1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
ath9k_hw_set_txq_interrupts(struct ath_hw * ah,struct ath9k_tx_queue_info * qi)21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
ath9k_hw_gettxbuf(struct ath_hw * ah,u32 q)46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
ath9k_hw_puttxbuf(struct ath_hw * ah,u32 q,u32 txdp)52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
ath9k_hw_txstart(struct ath_hw * ah,u32 q)58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
ath9k_hw_numtxpending(struct ath_hw * ah,u32 q)65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
ath9k_hw_updatetxtriglevel(struct ath_hw * ah,bool bIncTrigLevel)105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
ath9k_hw_abort_tx_dma(struct ath_hw * ah)134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int i, q;
137 
138 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
139 
140 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
141 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
142 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
143 
144 	for (q = 0; q < AR_NUM_QCU; q++) {
145 		for (i = 0; i < 1000; i++) {
146 			if (i)
147 				udelay(5);
148 
149 			if (!ath9k_hw_numtxpending(ah, q))
150 				break;
151 		}
152 	}
153 
154 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
155 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
156 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
157 
158 	REG_WRITE(ah, AR_Q_TXD, 0);
159 }
160 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
161 
ath9k_hw_stop_dma_queue(struct ath_hw * ah,u32 q)162 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
163 {
164 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
165 #define ATH9K_TIME_QUANTUM		100     /* usec */
166 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
167 	int wait;
168 
169 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
170 
171 	for (wait = wait_time; wait != 0; wait--) {
172 		if (wait != wait_time)
173 			udelay(ATH9K_TIME_QUANTUM);
174 
175 		if (ath9k_hw_numtxpending(ah, q) == 0)
176 			break;
177 	}
178 
179 	REG_WRITE(ah, AR_Q_TXD, 0);
180 
181 	return wait != 0;
182 
183 #undef ATH9K_TX_STOP_DMA_TIMEOUT
184 #undef ATH9K_TIME_QUANTUM
185 }
186 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
187 
ath9k_hw_set_txq_props(struct ath_hw * ah,int q,const struct ath9k_tx_queue_info * qinfo)188 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
189 			    const struct ath9k_tx_queue_info *qinfo)
190 {
191 	u32 cw;
192 	struct ath_common *common = ath9k_hw_common(ah);
193 	struct ath9k_tx_queue_info *qi;
194 
195 	qi = &ah->txq[q];
196 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
197 		ath_dbg(common, QUEUE,
198 			"Set TXQ properties, inactive queue: %u\n", q);
199 		return false;
200 	}
201 
202 	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
203 
204 	qi->tqi_ver = qinfo->tqi_ver;
205 	qi->tqi_subtype = qinfo->tqi_subtype;
206 	qi->tqi_qflags = qinfo->tqi_qflags;
207 	qi->tqi_priority = qinfo->tqi_priority;
208 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
209 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
210 	else
211 		qi->tqi_aifs = INIT_AIFS;
212 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
213 		cw = min(qinfo->tqi_cwmin, 1024U);
214 		qi->tqi_cwmin = 1;
215 		while (qi->tqi_cwmin < cw)
216 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
217 	} else
218 		qi->tqi_cwmin = qinfo->tqi_cwmin;
219 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
220 		cw = min(qinfo->tqi_cwmax, 1024U);
221 		qi->tqi_cwmax = 1;
222 		while (qi->tqi_cwmax < cw)
223 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
224 	} else
225 		qi->tqi_cwmax = INIT_CWMAX;
226 
227 	if (qinfo->tqi_shretry != 0)
228 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
229 	else
230 		qi->tqi_shretry = INIT_SH_RETRY;
231 	if (qinfo->tqi_lgretry != 0)
232 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
233 	else
234 		qi->tqi_lgretry = INIT_LG_RETRY;
235 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
236 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
237 	qi->tqi_burstTime = qinfo->tqi_burstTime;
238 	qi->tqi_readyTime = qinfo->tqi_readyTime;
239 
240 	switch (qinfo->tqi_subtype) {
241 	case ATH9K_WME_UPSD:
242 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
243 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
244 		break;
245 	default:
246 		break;
247 	}
248 
249 	return true;
250 }
251 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
252 
ath9k_hw_get_txq_props(struct ath_hw * ah,int q,struct ath9k_tx_queue_info * qinfo)253 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
254 			    struct ath9k_tx_queue_info *qinfo)
255 {
256 	struct ath_common *common = ath9k_hw_common(ah);
257 	struct ath9k_tx_queue_info *qi;
258 
259 	qi = &ah->txq[q];
260 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
261 		ath_dbg(common, QUEUE,
262 			"Get TXQ properties, inactive queue: %u\n", q);
263 		return false;
264 	}
265 
266 	qinfo->tqi_qflags = qi->tqi_qflags;
267 	qinfo->tqi_ver = qi->tqi_ver;
268 	qinfo->tqi_subtype = qi->tqi_subtype;
269 	qinfo->tqi_qflags = qi->tqi_qflags;
270 	qinfo->tqi_priority = qi->tqi_priority;
271 	qinfo->tqi_aifs = qi->tqi_aifs;
272 	qinfo->tqi_cwmin = qi->tqi_cwmin;
273 	qinfo->tqi_cwmax = qi->tqi_cwmax;
274 	qinfo->tqi_shretry = qi->tqi_shretry;
275 	qinfo->tqi_lgretry = qi->tqi_lgretry;
276 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
277 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
278 	qinfo->tqi_burstTime = qi->tqi_burstTime;
279 	qinfo->tqi_readyTime = qi->tqi_readyTime;
280 
281 	return true;
282 }
283 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
284 
ath9k_hw_setuptxqueue(struct ath_hw * ah,enum ath9k_tx_queue type,const struct ath9k_tx_queue_info * qinfo)285 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
286 			  const struct ath9k_tx_queue_info *qinfo)
287 {
288 	struct ath_common *common = ath9k_hw_common(ah);
289 	struct ath9k_tx_queue_info *qi;
290 	int q;
291 
292 	switch (type) {
293 	case ATH9K_TX_QUEUE_BEACON:
294 		q = ATH9K_NUM_TX_QUEUES - 1;
295 		break;
296 	case ATH9K_TX_QUEUE_CAB:
297 		q = ATH9K_NUM_TX_QUEUES - 2;
298 		break;
299 	case ATH9K_TX_QUEUE_PSPOLL:
300 		q = 1;
301 		break;
302 	case ATH9K_TX_QUEUE_UAPSD:
303 		q = ATH9K_NUM_TX_QUEUES - 3;
304 		break;
305 	case ATH9K_TX_QUEUE_DATA:
306 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
307 			if (ah->txq[q].tqi_type ==
308 			    ATH9K_TX_QUEUE_INACTIVE)
309 				break;
310 		if (q == ATH9K_NUM_TX_QUEUES) {
311 			ath_err(common, "No available TX queue\n");
312 			return -1;
313 		}
314 		break;
315 	default:
316 		ath_err(common, "Invalid TX queue type: %u\n", type);
317 		return -1;
318 	}
319 
320 	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
321 
322 	qi = &ah->txq[q];
323 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
324 		ath_err(common, "TX queue: %u already active\n", q);
325 		return -1;
326 	}
327 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
328 	qi->tqi_type = type;
329 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
330 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
331 
332 	return q;
333 }
334 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
335 
ath9k_hw_clear_queue_interrupts(struct ath_hw * ah,u32 q)336 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
337 {
338 	ah->txok_interrupt_mask &= ~(1 << q);
339 	ah->txerr_interrupt_mask &= ~(1 << q);
340 	ah->txdesc_interrupt_mask &= ~(1 << q);
341 	ah->txeol_interrupt_mask &= ~(1 << q);
342 	ah->txurn_interrupt_mask &= ~(1 << q);
343 }
344 
ath9k_hw_releasetxqueue(struct ath_hw * ah,u32 q)345 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
346 {
347 	struct ath_common *common = ath9k_hw_common(ah);
348 	struct ath9k_tx_queue_info *qi;
349 
350 	qi = &ah->txq[q];
351 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
352 		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
353 		return false;
354 	}
355 
356 	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
357 
358 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
359 	ath9k_hw_clear_queue_interrupts(ah, q);
360 	ath9k_hw_set_txq_interrupts(ah, qi);
361 
362 	return true;
363 }
364 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
365 
ath9k_hw_resettxqueue(struct ath_hw * ah,u32 q)366 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
367 {
368 	struct ath_common *common = ath9k_hw_common(ah);
369 	struct ath9k_channel *chan = ah->curchan;
370 	struct ath9k_tx_queue_info *qi;
371 	u32 cwMin, chanCwMin, value;
372 
373 	qi = &ah->txq[q];
374 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375 		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376 		return true;
377 	}
378 
379 	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
380 
381 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382 		if (chan && IS_CHAN_B(chan))
383 			chanCwMin = INIT_CWMIN_11B;
384 		else
385 			chanCwMin = INIT_CWMIN;
386 
387 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
388 	} else
389 		cwMin = qi->tqi_cwmin;
390 
391 	ENABLE_REGWRITE_BUFFER(ah);
392 
393 	REG_WRITE(ah, AR_DLCL_IFS(q),
394 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
395 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
396 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
397 
398 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
399 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
400 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
401 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
402 
403 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
404 
405 	if (AR_SREV_9340(ah))
406 		REG_WRITE(ah, AR_DMISC(q),
407 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
408 	else
409 		REG_WRITE(ah, AR_DMISC(q),
410 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
411 
412 	if (qi->tqi_cbrPeriod) {
413 		REG_WRITE(ah, AR_QCBRCFG(q),
414 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
415 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
416 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
417 			    (qi->tqi_cbrOverflowLimit ?
418 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
419 	}
420 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
421 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
422 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
423 			  AR_Q_RDYTIMECFG_EN);
424 	}
425 
426 	REG_WRITE(ah, AR_DCHNTIME(q),
427 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
428 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
429 
430 	if (qi->tqi_burstTime
431 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
432 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
433 
434 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
435 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
436 
437 	REGWRITE_BUFFER_FLUSH(ah);
438 
439 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
440 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
441 
442 	switch (qi->tqi_type) {
443 	case ATH9K_TX_QUEUE_BEACON:
444 		ENABLE_REGWRITE_BUFFER(ah);
445 
446 		REG_SET_BIT(ah, AR_QMISC(q),
447 			    AR_Q_MISC_FSP_DBA_GATED
448 			    | AR_Q_MISC_BEACON_USE
449 			    | AR_Q_MISC_CBR_INCR_DIS1);
450 
451 		REG_SET_BIT(ah, AR_DMISC(q),
452 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
453 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
454 			    | AR_D_MISC_BEACON_USE
455 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
456 
457 		REGWRITE_BUFFER_FLUSH(ah);
458 
459 		/*
460 		 * cwmin and cwmax should be 0 for beacon queue
461 		 * but not for IBSS as we would create an imbalance
462 		 * on beaconing fairness for participating nodes.
463 		 */
464 		if (AR_SREV_9300_20_OR_LATER(ah) &&
465 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
466 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
467 				  | SM(0, AR_D_LCL_IFS_CWMAX)
468 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
469 		}
470 		break;
471 	case ATH9K_TX_QUEUE_CAB:
472 		ENABLE_REGWRITE_BUFFER(ah);
473 
474 		REG_SET_BIT(ah, AR_QMISC(q),
475 			    AR_Q_MISC_FSP_DBA_GATED
476 			    | AR_Q_MISC_CBR_INCR_DIS1
477 			    | AR_Q_MISC_CBR_INCR_DIS0);
478 		value = (qi->tqi_readyTime -
479 			 (ah->config.sw_beacon_response_time -
480 			  ah->config.dma_beacon_response_time) -
481 			 ah->config.additional_swba_backoff) * 1024;
482 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
483 			  value | AR_Q_RDYTIMECFG_EN);
484 		REG_SET_BIT(ah, AR_DMISC(q),
485 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
486 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
487 
488 		REGWRITE_BUFFER_FLUSH(ah);
489 
490 		break;
491 	case ATH9K_TX_QUEUE_PSPOLL:
492 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
493 		break;
494 	case ATH9K_TX_QUEUE_UAPSD:
495 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
496 		break;
497 	default:
498 		break;
499 	}
500 
501 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
502 		REG_SET_BIT(ah, AR_DMISC(q),
503 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
504 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
505 			    AR_D_MISC_POST_FR_BKOFF_DIS);
506 	}
507 
508 	if (AR_SREV_9300_20_OR_LATER(ah))
509 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
510 
511 	ath9k_hw_clear_queue_interrupts(ah, q);
512 	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
513 		ah->txok_interrupt_mask |= 1 << q;
514 		ah->txerr_interrupt_mask |= 1 << q;
515 	}
516 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
517 		ah->txdesc_interrupt_mask |= 1 << q;
518 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
519 		ah->txeol_interrupt_mask |= 1 << q;
520 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
521 		ah->txurn_interrupt_mask |= 1 << q;
522 	ath9k_hw_set_txq_interrupts(ah, qi);
523 
524 	return true;
525 }
526 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
527 
ath9k_hw_rxprocdesc(struct ath_hw * ah,struct ath_desc * ds,struct ath_rx_status * rs)528 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
529 			struct ath_rx_status *rs)
530 {
531 	struct ar5416_desc ads;
532 	struct ar5416_desc *adsp = AR5416DESC(ds);
533 	u32 phyerr;
534 
535 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
536 		return -EINPROGRESS;
537 
538 	ads.u.rx = adsp->u.rx;
539 
540 	rs->rs_status = 0;
541 	rs->rs_flags = 0;
542 
543 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
544 	rs->rs_tstamp = ads.AR_RcvTimestamp;
545 
546 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
547 		rs->rs_rssi = ATH9K_RSSI_BAD;
548 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
549 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
550 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
551 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
552 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
553 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
554 	} else {
555 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
556 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
557 						AR_RxRSSIAnt00);
558 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
559 						AR_RxRSSIAnt01);
560 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
561 						AR_RxRSSIAnt02);
562 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
563 						AR_RxRSSIAnt10);
564 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
565 						AR_RxRSSIAnt11);
566 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
567 						AR_RxRSSIAnt12);
568 	}
569 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
570 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
571 	else
572 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
573 
574 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
575 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
576 
577 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
578 	rs->rs_moreaggr =
579 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
580 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
581 	rs->rs_flags =
582 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
583 	rs->rs_flags |=
584 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
585 
586 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
587 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
588 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
589 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
590 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
591 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
592 
593 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
594 		/*
595 		 * Treat these errors as mutually exclusive to avoid spurious
596 		 * extra error reports from the hardware. If a CRC error is
597 		 * reported, then decryption and MIC errors are irrelevant,
598 		 * the frame is going to be dropped either way
599 		 */
600 		if (ads.ds_rxstatus8 & AR_CRCErr)
601 			rs->rs_status |= ATH9K_RXERR_CRC;
602 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
603 			rs->rs_status |= ATH9K_RXERR_PHY;
604 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
605 			rs->rs_phyerr = phyerr;
606 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
607 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
608 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
609 			rs->rs_status |= ATH9K_RXERR_MIC;
610 	}
611 
612 	if (ads.ds_rxstatus8 & AR_KeyMiss)
613 		rs->rs_status |= ATH9K_RXERR_KEYMISS;
614 
615 	return 0;
616 }
617 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
618 
619 /*
620  * This can stop or re-enables RX.
621  *
622  * If bool is set this will kill any frame which is currently being
623  * transferred between the MAC and baseband and also prevent any new
624  * frames from getting started.
625  */
ath9k_hw_setrxabort(struct ath_hw * ah,bool set)626 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
627 {
628 	u32 reg;
629 
630 	if (set) {
631 		REG_SET_BIT(ah, AR_DIAG_SW,
632 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
633 
634 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
635 				   0, AH_WAIT_TIMEOUT)) {
636 			REG_CLR_BIT(ah, AR_DIAG_SW,
637 				    (AR_DIAG_RX_DIS |
638 				     AR_DIAG_RX_ABORT));
639 
640 			reg = REG_READ(ah, AR_OBS_BUS_1);
641 			ath_err(ath9k_hw_common(ah),
642 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
643 				reg);
644 
645 			return false;
646 		}
647 	} else {
648 		REG_CLR_BIT(ah, AR_DIAG_SW,
649 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
650 	}
651 
652 	return true;
653 }
654 EXPORT_SYMBOL(ath9k_hw_setrxabort);
655 
ath9k_hw_putrxbuf(struct ath_hw * ah,u32 rxdp)656 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
657 {
658 	REG_WRITE(ah, AR_RXDP, rxdp);
659 }
660 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
661 
ath9k_hw_startpcureceive(struct ath_hw * ah,bool is_scanning)662 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
663 {
664 	ath9k_enable_mib_counters(ah);
665 
666 	ath9k_ani_reset(ah, is_scanning);
667 
668 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
669 }
670 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
671 
ath9k_hw_abortpcurecv(struct ath_hw * ah)672 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
673 {
674 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
675 
676 	ath9k_hw_disable_mib_counters(ah);
677 }
678 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
679 
ath9k_hw_stopdmarecv(struct ath_hw * ah,bool * reset)680 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
681 {
682 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
683 	struct ath_common *common = ath9k_hw_common(ah);
684 	u32 mac_status, last_mac_status = 0;
685 	int i;
686 
687 	/* Enable access to the DMA observation bus */
688 	REG_WRITE(ah, AR_MACMISC,
689 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
690 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
691 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
692 
693 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
694 
695 	/* Wait for rx enable bit to go low */
696 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
697 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
698 			break;
699 
700 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
701 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
702 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
703 				*reset = true;
704 				break;
705 			}
706 
707 			last_mac_status = mac_status;
708 		}
709 
710 		udelay(AH_TIME_QUANTUM);
711 	}
712 
713 	if (i == 0) {
714 		ath_err(common,
715 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
716 			AH_RX_STOP_DMA_TIMEOUT / 1000,
717 			REG_READ(ah, AR_CR),
718 			REG_READ(ah, AR_DIAG_SW),
719 			REG_READ(ah, AR_DMADBG_7));
720 		return false;
721 	} else {
722 		return true;
723 	}
724 
725 #undef AH_RX_STOP_DMA_TIMEOUT
726 }
727 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
728 
ath9k_hw_beaconq_setup(struct ath_hw * ah)729 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
730 {
731 	struct ath9k_tx_queue_info qi;
732 
733 	memset(&qi, 0, sizeof(qi));
734 	qi.tqi_aifs = 1;
735 	qi.tqi_cwmin = 0;
736 	qi.tqi_cwmax = 0;
737 
738 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
739 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
740 
741 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
742 }
743 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
744 
ath9k_hw_intrpend(struct ath_hw * ah)745 bool ath9k_hw_intrpend(struct ath_hw *ah)
746 {
747 	u32 host_isr;
748 
749 	if (AR_SREV_9100(ah))
750 		return true;
751 
752 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
753 
754 	if (((host_isr & AR_INTR_MAC_IRQ) ||
755 	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
756 	    (host_isr != AR_INTR_SPURIOUS))
757 		return true;
758 
759 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
760 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
761 	    && (host_isr != AR_INTR_SPURIOUS))
762 		return true;
763 
764 	return false;
765 }
766 EXPORT_SYMBOL(ath9k_hw_intrpend);
767 
ath9k_hw_disable_interrupts(struct ath_hw * ah)768 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
769 {
770 	struct ath_common *common = ath9k_hw_common(ah);
771 
772 	if (!(ah->imask & ATH9K_INT_GLOBAL))
773 		atomic_set(&ah->intr_ref_cnt, -1);
774 	else
775 		atomic_dec(&ah->intr_ref_cnt);
776 
777 	ath_dbg(common, INTERRUPT, "disable IER\n");
778 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
779 	(void) REG_READ(ah, AR_IER);
780 	if (!AR_SREV_9100(ah)) {
781 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
782 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
783 
784 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
785 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
786 	}
787 }
788 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
789 
ath9k_hw_enable_interrupts(struct ath_hw * ah)790 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
791 {
792 	struct ath_common *common = ath9k_hw_common(ah);
793 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
794 	u32 async_mask;
795 
796 	if (!(ah->imask & ATH9K_INT_GLOBAL))
797 		return;
798 
799 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
800 		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
801 			atomic_read(&ah->intr_ref_cnt));
802 		return;
803 	}
804 
805 	if (AR_SREV_9340(ah))
806 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
807 
808 	async_mask = AR_INTR_MAC_IRQ;
809 
810 	if (ah->imask & ATH9K_INT_MCI)
811 		async_mask |= AR_INTR_ASYNC_MASK_MCI;
812 
813 	ath_dbg(common, INTERRUPT, "enable IER\n");
814 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
815 	if (!AR_SREV_9100(ah)) {
816 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
817 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
818 
819 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
820 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
821 	}
822 	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
823 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
824 }
825 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
826 
ath9k_hw_set_interrupts(struct ath_hw * ah)827 void ath9k_hw_set_interrupts(struct ath_hw *ah)
828 {
829 	enum ath9k_int ints = ah->imask;
830 	u32 mask, mask2;
831 	struct ath9k_hw_capabilities *pCap = &ah->caps;
832 	struct ath_common *common = ath9k_hw_common(ah);
833 
834 	if (!(ints & ATH9K_INT_GLOBAL))
835 		ath9k_hw_disable_interrupts(ah);
836 
837 	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
838 
839 	mask = ints & ATH9K_INT_COMMON;
840 	mask2 = 0;
841 
842 	if (ints & ATH9K_INT_TX) {
843 		if (ah->config.tx_intr_mitigation)
844 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
845 		else {
846 			if (ah->txok_interrupt_mask)
847 				mask |= AR_IMR_TXOK;
848 			if (ah->txdesc_interrupt_mask)
849 				mask |= AR_IMR_TXDESC;
850 		}
851 		if (ah->txerr_interrupt_mask)
852 			mask |= AR_IMR_TXERR;
853 		if (ah->txeol_interrupt_mask)
854 			mask |= AR_IMR_TXEOL;
855 	}
856 	if (ints & ATH9K_INT_RX) {
857 		if (AR_SREV_9300_20_OR_LATER(ah)) {
858 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
859 			if (ah->config.rx_intr_mitigation) {
860 				mask &= ~AR_IMR_RXOK_LP;
861 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
862 			} else {
863 				mask |= AR_IMR_RXOK_LP;
864 			}
865 		} else {
866 			if (ah->config.rx_intr_mitigation)
867 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
868 			else
869 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
870 		}
871 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
872 			mask |= AR_IMR_GENTMR;
873 	}
874 
875 	if (ints & ATH9K_INT_GENTIMER)
876 		mask |= AR_IMR_GENTMR;
877 
878 	if (ints & (ATH9K_INT_BMISC)) {
879 		mask |= AR_IMR_BCNMISC;
880 		if (ints & ATH9K_INT_TIM)
881 			mask2 |= AR_IMR_S2_TIM;
882 		if (ints & ATH9K_INT_DTIM)
883 			mask2 |= AR_IMR_S2_DTIM;
884 		if (ints & ATH9K_INT_DTIMSYNC)
885 			mask2 |= AR_IMR_S2_DTIMSYNC;
886 		if (ints & ATH9K_INT_CABEND)
887 			mask2 |= AR_IMR_S2_CABEND;
888 		if (ints & ATH9K_INT_TSFOOR)
889 			mask2 |= AR_IMR_S2_TSFOOR;
890 	}
891 
892 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
893 		mask |= AR_IMR_BCNMISC;
894 		if (ints & ATH9K_INT_GTT)
895 			mask2 |= AR_IMR_S2_GTT;
896 		if (ints & ATH9K_INT_CST)
897 			mask2 |= AR_IMR_S2_CST;
898 	}
899 
900 	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
901 	REG_WRITE(ah, AR_IMR, mask);
902 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
903 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
904 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
905 	ah->imrs2_reg |= mask2;
906 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
907 
908 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
909 		if (ints & ATH9K_INT_TIM_TIMER)
910 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
911 		else
912 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
913 	}
914 
915 	return;
916 }
917 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
918