1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq,
54 struct ieee80211_sta *sta);
55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
56 struct ath_txq *txq, struct list_head *bf_q,
57 struct ieee80211_sta *sta,
58 struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 struct ath_tx_status *ts, int nframes, int nbad,
63 int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 struct ath_buf *bf);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 struct ath_txq *txq,
68 struct ath_atx_tid *tid,
69 struct sk_buff *skb);
70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
71 struct ath_tx_control *txctl);
72
73 enum {
74 MCS_HT20,
75 MCS_HT20_SGI,
76 MCS_HT40,
77 MCS_HT40_SGI,
78 };
79
80 /*********************/
81 /* Aggregation logic */
82 /*********************/
83
ath_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb)84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
85 {
86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
87 struct ieee80211_sta *sta = info->status.status_driver_data[0];
88
89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
90 IEEE80211_TX_STATUS_EOSP)) {
91 ieee80211_tx_status(hw, skb);
92 return;
93 }
94
95 if (sta)
96 ieee80211_tx_status_noskb(hw, sta, info);
97
98 dev_kfree_skb(skb);
99 }
100
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
102 __releases(&txq->axq_lock)
103 {
104 struct ieee80211_hw *hw = sc->hw;
105 struct sk_buff_head q;
106 struct sk_buff *skb;
107
108 __skb_queue_head_init(&q);
109 skb_queue_splice_init(&txq->complete_q, &q);
110 spin_unlock_bh(&txq->axq_lock);
111
112 while ((skb = __skb_dequeue(&q)))
113 ath_tx_status(hw, skb);
114 }
115
ath_tx_queue_tid(struct ath_softc * sc,struct ath_atx_tid * tid)116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
117 {
118 struct ieee80211_txq *queue =
119 container_of((void *)tid, struct ieee80211_txq, drv_priv);
120
121 ieee80211_schedule_txq(sc->hw, queue);
122 }
123
ath9k_wake_tx_queue(struct ieee80211_hw * hw,struct ieee80211_txq * queue)124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
125 {
126 struct ath_softc *sc = hw->priv;
127 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
128 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
129 struct ath_txq *txq = tid->txq;
130
131 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
132 queue->sta ? queue->sta->addr : queue->vif->addr,
133 tid->tidno);
134
135 ath_txq_lock(sc, txq);
136 ath_txq_schedule(sc, txq);
137 ath_txq_unlock(sc, txq);
138 }
139
get_frame_info(struct sk_buff * skb)140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
141 {
142 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
143 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
144 sizeof(tx_info->status.status_driver_data));
145 return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
146 }
147
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
149 {
150 if (!tid->an->sta)
151 return;
152
153 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
154 seqno << IEEE80211_SEQ_SEQ_SHIFT);
155 }
156
ath_merge_ratetbl(struct ieee80211_sta * sta,struct ath_buf * bf,struct ieee80211_tx_info * tx_info)157 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
158 struct ieee80211_tx_info *tx_info)
159 {
160 struct ieee80211_sta_rates *ratetbl;
161 u8 i;
162
163 if (!sta)
164 return false;
165
166 ratetbl = rcu_dereference(sta->rates);
167 if (!ratetbl)
168 return false;
169
170 if (tx_info->control.rates[0].idx < 0 ||
171 tx_info->control.rates[0].count == 0)
172 {
173 i = 0;
174 } else {
175 bf->rates[0] = tx_info->control.rates[0];
176 i = 1;
177 }
178
179 for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
180 bf->rates[i].idx = ratetbl->rate[i].idx;
181 bf->rates[i].flags = ratetbl->rate[i].flags;
182 if (tx_info->control.use_rts)
183 bf->rates[i].count = ratetbl->rate[i].count_rts;
184 else if (tx_info->control.use_cts_prot)
185 bf->rates[i].count = ratetbl->rate[i].count_cts;
186 else
187 bf->rates[i].count = ratetbl->rate[i].count;
188 }
189
190 return true;
191 }
192
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)193 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
194 struct ath_buf *bf)
195 {
196 struct ieee80211_tx_info *tx_info;
197
198 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
199
200 if (!ath_merge_ratetbl(sta, bf, tx_info))
201 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
202 ARRAY_SIZE(bf->rates));
203 }
204
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)205 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
206 struct sk_buff *skb)
207 {
208 struct ath_frame_info *fi = get_frame_info(skb);
209 int q = fi->txq;
210
211 if (q < 0)
212 return;
213
214 txq = sc->tx.txq_map[q];
215 if (WARN_ON(--txq->pending_frames < 0))
216 txq->pending_frames = 0;
217
218 }
219
220 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)221 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
222 {
223 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
224 return ATH_AN_2_TID(an, tidno);
225 }
226
227 static int
ath_tid_pull(struct ath_atx_tid * tid,struct sk_buff ** skbuf)228 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
229 {
230 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
231 struct ath_softc *sc = tid->an->sc;
232 struct ieee80211_hw *hw = sc->hw;
233 struct ath_tx_control txctl = {
234 .txq = tid->txq,
235 .sta = tid->an->sta,
236 };
237 struct sk_buff *skb;
238 struct ath_frame_info *fi;
239 int q, ret;
240
241 skb = ieee80211_tx_dequeue(hw, txq);
242 if (!skb)
243 return -ENOENT;
244
245 ret = ath_tx_prepare(hw, skb, &txctl);
246 if (ret) {
247 ieee80211_free_txskb(hw, skb);
248 return ret;
249 }
250
251 q = skb_get_queue_mapping(skb);
252 if (tid->txq == sc->tx.txq_map[q]) {
253 fi = get_frame_info(skb);
254 fi->txq = q;
255 ++tid->txq->pending_frames;
256 }
257
258 *skbuf = skb;
259 return 0;
260 }
261
ath_tid_dequeue(struct ath_atx_tid * tid,struct sk_buff ** skb)262 static int ath_tid_dequeue(struct ath_atx_tid *tid,
263 struct sk_buff **skb)
264 {
265 int ret = 0;
266 *skb = __skb_dequeue(&tid->retry_q);
267 if (!*skb)
268 ret = ath_tid_pull(tid, skb);
269
270 return ret;
271 }
272
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)273 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
274 {
275 struct ath_txq *txq = tid->txq;
276 struct sk_buff *skb;
277 struct ath_buf *bf;
278 struct list_head bf_head;
279 struct ath_tx_status ts;
280 struct ath_frame_info *fi;
281 bool sendbar = false;
282
283 INIT_LIST_HEAD(&bf_head);
284
285 memset(&ts, 0, sizeof(ts));
286
287 while ((skb = __skb_dequeue(&tid->retry_q))) {
288 fi = get_frame_info(skb);
289 bf = fi->bf;
290 if (!bf) {
291 ath_txq_skb_done(sc, txq, skb);
292 ieee80211_free_txskb(sc->hw, skb);
293 continue;
294 }
295
296 if (fi->baw_tracked) {
297 ath_tx_update_baw(sc, tid, bf);
298 sendbar = true;
299 }
300
301 list_add_tail(&bf->list, &bf_head);
302 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
303 }
304
305 if (sendbar) {
306 ath_txq_unlock(sc, txq);
307 ath_send_bar(tid, tid->seq_start);
308 ath_txq_lock(sc, txq);
309 }
310 }
311
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)312 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
313 struct ath_buf *bf)
314 {
315 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
316 u16 seqno = bf->bf_state.seqno;
317 int index, cindex;
318
319 if (!fi->baw_tracked)
320 return;
321
322 index = ATH_BA_INDEX(tid->seq_start, seqno);
323 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
324
325 __clear_bit(cindex, tid->tx_buf);
326
327 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
328 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
329 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
330 if (tid->bar_index >= 0)
331 tid->bar_index--;
332 }
333 }
334
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)335 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
336 struct ath_buf *bf)
337 {
338 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
339 u16 seqno = bf->bf_state.seqno;
340 int index, cindex;
341
342 if (fi->baw_tracked)
343 return;
344
345 index = ATH_BA_INDEX(tid->seq_start, seqno);
346 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
347 __set_bit(cindex, tid->tx_buf);
348 fi->baw_tracked = 1;
349
350 if (index >= ((tid->baw_tail - tid->baw_head) &
351 (ATH_TID_MAX_BUFS - 1))) {
352 tid->baw_tail = cindex;
353 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
354 }
355 }
356
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)357 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
358 struct ath_atx_tid *tid)
359
360 {
361 struct sk_buff *skb;
362 struct ath_buf *bf;
363 struct list_head bf_head;
364 struct ath_tx_status ts;
365 struct ath_frame_info *fi;
366 int ret;
367
368 memset(&ts, 0, sizeof(ts));
369 INIT_LIST_HEAD(&bf_head);
370
371 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
372 fi = get_frame_info(skb);
373 bf = fi->bf;
374
375 if (!bf) {
376 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
377 continue;
378 }
379
380 list_add_tail(&bf->list, &bf_head);
381 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
382 }
383 }
384
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)385 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
386 struct sk_buff *skb, int count)
387 {
388 struct ath_frame_info *fi = get_frame_info(skb);
389 struct ath_buf *bf = fi->bf;
390 struct ieee80211_hdr *hdr;
391 int prev = fi->retries;
392
393 TX_STAT_INC(sc, txq->axq_qnum, a_retries);
394 fi->retries += count;
395
396 if (prev > 0)
397 return;
398
399 hdr = (struct ieee80211_hdr *)skb->data;
400 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
401 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
402 sizeof(*hdr), DMA_TO_DEVICE);
403 }
404
ath_tx_get_buffer(struct ath_softc * sc)405 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
406 {
407 struct ath_buf *bf = NULL;
408
409 spin_lock_bh(&sc->tx.txbuflock);
410
411 if (unlikely(list_empty(&sc->tx.txbuf))) {
412 spin_unlock_bh(&sc->tx.txbuflock);
413 return NULL;
414 }
415
416 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
417 list_del(&bf->list);
418
419 spin_unlock_bh(&sc->tx.txbuflock);
420
421 return bf;
422 }
423
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)424 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
425 {
426 spin_lock_bh(&sc->tx.txbuflock);
427 list_add_tail(&bf->list, &sc->tx.txbuf);
428 spin_unlock_bh(&sc->tx.txbuflock);
429 }
430
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)431 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
432 {
433 struct ath_buf *tbf;
434
435 tbf = ath_tx_get_buffer(sc);
436 if (WARN_ON(!tbf))
437 return NULL;
438
439 ATH_TXBUF_RESET(tbf);
440
441 tbf->bf_mpdu = bf->bf_mpdu;
442 tbf->bf_buf_addr = bf->bf_buf_addr;
443 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
444 tbf->bf_state = bf->bf_state;
445 tbf->bf_state.stale = false;
446
447 return tbf;
448 }
449
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)450 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
451 struct ath_tx_status *ts, int txok,
452 int *nframes, int *nbad)
453 {
454 u16 seq_st = 0;
455 u32 ba[WME_BA_BMP_SIZE >> 5];
456 int ba_index;
457 int isaggr = 0;
458
459 *nbad = 0;
460 *nframes = 0;
461
462 isaggr = bf_isaggr(bf);
463 if (isaggr) {
464 seq_st = ts->ts_seqnum;
465 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
466 }
467
468 while (bf) {
469 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
470
471 (*nframes)++;
472 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
473 (*nbad)++;
474
475 bf = bf->bf_next;
476 }
477 }
478
479
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_atx_tid * tid,struct ath_tx_status * ts,int txok)480 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
481 struct ath_buf *bf, struct list_head *bf_q,
482 struct ieee80211_sta *sta,
483 struct ath_atx_tid *tid,
484 struct ath_tx_status *ts, int txok)
485 {
486 struct ath_node *an = NULL;
487 struct sk_buff *skb;
488 struct ieee80211_tx_info *tx_info;
489 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
490 struct list_head bf_head;
491 struct sk_buff_head bf_pending;
492 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
493 u32 ba[WME_BA_BMP_SIZE >> 5];
494 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
495 bool rc_update = true, isba;
496 struct ieee80211_tx_rate rates[4];
497 struct ath_frame_info *fi;
498 int nframes;
499 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
500 int i, retries;
501 int bar_index = -1;
502
503 skb = bf->bf_mpdu;
504 tx_info = IEEE80211_SKB_CB(skb);
505
506 memcpy(rates, bf->rates, sizeof(rates));
507
508 retries = ts->ts_longretry + 1;
509 for (i = 0; i < ts->ts_rateindex; i++)
510 retries += rates[i].count;
511
512 if (!sta) {
513 INIT_LIST_HEAD(&bf_head);
514 while (bf) {
515 bf_next = bf->bf_next;
516
517 if (!bf->bf_state.stale || bf_next != NULL)
518 list_move_tail(&bf->list, &bf_head);
519
520 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
521
522 bf = bf_next;
523 }
524 return;
525 }
526
527 an = (struct ath_node *)sta->drv_priv;
528 seq_first = tid->seq_start;
529 isba = ts->ts_flags & ATH9K_TX_BA;
530
531 /*
532 * The hardware occasionally sends a tx status for the wrong TID.
533 * In this case, the BA status cannot be considered valid and all
534 * subframes need to be retransmitted
535 *
536 * Only BlockAcks have a TID and therefore normal Acks cannot be
537 * checked
538 */
539 if (isba && tid->tidno != ts->tid)
540 txok = false;
541
542 isaggr = bf_isaggr(bf);
543 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
544
545 if (isaggr && txok) {
546 if (ts->ts_flags & ATH9K_TX_BA) {
547 seq_st = ts->ts_seqnum;
548 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
549 } else {
550 /*
551 * AR5416 can become deaf/mute when BA
552 * issue happens. Chip needs to be reset.
553 * But AP code may have sychronization issues
554 * when perform internal reset in this routine.
555 * Only enable reset in STA mode for now.
556 */
557 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
558 needreset = 1;
559 }
560 }
561
562 __skb_queue_head_init(&bf_pending);
563
564 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
565 while (bf) {
566 u16 seqno = bf->bf_state.seqno;
567
568 txfail = txpending = sendbar = 0;
569 bf_next = bf->bf_next;
570
571 skb = bf->bf_mpdu;
572 tx_info = IEEE80211_SKB_CB(skb);
573 fi = get_frame_info(skb);
574
575 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
576 !tid->active) {
577 /*
578 * Outside of the current BlockAck window,
579 * maybe part of a previous session
580 */
581 txfail = 1;
582 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
583 /* transmit completion, subframe is
584 * acked by block ack */
585 acked_cnt++;
586 } else if (!isaggr && txok) {
587 /* transmit completion */
588 acked_cnt++;
589 } else if (flush) {
590 txpending = 1;
591 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
592 if (txok || !an->sleeping)
593 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
594 retries);
595
596 txpending = 1;
597 } else {
598 txfail = 1;
599 txfail_cnt++;
600 bar_index = max_t(int, bar_index,
601 ATH_BA_INDEX(seq_first, seqno));
602 }
603
604 /*
605 * Make sure the last desc is reclaimed if it
606 * not a holding desc.
607 */
608 INIT_LIST_HEAD(&bf_head);
609 if (bf_next != NULL || !bf_last->bf_state.stale)
610 list_move_tail(&bf->list, &bf_head);
611
612 if (!txpending) {
613 /*
614 * complete the acked-ones/xretried ones; update
615 * block-ack window
616 */
617 ath_tx_update_baw(sc, tid, bf);
618
619 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
620 memcpy(tx_info->control.rates, rates, sizeof(rates));
621 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
622 rc_update = false;
623 if (bf == bf->bf_lastbf)
624 ath_dynack_sample_tx_ts(sc->sc_ah,
625 bf->bf_mpdu,
626 ts, sta);
627 }
628
629 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
630 !txfail);
631 } else {
632 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
633 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
634 ieee80211_sta_eosp(sta);
635 }
636 /* retry the un-acked ones */
637 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
638 struct ath_buf *tbf;
639
640 tbf = ath_clone_txbuf(sc, bf_last);
641 /*
642 * Update tx baw and complete the
643 * frame with failed status if we
644 * run out of tx buf.
645 */
646 if (!tbf) {
647 ath_tx_update_baw(sc, tid, bf);
648
649 ath_tx_complete_buf(sc, bf, txq,
650 &bf_head, NULL, ts,
651 0);
652 bar_index = max_t(int, bar_index,
653 ATH_BA_INDEX(seq_first, seqno));
654 break;
655 }
656
657 fi->bf = tbf;
658 }
659
660 /*
661 * Put this buffer to the temporary pending
662 * queue to retain ordering
663 */
664 __skb_queue_tail(&bf_pending, skb);
665 }
666
667 bf = bf_next;
668 }
669
670 /* prepend un-acked frames to the beginning of the pending frame queue */
671 if (!skb_queue_empty(&bf_pending)) {
672 if (an->sleeping)
673 ieee80211_sta_set_buffered(sta, tid->tidno, true);
674
675 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
676 if (!an->sleeping) {
677 ath_tx_queue_tid(sc, tid);
678 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
679 tid->clear_ps_filter = true;
680 }
681 }
682
683 if (bar_index >= 0) {
684 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
685
686 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
687 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
688
689 ath_txq_unlock(sc, txq);
690 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
691 ath_txq_lock(sc, txq);
692 }
693
694 if (needreset)
695 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
696 }
697
bf_is_ampdu_not_probing(struct ath_buf * bf)698 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
699 {
700 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
701 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
702 }
703
ath_tx_count_airtime(struct ath_softc * sc,struct ieee80211_sta * sta,struct ath_buf * bf,struct ath_tx_status * ts,u8 tid)704 static void ath_tx_count_airtime(struct ath_softc *sc,
705 struct ieee80211_sta *sta,
706 struct ath_buf *bf,
707 struct ath_tx_status *ts,
708 u8 tid)
709 {
710 u32 airtime = 0;
711 int i;
712
713 airtime += ts->duration * (ts->ts_longretry + 1);
714 for(i = 0; i < ts->ts_rateindex; i++) {
715 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
716 airtime += rate_dur * bf->rates[i].count;
717 }
718
719 ieee80211_sta_register_airtime(sta, tid, airtime, 0);
720 }
721
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)722 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
723 struct ath_tx_status *ts, struct ath_buf *bf,
724 struct list_head *bf_head)
725 {
726 struct ieee80211_hw *hw = sc->hw;
727 struct ieee80211_tx_info *info;
728 struct ieee80211_sta *sta;
729 struct ieee80211_hdr *hdr;
730 struct ath_atx_tid *tid = NULL;
731 bool txok, flush;
732
733 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
734 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
735 txq->axq_tx_inprogress = false;
736
737 txq->axq_depth--;
738 if (bf_is_ampdu_not_probing(bf))
739 txq->axq_ampdu_depth--;
740
741 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
742 ts->ts_rateindex);
743
744 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
745 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
746 if (sta) {
747 struct ath_node *an = (struct ath_node *)sta->drv_priv;
748 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
749 ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
750 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
751 tid->clear_ps_filter = true;
752 }
753
754 if (!bf_isampdu(bf)) {
755 if (!flush) {
756 info = IEEE80211_SKB_CB(bf->bf_mpdu);
757 memcpy(info->control.rates, bf->rates,
758 sizeof(info->control.rates));
759 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
760 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
761 sta);
762 }
763 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
764 } else
765 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
766
767 if (!flush)
768 ath_txq_schedule(sc, txq);
769 }
770
ath_lookup_legacy(struct ath_buf * bf)771 static bool ath_lookup_legacy(struct ath_buf *bf)
772 {
773 struct sk_buff *skb;
774 struct ieee80211_tx_info *tx_info;
775 struct ieee80211_tx_rate *rates;
776 int i;
777
778 skb = bf->bf_mpdu;
779 tx_info = IEEE80211_SKB_CB(skb);
780 rates = tx_info->control.rates;
781
782 for (i = 0; i < 4; i++) {
783 if (!rates[i].count || rates[i].idx < 0)
784 break;
785
786 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
787 return true;
788 }
789
790 return false;
791 }
792
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)793 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
794 struct ath_atx_tid *tid)
795 {
796 struct sk_buff *skb;
797 struct ieee80211_tx_info *tx_info;
798 struct ieee80211_tx_rate *rates;
799 u32 max_4ms_framelen, frmlen;
800 u16 aggr_limit, bt_aggr_limit, legacy = 0;
801 int q = tid->txq->mac80211_qnum;
802 int i;
803
804 skb = bf->bf_mpdu;
805 tx_info = IEEE80211_SKB_CB(skb);
806 rates = bf->rates;
807
808 /*
809 * Find the lowest frame length among the rate series that will have a
810 * 4ms (or TXOP limited) transmit duration.
811 */
812 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
813
814 for (i = 0; i < 4; i++) {
815 int modeidx;
816
817 if (!rates[i].count)
818 continue;
819
820 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
821 legacy = 1;
822 break;
823 }
824
825 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
826 modeidx = MCS_HT40;
827 else
828 modeidx = MCS_HT20;
829
830 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
831 modeidx++;
832
833 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
834 max_4ms_framelen = min(max_4ms_framelen, frmlen);
835 }
836
837 /*
838 * limit aggregate size by the minimum rate if rate selected is
839 * not a probe rate, if rate selected is a probe rate then
840 * avoid aggregation of this packet.
841 */
842 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
843 return 0;
844
845 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
846
847 /*
848 * Override the default aggregation limit for BTCOEX.
849 */
850 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
851 if (bt_aggr_limit)
852 aggr_limit = bt_aggr_limit;
853
854 if (tid->an->maxampdu)
855 aggr_limit = min(aggr_limit, tid->an->maxampdu);
856
857 return aggr_limit;
858 }
859
860 /*
861 * Returns the number of delimiters to be added to
862 * meet the minimum required mpdudensity.
863 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)864 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
865 struct ath_buf *bf, u16 frmlen,
866 bool first_subfrm)
867 {
868 #define FIRST_DESC_NDELIMS 60
869 u32 nsymbits, nsymbols;
870 u16 minlen;
871 u8 flags, rix;
872 int width, streams, half_gi, ndelim, mindelim;
873 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
874
875 /* Select standard number of delimiters based on frame length alone */
876 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
877
878 /*
879 * If encryption enabled, hardware requires some more padding between
880 * subframes.
881 * TODO - this could be improved to be dependent on the rate.
882 * The hardware can keep up at lower rates, but not higher rates
883 */
884 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
885 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
886 ndelim += ATH_AGGR_ENCRYPTDELIM;
887
888 /*
889 * Add delimiter when using RTS/CTS with aggregation
890 * and non enterprise AR9003 card
891 */
892 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
893 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
894 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
895
896 /*
897 * Convert desired mpdu density from microeconds to bytes based
898 * on highest rate in rate series (i.e. first rate) to determine
899 * required minimum length for subframe. Take into account
900 * whether high rate is 20 or 40Mhz and half or full GI.
901 *
902 * If there is no mpdu density restriction, no further calculation
903 * is needed.
904 */
905
906 if (tid->an->mpdudensity == 0)
907 return ndelim;
908
909 rix = bf->rates[0].idx;
910 flags = bf->rates[0].flags;
911 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
912 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
913
914 if (half_gi)
915 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
916 else
917 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
918
919 if (nsymbols == 0)
920 nsymbols = 1;
921
922 streams = HT_RC_2_STREAMS(rix);
923 nsymbits = bits_per_symbol[rix % 8][width] * streams;
924 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
925
926 if (frmlen < minlen) {
927 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
928 ndelim = max(mindelim, ndelim);
929 }
930
931 return ndelim;
932 }
933
934 static int
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct ath_buf ** buf)935 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
936 struct ath_atx_tid *tid, struct ath_buf **buf)
937 {
938 struct ieee80211_tx_info *tx_info;
939 struct ath_frame_info *fi;
940 struct ath_buf *bf;
941 struct sk_buff *skb, *first_skb = NULL;
942 u16 seqno;
943 int ret;
944
945 while (1) {
946 ret = ath_tid_dequeue(tid, &skb);
947 if (ret < 0)
948 return ret;
949
950 fi = get_frame_info(skb);
951 bf = fi->bf;
952 if (!fi->bf)
953 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
954 else
955 bf->bf_state.stale = false;
956
957 if (!bf) {
958 ath_txq_skb_done(sc, txq, skb);
959 ieee80211_free_txskb(sc->hw, skb);
960 continue;
961 }
962
963 bf->bf_next = NULL;
964 bf->bf_lastbf = bf;
965
966 tx_info = IEEE80211_SKB_CB(skb);
967 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
968 IEEE80211_TX_STATUS_EOSP);
969
970 /*
971 * No aggregation session is running, but there may be frames
972 * from a previous session or a failed attempt in the queue.
973 * Send them out as normal data frames
974 */
975 if (!tid->active)
976 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
977
978 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
979 bf->bf_state.bf_type = 0;
980 break;
981 }
982
983 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
984 seqno = bf->bf_state.seqno;
985
986 /* do not step over block-ack window */
987 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
988 __skb_queue_tail(&tid->retry_q, skb);
989
990 /* If there are other skbs in the retry q, they are
991 * probably within the BAW, so loop immediately to get
992 * one of them. Otherwise the queue can get stuck. */
993 if (!skb_queue_is_first(&tid->retry_q, skb) &&
994 !WARN_ON(skb == first_skb)) {
995 if(!first_skb) /* infinite loop prevention */
996 first_skb = skb;
997 continue;
998 }
999 return -EINPROGRESS;
1000 }
1001
1002 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1003 struct ath_tx_status ts = {};
1004 struct list_head bf_head;
1005
1006 INIT_LIST_HEAD(&bf_head);
1007 list_add(&bf->list, &bf_head);
1008 ath_tx_update_baw(sc, tid, bf);
1009 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1010 continue;
1011 }
1012
1013 if (bf_isampdu(bf))
1014 ath_tx_addto_baw(sc, tid, bf);
1015
1016 break;
1017 }
1018
1019 *buf = bf;
1020 return 0;
1021 }
1022
1023 static int
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1024 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1025 struct ath_atx_tid *tid, struct list_head *bf_q,
1026 struct ath_buf *bf_first)
1027 {
1028 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1029 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1030 int nframes = 0, ndelim, ret;
1031 u16 aggr_limit = 0, al = 0, bpad = 0,
1032 al_delta, h_baw = tid->baw_size / 2;
1033 struct ieee80211_tx_info *tx_info;
1034 struct ath_frame_info *fi;
1035 struct sk_buff *skb;
1036
1037
1038 bf = bf_first;
1039 aggr_limit = ath_lookup_rate(sc, bf, tid);
1040
1041 while (bf)
1042 {
1043 skb = bf->bf_mpdu;
1044 fi = get_frame_info(skb);
1045
1046 /* do not exceed aggregation limit */
1047 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1048 if (nframes) {
1049 if (aggr_limit < al + bpad + al_delta ||
1050 ath_lookup_legacy(bf) || nframes >= h_baw)
1051 goto stop;
1052
1053 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1054 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1055 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1056 goto stop;
1057 }
1058
1059 /* add padding for previous frame to aggregation length */
1060 al += bpad + al_delta;
1061
1062 /*
1063 * Get the delimiters needed to meet the MPDU
1064 * density for this node.
1065 */
1066 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1067 !nframes);
1068 bpad = PADBYTES(al_delta) + (ndelim << 2);
1069
1070 nframes++;
1071 bf->bf_next = NULL;
1072
1073 /* link buffers of this frame to the aggregate */
1074 bf->bf_state.ndelim = ndelim;
1075
1076 list_add_tail(&bf->list, bf_q);
1077 if (bf_prev)
1078 bf_prev->bf_next = bf;
1079
1080 bf_prev = bf;
1081
1082 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1083 if (ret < 0)
1084 break;
1085 }
1086 goto finish;
1087 stop:
1088 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1089 finish:
1090 bf = bf_first;
1091 bf->bf_lastbf = bf_prev;
1092
1093 if (bf == bf_prev) {
1094 al = get_frame_info(bf->bf_mpdu)->framelen;
1095 bf->bf_state.bf_type = BUF_AMPDU;
1096 } else {
1097 TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1098 }
1099
1100 return al;
1101 #undef PADBYTES
1102 }
1103
1104 /*
1105 * rix - rate index
1106 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1107 * width - 0 for 20 MHz, 1 for 40 MHz
1108 * half_gi - to use 4us v/s 3.6 us for symbol time
1109 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1110 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1111 int width, int half_gi, bool shortPreamble)
1112 {
1113 u32 nbits, nsymbits, duration, nsymbols;
1114 int streams;
1115
1116 /* find number of symbols: PLCP + data */
1117 streams = HT_RC_2_STREAMS(rix);
1118 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1119 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1120 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1121
1122 if (!half_gi)
1123 duration = SYMBOL_TIME(nsymbols);
1124 else
1125 duration = SYMBOL_TIME_HALFGI(nsymbols);
1126
1127 /* addup duration for legacy/ht training and signal fields */
1128 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1129
1130 return duration;
1131 }
1132
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1133 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1134 {
1135 int streams = HT_RC_2_STREAMS(mcs);
1136 int symbols, bits;
1137 int bytes = 0;
1138
1139 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1140 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1141 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1142 bits -= OFDM_PLCP_BITS;
1143 bytes = bits / 8;
1144 if (bytes > 65532)
1145 bytes = 65532;
1146
1147 return bytes;
1148 }
1149
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1150 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1151 {
1152 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1153 int mcs;
1154
1155 /* 4ms is the default (and maximum) duration */
1156 if (!txop || txop > 4096)
1157 txop = 4096;
1158
1159 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1160 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1161 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1162 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1163 for (mcs = 0; mcs < 32; mcs++) {
1164 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1165 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1166 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1167 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1168 }
1169 }
1170
ath_get_rate_txpower(struct ath_softc * sc,struct ath_buf * bf,u8 rateidx,bool is_40,bool is_cck)1171 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1172 u8 rateidx, bool is_40, bool is_cck)
1173 {
1174 u8 max_power;
1175 struct sk_buff *skb;
1176 struct ath_frame_info *fi;
1177 struct ieee80211_tx_info *info;
1178 struct ath_hw *ah = sc->sc_ah;
1179
1180 if (sc->tx99_state || !ah->tpc_enabled)
1181 return MAX_RATE_POWER;
1182
1183 skb = bf->bf_mpdu;
1184 fi = get_frame_info(skb);
1185 info = IEEE80211_SKB_CB(skb);
1186
1187 if (!AR_SREV_9300_20_OR_LATER(ah)) {
1188 int txpower = fi->tx_power;
1189
1190 if (is_40) {
1191 u8 power_ht40delta;
1192 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1193 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1194
1195 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1196 bool is_2ghz;
1197 struct modal_eep_header *pmodal;
1198
1199 is_2ghz = info->band == NL80211_BAND_2GHZ;
1200 pmodal = &eep->modalHeader[is_2ghz];
1201 power_ht40delta = pmodal->ht40PowerIncForPdadc;
1202 } else {
1203 power_ht40delta = 2;
1204 }
1205 txpower += power_ht40delta;
1206 }
1207
1208 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1209 AR_SREV_9271(ah)) {
1210 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1211 } else if (AR_SREV_9280_20_OR_LATER(ah)) {
1212 s8 power_offset;
1213
1214 power_offset = ah->eep_ops->get_eeprom(ah,
1215 EEP_PWR_TABLE_OFFSET);
1216 txpower -= 2 * power_offset;
1217 }
1218
1219 if (OLC_FOR_AR9280_20_LATER && is_cck)
1220 txpower -= 2;
1221
1222 txpower = max(txpower, 0);
1223 max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1224
1225 /* XXX: clamp minimum TX power at 1 for AR9160 since if
1226 * max_power is set to 0, frames are transmitted at max
1227 * TX power
1228 */
1229 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1230 max_power = 1;
1231 } else if (!bf->bf_state.bfs_paprd) {
1232 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC))
1233 max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1234 fi->tx_power);
1235 else
1236 max_power = min_t(u8, ah->tx_power[rateidx],
1237 fi->tx_power);
1238 } else {
1239 max_power = ah->paprd_training_power;
1240 }
1241
1242 return max_power;
1243 }
1244
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1245 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1246 struct ath_tx_info *info, int len, bool rts)
1247 {
1248 struct ath_hw *ah = sc->sc_ah;
1249 struct ath_common *common = ath9k_hw_common(ah);
1250 struct sk_buff *skb;
1251 struct ieee80211_tx_info *tx_info;
1252 struct ieee80211_tx_rate *rates;
1253 const struct ieee80211_rate *rate;
1254 struct ieee80211_hdr *hdr;
1255 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1256 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1257 int i;
1258 u8 rix = 0;
1259
1260 skb = bf->bf_mpdu;
1261 tx_info = IEEE80211_SKB_CB(skb);
1262 rates = bf->rates;
1263 hdr = (struct ieee80211_hdr *)skb->data;
1264
1265 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1266 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1267 info->rtscts_rate = fi->rtscts_rate;
1268
1269 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1270 bool is_40, is_sgi, is_sp, is_cck;
1271 int phy;
1272
1273 if (!rates[i].count || (rates[i].idx < 0))
1274 break;
1275
1276 rix = rates[i].idx;
1277 info->rates[i].Tries = rates[i].count;
1278
1279 /*
1280 * Handle RTS threshold for unaggregated HT frames.
1281 */
1282 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1283 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1284 unlikely(rts_thresh != (u32) -1)) {
1285 if (!rts_thresh || (len > rts_thresh))
1286 rts = true;
1287 }
1288
1289 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1290 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1291 info->flags |= ATH9K_TXDESC_RTSENA;
1292 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1293 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1294 info->flags |= ATH9K_TXDESC_CTSENA;
1295 }
1296
1297 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1298 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1299 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1300 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1301
1302 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1303 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1304 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1305
1306 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1307 /* MCS rates */
1308 info->rates[i].Rate = rix | 0x80;
1309 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1310 ah->txchainmask, info->rates[i].Rate);
1311 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1312 is_40, is_sgi, is_sp);
1313 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1314 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1315 if (rix >= 8 && fi->dyn_smps) {
1316 info->rates[i].RateFlags |=
1317 ATH9K_RATESERIES_RTS_CTS;
1318 info->flags |= ATH9K_TXDESC_CTSENA;
1319 }
1320
1321 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1322 is_40, false);
1323 continue;
1324 }
1325
1326 /* legacy rates */
1327 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1328 if ((tx_info->band == NL80211_BAND_2GHZ) &&
1329 !(rate->flags & IEEE80211_RATE_ERP_G))
1330 phy = WLAN_RC_PHY_CCK;
1331 else
1332 phy = WLAN_RC_PHY_OFDM;
1333
1334 info->rates[i].Rate = rate->hw_value;
1335 if (rate->hw_value_short) {
1336 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1337 info->rates[i].Rate |= rate->hw_value_short;
1338 } else {
1339 is_sp = false;
1340 }
1341
1342 if (bf->bf_state.bfs_paprd)
1343 info->rates[i].ChSel = ah->txchainmask;
1344 else
1345 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1346 ah->txchainmask, info->rates[i].Rate);
1347
1348 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1349 phy, rate->bitrate * 100, len, rix, is_sp);
1350
1351 is_cck = IS_CCK_RATE(info->rates[i].Rate);
1352 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1353 is_cck);
1354 }
1355
1356 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1357 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1358 info->flags &= ~ATH9K_TXDESC_RTSENA;
1359
1360 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1361 if (info->flags & ATH9K_TXDESC_RTSENA)
1362 info->flags &= ~ATH9K_TXDESC_CTSENA;
1363 }
1364
get_hw_packet_type(struct sk_buff * skb)1365 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1366 {
1367 struct ieee80211_hdr *hdr;
1368 enum ath9k_pkt_type htype;
1369 __le16 fc;
1370
1371 hdr = (struct ieee80211_hdr *)skb->data;
1372 fc = hdr->frame_control;
1373
1374 if (ieee80211_is_beacon(fc))
1375 htype = ATH9K_PKT_TYPE_BEACON;
1376 else if (ieee80211_is_probe_resp(fc))
1377 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1378 else if (ieee80211_is_atim(fc))
1379 htype = ATH9K_PKT_TYPE_ATIM;
1380 else if (ieee80211_is_pspoll(fc))
1381 htype = ATH9K_PKT_TYPE_PSPOLL;
1382 else
1383 htype = ATH9K_PKT_TYPE_NORMAL;
1384
1385 return htype;
1386 }
1387
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1388 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1389 struct ath_txq *txq, int len)
1390 {
1391 struct ath_hw *ah = sc->sc_ah;
1392 struct ath_buf *bf_first = NULL;
1393 struct ath_tx_info info;
1394 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1395 bool rts = false;
1396
1397 memset(&info, 0, sizeof(info));
1398 info.is_first = true;
1399 info.is_last = true;
1400 info.qcu = txq->axq_qnum;
1401
1402 while (bf) {
1403 struct sk_buff *skb = bf->bf_mpdu;
1404 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1405 struct ath_frame_info *fi = get_frame_info(skb);
1406 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1407
1408 info.type = get_hw_packet_type(skb);
1409 if (bf->bf_next)
1410 info.link = bf->bf_next->bf_daddr;
1411 else
1412 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1413
1414 if (!bf_first) {
1415 bf_first = bf;
1416
1417 if (!sc->tx99_state)
1418 info.flags = ATH9K_TXDESC_INTREQ;
1419 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1420 txq == sc->tx.uapsdq)
1421 info.flags |= ATH9K_TXDESC_CLRDMASK;
1422
1423 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1424 info.flags |= ATH9K_TXDESC_NOACK;
1425 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1426 info.flags |= ATH9K_TXDESC_LDPC;
1427
1428 if (bf->bf_state.bfs_paprd)
1429 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1430 ATH9K_TXDESC_PAPRD_S;
1431
1432 /*
1433 * mac80211 doesn't handle RTS threshold for HT because
1434 * the decision has to be taken based on AMPDU length
1435 * and aggregation is done entirely inside ath9k.
1436 * Set the RTS/CTS flag for the first subframe based
1437 * on the threshold.
1438 */
1439 if (aggr && (bf == bf_first) &&
1440 unlikely(rts_thresh != (u32) -1)) {
1441 /*
1442 * "len" is the size of the entire AMPDU.
1443 */
1444 if (!rts_thresh || (len > rts_thresh))
1445 rts = true;
1446 }
1447
1448 if (!aggr)
1449 len = fi->framelen;
1450
1451 ath_buf_set_rate(sc, bf, &info, len, rts);
1452 }
1453
1454 info.buf_addr[0] = bf->bf_buf_addr;
1455 info.buf_len[0] = skb->len;
1456 info.pkt_len = fi->framelen;
1457 info.keyix = fi->keyix;
1458 info.keytype = fi->keytype;
1459
1460 if (aggr) {
1461 if (bf == bf_first)
1462 info.aggr = AGGR_BUF_FIRST;
1463 else if (bf == bf_first->bf_lastbf)
1464 info.aggr = AGGR_BUF_LAST;
1465 else
1466 info.aggr = AGGR_BUF_MIDDLE;
1467
1468 info.ndelim = bf->bf_state.ndelim;
1469 info.aggr_len = len;
1470 }
1471
1472 if (bf == bf_first->bf_lastbf)
1473 bf_first = NULL;
1474
1475 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1476 bf = bf->bf_next;
1477 }
1478 }
1479
1480 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first)1481 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1482 struct ath_atx_tid *tid, struct list_head *bf_q,
1483 struct ath_buf *bf_first)
1484 {
1485 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1486 int nframes = 0, ret;
1487
1488 do {
1489 struct ieee80211_tx_info *tx_info;
1490
1491 nframes++;
1492 list_add_tail(&bf->list, bf_q);
1493 if (bf_prev)
1494 bf_prev->bf_next = bf;
1495 bf_prev = bf;
1496
1497 if (nframes >= 2)
1498 break;
1499
1500 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1501 if (ret < 0)
1502 break;
1503
1504 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1505 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1506 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1507 break;
1508 }
1509
1510 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1511 } while (1);
1512 }
1513
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)1514 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1515 struct ath_atx_tid *tid)
1516 {
1517 struct ath_buf *bf = NULL;
1518 struct ieee80211_tx_info *tx_info;
1519 struct list_head bf_q;
1520 int aggr_len = 0, ret;
1521 bool aggr;
1522
1523 INIT_LIST_HEAD(&bf_q);
1524
1525 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1526 if (ret < 0)
1527 return ret;
1528
1529 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1530 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1531 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1532 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1533 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1534 return -EBUSY;
1535 }
1536
1537 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1538 if (aggr)
1539 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1540 else
1541 ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1542
1543 if (list_empty(&bf_q))
1544 return -EAGAIN;
1545
1546 if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1547 tid->clear_ps_filter = false;
1548 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1549 }
1550
1551 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1552 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1553 return 0;
1554 }
1555
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1556 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1557 u16 tid, u16 *ssn)
1558 {
1559 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1560 struct ath_atx_tid *txtid;
1561 struct ath_txq *txq;
1562 struct ath_node *an;
1563 u8 density;
1564
1565 ath_dbg(common, XMIT, "%s called\n", __func__);
1566
1567 an = (struct ath_node *)sta->drv_priv;
1568 txtid = ATH_AN_2_TID(an, tid);
1569 txq = txtid->txq;
1570
1571 ath_txq_lock(sc, txq);
1572
1573 /* update ampdu factor/density, they may have changed. This may happen
1574 * in HT IBSS when a beacon with HT-info is received after the station
1575 * has already been added.
1576 */
1577 if (sta->deflink.ht_cap.ht_supported) {
1578 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1579 sta->deflink.ht_cap.ampdu_factor)) - 1;
1580 density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1581 an->mpdudensity = density;
1582 }
1583
1584 txtid->active = true;
1585 *ssn = txtid->seq_start = txtid->seq_next;
1586 txtid->bar_index = -1;
1587
1588 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1589 txtid->baw_head = txtid->baw_tail = 0;
1590
1591 ath_txq_unlock_complete(sc, txq);
1592
1593 return 0;
1594 }
1595
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1596 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1597 {
1598 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1599 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1600 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1601 struct ath_txq *txq = txtid->txq;
1602
1603 ath_dbg(common, XMIT, "%s called\n", __func__);
1604
1605 ath_txq_lock(sc, txq);
1606 txtid->active = false;
1607 ath_tx_flush_tid(sc, txtid);
1608 ath_txq_unlock_complete(sc, txq);
1609 }
1610
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1611 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1612 struct ath_node *an)
1613 {
1614 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1615 struct ath_atx_tid *tid;
1616 int tidno;
1617
1618 ath_dbg(common, XMIT, "%s called\n", __func__);
1619
1620 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1621 tid = ath_node_to_tid(an, tidno);
1622
1623 if (!skb_queue_empty(&tid->retry_q))
1624 ieee80211_sta_set_buffered(sta, tid->tidno, true);
1625
1626 }
1627 }
1628
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1629 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1630 {
1631 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1632 struct ath_atx_tid *tid;
1633 struct ath_txq *txq;
1634 int tidno;
1635
1636 ath_dbg(common, XMIT, "%s called\n", __func__);
1637
1638 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1639 tid = ath_node_to_tid(an, tidno);
1640 txq = tid->txq;
1641
1642 ath_txq_lock(sc, txq);
1643 tid->clear_ps_filter = true;
1644 if (!skb_queue_empty(&tid->retry_q)) {
1645 ath_tx_queue_tid(sc, tid);
1646 ath_txq_schedule(sc, txq);
1647 }
1648 ath_txq_unlock_complete(sc, txq);
1649
1650 }
1651 }
1652
1653
1654 static void
ath9k_set_moredata(struct ath_softc * sc,struct ath_buf * bf,bool val)1655 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1656 {
1657 struct ieee80211_hdr *hdr;
1658 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1659 u16 mask_val = mask * val;
1660
1661 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1662 if ((hdr->frame_control & mask) != mask_val) {
1663 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1664 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1665 sizeof(*hdr), DMA_TO_DEVICE);
1666 }
1667 }
1668
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1669 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1670 struct ieee80211_sta *sta,
1671 u16 tids, int nframes,
1672 enum ieee80211_frame_release_type reason,
1673 bool more_data)
1674 {
1675 struct ath_softc *sc = hw->priv;
1676 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1677 struct ath_txq *txq = sc->tx.uapsdq;
1678 struct ieee80211_tx_info *info;
1679 struct list_head bf_q;
1680 struct ath_buf *bf_tail = NULL, *bf = NULL;
1681 int sent = 0;
1682 int i, ret;
1683
1684 INIT_LIST_HEAD(&bf_q);
1685 for (i = 0; tids && nframes; i++, tids >>= 1) {
1686 struct ath_atx_tid *tid;
1687
1688 if (!(tids & 1))
1689 continue;
1690
1691 tid = ATH_AN_2_TID(an, i);
1692
1693 ath_txq_lock(sc, tid->txq);
1694 while (nframes > 0) {
1695 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1696 tid, &bf);
1697 if (ret < 0)
1698 break;
1699
1700 ath9k_set_moredata(sc, bf, true);
1701 list_add_tail(&bf->list, &bf_q);
1702 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1703 if (bf_isampdu(bf))
1704 bf->bf_state.bf_type &= ~BUF_AGGR;
1705 if (bf_tail)
1706 bf_tail->bf_next = bf;
1707
1708 bf_tail = bf;
1709 nframes--;
1710 sent++;
1711 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1712
1713 if (an->sta && skb_queue_empty(&tid->retry_q))
1714 ieee80211_sta_set_buffered(an->sta, i, false);
1715 }
1716 ath_txq_unlock_complete(sc, tid->txq);
1717 }
1718
1719 if (list_empty(&bf_q))
1720 return;
1721
1722 if (!more_data)
1723 ath9k_set_moredata(sc, bf_tail, false);
1724
1725 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1726 info->flags |= IEEE80211_TX_STATUS_EOSP;
1727
1728 bf = list_first_entry(&bf_q, struct ath_buf, list);
1729 ath_txq_lock(sc, txq);
1730 ath_tx_fill_desc(sc, bf, txq, 0);
1731 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1732 ath_txq_unlock(sc, txq);
1733 }
1734
1735 /********************/
1736 /* Queue Management */
1737 /********************/
1738
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1739 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1740 {
1741 struct ath_hw *ah = sc->sc_ah;
1742 struct ath9k_tx_queue_info qi;
1743 static const int subtype_txq_to_hwq[] = {
1744 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1745 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1746 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1747 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1748 };
1749 int axq_qnum, i;
1750
1751 memset(&qi, 0, sizeof(qi));
1752 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1753 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1754 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1755 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1756 qi.tqi_physCompBuf = 0;
1757
1758 /*
1759 * Enable interrupts only for EOL and DESC conditions.
1760 * We mark tx descriptors to receive a DESC interrupt
1761 * when a tx queue gets deep; otherwise waiting for the
1762 * EOL to reap descriptors. Note that this is done to
1763 * reduce interrupt load and this only defers reaping
1764 * descriptors, never transmitting frames. Aside from
1765 * reducing interrupts this also permits more concurrency.
1766 * The only potential downside is if the tx queue backs
1767 * up in which case the top half of the kernel may backup
1768 * due to a lack of tx descriptors.
1769 *
1770 * The UAPSD queue is an exception, since we take a desc-
1771 * based intr on the EOSP frames.
1772 */
1773 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1774 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1775 } else {
1776 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1777 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1778 else
1779 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1780 TXQ_FLAG_TXDESCINT_ENABLE;
1781 }
1782 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1783 if (axq_qnum == -1) {
1784 /*
1785 * NB: don't print a message, this happens
1786 * normally on parts with too few tx queues
1787 */
1788 return NULL;
1789 }
1790 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1791 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1792
1793 txq->axq_qnum = axq_qnum;
1794 txq->mac80211_qnum = -1;
1795 txq->axq_link = NULL;
1796 __skb_queue_head_init(&txq->complete_q);
1797 INIT_LIST_HEAD(&txq->axq_q);
1798 spin_lock_init(&txq->axq_lock);
1799 txq->axq_depth = 0;
1800 txq->axq_ampdu_depth = 0;
1801 txq->axq_tx_inprogress = false;
1802 sc->tx.txqsetup |= 1<<axq_qnum;
1803
1804 txq->txq_headidx = txq->txq_tailidx = 0;
1805 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1806 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1807 }
1808 return &sc->tx.txq[axq_qnum];
1809 }
1810
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1811 int ath_txq_update(struct ath_softc *sc, int qnum,
1812 struct ath9k_tx_queue_info *qinfo)
1813 {
1814 struct ath_hw *ah = sc->sc_ah;
1815 int error = 0;
1816 struct ath9k_tx_queue_info qi;
1817
1818 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1819
1820 ath9k_hw_get_txq_props(ah, qnum, &qi);
1821 qi.tqi_aifs = qinfo->tqi_aifs;
1822 qi.tqi_cwmin = qinfo->tqi_cwmin;
1823 qi.tqi_cwmax = qinfo->tqi_cwmax;
1824 qi.tqi_burstTime = qinfo->tqi_burstTime;
1825 qi.tqi_readyTime = qinfo->tqi_readyTime;
1826
1827 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1828 ath_err(ath9k_hw_common(sc->sc_ah),
1829 "Unable to update hardware queue %u!\n", qnum);
1830 error = -EIO;
1831 } else {
1832 ath9k_hw_resettxqueue(ah, qnum);
1833 }
1834
1835 return error;
1836 }
1837
ath_cabq_update(struct ath_softc * sc)1838 int ath_cabq_update(struct ath_softc *sc)
1839 {
1840 struct ath9k_tx_queue_info qi;
1841 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1842 int qnum = sc->beacon.cabq->axq_qnum;
1843
1844 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1845
1846 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1847 ATH_CABQ_READY_TIME) / 100;
1848 ath_txq_update(sc, qnum, &qi);
1849
1850 return 0;
1851 }
1852
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1853 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1854 struct list_head *list)
1855 {
1856 struct ath_buf *bf, *lastbf;
1857 struct list_head bf_head;
1858 struct ath_tx_status ts;
1859
1860 memset(&ts, 0, sizeof(ts));
1861 ts.ts_status = ATH9K_TX_FLUSH;
1862 INIT_LIST_HEAD(&bf_head);
1863
1864 while (!list_empty(list)) {
1865 bf = list_first_entry(list, struct ath_buf, list);
1866
1867 if (bf->bf_state.stale) {
1868 list_del(&bf->list);
1869
1870 ath_tx_return_buffer(sc, bf);
1871 continue;
1872 }
1873
1874 lastbf = bf->bf_lastbf;
1875 list_cut_position(&bf_head, list, &lastbf->list);
1876 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1877 }
1878 }
1879
1880 /*
1881 * Drain a given TX queue (could be Beacon or Data)
1882 *
1883 * This assumes output has been stopped and
1884 * we do not need to block ath_tx_tasklet.
1885 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1886 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1887 {
1888 rcu_read_lock();
1889 ath_txq_lock(sc, txq);
1890
1891 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1892 int idx = txq->txq_tailidx;
1893
1894 while (!list_empty(&txq->txq_fifo[idx])) {
1895 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1896
1897 INCR(idx, ATH_TXFIFO_DEPTH);
1898 }
1899 txq->txq_tailidx = idx;
1900 }
1901
1902 txq->axq_link = NULL;
1903 txq->axq_tx_inprogress = false;
1904 ath_drain_txq_list(sc, txq, &txq->axq_q);
1905
1906 ath_txq_unlock_complete(sc, txq);
1907 rcu_read_unlock();
1908 }
1909
ath_drain_all_txq(struct ath_softc * sc)1910 bool ath_drain_all_txq(struct ath_softc *sc)
1911 {
1912 struct ath_hw *ah = sc->sc_ah;
1913 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1914 struct ath_txq *txq;
1915 int i;
1916 u32 npend = 0;
1917
1918 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1919 return true;
1920
1921 ath9k_hw_abort_tx_dma(ah);
1922
1923 /* Check if any queue remains active */
1924 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1925 if (!ATH_TXQ_SETUP(sc, i))
1926 continue;
1927
1928 if (!sc->tx.txq[i].axq_depth)
1929 continue;
1930
1931 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1932 npend |= BIT(i);
1933 }
1934
1935 if (npend) {
1936 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1937 ath_dbg(common, RESET,
1938 "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1939 }
1940
1941 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1942 if (!ATH_TXQ_SETUP(sc, i))
1943 continue;
1944
1945 txq = &sc->tx.txq[i];
1946 ath_draintxq(sc, txq);
1947 }
1948
1949 return !npend;
1950 }
1951
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1952 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1953 {
1954 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1955 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1956 }
1957
1958 /* For each acq entry, for each tid, try to schedule packets
1959 * for transmit until ampdu_depth has reached min Q depth.
1960 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1961 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1962 {
1963 struct ieee80211_hw *hw = sc->hw;
1964 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1965 struct ieee80211_txq *queue;
1966 struct ath_atx_tid *tid;
1967 int ret;
1968
1969 if (txq->mac80211_qnum < 0)
1970 return;
1971
1972 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1973 return;
1974
1975 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1976 spin_lock_bh(&sc->chan_lock);
1977 rcu_read_lock();
1978
1979 if (sc->cur_chan->stopped)
1980 goto out;
1981
1982 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
1983 bool force;
1984
1985 tid = (struct ath_atx_tid *)queue->drv_priv;
1986
1987 ret = ath_tx_sched_aggr(sc, txq, tid);
1988 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
1989
1990 force = !skb_queue_empty(&tid->retry_q);
1991 ieee80211_return_txq(hw, queue, force);
1992 }
1993
1994 out:
1995 rcu_read_unlock();
1996 spin_unlock_bh(&sc->chan_lock);
1997 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
1998 }
1999
ath_txq_schedule_all(struct ath_softc * sc)2000 void ath_txq_schedule_all(struct ath_softc *sc)
2001 {
2002 struct ath_txq *txq;
2003 int i;
2004
2005 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2006 txq = sc->tx.txq_map[i];
2007
2008 spin_lock_bh(&txq->axq_lock);
2009 ath_txq_schedule(sc, txq);
2010 spin_unlock_bh(&txq->axq_lock);
2011 }
2012 }
2013
2014 /***********/
2015 /* TX, DMA */
2016 /***********/
2017
2018 /*
2019 * Insert a chain of ath_buf (descriptors) on a txq and
2020 * assume the descriptors are already chained together by caller.
2021 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)2022 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2023 struct list_head *head, bool internal)
2024 {
2025 struct ath_hw *ah = sc->sc_ah;
2026 struct ath_common *common = ath9k_hw_common(ah);
2027 struct ath_buf *bf, *bf_last;
2028 bool puttxbuf = false;
2029 bool edma;
2030
2031 /*
2032 * Insert the frame on the outbound list and
2033 * pass it on to the hardware.
2034 */
2035
2036 if (list_empty(head))
2037 return;
2038
2039 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2040 bf = list_first_entry(head, struct ath_buf, list);
2041 bf_last = list_entry(head->prev, struct ath_buf, list);
2042
2043 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2044 txq->axq_qnum, txq->axq_depth);
2045
2046 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2047 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2048 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2049 puttxbuf = true;
2050 } else {
2051 list_splice_tail_init(head, &txq->axq_q);
2052
2053 if (txq->axq_link) {
2054 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2055 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2056 txq->axq_qnum, txq->axq_link,
2057 ito64(bf->bf_daddr), bf->bf_desc);
2058 } else if (!edma)
2059 puttxbuf = true;
2060
2061 txq->axq_link = bf_last->bf_desc;
2062 }
2063
2064 if (puttxbuf) {
2065 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2066 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2067 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2068 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2069 }
2070
2071 if (!edma || sc->tx99_state) {
2072 TX_STAT_INC(sc, txq->axq_qnum, txstart);
2073 ath9k_hw_txstart(ah, txq->axq_qnum);
2074 }
2075
2076 if (!internal) {
2077 while (bf) {
2078 txq->axq_depth++;
2079 if (bf_is_ampdu_not_probing(bf))
2080 txq->axq_ampdu_depth++;
2081
2082 bf_last = bf->bf_lastbf;
2083 bf = bf_last->bf_next;
2084 bf_last->bf_next = NULL;
2085 }
2086 }
2087 }
2088
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2089 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2090 struct ath_atx_tid *tid, struct sk_buff *skb)
2091 {
2092 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2093 struct ath_frame_info *fi = get_frame_info(skb);
2094 struct list_head bf_head;
2095 struct ath_buf *bf = fi->bf;
2096
2097 INIT_LIST_HEAD(&bf_head);
2098 list_add_tail(&bf->list, &bf_head);
2099 bf->bf_state.bf_type = 0;
2100 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2101 bf->bf_state.bf_type = BUF_AMPDU;
2102 ath_tx_addto_baw(sc, tid, bf);
2103 }
2104
2105 bf->bf_next = NULL;
2106 bf->bf_lastbf = bf;
2107 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2108 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2109 TX_STAT_INC(sc, txq->axq_qnum, queued);
2110 }
2111
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2112 static void setup_frame_info(struct ieee80211_hw *hw,
2113 struct ieee80211_sta *sta,
2114 struct sk_buff *skb,
2115 int framelen)
2116 {
2117 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2118 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2119 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2120 const struct ieee80211_rate *rate;
2121 struct ath_frame_info *fi = get_frame_info(skb);
2122 struct ath_node *an = NULL;
2123 enum ath9k_key_type keytype;
2124 bool short_preamble = false;
2125 u8 txpower;
2126
2127 /*
2128 * We check if Short Preamble is needed for the CTS rate by
2129 * checking the BSS's global flag.
2130 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2131 */
2132 if (tx_info->control.vif &&
2133 tx_info->control.vif->bss_conf.use_short_preamble)
2134 short_preamble = true;
2135
2136 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2137 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2138
2139 if (sta)
2140 an = (struct ath_node *) sta->drv_priv;
2141
2142 if (tx_info->control.vif) {
2143 struct ieee80211_vif *vif = tx_info->control.vif;
2144 if (vif->bss_conf.txpower == INT_MIN)
2145 goto nonvifpower;
2146 txpower = 2 * vif->bss_conf.txpower;
2147 } else {
2148 struct ath_softc *sc;
2149 nonvifpower:
2150 sc = hw->priv;
2151
2152 txpower = sc->cur_chan->cur_txpower;
2153 }
2154
2155 memset(fi, 0, sizeof(*fi));
2156 fi->txq = -1;
2157 if (hw_key)
2158 fi->keyix = hw_key->hw_key_idx;
2159 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2160 fi->keyix = an->ps_key;
2161 else
2162 fi->keyix = ATH9K_TXKEYIX_INVALID;
2163 fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2164 fi->keytype = keytype;
2165 fi->framelen = framelen;
2166 fi->tx_power = txpower;
2167
2168 if (!rate)
2169 return;
2170 fi->rtscts_rate = rate->hw_value;
2171 if (short_preamble)
2172 fi->rtscts_rate |= rate->hw_value_short;
2173 }
2174
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2175 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2176 {
2177 struct ath_hw *ah = sc->sc_ah;
2178 struct ath9k_channel *curchan = ah->curchan;
2179
2180 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2181 (chainmask == 0x7) && (rate < 0x90))
2182 return 0x3;
2183 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2184 IS_CCK_RATE(rate))
2185 return 0x2;
2186 else
2187 return chainmask;
2188 }
2189
2190 /*
2191 * Assign a descriptor (and sequence number if necessary,
2192 * and map buffer for DMA. Frees skb on error
2193 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2194 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2195 struct ath_txq *txq,
2196 struct ath_atx_tid *tid,
2197 struct sk_buff *skb)
2198 {
2199 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2200 struct ath_frame_info *fi = get_frame_info(skb);
2201 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2202 struct ath_buf *bf;
2203 int fragno;
2204 u16 seqno;
2205
2206 bf = ath_tx_get_buffer(sc);
2207 if (!bf) {
2208 ath_dbg(common, XMIT, "TX buffers are full\n");
2209 return NULL;
2210 }
2211
2212 ATH_TXBUF_RESET(bf);
2213
2214 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2215 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2216 seqno = tid->seq_next;
2217 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2218
2219 if (fragno)
2220 hdr->seq_ctrl |= cpu_to_le16(fragno);
2221
2222 if (!ieee80211_has_morefrags(hdr->frame_control))
2223 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2224
2225 bf->bf_state.seqno = seqno;
2226 }
2227
2228 bf->bf_mpdu = skb;
2229
2230 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2231 skb->len, DMA_TO_DEVICE);
2232 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2233 bf->bf_mpdu = NULL;
2234 bf->bf_buf_addr = 0;
2235 ath_err(ath9k_hw_common(sc->sc_ah),
2236 "dma_mapping_error() on TX\n");
2237 ath_tx_return_buffer(sc, bf);
2238 return NULL;
2239 }
2240
2241 fi->bf = bf;
2242
2243 return bf;
2244 }
2245
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2246 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2247 {
2248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2249 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2250 struct ieee80211_vif *vif = info->control.vif;
2251 struct ath_vif *avp;
2252
2253 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2254 return;
2255
2256 if (!vif)
2257 return;
2258
2259 avp = (struct ath_vif *)vif->drv_priv;
2260
2261 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2262 avp->seq_no += 0x10;
2263
2264 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2265 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2266 }
2267
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2268 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2269 struct ath_tx_control *txctl)
2270 {
2271 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2273 struct ieee80211_sta *sta = txctl->sta;
2274 struct ieee80211_vif *vif = info->control.vif;
2275 struct ath_vif *avp;
2276 struct ath_softc *sc = hw->priv;
2277 int frmlen = skb->len + FCS_LEN;
2278 int padpos, padsize;
2279
2280 /* NOTE: sta can be NULL according to net/mac80211.h */
2281 if (sta)
2282 txctl->an = (struct ath_node *)sta->drv_priv;
2283 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2284 avp = (void *)vif->drv_priv;
2285 txctl->an = &avp->mcast_node;
2286 }
2287
2288 if (info->control.hw_key)
2289 frmlen += info->control.hw_key->icv_len;
2290
2291 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2292
2293 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2294 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2295 !ieee80211_is_data(hdr->frame_control))
2296 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2297
2298 /* Add the padding after the header if this is not already done */
2299 padpos = ieee80211_hdrlen(hdr->frame_control);
2300 padsize = padpos & 3;
2301 if (padsize && skb->len > padpos) {
2302 if (skb_headroom(skb) < padsize)
2303 return -ENOMEM;
2304
2305 skb_push(skb, padsize);
2306 memmove(skb->data, skb->data + padsize, padpos);
2307 }
2308
2309 setup_frame_info(hw, sta, skb, frmlen);
2310 return 0;
2311 }
2312
2313
2314 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2315 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2316 struct ath_tx_control *txctl)
2317 {
2318 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2319 struct ieee80211_sta *sta = txctl->sta;
2320 struct ieee80211_vif *vif = info->control.vif;
2321 struct ath_frame_info *fi = get_frame_info(skb);
2322 struct ath_softc *sc = hw->priv;
2323 struct ath_txq *txq = txctl->txq;
2324 struct ath_atx_tid *tid = NULL;
2325 struct ath_node *an = NULL;
2326 struct ath_buf *bf;
2327 bool ps_resp;
2328 int q, ret;
2329
2330 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2331
2332 ret = ath_tx_prepare(hw, skb, txctl);
2333 if (ret)
2334 return ret;
2335
2336 /*
2337 * At this point, the vif, hw_key and sta pointers in the tx control
2338 * info are no longer valid (overwritten by the ath_frame_info data.
2339 */
2340
2341 q = skb_get_queue_mapping(skb);
2342
2343 if (ps_resp)
2344 txq = sc->tx.uapsdq;
2345
2346 if (txctl->sta) {
2347 an = (struct ath_node *) sta->drv_priv;
2348 tid = ath_get_skb_tid(sc, an, skb);
2349 }
2350
2351 ath_txq_lock(sc, txq);
2352 if (txq == sc->tx.txq_map[q]) {
2353 fi->txq = q;
2354 ++txq->pending_frames;
2355 }
2356
2357 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2358 if (!bf) {
2359 ath_txq_skb_done(sc, txq, skb);
2360 if (txctl->paprd)
2361 dev_kfree_skb_any(skb);
2362 else
2363 ieee80211_free_txskb(sc->hw, skb);
2364 goto out;
2365 }
2366
2367 bf->bf_state.bfs_paprd = txctl->paprd;
2368
2369 if (txctl->paprd)
2370 bf->bf_state.bfs_paprd_timestamp = jiffies;
2371
2372 ath_set_rates(vif, sta, bf);
2373 ath_tx_send_normal(sc, txq, tid, skb);
2374
2375 out:
2376 ath_txq_unlock(sc, txq);
2377
2378 return 0;
2379 }
2380
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2381 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2382 struct sk_buff *skb)
2383 {
2384 struct ath_softc *sc = hw->priv;
2385 struct ath_tx_control txctl = {
2386 .txq = sc->beacon.cabq
2387 };
2388 struct ath_tx_info info = {};
2389 struct ath_buf *bf_tail = NULL;
2390 struct ath_buf *bf;
2391 LIST_HEAD(bf_q);
2392 int duration = 0;
2393 int max_duration;
2394
2395 max_duration =
2396 sc->cur_chan->beacon.beacon_interval * 1000 *
2397 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2398
2399 do {
2400 struct ath_frame_info *fi = get_frame_info(skb);
2401
2402 if (ath_tx_prepare(hw, skb, &txctl))
2403 break;
2404
2405 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2406 if (!bf)
2407 break;
2408
2409 bf->bf_lastbf = bf;
2410 ath_set_rates(vif, NULL, bf);
2411 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2412 duration += info.rates[0].PktDuration;
2413 if (bf_tail)
2414 bf_tail->bf_next = bf;
2415
2416 list_add_tail(&bf->list, &bf_q);
2417 bf_tail = bf;
2418 skb = NULL;
2419
2420 if (duration > max_duration)
2421 break;
2422
2423 skb = ieee80211_get_buffered_bc(hw, vif);
2424 } while(skb);
2425
2426 if (skb)
2427 ieee80211_free_txskb(hw, skb);
2428
2429 if (list_empty(&bf_q))
2430 return;
2431
2432 bf = list_last_entry(&bf_q, struct ath_buf, list);
2433 ath9k_set_moredata(sc, bf, false);
2434
2435 bf = list_first_entry(&bf_q, struct ath_buf, list);
2436 ath_txq_lock(sc, txctl.txq);
2437 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2438 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2439 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2440 ath_txq_unlock(sc, txctl.txq);
2441 }
2442
2443 /*****************/
2444 /* TX Completion */
2445 /*****************/
2446
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq,struct ieee80211_sta * sta)2447 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2448 int tx_flags, struct ath_txq *txq,
2449 struct ieee80211_sta *sta)
2450 {
2451 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2452 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2453 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2454 int padpos, padsize;
2455 unsigned long flags;
2456
2457 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2458
2459 if (sc->sc_ah->caldata)
2460 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2461
2462 if (!(tx_flags & ATH_TX_ERROR)) {
2463 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2464 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2465 else
2466 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2467 }
2468
2469 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2470 padpos = ieee80211_hdrlen(hdr->frame_control);
2471 padsize = padpos & 3;
2472 if (padsize && skb->len>padpos+padsize) {
2473 /*
2474 * Remove MAC header padding before giving the frame back to
2475 * mac80211.
2476 */
2477 memmove(skb->data + padsize, skb->data, padpos);
2478 skb_pull(skb, padsize);
2479 }
2480 }
2481
2482 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2483 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2484 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2485 ath_dbg(common, PS,
2486 "Going back to sleep after having received TX status (0x%lx)\n",
2487 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2488 PS_WAIT_FOR_CAB |
2489 PS_WAIT_FOR_PSPOLL_DATA |
2490 PS_WAIT_FOR_TX_ACK));
2491 }
2492 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2493
2494 ath_txq_skb_done(sc, txq, skb);
2495 tx_info->status.status_driver_data[0] = sta;
2496 __skb_queue_tail(&txq->complete_q, skb);
2497 }
2498
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ieee80211_sta * sta,struct ath_tx_status * ts,int txok)2499 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2500 struct ath_txq *txq, struct list_head *bf_q,
2501 struct ieee80211_sta *sta,
2502 struct ath_tx_status *ts, int txok)
2503 {
2504 struct sk_buff *skb = bf->bf_mpdu;
2505 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2506 unsigned long flags;
2507 int tx_flags = 0;
2508
2509 if (!txok)
2510 tx_flags |= ATH_TX_ERROR;
2511
2512 if (ts->ts_status & ATH9K_TXERR_FILT)
2513 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2514
2515 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2516 bf->bf_buf_addr = 0;
2517 if (sc->tx99_state)
2518 goto skip_tx_complete;
2519
2520 if (bf->bf_state.bfs_paprd) {
2521 if (time_after(jiffies,
2522 bf->bf_state.bfs_paprd_timestamp +
2523 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2524 dev_kfree_skb_any(skb);
2525 else
2526 complete(&sc->paprd_complete);
2527 } else {
2528 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2529 ath_tx_complete(sc, skb, tx_flags, txq, sta);
2530 }
2531 skip_tx_complete:
2532 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2533 * accidentally reference it later.
2534 */
2535 bf->bf_mpdu = NULL;
2536
2537 /*
2538 * Return the list of ath_buf of this mpdu to free queue
2539 */
2540 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2541 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2542 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2543 }
2544
ath_clear_tx_status(struct ieee80211_tx_info * tx_info)2545 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2546 {
2547 void *ptr = &tx_info->status;
2548
2549 memset(ptr + sizeof(tx_info->status.rates), 0,
2550 sizeof(tx_info->status) -
2551 sizeof(tx_info->status.rates) -
2552 sizeof(tx_info->status.status_driver_data));
2553 }
2554
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2555 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2556 struct ath_tx_status *ts, int nframes, int nbad,
2557 int txok)
2558 {
2559 struct sk_buff *skb = bf->bf_mpdu;
2560 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2561 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2562 struct ieee80211_hw *hw = sc->hw;
2563 struct ath_hw *ah = sc->sc_ah;
2564 u8 i, tx_rateindex;
2565
2566 ath_clear_tx_status(tx_info);
2567
2568 if (txok)
2569 tx_info->status.ack_signal = ts->ts_rssi;
2570
2571 tx_rateindex = ts->ts_rateindex;
2572 WARN_ON(tx_rateindex >= hw->max_rates);
2573
2574 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2575 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2576
2577 BUG_ON(nbad > nframes);
2578 }
2579 tx_info->status.ampdu_len = nframes;
2580 tx_info->status.ampdu_ack_len = nframes - nbad;
2581
2582 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2583
2584 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2585 tx_info->status.rates[i].count = 0;
2586 tx_info->status.rates[i].idx = -1;
2587 }
2588
2589 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2590 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2591 /*
2592 * If an underrun error is seen assume it as an excessive
2593 * retry only if max frame trigger level has been reached
2594 * (2 KB for single stream, and 4 KB for dual stream).
2595 * Adjust the long retry as if the frame was tried
2596 * hw->max_rate_tries times to affect how rate control updates
2597 * PER for the failed rate.
2598 * In case of congestion on the bus penalizing this type of
2599 * underruns should help hardware actually transmit new frames
2600 * successfully by eventually preferring slower rates.
2601 * This itself should also alleviate congestion on the bus.
2602 */
2603 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2604 ATH9K_TX_DELIM_UNDERRUN)) &&
2605 ieee80211_is_data(hdr->frame_control) &&
2606 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2607 tx_info->status.rates[tx_rateindex].count =
2608 hw->max_rate_tries;
2609 }
2610 }
2611
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2612 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2613 {
2614 struct ath_hw *ah = sc->sc_ah;
2615 struct ath_common *common = ath9k_hw_common(ah);
2616 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2617 struct list_head bf_head;
2618 struct ath_desc *ds;
2619 struct ath_tx_status ts;
2620 int status;
2621
2622 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2623 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2624 txq->axq_link);
2625
2626 ath_txq_lock(sc, txq);
2627 for (;;) {
2628 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2629 break;
2630
2631 if (list_empty(&txq->axq_q)) {
2632 txq->axq_link = NULL;
2633 ath_txq_schedule(sc, txq);
2634 break;
2635 }
2636 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2637
2638 /*
2639 * There is a race condition that a BH gets scheduled
2640 * after sw writes TxE and before hw re-load the last
2641 * descriptor to get the newly chained one.
2642 * Software must keep the last DONE descriptor as a
2643 * holding descriptor - software does so by marking
2644 * it with the STALE flag.
2645 */
2646 bf_held = NULL;
2647 if (bf->bf_state.stale) {
2648 bf_held = bf;
2649 if (list_is_last(&bf_held->list, &txq->axq_q))
2650 break;
2651
2652 bf = list_entry(bf_held->list.next, struct ath_buf,
2653 list);
2654 }
2655
2656 lastbf = bf->bf_lastbf;
2657 ds = lastbf->bf_desc;
2658
2659 memset(&ts, 0, sizeof(ts));
2660 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2661 if (status == -EINPROGRESS)
2662 break;
2663
2664 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2665
2666 /*
2667 * Remove ath_buf's of the same transmit unit from txq,
2668 * however leave the last descriptor back as the holding
2669 * descriptor for hw.
2670 */
2671 lastbf->bf_state.stale = true;
2672 INIT_LIST_HEAD(&bf_head);
2673 if (!list_is_singular(&lastbf->list))
2674 list_cut_position(&bf_head,
2675 &txq->axq_q, lastbf->list.prev);
2676
2677 if (bf_held) {
2678 list_del(&bf_held->list);
2679 ath_tx_return_buffer(sc, bf_held);
2680 }
2681
2682 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2683 }
2684 ath_txq_unlock_complete(sc, txq);
2685 }
2686
ath_tx_tasklet(struct ath_softc * sc)2687 void ath_tx_tasklet(struct ath_softc *sc)
2688 {
2689 struct ath_hw *ah = sc->sc_ah;
2690 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2691 int i;
2692
2693 rcu_read_lock();
2694 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2695 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2696 ath_tx_processq(sc, &sc->tx.txq[i]);
2697 }
2698 rcu_read_unlock();
2699 }
2700
ath_tx_edma_tasklet(struct ath_softc * sc)2701 void ath_tx_edma_tasklet(struct ath_softc *sc)
2702 {
2703 struct ath_tx_status ts;
2704 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2705 struct ath_hw *ah = sc->sc_ah;
2706 struct ath_txq *txq;
2707 struct ath_buf *bf, *lastbf;
2708 struct list_head bf_head;
2709 struct list_head *fifo_list;
2710 int status;
2711
2712 rcu_read_lock();
2713 for (;;) {
2714 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2715 break;
2716
2717 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2718 if (status == -EINPROGRESS)
2719 break;
2720 if (status == -EIO) {
2721 ath_dbg(common, XMIT, "Error processing tx status\n");
2722 break;
2723 }
2724
2725 /* Process beacon completions separately */
2726 if (ts.qid == sc->beacon.beaconq) {
2727 sc->beacon.tx_processed = true;
2728 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2729
2730 if (ath9k_is_chanctx_enabled()) {
2731 ath_chanctx_event(sc, NULL,
2732 ATH_CHANCTX_EVENT_BEACON_SENT);
2733 }
2734
2735 ath9k_csa_update(sc);
2736 continue;
2737 }
2738
2739 txq = &sc->tx.txq[ts.qid];
2740
2741 ath_txq_lock(sc, txq);
2742
2743 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2744
2745 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2746 if (list_empty(fifo_list)) {
2747 ath_txq_unlock(sc, txq);
2748 break;
2749 }
2750
2751 bf = list_first_entry(fifo_list, struct ath_buf, list);
2752 if (bf->bf_state.stale) {
2753 list_del(&bf->list);
2754 ath_tx_return_buffer(sc, bf);
2755 bf = list_first_entry(fifo_list, struct ath_buf, list);
2756 }
2757
2758 lastbf = bf->bf_lastbf;
2759
2760 INIT_LIST_HEAD(&bf_head);
2761 if (list_is_last(&lastbf->list, fifo_list)) {
2762 list_splice_tail_init(fifo_list, &bf_head);
2763 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2764
2765 if (!list_empty(&txq->axq_q)) {
2766 struct list_head bf_q;
2767
2768 INIT_LIST_HEAD(&bf_q);
2769 txq->axq_link = NULL;
2770 list_splice_tail_init(&txq->axq_q, &bf_q);
2771 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2772 }
2773 } else {
2774 lastbf->bf_state.stale = true;
2775 if (bf != lastbf)
2776 list_cut_position(&bf_head, fifo_list,
2777 lastbf->list.prev);
2778 }
2779
2780 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2781 ath_txq_unlock_complete(sc, txq);
2782 }
2783 rcu_read_unlock();
2784 }
2785
2786 /*****************/
2787 /* Init, Cleanup */
2788 /*****************/
2789
ath_txstatus_setup(struct ath_softc * sc,int size)2790 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2791 {
2792 struct ath_descdma *dd = &sc->txsdma;
2793 u8 txs_len = sc->sc_ah->caps.txs_len;
2794
2795 dd->dd_desc_len = size * txs_len;
2796 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2797 &dd->dd_desc_paddr, GFP_KERNEL);
2798 if (!dd->dd_desc)
2799 return -ENOMEM;
2800
2801 return 0;
2802 }
2803
ath_tx_edma_init(struct ath_softc * sc)2804 static int ath_tx_edma_init(struct ath_softc *sc)
2805 {
2806 int err;
2807
2808 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2809 if (!err)
2810 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2811 sc->txsdma.dd_desc_paddr,
2812 ATH_TXSTATUS_RING_SIZE);
2813
2814 return err;
2815 }
2816
ath_tx_init(struct ath_softc * sc,int nbufs)2817 int ath_tx_init(struct ath_softc *sc, int nbufs)
2818 {
2819 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2820 int error = 0;
2821
2822 spin_lock_init(&sc->tx.txbuflock);
2823
2824 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2825 "tx", nbufs, 1, 1);
2826 if (error != 0) {
2827 ath_err(common,
2828 "Failed to allocate tx descriptors: %d\n", error);
2829 return error;
2830 }
2831
2832 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2833 "beacon", ATH_BCBUF, 1, 1);
2834 if (error != 0) {
2835 ath_err(common,
2836 "Failed to allocate beacon descriptors: %d\n", error);
2837 return error;
2838 }
2839
2840 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2841 error = ath_tx_edma_init(sc);
2842
2843 return error;
2844 }
2845
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2846 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2847 {
2848 struct ath_atx_tid *tid;
2849 int tidno, acno;
2850
2851 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2852 tid = ath_node_to_tid(an, tidno);
2853 tid->an = an;
2854 tid->tidno = tidno;
2855 tid->seq_start = tid->seq_next = 0;
2856 tid->baw_size = WME_MAX_BA;
2857 tid->baw_head = tid->baw_tail = 0;
2858 tid->active = false;
2859 tid->clear_ps_filter = true;
2860 __skb_queue_head_init(&tid->retry_q);
2861 INIT_LIST_HEAD(&tid->list);
2862 acno = TID_TO_WME_AC(tidno);
2863 tid->txq = sc->tx.txq_map[acno];
2864
2865 if (!an->sta)
2866 break; /* just one multicast ath_atx_tid */
2867 }
2868 }
2869
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2870 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2871 {
2872 struct ath_atx_tid *tid;
2873 struct ath_txq *txq;
2874 int tidno;
2875
2876 rcu_read_lock();
2877
2878 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2879 tid = ath_node_to_tid(an, tidno);
2880 txq = tid->txq;
2881
2882 ath_txq_lock(sc, txq);
2883
2884 if (!list_empty(&tid->list))
2885 list_del_init(&tid->list);
2886
2887 ath_tid_drain(sc, txq, tid);
2888 tid->active = false;
2889
2890 ath_txq_unlock(sc, txq);
2891
2892 if (!an->sta)
2893 break; /* just one multicast ath_atx_tid */
2894 }
2895
2896 rcu_read_unlock();
2897 }
2898
2899 #ifdef CONFIG_ATH9K_TX99
2900
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2901 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2902 struct ath_tx_control *txctl)
2903 {
2904 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2905 struct ath_frame_info *fi = get_frame_info(skb);
2906 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2907 struct ath_buf *bf;
2908 int padpos, padsize;
2909
2910 padpos = ieee80211_hdrlen(hdr->frame_control);
2911 padsize = padpos & 3;
2912
2913 if (padsize && skb->len > padpos) {
2914 if (skb_headroom(skb) < padsize) {
2915 ath_dbg(common, XMIT,
2916 "tx99 padding failed\n");
2917 return -EINVAL;
2918 }
2919
2920 skb_push(skb, padsize);
2921 memmove(skb->data, skb->data + padsize, padpos);
2922 }
2923
2924 fi->keyix = ATH9K_TXKEYIX_INVALID;
2925 fi->framelen = skb->len + FCS_LEN;
2926 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2927
2928 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2929 if (!bf) {
2930 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2931 return -EINVAL;
2932 }
2933
2934 ath_set_rates(sc->tx99_vif, NULL, bf);
2935
2936 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2937 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2938
2939 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2940
2941 return 0;
2942 }
2943
2944 #endif /* CONFIG_ATH9K_TX99 */
2945