1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 
30 MODULE_AUTHOR("Atheros Communications");
31 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
32 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
33 MODULE_LICENSE("Dual BSD/GPL");
34 
ath9k_init(void)35 static int __init ath9k_init(void)
36 {
37 	return 0;
38 }
39 module_init(ath9k_init);
40 
ath9k_exit(void)41 static void __exit ath9k_exit(void)
42 {
43 	return;
44 }
45 module_exit(ath9k_exit);
46 
47 /* Private hardware callbacks */
48 
ath9k_hw_init_cal_settings(struct ath_hw * ah)49 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
50 {
51 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
52 }
53 
ath9k_hw_init_mode_regs(struct ath_hw * ah)54 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
55 {
56 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
57 }
58 
ath9k_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)59 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
60 					struct ath9k_channel *chan)
61 {
62 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
63 }
64 
ath9k_hw_init_mode_gain_regs(struct ath_hw * ah)65 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
66 {
67 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
68 		return;
69 
70 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
71 }
72 
ath9k_hw_ani_cache_ini_regs(struct ath_hw * ah)73 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
74 {
75 	/* You will not have this callback if using the old ANI */
76 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
77 		return;
78 
79 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
80 }
81 
82 /********************/
83 /* Helper Functions */
84 /********************/
85 
ath9k_hw_set_clockrate(struct ath_hw * ah)86 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
87 {
88 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
89 	struct ath_common *common = ath9k_hw_common(ah);
90 	unsigned int clockrate;
91 
92 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
93 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
94 		clockrate = 117;
95 	else if (!ah->curchan) /* should really check for CCK instead */
96 		clockrate = ATH9K_CLOCK_RATE_CCK;
97 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
98 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
99 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
100 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
101 	else
102 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
103 
104 	if (conf_is_ht40(conf))
105 		clockrate *= 2;
106 
107 	if (ah->curchan) {
108 		if (IS_CHAN_HALF_RATE(ah->curchan))
109 			clockrate /= 2;
110 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
111 			clockrate /= 4;
112 	}
113 
114 	common->clockrate = clockrate;
115 }
116 
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)117 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
118 {
119 	struct ath_common *common = ath9k_hw_common(ah);
120 
121 	return usecs * common->clockrate;
122 }
123 
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)124 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
125 {
126 	int i;
127 
128 	BUG_ON(timeout < AH_TIME_QUANTUM);
129 
130 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
131 		if ((REG_READ(ah, reg) & mask) == val)
132 			return true;
133 
134 		udelay(AH_TIME_QUANTUM);
135 	}
136 
137 	ath_dbg(ath9k_hw_common(ah), ANY,
138 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
139 		timeout, reg, REG_READ(ah, reg), mask, val);
140 
141 	return false;
142 }
143 EXPORT_SYMBOL(ath9k_hw_wait);
144 
ath9k_hw_write_array(struct ath_hw * ah,struct ar5416IniArray * array,int column,unsigned int * writecnt)145 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
146 			  int column, unsigned int *writecnt)
147 {
148 	int r;
149 
150 	ENABLE_REGWRITE_BUFFER(ah);
151 	for (r = 0; r < array->ia_rows; r++) {
152 		REG_WRITE(ah, INI_RA(array, r, 0),
153 			  INI_RA(array, r, column));
154 		DO_DELAY(*writecnt);
155 	}
156 	REGWRITE_BUFFER_FLUSH(ah);
157 }
158 
ath9k_hw_reverse_bits(u32 val,u32 n)159 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
160 {
161 	u32 retval;
162 	int i;
163 
164 	for (i = 0, retval = 0; i < n; i++) {
165 		retval = (retval << 1) | (val & 1);
166 		val >>= 1;
167 	}
168 	return retval;
169 }
170 
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)171 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
172 			   u8 phy, int kbps,
173 			   u32 frameLen, u16 rateix,
174 			   bool shortPreamble)
175 {
176 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
177 
178 	if (kbps == 0)
179 		return 0;
180 
181 	switch (phy) {
182 	case WLAN_RC_PHY_CCK:
183 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
184 		if (shortPreamble)
185 			phyTime >>= 1;
186 		numBits = frameLen << 3;
187 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
188 		break;
189 	case WLAN_RC_PHY_OFDM:
190 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
191 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
192 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
193 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
194 			txTime = OFDM_SIFS_TIME_QUARTER
195 				+ OFDM_PREAMBLE_TIME_QUARTER
196 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
197 		} else if (ah->curchan &&
198 			   IS_CHAN_HALF_RATE(ah->curchan)) {
199 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
200 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 			txTime = OFDM_SIFS_TIME_HALF +
203 				OFDM_PREAMBLE_TIME_HALF
204 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
205 		} else {
206 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
207 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
208 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
209 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
210 				+ (numSymbols * OFDM_SYMBOL_TIME);
211 		}
212 		break;
213 	default:
214 		ath_err(ath9k_hw_common(ah),
215 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
216 		txTime = 0;
217 		break;
218 	}
219 
220 	return txTime;
221 }
222 EXPORT_SYMBOL(ath9k_hw_computetxtime);
223 
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)224 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
225 				  struct ath9k_channel *chan,
226 				  struct chan_centers *centers)
227 {
228 	int8_t extoff;
229 
230 	if (!IS_CHAN_HT40(chan)) {
231 		centers->ctl_center = centers->ext_center =
232 			centers->synth_center = chan->channel;
233 		return;
234 	}
235 
236 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
237 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
238 		centers->synth_center =
239 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
240 		extoff = 1;
241 	} else {
242 		centers->synth_center =
243 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
244 		extoff = -1;
245 	}
246 
247 	centers->ctl_center =
248 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 	/* 25 MHz spacing is supported by hw but not on upper layers */
250 	centers->ext_center =
251 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
252 }
253 
254 /******************/
255 /* Chip Revisions */
256 /******************/
257 
ath9k_hw_read_revisions(struct ath_hw * ah)258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
259 {
260 	u32 val;
261 
262 	switch (ah->hw_version.devid) {
263 	case AR5416_AR9100_DEVID:
264 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265 		break;
266 	case AR9300_DEVID_AR9330:
267 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268 		if (ah->get_mac_revision) {
269 			ah->hw_version.macRev = ah->get_mac_revision();
270 		} else {
271 			val = REG_READ(ah, AR_SREV);
272 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
273 		}
274 		return;
275 	case AR9300_DEVID_AR9340:
276 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
277 		val = REG_READ(ah, AR_SREV);
278 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
279 		return;
280 	}
281 
282 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
283 
284 	if (val == 0xFF) {
285 		val = REG_READ(ah, AR_SREV);
286 		ah->hw_version.macVersion =
287 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
288 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
289 
290 		if (AR_SREV_9462(ah))
291 			ah->is_pciexpress = true;
292 		else
293 			ah->is_pciexpress = (val &
294 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
295 	} else {
296 		if (!AR_SREV_9100(ah))
297 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
298 
299 		ah->hw_version.macRev = val & AR_SREV_REVISION;
300 
301 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
302 			ah->is_pciexpress = true;
303 	}
304 }
305 
306 /************************************/
307 /* HW Attach, Detach, Init Routines */
308 /************************************/
309 
ath9k_hw_disablepcie(struct ath_hw * ah)310 static void ath9k_hw_disablepcie(struct ath_hw *ah)
311 {
312 	if (!AR_SREV_5416(ah))
313 		return;
314 
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
317 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
324 
325 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
326 }
327 
ath9k_hw_aspm_init(struct ath_hw * ah)328 static void ath9k_hw_aspm_init(struct ath_hw *ah)
329 {
330 	struct ath_common *common = ath9k_hw_common(ah);
331 
332 	if (common->bus_ops->aspm_init)
333 		common->bus_ops->aspm_init(common);
334 }
335 
336 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)337 static bool ath9k_hw_chip_test(struct ath_hw *ah)
338 {
339 	struct ath_common *common = ath9k_hw_common(ah);
340 	u32 regAddr[2] = { AR_STA_ID0 };
341 	u32 regHold[2];
342 	static const u32 patternData[4] = {
343 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
344 	};
345 	int i, j, loop_max;
346 
347 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
348 		loop_max = 2;
349 		regAddr[1] = AR_PHY_BASE + (8 << 2);
350 	} else
351 		loop_max = 1;
352 
353 	for (i = 0; i < loop_max; i++) {
354 		u32 addr = regAddr[i];
355 		u32 wrData, rdData;
356 
357 		regHold[i] = REG_READ(ah, addr);
358 		for (j = 0; j < 0x100; j++) {
359 			wrData = (j << 16) | j;
360 			REG_WRITE(ah, addr, wrData);
361 			rdData = REG_READ(ah, addr);
362 			if (rdData != wrData) {
363 				ath_err(common,
364 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
365 					addr, wrData, rdData);
366 				return false;
367 			}
368 		}
369 		for (j = 0; j < 4; j++) {
370 			wrData = patternData[j];
371 			REG_WRITE(ah, addr, wrData);
372 			rdData = REG_READ(ah, addr);
373 			if (wrData != rdData) {
374 				ath_err(common,
375 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
376 					addr, wrData, rdData);
377 				return false;
378 			}
379 		}
380 		REG_WRITE(ah, regAddr[i], regHold[i]);
381 	}
382 	udelay(100);
383 
384 	return true;
385 }
386 
ath9k_hw_init_config(struct ath_hw * ah)387 static void ath9k_hw_init_config(struct ath_hw *ah)
388 {
389 	int i;
390 
391 	ah->config.dma_beacon_response_time = 2;
392 	ah->config.sw_beacon_response_time = 10;
393 	ah->config.additional_swba_backoff = 0;
394 	ah->config.ack_6mb = 0x0;
395 	ah->config.cwm_ignore_extcca = 0;
396 	ah->config.pcie_clock_req = 0;
397 	ah->config.pcie_waen = 0;
398 	ah->config.analog_shiftreg = 1;
399 	ah->config.enable_ani = true;
400 
401 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
402 		ah->config.spurchans[i][0] = AR_NO_SPUR;
403 		ah->config.spurchans[i][1] = AR_NO_SPUR;
404 	}
405 
406 	/* PAPRD needs some more work to be enabled */
407 	ah->config.paprd_disable = 1;
408 
409 	ah->config.rx_intr_mitigation = true;
410 	ah->config.pcieSerDesWrite = true;
411 
412 	/*
413 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
414 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
415 	 * This means we use it for all AR5416 devices, and the few
416 	 * minor PCI AR9280 devices out there.
417 	 *
418 	 * Serialization is required because these devices do not handle
419 	 * well the case of two concurrent reads/writes due to the latency
420 	 * involved. During one read/write another read/write can be issued
421 	 * on another CPU while the previous read/write may still be working
422 	 * on our hardware, if we hit this case the hardware poops in a loop.
423 	 * We prevent this by serializing reads and writes.
424 	 *
425 	 * This issue is not present on PCI-Express devices or pre-AR5416
426 	 * devices (legacy, 802.11abg).
427 	 */
428 	if (num_possible_cpus() > 1)
429 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
430 }
431 
ath9k_hw_init_defaults(struct ath_hw * ah)432 static void ath9k_hw_init_defaults(struct ath_hw *ah)
433 {
434 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
435 
436 	regulatory->country_code = CTRY_DEFAULT;
437 	regulatory->power_limit = MAX_RATE_POWER;
438 
439 	ah->hw_version.magic = AR5416_MAGIC;
440 	ah->hw_version.subvendorid = 0;
441 
442 	ah->atim_window = 0;
443 	ah->sta_id1_defaults =
444 		AR_STA_ID1_CRPT_MIC_ENABLE |
445 		AR_STA_ID1_MCAST_KSRCH;
446 	if (AR_SREV_9100(ah))
447 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
448 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
449 	ah->slottime = ATH9K_SLOT_TIME_9;
450 	ah->globaltxtimeout = (u32) -1;
451 	ah->power_mode = ATH9K_PM_UNDEFINED;
452 	ah->htc_reset_init = true;
453 }
454 
ath9k_hw_init_macaddr(struct ath_hw * ah)455 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
456 {
457 	struct ath_common *common = ath9k_hw_common(ah);
458 	u32 sum;
459 	int i;
460 	u16 eeval;
461 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
462 
463 	sum = 0;
464 	for (i = 0; i < 3; i++) {
465 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
466 		sum += eeval;
467 		common->macaddr[2 * i] = eeval >> 8;
468 		common->macaddr[2 * i + 1] = eeval & 0xff;
469 	}
470 	if (sum == 0 || sum == 0xffff * 3)
471 		return -EADDRNOTAVAIL;
472 
473 	return 0;
474 }
475 
ath9k_hw_post_init(struct ath_hw * ah)476 static int ath9k_hw_post_init(struct ath_hw *ah)
477 {
478 	struct ath_common *common = ath9k_hw_common(ah);
479 	int ecode;
480 
481 	if (common->bus_ops->ath_bus_type != ATH_USB) {
482 		if (!ath9k_hw_chip_test(ah))
483 			return -ENODEV;
484 	}
485 
486 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
487 		ecode = ar9002_hw_rf_claim(ah);
488 		if (ecode != 0)
489 			return ecode;
490 	}
491 
492 	ecode = ath9k_hw_eeprom_init(ah);
493 	if (ecode != 0)
494 		return ecode;
495 
496 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
497 		ah->eep_ops->get_eeprom_ver(ah),
498 		ah->eep_ops->get_eeprom_rev(ah));
499 
500 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
501 	if (ecode) {
502 		ath_err(ath9k_hw_common(ah),
503 			"Failed allocating banks for external radio\n");
504 		ath9k_hw_rf_free_ext_banks(ah);
505 		return ecode;
506 	}
507 
508 	if (ah->config.enable_ani) {
509 		ath9k_hw_ani_setup(ah);
510 		ath9k_hw_ani_init(ah);
511 	}
512 
513 	return 0;
514 }
515 
ath9k_hw_attach_ops(struct ath_hw * ah)516 static void ath9k_hw_attach_ops(struct ath_hw *ah)
517 {
518 	if (AR_SREV_9300_20_OR_LATER(ah))
519 		ar9003_hw_attach_ops(ah);
520 	else
521 		ar9002_hw_attach_ops(ah);
522 }
523 
524 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)525 static int __ath9k_hw_init(struct ath_hw *ah)
526 {
527 	struct ath_common *common = ath9k_hw_common(ah);
528 	int r = 0;
529 
530 	ath9k_hw_read_revisions(ah);
531 
532 	/*
533 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
534 	 * We need to do this to avoid RMW of this register. We cannot
535 	 * read the reg when chip is asleep.
536 	 */
537 	ah->WARegVal = REG_READ(ah, AR_WA);
538 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
539 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
540 
541 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
542 		ath_err(common, "Couldn't reset chip\n");
543 		return -EIO;
544 	}
545 
546 	if (AR_SREV_9462(ah))
547 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
548 
549 	ath9k_hw_init_defaults(ah);
550 	ath9k_hw_init_config(ah);
551 
552 	ath9k_hw_attach_ops(ah);
553 
554 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
555 		ath_err(common, "Couldn't wakeup chip\n");
556 		return -EIO;
557 	}
558 
559 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
560 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
561 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
562 		     !ah->is_pciexpress)) {
563 			ah->config.serialize_regmode =
564 				SER_REG_MODE_ON;
565 		} else {
566 			ah->config.serialize_regmode =
567 				SER_REG_MODE_OFF;
568 		}
569 	}
570 
571 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
572 		ah->config.serialize_regmode);
573 
574 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
575 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
576 	else
577 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
578 
579 	switch (ah->hw_version.macVersion) {
580 	case AR_SREV_VERSION_5416_PCI:
581 	case AR_SREV_VERSION_5416_PCIE:
582 	case AR_SREV_VERSION_9160:
583 	case AR_SREV_VERSION_9100:
584 	case AR_SREV_VERSION_9280:
585 	case AR_SREV_VERSION_9285:
586 	case AR_SREV_VERSION_9287:
587 	case AR_SREV_VERSION_9271:
588 	case AR_SREV_VERSION_9300:
589 	case AR_SREV_VERSION_9330:
590 	case AR_SREV_VERSION_9485:
591 	case AR_SREV_VERSION_9340:
592 	case AR_SREV_VERSION_9462:
593 		break;
594 	default:
595 		ath_err(common,
596 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
597 			ah->hw_version.macVersion, ah->hw_version.macRev);
598 		return -EOPNOTSUPP;
599 	}
600 
601 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
602 	    AR_SREV_9330(ah))
603 		ah->is_pciexpress = false;
604 
605 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
606 	ath9k_hw_init_cal_settings(ah);
607 
608 	ah->ani_function = ATH9K_ANI_ALL;
609 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
610 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
611 	if (!AR_SREV_9300_20_OR_LATER(ah))
612 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
613 
614 	/* disable ANI for 9340 */
615 	if (AR_SREV_9340(ah))
616 		ah->config.enable_ani = false;
617 
618 	ath9k_hw_init_mode_regs(ah);
619 
620 	if (!ah->is_pciexpress)
621 		ath9k_hw_disablepcie(ah);
622 
623 	r = ath9k_hw_post_init(ah);
624 	if (r)
625 		return r;
626 
627 	ath9k_hw_init_mode_gain_regs(ah);
628 	r = ath9k_hw_fill_cap_info(ah);
629 	if (r)
630 		return r;
631 
632 	if (ah->is_pciexpress)
633 		ath9k_hw_aspm_init(ah);
634 
635 	r = ath9k_hw_init_macaddr(ah);
636 	if (r) {
637 		ath_err(common, "Failed to initialize MAC address\n");
638 		return r;
639 	}
640 
641 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
642 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
643 	else
644 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
645 
646 	if (AR_SREV_9330(ah))
647 		ah->bb_watchdog_timeout_ms = 85;
648 	else
649 		ah->bb_watchdog_timeout_ms = 25;
650 
651 	common->state = ATH_HW_INITIALIZED;
652 
653 	return 0;
654 }
655 
ath9k_hw_init(struct ath_hw * ah)656 int ath9k_hw_init(struct ath_hw *ah)
657 {
658 	int ret;
659 	struct ath_common *common = ath9k_hw_common(ah);
660 
661 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
662 	switch (ah->hw_version.devid) {
663 	case AR5416_DEVID_PCI:
664 	case AR5416_DEVID_PCIE:
665 	case AR5416_AR9100_DEVID:
666 	case AR9160_DEVID_PCI:
667 	case AR9280_DEVID_PCI:
668 	case AR9280_DEVID_PCIE:
669 	case AR9285_DEVID_PCIE:
670 	case AR9287_DEVID_PCI:
671 	case AR9287_DEVID_PCIE:
672 	case AR2427_DEVID_PCIE:
673 	case AR9300_DEVID_PCIE:
674 	case AR9300_DEVID_AR9485_PCIE:
675 	case AR9300_DEVID_AR9330:
676 	case AR9300_DEVID_AR9340:
677 	case AR9300_DEVID_AR9580:
678 	case AR9300_DEVID_AR9462:
679 	case AR9485_DEVID_AR1111:
680 		break;
681 	default:
682 		if (common->bus_ops->ath_bus_type == ATH_USB)
683 			break;
684 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 			ah->hw_version.devid);
686 		return -EOPNOTSUPP;
687 	}
688 
689 	ret = __ath9k_hw_init(ah);
690 	if (ret) {
691 		ath_err(common,
692 			"Unable to initialize hardware; initialization status: %d\n",
693 			ret);
694 		return ret;
695 	}
696 
697 	return 0;
698 }
699 EXPORT_SYMBOL(ath9k_hw_init);
700 
ath9k_hw_init_qos(struct ath_hw * ah)701 static void ath9k_hw_init_qos(struct ath_hw *ah)
702 {
703 	ENABLE_REGWRITE_BUFFER(ah);
704 
705 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
706 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
707 
708 	REG_WRITE(ah, AR_QOS_NO_ACK,
709 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
710 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
711 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
712 
713 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
714 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
716 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
718 
719 	REGWRITE_BUFFER_FLUSH(ah);
720 }
721 
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)722 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
723 {
724 	struct ath_common *common = ath9k_hw_common(ah);
725 	int i = 0;
726 
727 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
728 	udelay(100);
729 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
730 
731 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
732 
733 		udelay(100);
734 
735 		if (WARN_ON_ONCE(i >= 100)) {
736 			ath_err(common, "PLL4 meaurement not done\n");
737 			break;
738 		}
739 
740 		i++;
741 	}
742 
743 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
744 }
745 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
746 
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)747 static void ath9k_hw_init_pll(struct ath_hw *ah,
748 			      struct ath9k_channel *chan)
749 {
750 	u32 pll;
751 
752 	if (AR_SREV_9485(ah)) {
753 
754 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
755 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
756 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
757 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758 			      AR_CH0_DPLL2_KD, 0x40);
759 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760 			      AR_CH0_DPLL2_KI, 0x4);
761 
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
763 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
764 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
765 			      AR_CH0_BB_DPLL1_NINI, 0x58);
766 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
767 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
768 
769 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
770 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
771 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
772 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
773 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
774 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
775 
776 		/* program BB PLL phase_shift to 0x6 */
777 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
778 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
779 
780 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
781 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
782 		udelay(1000);
783 	} else if (AR_SREV_9330(ah)) {
784 		u32 ddr_dpll2, pll_control2, kd;
785 
786 		if (ah->is_clk_25mhz) {
787 			ddr_dpll2 = 0x18e82f01;
788 			pll_control2 = 0xe04a3d;
789 			kd = 0x1d;
790 		} else {
791 			ddr_dpll2 = 0x19e82f01;
792 			pll_control2 = 0x886666;
793 			kd = 0x3d;
794 		}
795 
796 		/* program DDR PLL ki and kd value */
797 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
798 
799 		/* program DDR PLL phase_shift */
800 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
801 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
802 
803 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
804 		udelay(1000);
805 
806 		/* program refdiv, nint, frac to RTC register */
807 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
808 
809 		/* program BB PLL kd and ki value */
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
812 
813 		/* program BB PLL phase_shift */
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
815 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
816 	} else if (AR_SREV_9340(ah)) {
817 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
818 
819 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
820 		udelay(1000);
821 
822 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
823 		udelay(100);
824 
825 		if (ah->is_clk_25mhz) {
826 			pll2_divint = 0x54;
827 			pll2_divfrac = 0x1eb85;
828 			refdiv = 3;
829 		} else {
830 			pll2_divint = 88;
831 			pll2_divfrac = 0;
832 			refdiv = 5;
833 		}
834 
835 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
836 		regval |= (0x1 << 16);
837 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
838 		udelay(100);
839 
840 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
841 			  (pll2_divint << 18) | pll2_divfrac);
842 		udelay(100);
843 
844 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
845 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
846 			 (0x4 << 26) | (0x18 << 19);
847 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
848 		REG_WRITE(ah, AR_PHY_PLL_MODE,
849 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
850 		udelay(1000);
851 	}
852 
853 	pll = ath9k_hw_compute_pll_control(ah, chan);
854 
855 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
856 
857 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
858 		udelay(1000);
859 
860 	/* Switch the core clock for ar9271 to 117Mhz */
861 	if (AR_SREV_9271(ah)) {
862 		udelay(500);
863 		REG_WRITE(ah, 0x50040, 0x304);
864 	}
865 
866 	udelay(RTC_PLL_SETTLE_DELAY);
867 
868 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
869 
870 	if (AR_SREV_9340(ah)) {
871 		if (ah->is_clk_25mhz) {
872 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
873 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
874 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
875 		} else {
876 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
877 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
878 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
879 		}
880 		udelay(100);
881 	}
882 }
883 
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)884 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
885 					  enum nl80211_iftype opmode)
886 {
887 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
888 	u32 imr_reg = AR_IMR_TXERR |
889 		AR_IMR_TXURN |
890 		AR_IMR_RXERR |
891 		AR_IMR_RXORN |
892 		AR_IMR_BCNMISC;
893 
894 	if (AR_SREV_9340(ah))
895 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
896 
897 	if (AR_SREV_9300_20_OR_LATER(ah)) {
898 		imr_reg |= AR_IMR_RXOK_HP;
899 		if (ah->config.rx_intr_mitigation)
900 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
901 		else
902 			imr_reg |= AR_IMR_RXOK_LP;
903 
904 	} else {
905 		if (ah->config.rx_intr_mitigation)
906 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
907 		else
908 			imr_reg |= AR_IMR_RXOK;
909 	}
910 
911 	if (ah->config.tx_intr_mitigation)
912 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
913 	else
914 		imr_reg |= AR_IMR_TXOK;
915 
916 	if (opmode == NL80211_IFTYPE_AP)
917 		imr_reg |= AR_IMR_MIB;
918 
919 	ENABLE_REGWRITE_BUFFER(ah);
920 
921 	REG_WRITE(ah, AR_IMR, imr_reg);
922 	ah->imrs2_reg |= AR_IMR_S2_GTT;
923 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
924 
925 	if (!AR_SREV_9100(ah)) {
926 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
927 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
928 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
929 	}
930 
931 	REGWRITE_BUFFER_FLUSH(ah);
932 
933 	if (AR_SREV_9300_20_OR_LATER(ah)) {
934 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
935 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
936 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
937 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
938 	}
939 }
940 
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)941 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
942 {
943 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
944 	val = min(val, (u32) 0xFFFF);
945 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
946 }
947 
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)948 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
949 {
950 	u32 val = ath9k_hw_mac_to_clks(ah, us);
951 	val = min(val, (u32) 0xFFFF);
952 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
953 }
954 
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)955 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
956 {
957 	u32 val = ath9k_hw_mac_to_clks(ah, us);
958 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
959 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
960 }
961 
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)962 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
963 {
964 	u32 val = ath9k_hw_mac_to_clks(ah, us);
965 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
966 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
967 }
968 
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)969 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
970 {
971 	if (tu > 0xFFFF) {
972 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
973 			tu);
974 		ah->globaltxtimeout = (u32) -1;
975 		return false;
976 	} else {
977 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
978 		ah->globaltxtimeout = tu;
979 		return true;
980 	}
981 }
982 
ath9k_hw_init_global_settings(struct ath_hw * ah)983 void ath9k_hw_init_global_settings(struct ath_hw *ah)
984 {
985 	struct ath_common *common = ath9k_hw_common(ah);
986 	struct ieee80211_conf *conf = &common->hw->conf;
987 	const struct ath9k_channel *chan = ah->curchan;
988 	int acktimeout, ctstimeout;
989 	int slottime;
990 	int sifstime;
991 	int rx_lat = 0, tx_lat = 0, eifs = 0;
992 	u32 reg;
993 
994 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
995 		ah->misc_mode);
996 
997 	if (!chan)
998 		return;
999 
1000 	if (ah->misc_mode != 0)
1001 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1002 
1003 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1004 		rx_lat = 41;
1005 	else
1006 		rx_lat = 37;
1007 	tx_lat = 54;
1008 
1009 	if (IS_CHAN_HALF_RATE(chan)) {
1010 		eifs = 175;
1011 		rx_lat *= 2;
1012 		tx_lat *= 2;
1013 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1014 		    tx_lat += 11;
1015 
1016 		slottime = 13;
1017 		sifstime = 32;
1018 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1019 		eifs = 340;
1020 		rx_lat = (rx_lat * 4) - 1;
1021 		tx_lat *= 4;
1022 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1023 		    tx_lat += 22;
1024 
1025 		slottime = 21;
1026 		sifstime = 64;
1027 	} else {
1028 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1029 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1030 			reg = AR_USEC_ASYNC_FIFO;
1031 		} else {
1032 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1033 				common->clockrate;
1034 			reg = REG_READ(ah, AR_USEC);
1035 		}
1036 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1037 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1038 
1039 		slottime = ah->slottime;
1040 		if (IS_CHAN_5GHZ(chan))
1041 			sifstime = 16;
1042 		else
1043 			sifstime = 10;
1044 	}
1045 
1046 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1047 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1048 	ctstimeout = acktimeout;
1049 
1050 	/*
1051 	 * Workaround for early ACK timeouts, add an offset to match the
1052 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1053 	 * This was initially only meant to work around an issue with delayed
1054 	 * BA frames in some implementations, but it has been found to fix ACK
1055 	 * timeout issues in other cases as well.
1056 	 */
1057 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ) {
1058 		acktimeout += 64 - sifstime - ah->slottime;
1059 		ctstimeout += 48 - sifstime - ah->slottime;
1060 	}
1061 
1062 
1063 	ath9k_hw_set_sifs_time(ah, sifstime);
1064 	ath9k_hw_setslottime(ah, slottime);
1065 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1066 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1067 	if (ah->globaltxtimeout != (u32) -1)
1068 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1069 
1070 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1071 	REG_RMW(ah, AR_USEC,
1072 		(common->clockrate - 1) |
1073 		SM(rx_lat, AR_USEC_RX_LAT) |
1074 		SM(tx_lat, AR_USEC_TX_LAT),
1075 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1076 
1077 }
1078 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1079 
ath9k_hw_deinit(struct ath_hw * ah)1080 void ath9k_hw_deinit(struct ath_hw *ah)
1081 {
1082 	struct ath_common *common = ath9k_hw_common(ah);
1083 
1084 	if (common->state < ATH_HW_INITIALIZED)
1085 		goto free_hw;
1086 
1087 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1088 
1089 free_hw:
1090 	ath9k_hw_rf_free_ext_banks(ah);
1091 }
1092 EXPORT_SYMBOL(ath9k_hw_deinit);
1093 
1094 /*******/
1095 /* INI */
1096 /*******/
1097 
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1098 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1099 {
1100 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1101 
1102 	if (IS_CHAN_B(chan))
1103 		ctl |= CTL_11B;
1104 	else if (IS_CHAN_G(chan))
1105 		ctl |= CTL_11G;
1106 	else
1107 		ctl |= CTL_11A;
1108 
1109 	return ctl;
1110 }
1111 
1112 /****************************************/
1113 /* Reset and Channel Switching Routines */
1114 /****************************************/
1115 
ath9k_hw_set_dma(struct ath_hw * ah)1116 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1117 {
1118 	struct ath_common *common = ath9k_hw_common(ah);
1119 
1120 	ENABLE_REGWRITE_BUFFER(ah);
1121 
1122 	/*
1123 	 * set AHB_MODE not to do cacheline prefetches
1124 	*/
1125 	if (!AR_SREV_9300_20_OR_LATER(ah))
1126 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1127 
1128 	/*
1129 	 * let mac dma reads be in 128 byte chunks
1130 	 */
1131 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1132 
1133 	REGWRITE_BUFFER_FLUSH(ah);
1134 
1135 	/*
1136 	 * Restore TX Trigger Level to its pre-reset value.
1137 	 * The initial value depends on whether aggregation is enabled, and is
1138 	 * adjusted whenever underruns are detected.
1139 	 */
1140 	if (!AR_SREV_9300_20_OR_LATER(ah))
1141 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1142 
1143 	ENABLE_REGWRITE_BUFFER(ah);
1144 
1145 	/*
1146 	 * let mac dma writes be in 128 byte chunks
1147 	 */
1148 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1149 
1150 	/*
1151 	 * Setup receive FIFO threshold to hold off TX activities
1152 	 */
1153 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1154 
1155 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1156 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1157 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1158 
1159 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1160 			ah->caps.rx_status_len);
1161 	}
1162 
1163 	/*
1164 	 * reduce the number of usable entries in PCU TXBUF to avoid
1165 	 * wrap around issues.
1166 	 */
1167 	if (AR_SREV_9285(ah)) {
1168 		/* For AR9285 the number of Fifos are reduced to half.
1169 		 * So set the usable tx buf size also to half to
1170 		 * avoid data/delimiter underruns
1171 		 */
1172 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1173 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1174 	} else if (!AR_SREV_9271(ah)) {
1175 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1176 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1177 	}
1178 
1179 	REGWRITE_BUFFER_FLUSH(ah);
1180 
1181 	if (AR_SREV_9300_20_OR_LATER(ah))
1182 		ath9k_hw_reset_txstatus_ring(ah);
1183 }
1184 
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1185 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1186 {
1187 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1188 	u32 set = AR_STA_ID1_KSRCH_MODE;
1189 
1190 	switch (opmode) {
1191 	case NL80211_IFTYPE_ADHOC:
1192 	case NL80211_IFTYPE_MESH_POINT:
1193 		set |= AR_STA_ID1_ADHOC;
1194 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1195 		break;
1196 	case NL80211_IFTYPE_AP:
1197 		set |= AR_STA_ID1_STA_AP;
1198 		/* fall through */
1199 	case NL80211_IFTYPE_STATION:
1200 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1201 		break;
1202 	default:
1203 		if (!ah->is_monitoring)
1204 			set = 0;
1205 		break;
1206 	}
1207 	REG_RMW(ah, AR_STA_ID1, set, mask);
1208 }
1209 
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1210 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1211 				   u32 *coef_mantissa, u32 *coef_exponent)
1212 {
1213 	u32 coef_exp, coef_man;
1214 
1215 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1216 		if ((coef_scaled >> coef_exp) & 0x1)
1217 			break;
1218 
1219 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1220 
1221 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1222 
1223 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1224 	*coef_exponent = coef_exp - 16;
1225 }
1226 
ath9k_hw_set_reset(struct ath_hw * ah,int type)1227 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1228 {
1229 	u32 rst_flags;
1230 	u32 tmpReg;
1231 
1232 	if (AR_SREV_9100(ah)) {
1233 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1234 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1235 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1236 	}
1237 
1238 	ENABLE_REGWRITE_BUFFER(ah);
1239 
1240 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1241 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1242 		udelay(10);
1243 	}
1244 
1245 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1246 		  AR_RTC_FORCE_WAKE_ON_INT);
1247 
1248 	if (AR_SREV_9100(ah)) {
1249 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1250 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1251 	} else {
1252 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1253 		if (tmpReg &
1254 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1255 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1256 			u32 val;
1257 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1258 
1259 			val = AR_RC_HOSTIF;
1260 			if (!AR_SREV_9300_20_OR_LATER(ah))
1261 				val |= AR_RC_AHB;
1262 			REG_WRITE(ah, AR_RC, val);
1263 
1264 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1265 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1266 
1267 		rst_flags = AR_RTC_RC_MAC_WARM;
1268 		if (type == ATH9K_RESET_COLD)
1269 			rst_flags |= AR_RTC_RC_MAC_COLD;
1270 	}
1271 
1272 	if (AR_SREV_9330(ah)) {
1273 		int npend = 0;
1274 		int i;
1275 
1276 		/* AR9330 WAR:
1277 		 * call external reset function to reset WMAC if:
1278 		 * - doing a cold reset
1279 		 * - we have pending frames in the TX queues
1280 		 */
1281 
1282 		for (i = 0; i < AR_NUM_QCU; i++) {
1283 			npend = ath9k_hw_numtxpending(ah, i);
1284 			if (npend)
1285 				break;
1286 		}
1287 
1288 		if (ah->external_reset &&
1289 		    (npend || type == ATH9K_RESET_COLD)) {
1290 			int reset_err = 0;
1291 
1292 			ath_dbg(ath9k_hw_common(ah), RESET,
1293 				"reset MAC via external reset\n");
1294 
1295 			reset_err = ah->external_reset();
1296 			if (reset_err) {
1297 				ath_err(ath9k_hw_common(ah),
1298 					"External reset failed, err=%d\n",
1299 					reset_err);
1300 				return false;
1301 			}
1302 
1303 			REG_WRITE(ah, AR_RTC_RESET, 1);
1304 		}
1305 	}
1306 
1307 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1308 
1309 	REGWRITE_BUFFER_FLUSH(ah);
1310 
1311 	udelay(50);
1312 
1313 	REG_WRITE(ah, AR_RTC_RC, 0);
1314 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1315 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1316 		return false;
1317 	}
1318 
1319 	if (!AR_SREV_9100(ah))
1320 		REG_WRITE(ah, AR_RC, 0);
1321 
1322 	if (AR_SREV_9100(ah))
1323 		udelay(50);
1324 
1325 	return true;
1326 }
1327 
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1328 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1329 {
1330 	ENABLE_REGWRITE_BUFFER(ah);
1331 
1332 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334 		udelay(10);
1335 	}
1336 
1337 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1338 		  AR_RTC_FORCE_WAKE_ON_INT);
1339 
1340 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1341 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1342 
1343 	REG_WRITE(ah, AR_RTC_RESET, 0);
1344 
1345 	REGWRITE_BUFFER_FLUSH(ah);
1346 
1347 	if (!AR_SREV_9300_20_OR_LATER(ah))
1348 		udelay(2);
1349 
1350 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1351 		REG_WRITE(ah, AR_RC, 0);
1352 
1353 	REG_WRITE(ah, AR_RTC_RESET, 1);
1354 
1355 	if (!ath9k_hw_wait(ah,
1356 			   AR_RTC_STATUS,
1357 			   AR_RTC_STATUS_M,
1358 			   AR_RTC_STATUS_ON,
1359 			   AH_WAIT_TIMEOUT)) {
1360 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1361 		return false;
1362 	}
1363 
1364 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1365 }
1366 
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1367 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1368 {
1369 	bool ret = false;
1370 
1371 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1372 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1373 		udelay(10);
1374 	}
1375 
1376 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1377 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1378 
1379 	switch (type) {
1380 	case ATH9K_RESET_POWER_ON:
1381 		ret = ath9k_hw_set_reset_power_on(ah);
1382 		break;
1383 	case ATH9K_RESET_WARM:
1384 	case ATH9K_RESET_COLD:
1385 		ret = ath9k_hw_set_reset(ah, type);
1386 		break;
1387 	default:
1388 		break;
1389 	}
1390 
1391 	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1392 		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1393 
1394 	return ret;
1395 }
1396 
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1397 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1398 				struct ath9k_channel *chan)
1399 {
1400 	int reset_type = ATH9K_RESET_WARM;
1401 
1402 	if (AR_SREV_9280(ah)) {
1403 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1404 			reset_type = ATH9K_RESET_POWER_ON;
1405 		else
1406 			reset_type = ATH9K_RESET_COLD;
1407 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1408 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1409 		reset_type = ATH9K_RESET_COLD;
1410 
1411 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1412 		return false;
1413 
1414 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1415 		return false;
1416 
1417 	ah->chip_fullsleep = false;
1418 	ath9k_hw_init_pll(ah, chan);
1419 	ath9k_hw_set_rfmode(ah, chan);
1420 
1421 	return true;
1422 }
1423 
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1424 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1425 				    struct ath9k_channel *chan)
1426 {
1427 	struct ath_common *common = ath9k_hw_common(ah);
1428 	u32 qnum;
1429 	int r;
1430 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1431 	bool band_switch, mode_diff;
1432 	u8 ini_reloaded;
1433 
1434 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1435 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1436 						    CHANNEL_5GHZ));
1437 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1438 
1439 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1440 		if (ath9k_hw_numtxpending(ah, qnum)) {
1441 			ath_dbg(common, QUEUE,
1442 				"Transmit frames pending on queue %d\n", qnum);
1443 			return false;
1444 		}
1445 	}
1446 
1447 	if (!ath9k_hw_rfbus_req(ah)) {
1448 		ath_err(common, "Could not kill baseband RX\n");
1449 		return false;
1450 	}
1451 
1452 	if (edma && (band_switch || mode_diff)) {
1453 		ath9k_hw_mark_phy_inactive(ah);
1454 		udelay(5);
1455 
1456 		ath9k_hw_init_pll(ah, NULL);
1457 
1458 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1459 			ath_err(common, "Failed to do fast channel change\n");
1460 			return false;
1461 		}
1462 	}
1463 
1464 	ath9k_hw_set_channel_regs(ah, chan);
1465 
1466 	r = ath9k_hw_rf_set_freq(ah, chan);
1467 	if (r) {
1468 		ath_err(common, "Failed to set channel\n");
1469 		return false;
1470 	}
1471 	ath9k_hw_set_clockrate(ah);
1472 	ath9k_hw_apply_txpower(ah, chan, false);
1473 	ath9k_hw_rfbus_done(ah);
1474 
1475 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1476 		ath9k_hw_set_delta_slope(ah, chan);
1477 
1478 	ath9k_hw_spur_mitigate_freq(ah, chan);
1479 
1480 	if (edma && (band_switch || mode_diff)) {
1481 		ah->ah_flags |= AH_FASTCC;
1482 		if (band_switch || ini_reloaded)
1483 			ah->eep_ops->set_board_values(ah, chan);
1484 
1485 		ath9k_hw_init_bb(ah, chan);
1486 
1487 		if (band_switch || ini_reloaded)
1488 			ath9k_hw_init_cal(ah, chan);
1489 		ah->ah_flags &= ~AH_FASTCC;
1490 	}
1491 
1492 	return true;
1493 }
1494 
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1495 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1496 {
1497 	u32 gpio_mask = ah->gpio_mask;
1498 	int i;
1499 
1500 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1501 		if (!(gpio_mask & 1))
1502 			continue;
1503 
1504 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1505 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1506 	}
1507 }
1508 
ath9k_hw_check_alive(struct ath_hw * ah)1509 bool ath9k_hw_check_alive(struct ath_hw *ah)
1510 {
1511 	int count = 50;
1512 	u32 reg;
1513 
1514 	if (AR_SREV_9285_12_OR_LATER(ah))
1515 		return true;
1516 
1517 	do {
1518 		reg = REG_READ(ah, AR_OBS_BUS_1);
1519 
1520 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1521 			continue;
1522 
1523 		switch (reg & 0x7E000B00) {
1524 		case 0x1E000000:
1525 		case 0x52000B00:
1526 		case 0x18000B00:
1527 			continue;
1528 		default:
1529 			return true;
1530 		}
1531 	} while (count-- > 0);
1532 
1533 	return false;
1534 }
1535 EXPORT_SYMBOL(ath9k_hw_check_alive);
1536 
1537 /*
1538  * Fast channel change:
1539  * (Change synthesizer based on channel freq without resetting chip)
1540  *
1541  * Don't do FCC when
1542  *   - Flag is not set
1543  *   - Chip is just coming out of full sleep
1544  *   - Channel to be set is same as current channel
1545  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1546  */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1547 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1548 {
1549 	struct ath_common *common = ath9k_hw_common(ah);
1550 	int ret;
1551 
1552 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1553 		goto fail;
1554 
1555 	if (ah->chip_fullsleep)
1556 		goto fail;
1557 
1558 	if (!ah->curchan)
1559 		goto fail;
1560 
1561 	if (chan->channel == ah->curchan->channel)
1562 		goto fail;
1563 
1564 	if ((chan->channelFlags & CHANNEL_ALL) !=
1565 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1566 		goto fail;
1567 
1568 	if (!ath9k_hw_check_alive(ah))
1569 		goto fail;
1570 
1571 	/*
1572 	 * For AR9462, make sure that calibration data for
1573 	 * re-using are present.
1574 	 */
1575 	if (AR_SREV_9462(ah) && (!ah->caldata ||
1576 				 !ah->caldata->done_txiqcal_once ||
1577 				 !ah->caldata->done_txclcal_once ||
1578 				 !ah->caldata->rtt_hist.num_readings))
1579 		goto fail;
1580 
1581 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1582 		ah->curchan->channel, chan->channel);
1583 
1584 	ret = ath9k_hw_channel_change(ah, chan);
1585 	if (!ret)
1586 		goto fail;
1587 
1588 	ath9k_hw_loadnf(ah, ah->curchan);
1589 	ath9k_hw_start_nfcal(ah, true);
1590 
1591 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
1592 		ar9003_mci_2g5g_switch(ah, true);
1593 
1594 	if (AR_SREV_9271(ah))
1595 		ar9002_hw_load_ani_reg(ah, chan);
1596 
1597 	return 0;
1598 fail:
1599 	return -EINVAL;
1600 }
1601 
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1602 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1603 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1604 {
1605 	struct ath_common *common = ath9k_hw_common(ah);
1606 	u32 saveLedState;
1607 	u32 saveDefAntenna;
1608 	u32 macStaId1;
1609 	u64 tsf = 0;
1610 	int i, r;
1611 	bool start_mci_reset = false;
1612 	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1613 	bool save_fullsleep = ah->chip_fullsleep;
1614 
1615 	if (mci) {
1616 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1617 		if (start_mci_reset)
1618 			return 0;
1619 	}
1620 
1621 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1622 		return -EIO;
1623 
1624 	if (ah->curchan && !ah->chip_fullsleep)
1625 		ath9k_hw_getnf(ah, ah->curchan);
1626 
1627 	ah->caldata = caldata;
1628 	if (caldata &&
1629 	    (chan->channel != caldata->channel ||
1630 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1631 	     (caldata->channelFlags & ~CHANNEL_CW_INT) ||
1632 	     chan->chanmode != caldata->chanmode)) {
1633 		/* Operating channel changed, reset channel calibration data */
1634 		memset(caldata, 0, sizeof(*caldata));
1635 		ath9k_init_nfcal_hist_buffer(ah, chan);
1636 	}
1637 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1638 
1639 	if (fastcc) {
1640 		r = ath9k_hw_do_fastcc(ah, chan);
1641 		if (!r)
1642 			return r;
1643 	}
1644 
1645 	if (mci)
1646 		ar9003_mci_stop_bt(ah, save_fullsleep);
1647 
1648 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1649 	if (saveDefAntenna == 0)
1650 		saveDefAntenna = 1;
1651 
1652 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1653 
1654 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1655 	if (AR_SREV_9100(ah) ||
1656 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1657 		tsf = ath9k_hw_gettsf64(ah);
1658 
1659 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1660 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1661 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1662 
1663 	ath9k_hw_mark_phy_inactive(ah);
1664 
1665 	ah->paprd_table_write_done = false;
1666 
1667 	/* Only required on the first reset */
1668 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1669 		REG_WRITE(ah,
1670 			  AR9271_RESET_POWER_DOWN_CONTROL,
1671 			  AR9271_RADIO_RF_RST);
1672 		udelay(50);
1673 	}
1674 
1675 	if (!ath9k_hw_chip_reset(ah, chan)) {
1676 		ath_err(common, "Chip reset failed\n");
1677 		return -EINVAL;
1678 	}
1679 
1680 	/* Only required on the first reset */
1681 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1682 		ah->htc_reset_init = false;
1683 		REG_WRITE(ah,
1684 			  AR9271_RESET_POWER_DOWN_CONTROL,
1685 			  AR9271_GATE_MAC_CTL);
1686 		udelay(50);
1687 	}
1688 
1689 	/* Restore TSF */
1690 	if (tsf)
1691 		ath9k_hw_settsf64(ah, tsf);
1692 
1693 	if (AR_SREV_9280_20_OR_LATER(ah))
1694 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1695 
1696 	if (!AR_SREV_9300_20_OR_LATER(ah))
1697 		ar9002_hw_enable_async_fifo(ah);
1698 
1699 	r = ath9k_hw_process_ini(ah, chan);
1700 	if (r)
1701 		return r;
1702 
1703 	if (mci)
1704 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1705 
1706 	/*
1707 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1708 	 * right after the chip reset. When that happens, write a new
1709 	 * value after the initvals have been applied, with an offset
1710 	 * based on measured time difference
1711 	 */
1712 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1713 		tsf += 1500;
1714 		ath9k_hw_settsf64(ah, tsf);
1715 	}
1716 
1717 	/* Setup MFP options for CCMP */
1718 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1719 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1720 		 * frames when constructing CCMP AAD. */
1721 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1722 			      0xc7ff);
1723 		ah->sw_mgmt_crypto = false;
1724 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1725 		/* Disable hardware crypto for management frames */
1726 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1727 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1728 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1729 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1730 		ah->sw_mgmt_crypto = true;
1731 	} else
1732 		ah->sw_mgmt_crypto = true;
1733 
1734 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1735 		ath9k_hw_set_delta_slope(ah, chan);
1736 
1737 	ath9k_hw_spur_mitigate_freq(ah, chan);
1738 	ah->eep_ops->set_board_values(ah, chan);
1739 
1740 	ENABLE_REGWRITE_BUFFER(ah);
1741 
1742 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1743 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1744 		  | macStaId1
1745 		  | AR_STA_ID1_RTS_USE_DEF
1746 		  | (ah->config.
1747 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1748 		  | ah->sta_id1_defaults);
1749 	ath_hw_setbssidmask(common);
1750 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1751 	ath9k_hw_write_associd(ah);
1752 	REG_WRITE(ah, AR_ISR, ~0);
1753 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1754 
1755 	REGWRITE_BUFFER_FLUSH(ah);
1756 
1757 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1758 
1759 	r = ath9k_hw_rf_set_freq(ah, chan);
1760 	if (r)
1761 		return r;
1762 
1763 	ath9k_hw_set_clockrate(ah);
1764 
1765 	ENABLE_REGWRITE_BUFFER(ah);
1766 
1767 	for (i = 0; i < AR_NUM_DCU; i++)
1768 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1769 
1770 	REGWRITE_BUFFER_FLUSH(ah);
1771 
1772 	ah->intr_txqs = 0;
1773 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1774 		ath9k_hw_resettxqueue(ah, i);
1775 
1776 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1777 	ath9k_hw_ani_cache_ini_regs(ah);
1778 	ath9k_hw_init_qos(ah);
1779 
1780 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1781 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1782 
1783 	ath9k_hw_init_global_settings(ah);
1784 
1785 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1786 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1787 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1788 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1789 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1790 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1791 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1792 	}
1793 
1794 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1795 
1796 	ath9k_hw_set_dma(ah);
1797 
1798 	REG_WRITE(ah, AR_OBS, 8);
1799 
1800 	if (ah->config.rx_intr_mitigation) {
1801 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1802 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1803 	}
1804 
1805 	if (ah->config.tx_intr_mitigation) {
1806 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1807 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1808 	}
1809 
1810 	ath9k_hw_init_bb(ah, chan);
1811 
1812 	if (caldata) {
1813 		caldata->done_txiqcal_once = false;
1814 		caldata->done_txclcal_once = false;
1815 		caldata->rtt_hist.num_readings = 0;
1816 	}
1817 	if (!ath9k_hw_init_cal(ah, chan))
1818 		return -EIO;
1819 
1820 	ath9k_hw_loadnf(ah, chan);
1821 	ath9k_hw_start_nfcal(ah, true);
1822 
1823 	if (mci && ar9003_mci_end_reset(ah, chan, caldata))
1824 		return -EIO;
1825 
1826 	ENABLE_REGWRITE_BUFFER(ah);
1827 
1828 	ath9k_hw_restore_chainmask(ah);
1829 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1830 
1831 	REGWRITE_BUFFER_FLUSH(ah);
1832 
1833 	/*
1834 	 * For big endian systems turn on swapping for descriptors
1835 	 */
1836 	if (AR_SREV_9100(ah)) {
1837 		u32 mask;
1838 		mask = REG_READ(ah, AR_CFG);
1839 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1840 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1841 				mask);
1842 		} else {
1843 			mask =
1844 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1845 			REG_WRITE(ah, AR_CFG, mask);
1846 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1847 				REG_READ(ah, AR_CFG));
1848 		}
1849 	} else {
1850 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1851 			/* Configure AR9271 target WLAN */
1852 			if (AR_SREV_9271(ah))
1853 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1854 			else
1855 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1856 		}
1857 #ifdef __BIG_ENDIAN
1858 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1859 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1860 		else
1861 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1862 #endif
1863 	}
1864 
1865 	if (ath9k_hw_btcoex_is_enabled(ah))
1866 		ath9k_hw_btcoex_enable(ah);
1867 
1868 	if (mci)
1869 		ar9003_mci_check_bt(ah);
1870 
1871 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1872 		ar9003_hw_bb_watchdog_config(ah);
1873 
1874 		ar9003_hw_disable_phy_restart(ah);
1875 	}
1876 
1877 	ath9k_hw_apply_gpio_override(ah);
1878 
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL(ath9k_hw_reset);
1882 
1883 /******************************/
1884 /* Power Management (Chipset) */
1885 /******************************/
1886 
1887 /*
1888  * Notify Power Mgt is disabled in self-generated frames.
1889  * If requested, force chip to sleep.
1890  */
ath9k_set_power_sleep(struct ath_hw * ah,int setChip)1891 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1892 {
1893 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1894 	if (setChip) {
1895 		if (AR_SREV_9462(ah)) {
1896 			REG_WRITE(ah, AR_TIMER_MODE,
1897 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
1898 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
1899 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
1900 			REG_WRITE(ah, AR_SLP32_INC,
1901 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
1902 			/* xxx Required for WLAN only case ? */
1903 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1904 			udelay(100);
1905 		}
1906 
1907 		/*
1908 		 * Clear the RTC force wake bit to allow the
1909 		 * mac to go to sleep.
1910 		 */
1911 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1912 
1913 		if (AR_SREV_9462(ah))
1914 			udelay(100);
1915 
1916 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1917 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1918 
1919 		/* Shutdown chip. Active low */
1920 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1921 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1922 			udelay(2);
1923 		}
1924 	}
1925 
1926 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1927 	if (AR_SREV_9300_20_OR_LATER(ah))
1928 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1929 }
1930 
1931 /*
1932  * Notify Power Management is enabled in self-generating
1933  * frames. If request, set power mode of chip to
1934  * auto/normal.  Duration in units of 128us (1/8 TU).
1935  */
ath9k_set_power_network_sleep(struct ath_hw * ah,int setChip)1936 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1937 {
1938 	u32 val;
1939 
1940 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1941 	if (setChip) {
1942 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1943 
1944 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1945 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1946 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1947 				  AR_RTC_FORCE_WAKE_ON_INT);
1948 		} else {
1949 
1950 			/* When chip goes into network sleep, it could be waken
1951 			 * up by MCI_INT interrupt caused by BT's HW messages
1952 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
1953 			 * rate (~100us). This will cause chip to leave and
1954 			 * re-enter network sleep mode frequently, which in
1955 			 * consequence will have WLAN MCI HW to generate lots of
1956 			 * SYS_WAKING and SYS_SLEEPING messages which will make
1957 			 * BT CPU to busy to process.
1958 			 */
1959 			if (AR_SREV_9462(ah)) {
1960 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
1961 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
1962 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
1963 			}
1964 			/*
1965 			 * Clear the RTC force wake bit to allow the
1966 			 * mac to go to sleep.
1967 			 */
1968 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1969 				    AR_RTC_FORCE_WAKE_EN);
1970 
1971 			if (AR_SREV_9462(ah))
1972 				udelay(30);
1973 		}
1974 	}
1975 
1976 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1977 	if (AR_SREV_9300_20_OR_LATER(ah))
1978 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1979 }
1980 
ath9k_hw_set_power_awake(struct ath_hw * ah,int setChip)1981 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1982 {
1983 	u32 val;
1984 	int i;
1985 
1986 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1987 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1988 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1989 		udelay(10);
1990 	}
1991 
1992 	if (setChip) {
1993 		if ((REG_READ(ah, AR_RTC_STATUS) &
1994 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1995 			if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
1996 				return false;
1997 			}
1998 			if (!AR_SREV_9300_20_OR_LATER(ah))
1999 				ath9k_hw_init_pll(ah, NULL);
2000 		}
2001 		if (AR_SREV_9100(ah))
2002 			REG_SET_BIT(ah, AR_RTC_RESET,
2003 				    AR_RTC_RESET_EN);
2004 
2005 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2006 			    AR_RTC_FORCE_WAKE_EN);
2007 		udelay(50);
2008 
2009 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2010 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2011 			if (val == AR_RTC_STATUS_ON)
2012 				break;
2013 			udelay(50);
2014 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2015 				    AR_RTC_FORCE_WAKE_EN);
2016 		}
2017 		if (i == 0) {
2018 			ath_err(ath9k_hw_common(ah),
2019 				"Failed to wakeup in %uus\n",
2020 				POWER_UP_TIME / 20);
2021 			return false;
2022 		}
2023 	}
2024 
2025 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2026 
2027 	return true;
2028 }
2029 
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2030 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2031 {
2032 	struct ath_common *common = ath9k_hw_common(ah);
2033 	int status = true, setChip = true;
2034 	static const char *modes[] = {
2035 		"AWAKE",
2036 		"FULL-SLEEP",
2037 		"NETWORK SLEEP",
2038 		"UNDEFINED"
2039 	};
2040 
2041 	if (ah->power_mode == mode)
2042 		return status;
2043 
2044 	ath_dbg(common, RESET, "%s -> %s\n",
2045 		modes[ah->power_mode], modes[mode]);
2046 
2047 	switch (mode) {
2048 	case ATH9K_PM_AWAKE:
2049 		status = ath9k_hw_set_power_awake(ah, setChip);
2050 
2051 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2052 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2053 
2054 		break;
2055 	case ATH9K_PM_FULL_SLEEP:
2056 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2057 			ar9003_mci_set_full_sleep(ah);
2058 
2059 		ath9k_set_power_sleep(ah, setChip);
2060 		ah->chip_fullsleep = true;
2061 		break;
2062 	case ATH9K_PM_NETWORK_SLEEP:
2063 
2064 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2065 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2066 
2067 		ath9k_set_power_network_sleep(ah, setChip);
2068 		break;
2069 	default:
2070 		ath_err(common, "Unknown power mode %u\n", mode);
2071 		return false;
2072 	}
2073 	ah->power_mode = mode;
2074 
2075 	/*
2076 	 * XXX: If this warning never comes up after a while then
2077 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2078 	 * ath9k_hw_setpower() return type void.
2079 	 */
2080 
2081 	if (!(ah->ah_flags & AH_UNPLUGGED))
2082 		ATH_DBG_WARN_ON_ONCE(!status);
2083 
2084 	return status;
2085 }
2086 EXPORT_SYMBOL(ath9k_hw_setpower);
2087 
2088 /*******************/
2089 /* Beacon Handling */
2090 /*******************/
2091 
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2092 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2093 {
2094 	int flags = 0;
2095 
2096 	ENABLE_REGWRITE_BUFFER(ah);
2097 
2098 	switch (ah->opmode) {
2099 	case NL80211_IFTYPE_ADHOC:
2100 	case NL80211_IFTYPE_MESH_POINT:
2101 		REG_SET_BIT(ah, AR_TXCFG,
2102 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2103 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2104 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2105 		flags |= AR_NDP_TIMER_EN;
2106 	case NL80211_IFTYPE_AP:
2107 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2108 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2109 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2110 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2111 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2112 		flags |=
2113 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2114 		break;
2115 	default:
2116 		ath_dbg(ath9k_hw_common(ah), BEACON,
2117 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2118 		return;
2119 		break;
2120 	}
2121 
2122 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2123 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2124 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2125 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2126 
2127 	REGWRITE_BUFFER_FLUSH(ah);
2128 
2129 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2130 }
2131 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2132 
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2133 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2134 				    const struct ath9k_beacon_state *bs)
2135 {
2136 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2137 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2138 	struct ath_common *common = ath9k_hw_common(ah);
2139 
2140 	ENABLE_REGWRITE_BUFFER(ah);
2141 
2142 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2143 
2144 	REG_WRITE(ah, AR_BEACON_PERIOD,
2145 		  TU_TO_USEC(bs->bs_intval));
2146 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2147 		  TU_TO_USEC(bs->bs_intval));
2148 
2149 	REGWRITE_BUFFER_FLUSH(ah);
2150 
2151 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2152 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2153 
2154 	beaconintval = bs->bs_intval;
2155 
2156 	if (bs->bs_sleepduration > beaconintval)
2157 		beaconintval = bs->bs_sleepduration;
2158 
2159 	dtimperiod = bs->bs_dtimperiod;
2160 	if (bs->bs_sleepduration > dtimperiod)
2161 		dtimperiod = bs->bs_sleepduration;
2162 
2163 	if (beaconintval == dtimperiod)
2164 		nextTbtt = bs->bs_nextdtim;
2165 	else
2166 		nextTbtt = bs->bs_nexttbtt;
2167 
2168 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2169 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2170 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2171 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2172 
2173 	ENABLE_REGWRITE_BUFFER(ah);
2174 
2175 	REG_WRITE(ah, AR_NEXT_DTIM,
2176 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2177 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2178 
2179 	REG_WRITE(ah, AR_SLEEP1,
2180 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2181 		  | AR_SLEEP1_ASSUME_DTIM);
2182 
2183 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2184 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2185 	else
2186 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2187 
2188 	REG_WRITE(ah, AR_SLEEP2,
2189 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2190 
2191 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2192 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2193 
2194 	REGWRITE_BUFFER_FLUSH(ah);
2195 
2196 	REG_SET_BIT(ah, AR_TIMER_MODE,
2197 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2198 		    AR_DTIM_TIMER_EN);
2199 
2200 	/* TSF Out of Range Threshold */
2201 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2202 }
2203 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2204 
2205 /*******************/
2206 /* HW Capabilities */
2207 /*******************/
2208 
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2209 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2210 {
2211 	eeprom_chainmask &= chip_chainmask;
2212 	if (eeprom_chainmask)
2213 		return eeprom_chainmask;
2214 	else
2215 		return chip_chainmask;
2216 }
2217 
2218 /**
2219  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2220  * @ah: the atheros hardware data structure
2221  *
2222  * We enable DFS support upstream on chipsets which have passed a series
2223  * of tests. The testing requirements are going to be documented. Desired
2224  * test requirements are documented at:
2225  *
2226  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2227  *
2228  * Once a new chipset gets properly tested an individual commit can be used
2229  * to document the testing for DFS for that chipset.
2230  */
ath9k_hw_dfs_tested(struct ath_hw * ah)2231 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2232 {
2233 
2234 	switch (ah->hw_version.macVersion) {
2235 	/* AR9580 will likely be our first target to get testing on */
2236 	case AR_SREV_VERSION_9580:
2237 	default:
2238 		return false;
2239 	}
2240 }
2241 
ath9k_hw_fill_cap_info(struct ath_hw * ah)2242 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2243 {
2244 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2245 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2246 	struct ath_common *common = ath9k_hw_common(ah);
2247 	unsigned int chip_chainmask;
2248 
2249 	u16 eeval;
2250 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2251 
2252 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2253 	regulatory->current_rd = eeval;
2254 
2255 	if (ah->opmode != NL80211_IFTYPE_AP &&
2256 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2257 		if (regulatory->current_rd == 0x64 ||
2258 		    regulatory->current_rd == 0x65)
2259 			regulatory->current_rd += 5;
2260 		else if (regulatory->current_rd == 0x41)
2261 			regulatory->current_rd = 0x43;
2262 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2263 			regulatory->current_rd);
2264 	}
2265 
2266 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2267 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2268 		ath_err(common,
2269 			"no band has been marked as supported in EEPROM\n");
2270 		return -EINVAL;
2271 	}
2272 
2273 	if (eeval & AR5416_OPFLAGS_11A)
2274 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2275 
2276 	if (eeval & AR5416_OPFLAGS_11G)
2277 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2278 
2279 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2280 		chip_chainmask = 1;
2281 	else if (AR_SREV_9462(ah))
2282 		chip_chainmask = 3;
2283 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2284 		chip_chainmask = 7;
2285 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2286 		chip_chainmask = 3;
2287 	else
2288 		chip_chainmask = 7;
2289 
2290 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2291 	/*
2292 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2293 	 * the EEPROM.
2294 	 */
2295 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2296 	    !(eeval & AR5416_OPFLAGS_11A) &&
2297 	    !(AR_SREV_9271(ah)))
2298 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2299 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2300 	else if (AR_SREV_9100(ah))
2301 		pCap->rx_chainmask = 0x7;
2302 	else
2303 		/* Use rx_chainmask from EEPROM. */
2304 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2305 
2306 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2307 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2308 	ah->txchainmask = pCap->tx_chainmask;
2309 	ah->rxchainmask = pCap->rx_chainmask;
2310 
2311 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2312 
2313 	/* enable key search for every frame in an aggregate */
2314 	if (AR_SREV_9300_20_OR_LATER(ah))
2315 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2316 
2317 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2318 
2319 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2320 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2321 	else
2322 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2323 
2324 	if (AR_SREV_9271(ah))
2325 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2326 	else if (AR_DEVID_7010(ah))
2327 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2328 	else if (AR_SREV_9300_20_OR_LATER(ah))
2329 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2330 	else if (AR_SREV_9287_11_OR_LATER(ah))
2331 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2332 	else if (AR_SREV_9285_12_OR_LATER(ah))
2333 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2334 	else if (AR_SREV_9280_20_OR_LATER(ah))
2335 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2336 	else
2337 		pCap->num_gpio_pins = AR_NUM_GPIO;
2338 
2339 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2340 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2341 	else
2342 		pCap->rts_aggr_limit = (8 * 1024);
2343 
2344 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2345 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2346 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2347 		ah->rfkill_gpio =
2348 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2349 		ah->rfkill_polarity =
2350 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2351 
2352 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2353 	}
2354 #endif
2355 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2356 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2357 	else
2358 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2359 
2360 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2361 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2362 	else
2363 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2364 
2365 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2366 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2367 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2368 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2369 
2370 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2371 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2372 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2373 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2374 		pCap->txs_len = sizeof(struct ar9003_txs);
2375 		if (!ah->config.paprd_disable &&
2376 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2377 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2378 	} else {
2379 		pCap->tx_desc_len = sizeof(struct ath_desc);
2380 		if (AR_SREV_9280_20(ah))
2381 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2382 	}
2383 
2384 	if (AR_SREV_9300_20_OR_LATER(ah))
2385 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2386 
2387 	if (AR_SREV_9300_20_OR_LATER(ah))
2388 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2389 
2390 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2391 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2392 
2393 	if (AR_SREV_9285(ah))
2394 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2395 			ant_div_ctl1 =
2396 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2397 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2398 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2399 		}
2400 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2401 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2402 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2403 	}
2404 
2405 
2406 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2407 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2408 		/*
2409 		 * enable the diversity-combining algorithm only when
2410 		 * both enable_lna_div and enable_fast_div are set
2411 		 *		Table for Diversity
2412 		 * ant_div_alt_lnaconf		bit 0-1
2413 		 * ant_div_main_lnaconf		bit 2-3
2414 		 * ant_div_alt_gaintb		bit 4
2415 		 * ant_div_main_gaintb		bit 5
2416 		 * enable_ant_div_lnadiv	bit 6
2417 		 * enable_ant_fast_div		bit 7
2418 		 */
2419 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2420 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2421 	}
2422 
2423 	if (AR_SREV_9485_10(ah)) {
2424 		pCap->pcie_lcr_extsync_en = true;
2425 		pCap->pcie_lcr_offset = 0x80;
2426 	}
2427 
2428 	if (ath9k_hw_dfs_tested(ah))
2429 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2430 
2431 	tx_chainmask = pCap->tx_chainmask;
2432 	rx_chainmask = pCap->rx_chainmask;
2433 	while (tx_chainmask || rx_chainmask) {
2434 		if (tx_chainmask & BIT(0))
2435 			pCap->max_txchains++;
2436 		if (rx_chainmask & BIT(0))
2437 			pCap->max_rxchains++;
2438 
2439 		tx_chainmask >>= 1;
2440 		rx_chainmask >>= 1;
2441 	}
2442 
2443 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2444 		ah->enabled_cals |= TX_IQ_CAL;
2445 		if (AR_SREV_9485_OR_LATER(ah))
2446 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2447 	}
2448 
2449 	if (AR_SREV_9462(ah)) {
2450 
2451 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2452 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2453 
2454 		if (AR_SREV_9462_20(ah))
2455 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2456 
2457 	}
2458 
2459 
2460 	return 0;
2461 }
2462 
2463 /****************************/
2464 /* GPIO / RFKILL / Antennae */
2465 /****************************/
2466 
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2467 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2468 					 u32 gpio, u32 type)
2469 {
2470 	int addr;
2471 	u32 gpio_shift, tmp;
2472 
2473 	if (gpio > 11)
2474 		addr = AR_GPIO_OUTPUT_MUX3;
2475 	else if (gpio > 5)
2476 		addr = AR_GPIO_OUTPUT_MUX2;
2477 	else
2478 		addr = AR_GPIO_OUTPUT_MUX1;
2479 
2480 	gpio_shift = (gpio % 6) * 5;
2481 
2482 	if (AR_SREV_9280_20_OR_LATER(ah)
2483 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2484 		REG_RMW(ah, addr, (type << gpio_shift),
2485 			(0x1f << gpio_shift));
2486 	} else {
2487 		tmp = REG_READ(ah, addr);
2488 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2489 		tmp &= ~(0x1f << gpio_shift);
2490 		tmp |= (type << gpio_shift);
2491 		REG_WRITE(ah, addr, tmp);
2492 	}
2493 }
2494 
ath9k_hw_cfg_gpio_input(struct ath_hw * ah,u32 gpio)2495 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2496 {
2497 	u32 gpio_shift;
2498 
2499 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2500 
2501 	if (AR_DEVID_7010(ah)) {
2502 		gpio_shift = gpio;
2503 		REG_RMW(ah, AR7010_GPIO_OE,
2504 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2505 			(AR7010_GPIO_OE_MASK << gpio_shift));
2506 		return;
2507 	}
2508 
2509 	gpio_shift = gpio << 1;
2510 	REG_RMW(ah,
2511 		AR_GPIO_OE_OUT,
2512 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2513 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2514 }
2515 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2516 
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2517 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2518 {
2519 #define MS_REG_READ(x, y) \
2520 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2521 
2522 	if (gpio >= ah->caps.num_gpio_pins)
2523 		return 0xffffffff;
2524 
2525 	if (AR_DEVID_7010(ah)) {
2526 		u32 val;
2527 		val = REG_READ(ah, AR7010_GPIO_IN);
2528 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2529 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2530 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2531 			AR_GPIO_BIT(gpio)) != 0;
2532 	else if (AR_SREV_9271(ah))
2533 		return MS_REG_READ(AR9271, gpio) != 0;
2534 	else if (AR_SREV_9287_11_OR_LATER(ah))
2535 		return MS_REG_READ(AR9287, gpio) != 0;
2536 	else if (AR_SREV_9285_12_OR_LATER(ah))
2537 		return MS_REG_READ(AR9285, gpio) != 0;
2538 	else if (AR_SREV_9280_20_OR_LATER(ah))
2539 		return MS_REG_READ(AR928X, gpio) != 0;
2540 	else
2541 		return MS_REG_READ(AR, gpio) != 0;
2542 }
2543 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2544 
ath9k_hw_cfg_output(struct ath_hw * ah,u32 gpio,u32 ah_signal_type)2545 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2546 			 u32 ah_signal_type)
2547 {
2548 	u32 gpio_shift;
2549 
2550 	if (AR_DEVID_7010(ah)) {
2551 		gpio_shift = gpio;
2552 		REG_RMW(ah, AR7010_GPIO_OE,
2553 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2554 			(AR7010_GPIO_OE_MASK << gpio_shift));
2555 		return;
2556 	}
2557 
2558 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2559 	gpio_shift = 2 * gpio;
2560 	REG_RMW(ah,
2561 		AR_GPIO_OE_OUT,
2562 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2563 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2564 }
2565 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2566 
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2567 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2568 {
2569 	if (AR_DEVID_7010(ah)) {
2570 		val = val ? 0 : 1;
2571 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2572 			AR_GPIO_BIT(gpio));
2573 		return;
2574 	}
2575 
2576 	if (AR_SREV_9271(ah))
2577 		val = ~val;
2578 
2579 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2580 		AR_GPIO_BIT(gpio));
2581 }
2582 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2583 
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2584 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2585 {
2586 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2587 }
2588 EXPORT_SYMBOL(ath9k_hw_setantenna);
2589 
2590 /*********************/
2591 /* General Operation */
2592 /*********************/
2593 
ath9k_hw_getrxfilter(struct ath_hw * ah)2594 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2595 {
2596 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2597 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2598 
2599 	if (phybits & AR_PHY_ERR_RADAR)
2600 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2601 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2602 		bits |= ATH9K_RX_FILTER_PHYERR;
2603 
2604 	return bits;
2605 }
2606 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2607 
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2608 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2609 {
2610 	u32 phybits;
2611 
2612 	ENABLE_REGWRITE_BUFFER(ah);
2613 
2614 	if (AR_SREV_9462(ah))
2615 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2616 
2617 	REG_WRITE(ah, AR_RX_FILTER, bits);
2618 
2619 	phybits = 0;
2620 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2621 		phybits |= AR_PHY_ERR_RADAR;
2622 	if (bits & ATH9K_RX_FILTER_PHYERR)
2623 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2624 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2625 
2626 	if (phybits)
2627 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2628 	else
2629 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2630 
2631 	REGWRITE_BUFFER_FLUSH(ah);
2632 }
2633 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2634 
ath9k_hw_phy_disable(struct ath_hw * ah)2635 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2636 {
2637 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2638 		return false;
2639 
2640 	ath9k_hw_init_pll(ah, NULL);
2641 	ah->htc_reset_init = true;
2642 	return true;
2643 }
2644 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2645 
ath9k_hw_disable(struct ath_hw * ah)2646 bool ath9k_hw_disable(struct ath_hw *ah)
2647 {
2648 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2649 		return false;
2650 
2651 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2652 		return false;
2653 
2654 	ath9k_hw_init_pll(ah, NULL);
2655 	return true;
2656 }
2657 EXPORT_SYMBOL(ath9k_hw_disable);
2658 
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2659 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2660 {
2661 	enum eeprom_param gain_param;
2662 
2663 	if (IS_CHAN_2GHZ(chan))
2664 		gain_param = EEP_ANTENNA_GAIN_2G;
2665 	else
2666 		gain_param = EEP_ANTENNA_GAIN_5G;
2667 
2668 	return ah->eep_ops->get_eeprom(ah, gain_param);
2669 }
2670 
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2671 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2672 			    bool test)
2673 {
2674 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2675 	struct ieee80211_channel *channel;
2676 	int chan_pwr, new_pwr, max_gain;
2677 	int ant_gain, ant_reduction = 0;
2678 
2679 	if (!chan)
2680 		return;
2681 
2682 	channel = chan->chan;
2683 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2684 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2685 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2686 
2687 	ant_gain = get_antenna_gain(ah, chan);
2688 	if (ant_gain > max_gain)
2689 		ant_reduction = ant_gain - max_gain;
2690 
2691 	ah->eep_ops->set_txpower(ah, chan,
2692 				 ath9k_regd_get_ctl(reg, chan),
2693 				 ant_reduction, new_pwr, test);
2694 }
2695 
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2696 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2697 {
2698 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2699 	struct ath9k_channel *chan = ah->curchan;
2700 	struct ieee80211_channel *channel = chan->chan;
2701 
2702 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2703 	if (test)
2704 		channel->max_power = MAX_RATE_POWER / 2;
2705 
2706 	ath9k_hw_apply_txpower(ah, chan, test);
2707 
2708 	if (test)
2709 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2710 }
2711 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2712 
ath9k_hw_setopmode(struct ath_hw * ah)2713 void ath9k_hw_setopmode(struct ath_hw *ah)
2714 {
2715 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2716 }
2717 EXPORT_SYMBOL(ath9k_hw_setopmode);
2718 
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2719 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2720 {
2721 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2722 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2725 
ath9k_hw_write_associd(struct ath_hw * ah)2726 void ath9k_hw_write_associd(struct ath_hw *ah)
2727 {
2728 	struct ath_common *common = ath9k_hw_common(ah);
2729 
2730 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2731 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2732 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2733 }
2734 EXPORT_SYMBOL(ath9k_hw_write_associd);
2735 
2736 #define ATH9K_MAX_TSF_READ 10
2737 
ath9k_hw_gettsf64(struct ath_hw * ah)2738 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2739 {
2740 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2741 	int i;
2742 
2743 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2744 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2745 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2746 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2747 		if (tsf_upper2 == tsf_upper1)
2748 			break;
2749 		tsf_upper1 = tsf_upper2;
2750 	}
2751 
2752 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2753 
2754 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2755 }
2756 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2757 
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)2758 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2759 {
2760 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2761 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2762 }
2763 EXPORT_SYMBOL(ath9k_hw_settsf64);
2764 
ath9k_hw_reset_tsf(struct ath_hw * ah)2765 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2766 {
2767 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2768 			   AH_TSF_WRITE_TIMEOUT))
2769 		ath_dbg(ath9k_hw_common(ah), RESET,
2770 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2771 
2772 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2773 }
2774 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2775 
ath9k_hw_set_tsfadjust(struct ath_hw * ah,u32 setting)2776 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2777 {
2778 	if (setting)
2779 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2780 	else
2781 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2782 }
2783 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2784 
ath9k_hw_set11nmac2040(struct ath_hw * ah)2785 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2786 {
2787 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2788 	u32 macmode;
2789 
2790 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2791 		macmode = AR_2040_JOINED_RX_CLEAR;
2792 	else
2793 		macmode = 0;
2794 
2795 	REG_WRITE(ah, AR_2040_MODE, macmode);
2796 }
2797 
2798 /* HW Generic timers configuration */
2799 
2800 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2801 {
2802 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2803 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2804 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2805 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2806 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2807 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2808 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2809 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2810 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2811 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2812 				AR_NDP2_TIMER_MODE, 0x0002},
2813 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2814 				AR_NDP2_TIMER_MODE, 0x0004},
2815 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2816 				AR_NDP2_TIMER_MODE, 0x0008},
2817 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2818 				AR_NDP2_TIMER_MODE, 0x0010},
2819 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2820 				AR_NDP2_TIMER_MODE, 0x0020},
2821 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2822 				AR_NDP2_TIMER_MODE, 0x0040},
2823 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2824 				AR_NDP2_TIMER_MODE, 0x0080}
2825 };
2826 
2827 /* HW generic timer primitives */
2828 
2829 /* compute and clear index of rightmost 1 */
rightmost_index(struct ath_gen_timer_table * timer_table,u32 * mask)2830 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2831 {
2832 	u32 b;
2833 
2834 	b = *mask;
2835 	b &= (0-b);
2836 	*mask &= ~b;
2837 	b *= debruijn32;
2838 	b >>= 27;
2839 
2840 	return timer_table->gen_timer_index[b];
2841 }
2842 
ath9k_hw_gettsf32(struct ath_hw * ah)2843 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2844 {
2845 	return REG_READ(ah, AR_TSF_L32);
2846 }
2847 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2848 
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)2849 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2850 					  void (*trigger)(void *),
2851 					  void (*overflow)(void *),
2852 					  void *arg,
2853 					  u8 timer_index)
2854 {
2855 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2856 	struct ath_gen_timer *timer;
2857 
2858 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2859 
2860 	if (timer == NULL) {
2861 		ath_err(ath9k_hw_common(ah),
2862 			"Failed to allocate memory for hw timer[%d]\n",
2863 			timer_index);
2864 		return NULL;
2865 	}
2866 
2867 	/* allocate a hardware generic timer slot */
2868 	timer_table->timers[timer_index] = timer;
2869 	timer->index = timer_index;
2870 	timer->trigger = trigger;
2871 	timer->overflow = overflow;
2872 	timer->arg = arg;
2873 
2874 	return timer;
2875 }
2876 EXPORT_SYMBOL(ath_gen_timer_alloc);
2877 
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 trig_timeout,u32 timer_period)2878 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2879 			      struct ath_gen_timer *timer,
2880 			      u32 trig_timeout,
2881 			      u32 timer_period)
2882 {
2883 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2884 	u32 tsf, timer_next;
2885 
2886 	BUG_ON(!timer_period);
2887 
2888 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2889 
2890 	tsf = ath9k_hw_gettsf32(ah);
2891 
2892 	timer_next = tsf + trig_timeout;
2893 
2894 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
2895 		"current tsf %x period %x timer_next %x\n",
2896 		tsf, timer_period, timer_next);
2897 
2898 	/*
2899 	 * Program generic timer registers
2900 	 */
2901 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2902 		 timer_next);
2903 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2904 		  timer_period);
2905 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2906 		    gen_tmr_configuration[timer->index].mode_mask);
2907 
2908 	if (AR_SREV_9462(ah)) {
2909 		/*
2910 		 * Starting from AR9462, each generic timer can select which tsf
2911 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2912 		 * 8 - 15  use tsf2.
2913 		 */
2914 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2915 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2916 				       (1 << timer->index));
2917 		else
2918 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2919 				       (1 << timer->index));
2920 	}
2921 
2922 	/* Enable both trigger and thresh interrupt masks */
2923 	REG_SET_BIT(ah, AR_IMR_S5,
2924 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2925 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2928 
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)2929 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2930 {
2931 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2932 
2933 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2934 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2935 		return;
2936 	}
2937 
2938 	/* Clear generic timer enable bits. */
2939 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2940 			gen_tmr_configuration[timer->index].mode_mask);
2941 
2942 	/* Disable both trigger and thresh interrupt masks */
2943 	REG_CLR_BIT(ah, AR_IMR_S5,
2944 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2945 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2946 
2947 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2948 }
2949 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2950 
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)2951 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2952 {
2953 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2954 
2955 	/* free the hardware generic timer slot */
2956 	timer_table->timers[timer->index] = NULL;
2957 	kfree(timer);
2958 }
2959 EXPORT_SYMBOL(ath_gen_timer_free);
2960 
2961 /*
2962  * Generic Timer Interrupts handling
2963  */
ath_gen_timer_isr(struct ath_hw * ah)2964 void ath_gen_timer_isr(struct ath_hw *ah)
2965 {
2966 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2967 	struct ath_gen_timer *timer;
2968 	struct ath_common *common = ath9k_hw_common(ah);
2969 	u32 trigger_mask, thresh_mask, index;
2970 
2971 	/* get hardware generic timer interrupt status */
2972 	trigger_mask = ah->intr_gen_timer_trigger;
2973 	thresh_mask = ah->intr_gen_timer_thresh;
2974 	trigger_mask &= timer_table->timer_mask.val;
2975 	thresh_mask &= timer_table->timer_mask.val;
2976 
2977 	trigger_mask &= ~thresh_mask;
2978 
2979 	while (thresh_mask) {
2980 		index = rightmost_index(timer_table, &thresh_mask);
2981 		timer = timer_table->timers[index];
2982 		BUG_ON(!timer);
2983 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
2984 			index);
2985 		timer->overflow(timer->arg);
2986 	}
2987 
2988 	while (trigger_mask) {
2989 		index = rightmost_index(timer_table, &trigger_mask);
2990 		timer = timer_table->timers[index];
2991 		BUG_ON(!timer);
2992 		ath_dbg(common, HWTIMER,
2993 			"Gen timer[%d] trigger\n", index);
2994 		timer->trigger(timer->arg);
2995 	}
2996 }
2997 EXPORT_SYMBOL(ath_gen_timer_isr);
2998 
2999 /********/
3000 /* HTC  */
3001 /********/
3002 
3003 static struct {
3004 	u32 version;
3005 	const char * name;
3006 } ath_mac_bb_names[] = {
3007 	/* Devices with external radios */
3008 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3009 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3010 	{ AR_SREV_VERSION_9100,		"9100" },
3011 	{ AR_SREV_VERSION_9160,		"9160" },
3012 	/* Single-chip solutions */
3013 	{ AR_SREV_VERSION_9280,		"9280" },
3014 	{ AR_SREV_VERSION_9285,		"9285" },
3015 	{ AR_SREV_VERSION_9287,         "9287" },
3016 	{ AR_SREV_VERSION_9271,         "9271" },
3017 	{ AR_SREV_VERSION_9300,         "9300" },
3018 	{ AR_SREV_VERSION_9330,         "9330" },
3019 	{ AR_SREV_VERSION_9340,		"9340" },
3020 	{ AR_SREV_VERSION_9485,         "9485" },
3021 	{ AR_SREV_VERSION_9462,         "9462" },
3022 };
3023 
3024 /* For devices with external radios */
3025 static struct {
3026 	u16 version;
3027 	const char * name;
3028 } ath_rf_names[] = {
3029 	{ 0,				"5133" },
3030 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3031 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3032 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3033 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3034 };
3035 
3036 /*
3037  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3038  */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3039 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3040 {
3041 	int i;
3042 
3043 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3044 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3045 			return ath_mac_bb_names[i].name;
3046 		}
3047 	}
3048 
3049 	return "????";
3050 }
3051 
3052 /*
3053  * Return the RF name. "????" is returned if the RF is unknown.
3054  * Used for devices with external radios.
3055  */
ath9k_hw_rf_name(u16 rf_version)3056 static const char *ath9k_hw_rf_name(u16 rf_version)
3057 {
3058 	int i;
3059 
3060 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3061 		if (ath_rf_names[i].version == rf_version) {
3062 			return ath_rf_names[i].name;
3063 		}
3064 	}
3065 
3066 	return "????";
3067 }
3068 
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3069 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3070 {
3071 	int used;
3072 
3073 	/* chipsets >= AR9280 are single-chip */
3074 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3075 		used = snprintf(hw_name, len,
3076 			       "Atheros AR%s Rev:%x",
3077 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3078 			       ah->hw_version.macRev);
3079 	}
3080 	else {
3081 		used = snprintf(hw_name, len,
3082 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3083 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3084 			       ah->hw_version.macRev,
3085 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3086 						AR_RADIO_SREV_MAJOR)),
3087 			       ah->hw_version.phyRev);
3088 	}
3089 
3090 	hw_name[used] = '\0';
3091 }
3092 EXPORT_SYMBOL(ath9k_hw_name);
3093