV_V, fV_max))
1057 fEVV_V = fSubtract(fV_max, fStepSize);
1058
1059 fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1060
1061 /*-----------------
1062 * PART 4
1063 *-----------------
1064 */
1065
1066 fV_x = fV_min;
1067
1068 while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1069 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1070 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1071 fGetSquare(fV_x)), fDerateTDP);
1072
1073 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1074 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1075 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1076 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1077 fKt_Beta_fused, fT_prod)));
1078 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1079 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1080 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1081 fKt_Beta_fused, fT_FT)));
1082
1083 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1084
1085 fTDP_Current = fDivide(fTDP_Power, fV_x);
1086
1087 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1088 ConvertToFraction(10)));
1089
1090 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1091
1092 if (GreaterThan(fV_max, fV_NL) &&
1093 (GreaterThan(fV_NL, fEVV_V) ||
1094 Equal(fV_NL, fEVV_V))) {
1095 fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1096
1097 *voltage = (uint16_t)fV_NL.partial.real;
1098 break;
1099 } else
1100 fV_x = fAdd(fV_x, fStepSize);
1101 }
1102
1103 return result;
1104 }
1105
1106 /**
1107 * atomctrl_get_voltage_evv_on_sclk: gets voltage via call to ATOM COMMAND table.
1108 * @hwmgr: input: pointer to hwManager
1109 * @voltage_type: input: type of EVV voltage VDDC or VDDGFX
1110 * @sclk: input: in 10Khz unit. DPM state SCLK frequency
1111 * which is define in PPTable SCLK/VDDC dependence
1112 * table associated with this virtual_voltage_Id
1113 * @virtual_voltage_Id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1114 * @voltage: output: real voltage level in unit of mv
1115 */
atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage)1116 int atomctrl_get_voltage_evv_on_sclk(
1117 struct pp_hwmgr *hwmgr,
1118 uint8_t voltage_type,
1119 uint32_t sclk, uint16_t virtual_voltage_Id,
1120 uint16_t *voltage)
1121 {
1122 struct amdgpu_device *adev = hwmgr->adev;
1123 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1124 int result;
1125
1126 get_voltage_info_param_space.ucVoltageType =
1127 voltage_type;
1128 get_voltage_info_param_space.ucVoltageMode =
1129 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1130 get_voltage_info_param_space.usVoltageLevel =
1131 cpu_to_le16(virtual_voltage_Id);
1132 get_voltage_info_param_space.ulSCLKFreq =
1133 cpu_to_le32(sclk);
1134
1135 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1136 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1137 (uint32_t *)&get_voltage_info_param_space);
1138
1139 *voltage = result ? 0 :
1140 le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1141 (&get_voltage_info_param_space))->usVoltageLevel);
1142
1143 return result;
1144 }
1145
1146 /**
1147 * atomctrl_get_voltage_evv: gets voltage via call to ATOM COMMAND table.
1148 * @hwmgr: input: pointer to hwManager
1149 * @virtual_voltage_id: input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1150 * @voltage: output: real voltage level in unit of mv
1151 */
atomctrl_get_voltage_evv(struct pp_hwmgr * hwmgr,uint16_t virtual_voltage_id,uint16_t * voltage)1152 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1153 uint16_t virtual_voltage_id,
1154 uint16_t *voltage)
1155 {
1156 struct amdgpu_device *adev = hwmgr->adev;
1157 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1158 int result;
1159 int entry_id;
1160
1161 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1162 for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1163 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1164 /* found */
1165 break;
1166 }
1167 }
1168
1169 if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1170 pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1171 return -EINVAL;
1172 }
1173
1174 get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1175 get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1176 get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1177 get_voltage_info_param_space.ulSCLKFreq =
1178 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1179
1180 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1181 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1182 (uint32_t *)&get_voltage_info_param_space);
1183
1184 if (0 != result)
1185 return result;
1186
1187 *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1188 (&get_voltage_info_param_space))->usVoltageLevel);
1189
1190 return result;
1191 }
1192
1193 /*
1194 * Get the mpll reference clock in 10KHz
1195 */
atomctrl_get_mpll_reference_clock(struct pp_hwmgr * hwmgr)1196 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1197 {
1198 ATOM_COMMON_TABLE_HEADER *fw_info;
1199 uint32_t clock;
1200 u8 frev, crev;
1201 u16 size;
1202
1203 fw_info = (ATOM_COMMON_TABLE_HEADER *)
1204 smu_atom_get_data_table(hwmgr->adev,
1205 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1206 &size, &frev, &crev);
1207
1208 if (fw_info == NULL)
1209 clock = 2700;
1210 else {
1211 if ((fw_info->ucTableFormatRevision == 2) &&
1212 (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1213 ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1214 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1215 clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1216 } else {
1217 ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1218 (ATOM_FIRMWARE_INFO *)fw_info;
1219 clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1220 }
1221 }
1222
1223 return clock;
1224 }
1225
1226 /*
1227 * Get the asic internal spread spectrum table
1228 */
asic_internal_ss_get_ss_table(void * device)1229 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1230 {
1231 ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1232 u8 frev, crev;
1233 u16 size;
1234
1235 table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1236 smu_atom_get_data_table(device,
1237 GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1238 &size, &frev, &crev);
1239
1240 return table;
1241 }
1242
atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr * hwmgr)1243 bool atomctrl_is_asic_internal_ss_supported(struct pp_hwmgr *hwmgr)
1244 {
1245 ATOM_ASIC_INTERNAL_SS_INFO *table =
1246 asic_internal_ss_get_ss_table(hwmgr->adev);
1247
1248 if (table)
1249 return true;
1250 else
1251 return false;
1252 }
1253
1254 /*
1255 * Get the asic internal spread spectrum assignment
1256 */
asic_internal_ss_get_ss_asignment(struct pp_hwmgr * hwmgr,const uint8_t clockSource,const uint32_t clockSpeed,pp_atomctrl_internal_ss_info * ssEntry)1257 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1258 const uint8_t clockSource,
1259 const uint32_t clockSpeed,
1260 pp_atomctrl_internal_ss_info *ssEntry)
1261 {
1262 ATOM_ASIC_INTERNAL_SS_INFO *table;
1263 ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1264 int entry_found = 0;
1265
1266 memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1267
1268 table = asic_internal_ss_get_ss_table(hwmgr->adev);
1269
1270 if (NULL == table)
1271 return -1;
1272
1273 ssInfo = &table->asSpreadSpectrum[0];
1274
1275 while (((uint8_t *)ssInfo - (uint8_t *)table) <
1276 le16_to_cpu(table->sHeader.usStructureSize)) {
1277 if ((clockSource == ssInfo->ucClockIndication) &&
1278 ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1279 entry_found = 1;
1280 break;
1281 }
1282
1283 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1284 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1285 }
1286
1287 if (entry_found) {
1288 ssEntry->speed_spectrum_percentage =
1289 le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1290 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1291
1292 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1293 (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1294 (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1295 ssEntry->speed_spectrum_rate /= 100;
1296 }
1297
1298 switch (ssInfo->ucSpreadSpectrumMode) {
1299 case 0:
1300 ssEntry->speed_spectrum_mode =
1301 pp_atomctrl_spread_spectrum_mode_down;
1302 break;
1303 case 1:
1304 ssEntry->speed_spectrum_mode =
1305 pp_atomctrl_spread_spectrum_mode_center;
1306 break;
1307 default:
1308 ssEntry->speed_spectrum_mode =
1309 pp_atomctrl_spread_spectrum_mode_down;
1310 break;
1311 }
1312 }
1313
1314 return entry_found ? 0 : 1;
1315 }
1316
1317 /*
1318 * Get the memory clock spread spectrum info
1319 */
atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,pp_atomctrl_internal_ss_info * ssInfo)1320 int atomctrl_get_memory_clock_spread_spectrum(
1321 struct pp_hwmgr *hwmgr,
1322 const uint32_t memory_clock,
1323 pp_atomctrl_internal_ss_info *ssInfo)
1324 {
1325 return asic_internal_ss_get_ss_asignment(hwmgr,
1326 ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1327 }
1328
1329 /*
1330 * Get the engine clock spread spectrum info
1331 */
atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t engine_clock,pp_atomctrl_internal_ss_info * ssInfo)1332 int atomctrl_get_engine_clock_spread_spectrum(
1333 struct pp_hwmgr *hwmgr,
1334 const uint32_t engine_clock,
1335 pp_atomctrl_internal_ss_info *ssInfo)
1336 {
1337 return asic_internal_ss_get_ss_asignment(hwmgr,
1338 ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1339 }
1340
atomctrl_read_efuse(struct pp_hwmgr * hwmgr,uint16_t start_index,uint16_t end_index,uint32_t * efuse)1341 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1342 uint16_t end_index, uint32_t *efuse)
1343 {
1344 struct amdgpu_device *adev = hwmgr->adev;
1345 uint32_t mask;
1346 int result;
1347 READ_EFUSE_VALUE_PARAMETER efuse_param;
1348
1349 if ((end_index - start_index) == 31)
1350 mask = 0xFFFFFFFF;
1351 else
1352 mask = (1 << ((end_index - start_index) + 1)) - 1;
1353
1354 efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1355 efuse_param.sEfuse.ucBitShift = (uint8_t)
1356 (start_index - ((start_index / 32) * 32));
1357 efuse_param.sEfuse.ucBitLength = (uint8_t)
1358 ((end_index - start_index) + 1);
1359
1360 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1361 GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1362 (uint32_t *)&efuse_param);
1363 *efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1364
1365 return result;
1366 }
1367
atomctrl_set_ac_timing_ai(struct pp_hwmgr * hwmgr,uint32_t memory_clock,uint8_t level)1368 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1369 uint8_t level)
1370 {
1371 struct amdgpu_device *adev = hwmgr->adev;
1372 DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1373 int result;
1374
1375 memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1376 memory_clock & SET_CLOCK_FREQ_MASK;
1377 memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1378 ADJUST_MC_SETTING_PARAM;
1379 memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1380
1381 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1382 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1383 (uint32_t *)&memory_clock_parameters);
1384
1385 return result;
1386 }
1387
atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint32_t * voltage)1388 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1389 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1390 {
1391 struct amdgpu_device *adev = hwmgr->adev;
1392 int result;
1393 GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1394
1395 get_voltage_info_param_space.ucVoltageType = voltage_type;
1396 get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1397 get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1398 get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1399
1400 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1401 GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1402 (uint32_t *)&get_voltage_info_param_space);
1403
1404 *voltage = result ? 0 :
1405 le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1406
1407 return result;
1408 }
1409
atomctrl_get_smc_sclk_range_table(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl_sclk_range_table * table)1410 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1411 {
1412
1413 int i;
1414 u8 frev, crev;
1415 u16 size;
1416
1417 ATOM_SMU_INFO_V2_1 *psmu_info =
1418 (ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1419 GetIndexIntoMasterTable(DATA, SMU_Info),
1420 &size, &frev, &crev);
1421
1422
1423 for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1424 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1425 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1426 table->entry[i].usFcw_pcc =
1427 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1428 table->entry[i].usFcw_trans_upper =
1429 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1430 table->entry[i].usRcw_trans_lower =
1431 le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1432 }
1433
1434 return 0;
1435 }
1436
atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr * hwmgr,uint8_t * shared_rail)1437 int atomctrl_get_vddc_shared_railinfo(struct pp_hwmgr *hwmgr, uint8_t *shared_rail)
1438 {
1439 ATOM_SMU_INFO_V2_1 *psmu_info =
1440 (ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1441 GetIndexIntoMasterTable(DATA, SMU_Info),
1442 NULL, NULL, NULL);
1443 if (!psmu_info)
1444 return -1;
1445
1446 *shared_rail = psmu_info->ucSharePowerSource;
1447
1448 return 0;
1449 }
1450
atomctrl_get_avfs_information(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl__avfs_parameters * param)1451 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1452 struct pp_atom_ctrl__avfs_parameters *param)
1453 {
1454 ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1455
1456 if (param == NULL)
1457 return -EINVAL;
1458
1459 profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1460 smu_atom_get_data_table(hwmgr->adev,
1461 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1462 NULL, NULL, NULL);
1463 if (!profile)
1464 return -1;
1465
1466 param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1467 param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1468 param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1469 param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1470 param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1471 param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1472 param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1473 param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1474 param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1475 param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1476 param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1477 param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1478 param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1479 param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1480 param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1481 param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1482 param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1483 param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1484 param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1485 param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1486 param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1487 param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1488 param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1489 param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1490 param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1491
1492 return 0;
1493 }
1494
atomctrl_get_svi2_info(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t * svd_gpio_id,uint8_t * svc_gpio_id,uint16_t * load_line)1495 int atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1496 uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1497 uint16_t *load_line)
1498 {
1499 ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1500 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1501
1502 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1503
1504 PP_ASSERT_WITH_CODE((NULL != voltage_info),
1505 "Could not find Voltage Table in BIOS.", return -EINVAL);
1506
1507 voltage_object = atomctrl_lookup_voltage_type_v3
1508 (voltage_info, voltage_type, VOLTAGE_OBJ_SVID2);
1509
1510 *svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1511 *svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1512 *load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1513
1514 return 0;
1515 }
1516
atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr * hwmgr,uint16_t * virtual_voltage_id)1517 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1518 {
1519 struct amdgpu_device *adev = hwmgr->adev;
1520 SET_VOLTAGE_PS_ALLOCATION allocation;
1521 SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1522 (SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1523 int result;
1524
1525 voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1526
1527 result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1528 GetIndexIntoMasterTable(COMMAND, SetVoltage),
1529 (uint32_t *)voltage_parameters);
1530
1531 *virtual_voltage_id = voltage_parameters->usVoltageLevel;
1532
1533 return result;
1534 }
1535
atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr * hwmgr,uint16_t * vddc,uint16_t * vddci,uint16_t virtual_voltage_id,uint16_t efuse_voltage_id)1536 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1537 uint16_t *vddc, uint16_t *vddci,
1538 uint16_t virtual_voltage_id,
1539 uint16_t efuse_voltage_id)
1540 {
1541 int i, j;
1542 int ix;
1543 u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1544 ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1545
1546 *vddc = 0;
1547 *vddci = 0;
1548
1549 ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1550
1551 profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1552 smu_atom_get_data_table(hwmgr->adev,
1553 ix,
1554 NULL, NULL, NULL);
1555 if (!profile)
1556 return -EINVAL;
1557
1558 if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1559 (profile->asHeader.ucTableContentRevision >= 1) &&
1560 (profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1561 leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1562 vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1563 vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1564 if (profile->ucElbVDDC_Num > 0) {
1565 for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1566 if (vddc_id_buf[i] == virtual_voltage_id) {
1567 for (j = 0; j < profile->ucLeakageBinNum; j++) {
1568 if (efuse_voltage_id <= leakage_bin[j]) {
1569 *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1570 break;
1571 }
1572 }
1573 break;
1574 }
1575 }
1576 }
1577
1578 vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1579 vddci_buf = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1580 if (profile->ucElbVDDCI_Num > 0) {
1581 for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1582 if (vddci_id_buf[i] == virtual_voltage_id) {
1583 for (j = 0; j < profile->ucLeakageBinNum; j++) {
1584 if (efuse_voltage_id <= leakage_bin[j]) {
1585 *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1586 break;
1587 }
1588 }
1589 break;
1590 }
1591 }
1592 }
1593 }
1594
1595 return 0;
1596 }
1597
atomctrl_get_voltage_range(struct pp_hwmgr * hwmgr,uint32_t * max_vddc,uint32_t * min_vddc)1598 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1599 uint32_t *min_vddc)
1600 {
1601 void *profile;
1602
1603 profile = smu_atom_get_data_table(hwmgr->adev,
1604 GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1605 NULL, NULL, NULL);
1606
1607 if (profile) {
1608 switch (hwmgr->chip_id) {
1609 case CHIP_TONGA:
1610 case CHIP_FIJI:
1611 *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1612 *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1613 return;
1614 case CHIP_POLARIS11:
1615 case CHIP_POLARIS10:
1616 case CHIP_POLARIS12:
1617 *max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1618 *min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1619 return;
1620 default:
1621 break;
1622 }
1623 }
1624 *max_vddc = 0;
1625 *min_vddc = 0;
1626 }
1627
atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr * hwmgr,AtomCtrl_HiLoLeakageOffsetTable * table)1628 int atomctrl_get_edc_hilo_leakage_offset_table(struct pp_hwmgr *hwmgr,
1629 AtomCtrl_HiLoLeakageOffsetTable *table)
1630 {
1631 ATOM_GFX_INFO_V2_3 *gfxinfo = smu_atom_get_data_table(hwmgr->adev,
1632 GetIndexIntoMasterTable(DATA, GFX_Info),
1633 NULL, NULL, NULL);
1634 if (!gfxinfo)
1635 return -ENOENT;
1636
1637 table->usHiLoLeakageThreshold = gfxinfo->usHiLoLeakageThreshold;
1638 table->usEdcDidtLoDpm7TableOffset = gfxinfo->usEdcDidtLoDpm7TableOffset;
1639 table->usEdcDidtHiDpm7TableOffset = gfxinfo->usEdcDidtHiDpm7TableOffset;
1640
1641 return 0;
1642 }
1643
get_edc_leakage_table(struct pp_hwmgr * hwmgr,uint16_t offset)1644 static AtomCtrl_EDCLeakgeTable *get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1645 uint16_t offset)
1646 {
1647 void *table_address;
1648 char *temp;
1649
1650 table_address = smu_atom_get_data_table(hwmgr->adev,
1651 GetIndexIntoMasterTable(DATA, GFX_Info),
1652 NULL, NULL, NULL);
1653 if (!table_address)
1654 return NULL;
1655
1656 temp = (char *)table_address;
1657 table_address += offset;
1658
1659 return (AtomCtrl_EDCLeakgeTable *)temp;
1660 }
1661
atomctrl_get_edc_leakage_table(struct pp_hwmgr * hwmgr,AtomCtrl_EDCLeakgeTable * table,uint16_t offset)1662 int atomctrl_get_edc_leakage_table(struct pp_hwmgr *hwmgr,
1663 AtomCtrl_EDCLeakgeTable *table,
1664 uint16_t offset)
1665 {
1666 uint32_t length, i;
1667 AtomCtrl_EDCLeakgeTable *leakage_table =
1668 get_edc_leakage_table(hwmgr, offset);
1669
1670 if (!leakage_table)
1671 return -ENOENT;
1672
1673 length = sizeof(leakage_table->DIDT_REG) /
1674 sizeof(leakage_table->DIDT_REG[0]);
1675 for (i = 0; i < length; i++)
1676 table->DIDT_REG[i] = leakage_table->DIDT_REG[i];
1677
1678 return 0;
1679 }
1680