1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_LICENSE("Dual BSD/GPL");
38
ath9k_hw_set_clockrate(struct ath_hw * ah)39 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40 {
41 struct ath_common *common = ath9k_hw_common(ah);
42 struct ath9k_channel *chan = ah->curchan;
43 unsigned int clockrate;
44
45 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 clockrate = 117;
48 else if (!chan) /* should really check for CCK instead */
49 clockrate = ATH9K_CLOCK_RATE_CCK;
50 else if (IS_CHAN_2GHZ(chan))
51 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 else
55 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56
57 if (chan) {
58 if (IS_CHAN_HT40(chan))
59 clockrate *= 2;
60 if (IS_CHAN_HALF_RATE(chan))
61 clockrate /= 2;
62 if (IS_CHAN_QUARTER_RATE(chan))
63 clockrate /= 4;
64 }
65
66 common->clockrate = clockrate;
67 }
68
ath9k_hw_mac_to_clks(struct ath_hw * ah,u32 usecs)69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70 {
71 struct ath_common *common = ath9k_hw_common(ah);
72
73 return usecs * common->clockrate;
74 }
75
ath9k_hw_wait(struct ath_hw * ah,u32 reg,u32 mask,u32 val,u32 timeout)76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78 int i;
79
80 BUG_ON(timeout < AH_TIME_QUANTUM);
81
82 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 if ((REG_READ(ah, reg) & mask) == val)
84 return true;
85
86 udelay(AH_TIME_QUANTUM);
87 }
88
89 ath_dbg(ath9k_hw_common(ah), ANY,
90 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 timeout, reg, REG_READ(ah, reg), mask, val);
92
93 return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
ath9k_hw_synth_delay(struct ath_hw * ah,struct ath9k_channel * chan,int hw_delay)97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 int hw_delay)
99 {
100 hw_delay /= 10;
101
102 if (IS_CHAN_HALF_RATE(chan))
103 hw_delay *= 2;
104 else if (IS_CHAN_QUARTER_RATE(chan))
105 hw_delay *= 4;
106
107 udelay(hw_delay + BASE_ACTIVATE_DELAY);
108 }
109
ath9k_hw_write_array(struct ath_hw * ah,const struct ar5416IniArray * array,int column,unsigned int * writecnt)110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 int column, unsigned int *writecnt)
112 {
113 int r;
114
115 ENABLE_REGWRITE_BUFFER(ah);
116 for (r = 0; r < array->ia_rows; r++) {
117 REG_WRITE(ah, INI_RA(array, r, 0),
118 INI_RA(array, r, column));
119 DO_DELAY(*writecnt);
120 }
121 REGWRITE_BUFFER_FLUSH(ah);
122 }
123
ath9k_hw_read_array(struct ath_hw * ah,u32 array[][2],int size)124 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
125 {
126 u32 *tmp_reg_list, *tmp_data;
127 int i;
128
129 tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
130 if (!tmp_reg_list) {
131 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
132 return;
133 }
134
135 tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
136 if (!tmp_data) {
137 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
138 goto error_tmp_data;
139 }
140
141 for (i = 0; i < size; i++)
142 tmp_reg_list[i] = array[i][0];
143
144 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
145
146 for (i = 0; i < size; i++)
147 array[i][1] = tmp_data[i];
148
149 kfree(tmp_data);
150 error_tmp_data:
151 kfree(tmp_reg_list);
152 }
153
ath9k_hw_reverse_bits(u32 val,u32 n)154 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
155 {
156 u32 retval;
157 int i;
158
159 for (i = 0, retval = 0; i < n; i++) {
160 retval = (retval << 1) | (val & 1);
161 val >>= 1;
162 }
163 return retval;
164 }
165
ath9k_hw_computetxtime(struct ath_hw * ah,u8 phy,int kbps,u32 frameLen,u16 rateix,bool shortPreamble)166 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
167 u8 phy, int kbps,
168 u32 frameLen, u16 rateix,
169 bool shortPreamble)
170 {
171 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
172
173 if (kbps == 0)
174 return 0;
175
176 switch (phy) {
177 case WLAN_RC_PHY_CCK:
178 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
179 if (shortPreamble)
180 phyTime >>= 1;
181 numBits = frameLen << 3;
182 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
183 break;
184 case WLAN_RC_PHY_OFDM:
185 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
186 bitsPerSymbol =
187 ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 txTime = OFDM_SIFS_TIME_QUARTER
191 + OFDM_PREAMBLE_TIME_QUARTER
192 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 } else if (ah->curchan &&
194 IS_CHAN_HALF_RATE(ah->curchan)) {
195 bitsPerSymbol =
196 ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
197 numBits = OFDM_PLCP_BITS + (frameLen << 3);
198 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199 txTime = OFDM_SIFS_TIME_HALF +
200 OFDM_PREAMBLE_TIME_HALF
201 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
202 } else {
203 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204 numBits = OFDM_PLCP_BITS + (frameLen << 3);
205 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207 + (numSymbols * OFDM_SYMBOL_TIME);
208 }
209 break;
210 default:
211 ath_err(ath9k_hw_common(ah),
212 "Unknown phy %u (rate ix %u)\n", phy, rateix);
213 txTime = 0;
214 break;
215 }
216
217 return txTime;
218 }
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
ath9k_hw_get_channel_centers(struct ath_hw * ah,struct ath9k_channel * chan,struct chan_centers * centers)221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222 struct ath9k_channel *chan,
223 struct chan_centers *centers)
224 {
225 int8_t extoff;
226
227 if (!IS_CHAN_HT40(chan)) {
228 centers->ctl_center = centers->ext_center =
229 centers->synth_center = chan->channel;
230 return;
231 }
232
233 if (IS_CHAN_HT40PLUS(chan)) {
234 centers->synth_center =
235 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
236 extoff = 1;
237 } else {
238 centers->synth_center =
239 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
240 extoff = -1;
241 }
242
243 centers->ctl_center =
244 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 /* 25 MHz spacing is supported by hw but not on upper layers */
246 centers->ext_center =
247 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
248 }
249
250 /******************/
251 /* Chip Revisions */
252 /******************/
253
ath9k_hw_read_revisions(struct ath_hw * ah)254 static bool ath9k_hw_read_revisions(struct ath_hw *ah)
255 {
256 u32 srev;
257 u32 val;
258
259 if (ah->get_mac_revision)
260 ah->hw_version.macRev = ah->get_mac_revision();
261
262 switch (ah->hw_version.devid) {
263 case AR5416_AR9100_DEVID:
264 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
265 break;
266 case AR9300_DEVID_AR9330:
267 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
268 if (!ah->get_mac_revision) {
269 val = REG_READ(ah, AR_SREV);
270 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271 }
272 return true;
273 case AR9300_DEVID_AR9340:
274 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275 return true;
276 case AR9300_DEVID_QCA955X:
277 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
278 return true;
279 case AR9300_DEVID_AR953X:
280 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
281 return true;
282 case AR9300_DEVID_QCA956X:
283 ah->hw_version.macVersion = AR_SREV_VERSION_9561;
284 return true;
285 }
286
287 srev = REG_READ(ah, AR_SREV);
288
289 if (srev == -1) {
290 ath_err(ath9k_hw_common(ah),
291 "Failed to read SREV register");
292 return false;
293 }
294
295 val = srev & AR_SREV_ID;
296
297 if (val == 0xFF) {
298 val = srev;
299 ah->hw_version.macVersion =
300 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
301 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
302
303 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
304 ah->is_pciexpress = true;
305 else
306 ah->is_pciexpress = (val &
307 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
308 } else {
309 if (!AR_SREV_9100(ah))
310 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
311
312 ah->hw_version.macRev = val & AR_SREV_REVISION;
313
314 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
315 ah->is_pciexpress = true;
316 }
317
318 return true;
319 }
320
321 /************************************/
322 /* HW Attach, Detach, Init Routines */
323 /************************************/
324
ath9k_hw_disablepcie(struct ath_hw * ah)325 static void ath9k_hw_disablepcie(struct ath_hw *ah)
326 {
327 if (!AR_SREV_5416(ah))
328 return;
329
330 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
331 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
332 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
333 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
334 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
335 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
336 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
337 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
338 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
339
340 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
341 }
342
343 /* This should work for all families including legacy */
ath9k_hw_chip_test(struct ath_hw * ah)344 static bool ath9k_hw_chip_test(struct ath_hw *ah)
345 {
346 struct ath_common *common = ath9k_hw_common(ah);
347 u32 regAddr[2] = { AR_STA_ID0 };
348 u32 regHold[2];
349 static const u32 patternData[4] = {
350 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
351 };
352 int i, j, loop_max;
353
354 if (!AR_SREV_9300_20_OR_LATER(ah)) {
355 loop_max = 2;
356 regAddr[1] = AR_PHY_BASE + (8 << 2);
357 } else
358 loop_max = 1;
359
360 for (i = 0; i < loop_max; i++) {
361 u32 addr = regAddr[i];
362 u32 wrData, rdData;
363
364 regHold[i] = REG_READ(ah, addr);
365 for (j = 0; j < 0x100; j++) {
366 wrData = (j << 16) | j;
367 REG_WRITE(ah, addr, wrData);
368 rdData = REG_READ(ah, addr);
369 if (rdData != wrData) {
370 ath_err(common,
371 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
372 addr, wrData, rdData);
373 return false;
374 }
375 }
376 for (j = 0; j < 4; j++) {
377 wrData = patternData[j];
378 REG_WRITE(ah, addr, wrData);
379 rdData = REG_READ(ah, addr);
380 if (wrData != rdData) {
381 ath_err(common,
382 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
383 addr, wrData, rdData);
384 return false;
385 }
386 }
387 REG_WRITE(ah, regAddr[i], regHold[i]);
388 }
389 udelay(100);
390
391 return true;
392 }
393
ath9k_hw_init_config(struct ath_hw * ah)394 static void ath9k_hw_init_config(struct ath_hw *ah)
395 {
396 struct ath_common *common = ath9k_hw_common(ah);
397
398 ah->config.dma_beacon_response_time = 1;
399 ah->config.sw_beacon_response_time = 6;
400 ah->config.cwm_ignore_extcca = false;
401 ah->config.analog_shiftreg = 1;
402
403 ah->config.rx_intr_mitigation = true;
404
405 if (AR_SREV_9300_20_OR_LATER(ah)) {
406 ah->config.rimt_last = 500;
407 ah->config.rimt_first = 2000;
408 } else {
409 ah->config.rimt_last = 250;
410 ah->config.rimt_first = 700;
411 }
412
413 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
414 ah->config.pll_pwrsave = 7;
415
416 /*
417 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
418 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
419 * This means we use it for all AR5416 devices, and the few
420 * minor PCI AR9280 devices out there.
421 *
422 * Serialization is required because these devices do not handle
423 * well the case of two concurrent reads/writes due to the latency
424 * involved. During one read/write another read/write can be issued
425 * on another CPU while the previous read/write may still be working
426 * on our hardware, if we hit this case the hardware poops in a loop.
427 * We prevent this by serializing reads and writes.
428 *
429 * This issue is not present on PCI-Express devices or pre-AR5416
430 * devices (legacy, 802.11abg).
431 */
432 if (num_possible_cpus() > 1)
433 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
434
435 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
436 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
437 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
438 !ah->is_pciexpress)) {
439 ah->config.serialize_regmode = SER_REG_MODE_ON;
440 } else {
441 ah->config.serialize_regmode = SER_REG_MODE_OFF;
442 }
443 }
444
445 ath_dbg(common, RESET, "serialize_regmode is %d\n",
446 ah->config.serialize_regmode);
447
448 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
449 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
450 else
451 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
452 }
453
ath9k_hw_init_defaults(struct ath_hw * ah)454 static void ath9k_hw_init_defaults(struct ath_hw *ah)
455 {
456 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
457
458 regulatory->country_code = CTRY_DEFAULT;
459 regulatory->power_limit = MAX_COMBINED_POWER;
460
461 ah->hw_version.magic = AR5416_MAGIC;
462 ah->hw_version.subvendorid = 0;
463
464 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
465 AR_STA_ID1_MCAST_KSRCH;
466 if (AR_SREV_9100(ah))
467 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
468
469 ah->slottime = 9;
470 ah->globaltxtimeout = (u32) -1;
471 ah->power_mode = ATH9K_PM_UNDEFINED;
472 ah->htc_reset_init = true;
473
474 ah->tpc_enabled = false;
475
476 ah->ani_function = ATH9K_ANI_ALL;
477 if (!AR_SREV_9300_20_OR_LATER(ah))
478 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
479
480 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
481 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
482 else
483 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
484 }
485
ath9k_hw_init_macaddr(struct ath_hw * ah)486 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
487 {
488 struct ath_common *common = ath9k_hw_common(ah);
489 int i;
490 u16 eeval;
491 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
492
493 /* MAC address may already be loaded via ath9k_platform_data */
494 if (is_valid_ether_addr(common->macaddr))
495 return;
496
497 for (i = 0; i < 3; i++) {
498 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
499 common->macaddr[2 * i] = eeval >> 8;
500 common->macaddr[2 * i + 1] = eeval & 0xff;
501 }
502
503 if (is_valid_ether_addr(common->macaddr))
504 return;
505
506 ath_err(common, "eeprom contains invalid mac address: %pM\n",
507 common->macaddr);
508
509 eth_random_addr(common->macaddr);
510 ath_err(common, "random mac address will be used: %pM\n",
511 common->macaddr);
512
513 return;
514 }
515
ath9k_hw_post_init(struct ath_hw * ah)516 static int ath9k_hw_post_init(struct ath_hw *ah)
517 {
518 struct ath_common *common = ath9k_hw_common(ah);
519 int ecode;
520
521 if (common->bus_ops->ath_bus_type != ATH_USB) {
522 if (!ath9k_hw_chip_test(ah))
523 return -ENODEV;
524 }
525
526 if (!AR_SREV_9300_20_OR_LATER(ah)) {
527 ecode = ar9002_hw_rf_claim(ah);
528 if (ecode != 0)
529 return ecode;
530 }
531
532 ecode = ath9k_hw_eeprom_init(ah);
533 if (ecode != 0)
534 return ecode;
535
536 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
537 ah->eep_ops->get_eeprom_ver(ah),
538 ah->eep_ops->get_eeprom_rev(ah));
539
540 ath9k_hw_ani_init(ah);
541
542 /*
543 * EEPROM needs to be initialized before we do this.
544 * This is required for regulatory compliance.
545 */
546 if (AR_SREV_9300_20_OR_LATER(ah)) {
547 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
548 if ((regdmn & 0xF0) == CTL_FCC) {
549 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
550 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
551 }
552 }
553
554 return 0;
555 }
556
ath9k_hw_attach_ops(struct ath_hw * ah)557 static int ath9k_hw_attach_ops(struct ath_hw *ah)
558 {
559 if (!AR_SREV_9300_20_OR_LATER(ah))
560 return ar9002_hw_attach_ops(ah);
561
562 ar9003_hw_attach_ops(ah);
563 return 0;
564 }
565
566 /* Called for all hardware families */
__ath9k_hw_init(struct ath_hw * ah)567 static int __ath9k_hw_init(struct ath_hw *ah)
568 {
569 struct ath_common *common = ath9k_hw_common(ah);
570 int r = 0;
571
572 if (!ath9k_hw_read_revisions(ah)) {
573 ath_err(common, "Could not read hardware revisions");
574 return -EOPNOTSUPP;
575 }
576
577 switch (ah->hw_version.macVersion) {
578 case AR_SREV_VERSION_5416_PCI:
579 case AR_SREV_VERSION_5416_PCIE:
580 case AR_SREV_VERSION_9160:
581 case AR_SREV_VERSION_9100:
582 case AR_SREV_VERSION_9280:
583 case AR_SREV_VERSION_9285:
584 case AR_SREV_VERSION_9287:
585 case AR_SREV_VERSION_9271:
586 case AR_SREV_VERSION_9300:
587 case AR_SREV_VERSION_9330:
588 case AR_SREV_VERSION_9485:
589 case AR_SREV_VERSION_9340:
590 case AR_SREV_VERSION_9462:
591 case AR_SREV_VERSION_9550:
592 case AR_SREV_VERSION_9565:
593 case AR_SREV_VERSION_9531:
594 case AR_SREV_VERSION_9561:
595 break;
596 default:
597 ath_err(common,
598 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
599 ah->hw_version.macVersion, ah->hw_version.macRev);
600 return -EOPNOTSUPP;
601 }
602
603 /*
604 * Read back AR_WA into a permanent copy and set bits 14 and 17.
605 * We need to do this to avoid RMW of this register. We cannot
606 * read the reg when chip is asleep.
607 */
608 if (AR_SREV_9300_20_OR_LATER(ah)) {
609 ah->WARegVal = REG_READ(ah, AR_WA);
610 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
611 AR_WA_ASPM_TIMER_BASED_DISABLE);
612 }
613
614 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
615 ath_err(common, "Couldn't reset chip\n");
616 return -EIO;
617 }
618
619 if (AR_SREV_9565(ah)) {
620 ah->WARegVal |= AR_WA_BIT22;
621 REG_WRITE(ah, AR_WA, ah->WARegVal);
622 }
623
624 ath9k_hw_init_defaults(ah);
625 ath9k_hw_init_config(ah);
626
627 r = ath9k_hw_attach_ops(ah);
628 if (r)
629 return r;
630
631 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
632 ath_err(common, "Couldn't wakeup chip\n");
633 return -EIO;
634 }
635
636 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
637 AR_SREV_9330(ah) || AR_SREV_9550(ah))
638 ah->is_pciexpress = false;
639
640 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
641 ath9k_hw_init_cal_settings(ah);
642
643 if (!ah->is_pciexpress)
644 ath9k_hw_disablepcie(ah);
645
646 r = ath9k_hw_post_init(ah);
647 if (r)
648 return r;
649
650 ath9k_hw_init_mode_gain_regs(ah);
651 r = ath9k_hw_fill_cap_info(ah);
652 if (r)
653 return r;
654
655 ath9k_hw_init_macaddr(ah);
656 ath9k_hw_init_hang_checks(ah);
657
658 common->state = ATH_HW_INITIALIZED;
659
660 return 0;
661 }
662
ath9k_hw_init(struct ath_hw * ah)663 int ath9k_hw_init(struct ath_hw *ah)
664 {
665 int ret;
666 struct ath_common *common = ath9k_hw_common(ah);
667
668 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
669 switch (ah->hw_version.devid) {
670 case AR5416_DEVID_PCI:
671 case AR5416_DEVID_PCIE:
672 case AR5416_AR9100_DEVID:
673 case AR9160_DEVID_PCI:
674 case AR9280_DEVID_PCI:
675 case AR9280_DEVID_PCIE:
676 case AR9285_DEVID_PCIE:
677 case AR9287_DEVID_PCI:
678 case AR9287_DEVID_PCIE:
679 case AR2427_DEVID_PCIE:
680 case AR9300_DEVID_PCIE:
681 case AR9300_DEVID_AR9485_PCIE:
682 case AR9300_DEVID_AR9330:
683 case AR9300_DEVID_AR9340:
684 case AR9300_DEVID_QCA955X:
685 case AR9300_DEVID_AR9580:
686 case AR9300_DEVID_AR9462:
687 case AR9485_DEVID_AR1111:
688 case AR9300_DEVID_AR9565:
689 case AR9300_DEVID_AR953X:
690 case AR9300_DEVID_QCA956X:
691 break;
692 default:
693 if (common->bus_ops->ath_bus_type == ATH_USB)
694 break;
695 ath_err(common, "Hardware device ID 0x%04x not supported\n",
696 ah->hw_version.devid);
697 return -EOPNOTSUPP;
698 }
699
700 ret = __ath9k_hw_init(ah);
701 if (ret) {
702 ath_err(common,
703 "Unable to initialize hardware; initialization status: %d\n",
704 ret);
705 return ret;
706 }
707
708 ath_dynack_init(ah);
709
710 return 0;
711 }
712 EXPORT_SYMBOL(ath9k_hw_init);
713
ath9k_hw_init_qos(struct ath_hw * ah)714 static void ath9k_hw_init_qos(struct ath_hw *ah)
715 {
716 ENABLE_REGWRITE_BUFFER(ah);
717
718 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
719 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
720
721 REG_WRITE(ah, AR_QOS_NO_ACK,
722 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
723 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
724 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
725
726 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
727 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
728 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
729 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
730 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
731
732 REGWRITE_BUFFER_FLUSH(ah);
733 }
734
ar9003_get_pll_sqsum_dvc(struct ath_hw * ah)735 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
736 {
737 struct ath_common *common = ath9k_hw_common(ah);
738 int i = 0;
739
740 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
741 udelay(100);
742 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
743
744 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
745
746 udelay(100);
747
748 if (WARN_ON_ONCE(i >= 100)) {
749 ath_err(common, "PLL4 measurement not done\n");
750 break;
751 }
752
753 i++;
754 }
755
756 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
757 }
758 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
759
ath9k_hw_init_pll(struct ath_hw * ah,struct ath9k_channel * chan)760 static void ath9k_hw_init_pll(struct ath_hw *ah,
761 struct ath9k_channel *chan)
762 {
763 u32 pll;
764
765 pll = ath9k_hw_compute_pll_control(ah, chan);
766
767 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
768 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
769 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
770 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
771 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
772 AR_CH0_DPLL2_KD, 0x40);
773 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
774 AR_CH0_DPLL2_KI, 0x4);
775
776 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
777 AR_CH0_BB_DPLL1_REFDIV, 0x5);
778 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
779 AR_CH0_BB_DPLL1_NINI, 0x58);
780 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
781 AR_CH0_BB_DPLL1_NFRAC, 0x0);
782
783 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
784 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
785 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
786 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
787 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
788 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
789
790 /* program BB PLL phase_shift to 0x6 */
791 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
792 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
793
794 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
795 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
796 udelay(1000);
797 } else if (AR_SREV_9330(ah)) {
798 u32 ddr_dpll2, pll_control2, kd;
799
800 if (ah->is_clk_25mhz) {
801 ddr_dpll2 = 0x18e82f01;
802 pll_control2 = 0xe04a3d;
803 kd = 0x1d;
804 } else {
805 ddr_dpll2 = 0x19e82f01;
806 pll_control2 = 0x886666;
807 kd = 0x3d;
808 }
809
810 /* program DDR PLL ki and kd value */
811 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
812
813 /* program DDR PLL phase_shift */
814 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
815 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
816
817 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
818 pll | AR_RTC_9300_PLL_BYPASS);
819 udelay(1000);
820
821 /* program refdiv, nint, frac to RTC register */
822 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
823
824 /* program BB PLL kd and ki value */
825 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
826 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
827
828 /* program BB PLL phase_shift */
829 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
830 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
831 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
832 AR_SREV_9561(ah)) {
833 u32 regval, pll2_divint, pll2_divfrac, refdiv;
834
835 REG_WRITE(ah, AR_RTC_PLL_CONTROL,
836 pll | AR_RTC_9300_SOC_PLL_BYPASS);
837 udelay(1000);
838
839 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
840 udelay(100);
841
842 if (ah->is_clk_25mhz) {
843 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
844 pll2_divint = 0x1c;
845 pll2_divfrac = 0xa3d2;
846 refdiv = 1;
847 } else {
848 pll2_divint = 0x54;
849 pll2_divfrac = 0x1eb85;
850 refdiv = 3;
851 }
852 } else {
853 if (AR_SREV_9340(ah)) {
854 pll2_divint = 88;
855 pll2_divfrac = 0;
856 refdiv = 5;
857 } else {
858 pll2_divint = 0x11;
859 pll2_divfrac = (AR_SREV_9531(ah) ||
860 AR_SREV_9561(ah)) ?
861 0x26665 : 0x26666;
862 refdiv = 1;
863 }
864 }
865
866 regval = REG_READ(ah, AR_PHY_PLL_MODE);
867 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
868 regval |= (0x1 << 22);
869 else
870 regval |= (0x1 << 16);
871 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
872 udelay(100);
873
874 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
875 (pll2_divint << 18) | pll2_divfrac);
876 udelay(100);
877
878 regval = REG_READ(ah, AR_PHY_PLL_MODE);
879 if (AR_SREV_9340(ah))
880 regval = (regval & 0x80071fff) |
881 (0x1 << 30) |
882 (0x1 << 13) |
883 (0x4 << 26) |
884 (0x18 << 19);
885 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
886 regval = (regval & 0x01c00fff) |
887 (0x1 << 31) |
888 (0x2 << 29) |
889 (0xa << 25) |
890 (0x1 << 19);
891
892 if (AR_SREV_9531(ah))
893 regval |= (0x6 << 12);
894 } else
895 regval = (regval & 0x80071fff) |
896 (0x3 << 30) |
897 (0x1 << 13) |
898 (0x4 << 26) |
899 (0x60 << 19);
900 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
901
902 if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
903 REG_WRITE(ah, AR_PHY_PLL_MODE,
904 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
905 else
906 REG_WRITE(ah, AR_PHY_PLL_MODE,
907 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
908
909 udelay(1000);
910 }
911
912 if (AR_SREV_9565(ah))
913 pll |= 0x40000;
914 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
915
916 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
917 AR_SREV_9550(ah))
918 udelay(1000);
919
920 /* Switch the core clock for ar9271 to 117Mhz */
921 if (AR_SREV_9271(ah)) {
922 udelay(500);
923 REG_WRITE(ah, 0x50040, 0x304);
924 }
925
926 udelay(RTC_PLL_SETTLE_DELAY);
927
928 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
929 }
930
ath9k_hw_init_interrupt_masks(struct ath_hw * ah,enum nl80211_iftype opmode)931 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
932 enum nl80211_iftype opmode)
933 {
934 u32 sync_default = AR_INTR_SYNC_DEFAULT;
935 u32 imr_reg = AR_IMR_TXERR |
936 AR_IMR_TXURN |
937 AR_IMR_RXERR |
938 AR_IMR_RXORN |
939 AR_IMR_BCNMISC;
940 u32 msi_cfg = 0;
941
942 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
943 AR_SREV_9561(ah))
944 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
945
946 if (AR_SREV_9300_20_OR_LATER(ah)) {
947 imr_reg |= AR_IMR_RXOK_HP;
948 if (ah->config.rx_intr_mitigation) {
949 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
950 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
951 } else {
952 imr_reg |= AR_IMR_RXOK_LP;
953 msi_cfg |= AR_INTCFG_MSI_RXOK;
954 }
955 } else {
956 if (ah->config.rx_intr_mitigation) {
957 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
959 } else {
960 imr_reg |= AR_IMR_RXOK;
961 msi_cfg |= AR_INTCFG_MSI_RXOK;
962 }
963 }
964
965 if (ah->config.tx_intr_mitigation) {
966 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
967 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
968 } else {
969 imr_reg |= AR_IMR_TXOK;
970 msi_cfg |= AR_INTCFG_MSI_TXOK;
971 }
972
973 ENABLE_REGWRITE_BUFFER(ah);
974
975 REG_WRITE(ah, AR_IMR, imr_reg);
976 ah->imrs2_reg |= AR_IMR_S2_GTT;
977 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
978
979 if (ah->msi_enabled) {
980 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
981 ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
982 ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
983 REG_WRITE(ah, AR_INTCFG, msi_cfg);
984 ath_dbg(ath9k_hw_common(ah), ANY,
985 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
986 REG_READ(ah, AR_INTCFG), msi_cfg);
987 }
988
989 if (!AR_SREV_9100(ah)) {
990 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
991 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
992 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
993 }
994
995 REGWRITE_BUFFER_FLUSH(ah);
996
997 if (AR_SREV_9300_20_OR_LATER(ah)) {
998 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
999 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1000 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1001 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1002 }
1003 }
1004
ath9k_hw_set_sifs_time(struct ath_hw * ah,u32 us)1005 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006 {
1007 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008 val = min(val, (u32) 0xFFFF);
1009 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010 }
1011
ath9k_hw_setslottime(struct ath_hw * ah,u32 us)1012 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013 {
1014 u32 val = ath9k_hw_mac_to_clks(ah, us);
1015 val = min(val, (u32) 0xFFFF);
1016 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017 }
1018
ath9k_hw_set_ack_timeout(struct ath_hw * ah,u32 us)1019 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020 {
1021 u32 val = ath9k_hw_mac_to_clks(ah, us);
1022 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024 }
1025
ath9k_hw_set_cts_timeout(struct ath_hw * ah,u32 us)1026 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027 {
1028 u32 val = ath9k_hw_mac_to_clks(ah, us);
1029 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031 }
1032
ath9k_hw_set_global_txtimeout(struct ath_hw * ah,u32 tu)1033 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034 {
1035 if (tu > 0xFFFF) {
1036 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037 tu);
1038 ah->globaltxtimeout = (u32) -1;
1039 return false;
1040 } else {
1041 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042 ah->globaltxtimeout = tu;
1043 return true;
1044 }
1045 }
1046
ath9k_hw_init_global_settings(struct ath_hw * ah)1047 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048 {
1049 struct ath_common *common = ath9k_hw_common(ah);
1050 const struct ath9k_channel *chan = ah->curchan;
1051 int acktimeout, ctstimeout, ack_offset = 0;
1052 int slottime;
1053 int sifstime;
1054 int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055 u32 reg;
1056
1057 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058 ah->misc_mode);
1059
1060 if (!chan)
1061 return;
1062
1063 if (ah->misc_mode != 0)
1064 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065
1066 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067 rx_lat = 41;
1068 else
1069 rx_lat = 37;
1070 tx_lat = 54;
1071
1072 if (IS_CHAN_5GHZ(chan))
1073 sifstime = 16;
1074 else
1075 sifstime = 10;
1076
1077 if (IS_CHAN_HALF_RATE(chan)) {
1078 eifs = 175;
1079 rx_lat *= 2;
1080 tx_lat *= 2;
1081 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 tx_lat += 11;
1083
1084 sifstime = 32;
1085 ack_offset = 16;
1086 ack_shift = 3;
1087 slottime = 13;
1088 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1089 eifs = 340;
1090 rx_lat = (rx_lat * 4) - 1;
1091 tx_lat *= 4;
1092 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093 tx_lat += 22;
1094
1095 sifstime = 64;
1096 ack_offset = 32;
1097 ack_shift = 1;
1098 slottime = 21;
1099 } else {
1100 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102 reg = AR_USEC_ASYNC_FIFO;
1103 } else {
1104 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105 common->clockrate;
1106 reg = REG_READ(ah, AR_USEC);
1107 }
1108 rx_lat = MS(reg, AR_USEC_RX_LAT);
1109 tx_lat = MS(reg, AR_USEC_TX_LAT);
1110
1111 slottime = ah->slottime;
1112 }
1113
1114 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1115 slottime += 3 * ah->coverage_class;
1116 acktimeout = slottime + sifstime + ack_offset;
1117 ctstimeout = acktimeout;
1118
1119 /*
1120 * Workaround for early ACK timeouts, add an offset to match the
1121 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122 * This was initially only meant to work around an issue with delayed
1123 * BA frames in some implementations, but it has been found to fix ACK
1124 * timeout issues in other cases as well.
1125 */
1126 if (IS_CHAN_2GHZ(chan) &&
1127 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128 acktimeout += 64 - sifstime - ah->slottime;
1129 ctstimeout += 48 - sifstime - ah->slottime;
1130 }
1131
1132 if (ah->dynack.enabled) {
1133 acktimeout = ah->dynack.ackto;
1134 ctstimeout = acktimeout;
1135 slottime = (acktimeout - 3) / 2;
1136 } else {
1137 ah->dynack.ackto = acktimeout;
1138 }
1139
1140 ath9k_hw_set_sifs_time(ah, sifstime);
1141 ath9k_hw_setslottime(ah, slottime);
1142 ath9k_hw_set_ack_timeout(ah, acktimeout);
1143 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144 if (ah->globaltxtimeout != (u32) -1)
1145 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146
1147 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148 REG_RMW(ah, AR_USEC,
1149 (common->clockrate - 1) |
1150 SM(rx_lat, AR_USEC_RX_LAT) |
1151 SM(tx_lat, AR_USEC_TX_LAT),
1152 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153
1154 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155 REG_RMW(ah, AR_TXSIFS,
1156 sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157 (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158 }
1159 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160
ath9k_hw_deinit(struct ath_hw * ah)1161 void ath9k_hw_deinit(struct ath_hw *ah)
1162 {
1163 struct ath_common *common = ath9k_hw_common(ah);
1164
1165 if (common->state < ATH_HW_INITIALIZED)
1166 return;
1167
1168 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169 }
1170 EXPORT_SYMBOL(ath9k_hw_deinit);
1171
1172 /*******/
1173 /* INI */
1174 /*******/
1175
ath9k_regd_get_ctl(struct ath_regulatory * reg,struct ath9k_channel * chan)1176 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177 {
1178 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179
1180 if (IS_CHAN_2GHZ(chan))
1181 ctl |= CTL_11G;
1182 else
1183 ctl |= CTL_11A;
1184
1185 return ctl;
1186 }
1187
1188 /****************************************/
1189 /* Reset and Channel Switching Routines */
1190 /****************************************/
1191
ath9k_hw_set_dma(struct ath_hw * ah)1192 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193 {
1194 struct ath_common *common = ath9k_hw_common(ah);
1195 int txbuf_size;
1196
1197 ENABLE_REGWRITE_BUFFER(ah);
1198
1199 /*
1200 * set AHB_MODE not to do cacheline prefetches
1201 */
1202 if (!AR_SREV_9300_20_OR_LATER(ah))
1203 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204
1205 /*
1206 * let mac dma reads be in 128 byte chunks
1207 */
1208 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209
1210 REGWRITE_BUFFER_FLUSH(ah);
1211
1212 /*
1213 * Restore TX Trigger Level to its pre-reset value.
1214 * The initial value depends on whether aggregation is enabled, and is
1215 * adjusted whenever underruns are detected.
1216 */
1217 if (!AR_SREV_9300_20_OR_LATER(ah))
1218 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219
1220 ENABLE_REGWRITE_BUFFER(ah);
1221
1222 /*
1223 * let mac dma writes be in 128 byte chunks
1224 */
1225 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226
1227 /*
1228 * Setup receive FIFO threshold to hold off TX activities
1229 */
1230 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231
1232 if (AR_SREV_9300_20_OR_LATER(ah)) {
1233 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235
1236 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237 ah->caps.rx_status_len);
1238 }
1239
1240 /*
1241 * reduce the number of usable entries in PCU TXBUF to avoid
1242 * wrap around issues.
1243 */
1244 if (AR_SREV_9285(ah)) {
1245 /* For AR9285 the number of Fifos are reduced to half.
1246 * So set the usable tx buf size also to half to
1247 * avoid data/delimiter underruns
1248 */
1249 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253 } else {
1254 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255 }
1256
1257 if (!AR_SREV_9271(ah))
1258 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259
1260 REGWRITE_BUFFER_FLUSH(ah);
1261
1262 if (AR_SREV_9300_20_OR_LATER(ah))
1263 ath9k_hw_reset_txstatus_ring(ah);
1264 }
1265
ath9k_hw_set_operating_mode(struct ath_hw * ah,int opmode)1266 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267 {
1268 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269 u32 set = AR_STA_ID1_KSRCH_MODE;
1270
1271 ENABLE_REG_RMW_BUFFER(ah);
1272 switch (opmode) {
1273 case NL80211_IFTYPE_ADHOC:
1274 if (!AR_SREV_9340_13(ah)) {
1275 set |= AR_STA_ID1_ADHOC;
1276 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277 break;
1278 }
1279 fallthrough;
1280 case NL80211_IFTYPE_OCB:
1281 case NL80211_IFTYPE_MESH_POINT:
1282 case NL80211_IFTYPE_AP:
1283 set |= AR_STA_ID1_STA_AP;
1284 fallthrough;
1285 case NL80211_IFTYPE_STATION:
1286 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287 break;
1288 default:
1289 if (!ah->is_monitoring)
1290 set = 0;
1291 break;
1292 }
1293 REG_RMW(ah, AR_STA_ID1, set, mask);
1294 REG_RMW_BUFFER_FLUSH(ah);
1295 }
1296
ath9k_hw_get_delta_slope_vals(struct ath_hw * ah,u32 coef_scaled,u32 * coef_mantissa,u32 * coef_exponent)1297 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298 u32 *coef_mantissa, u32 *coef_exponent)
1299 {
1300 u32 coef_exp, coef_man;
1301
1302 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303 if ((coef_scaled >> coef_exp) & 0x1)
1304 break;
1305
1306 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307
1308 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309
1310 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311 *coef_exponent = coef_exp - 16;
1312 }
1313
1314 /* AR9330 WAR:
1315 * call external reset function to reset WMAC if:
1316 * - doing a cold reset
1317 * - we have pending frames in the TX queues.
1318 */
ath9k_hw_ar9330_reset_war(struct ath_hw * ah,int type)1319 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320 {
1321 int i, npend = 0;
1322
1323 for (i = 0; i < AR_NUM_QCU; i++) {
1324 npend = ath9k_hw_numtxpending(ah, i);
1325 if (npend)
1326 break;
1327 }
1328
1329 if (ah->external_reset &&
1330 (npend || type == ATH9K_RESET_COLD)) {
1331 int reset_err = 0;
1332
1333 ath_dbg(ath9k_hw_common(ah), RESET,
1334 "reset MAC via external reset\n");
1335
1336 reset_err = ah->external_reset();
1337 if (reset_err) {
1338 ath_err(ath9k_hw_common(ah),
1339 "External reset failed, err=%d\n",
1340 reset_err);
1341 return false;
1342 }
1343
1344 REG_WRITE(ah, AR_RTC_RESET, 1);
1345 }
1346
1347 return true;
1348 }
1349
ath9k_hw_set_reset(struct ath_hw * ah,int type)1350 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351 {
1352 u32 rst_flags;
1353 u32 tmpReg;
1354
1355 if (AR_SREV_9100(ah)) {
1356 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1357 AR_RTC_DERIVED_CLK_PERIOD, 1);
1358 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1359 }
1360
1361 ENABLE_REGWRITE_BUFFER(ah);
1362
1363 if (AR_SREV_9300_20_OR_LATER(ah)) {
1364 REG_WRITE(ah, AR_WA, ah->WARegVal);
1365 udelay(10);
1366 }
1367
1368 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1369 AR_RTC_FORCE_WAKE_ON_INT);
1370
1371 if (AR_SREV_9100(ah)) {
1372 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374 } else {
1375 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1376 if (AR_SREV_9340(ah))
1377 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378 else
1379 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381
1382 if (tmpReg) {
1383 u32 val;
1384 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1385
1386 val = AR_RC_HOSTIF;
1387 if (!AR_SREV_9300_20_OR_LATER(ah))
1388 val |= AR_RC_AHB;
1389 REG_WRITE(ah, AR_RC, val);
1390
1391 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1392 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393
1394 rst_flags = AR_RTC_RC_MAC_WARM;
1395 if (type == ATH9K_RESET_COLD)
1396 rst_flags |= AR_RTC_RC_MAC_COLD;
1397 }
1398
1399 if (AR_SREV_9330(ah)) {
1400 if (!ath9k_hw_ar9330_reset_war(ah, type))
1401 return false;
1402 }
1403
1404 if (ath9k_hw_mci_is_enabled(ah))
1405 ar9003_mci_check_gpm_offset(ah);
1406
1407 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408 * RTC_RC reg read
1409 */
1410 if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413 20 * AH_WAIT_TIMEOUT);
1414 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415 }
1416
1417 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1418
1419 REGWRITE_BUFFER_FLUSH(ah);
1420
1421 if (AR_SREV_9300_20_OR_LATER(ah))
1422 udelay(50);
1423 else if (AR_SREV_9100(ah))
1424 mdelay(10);
1425 else
1426 udelay(100);
1427
1428 REG_WRITE(ah, AR_RTC_RC, 0);
1429 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431 return false;
1432 }
1433
1434 if (!AR_SREV_9100(ah))
1435 REG_WRITE(ah, AR_RC, 0);
1436
1437 if (AR_SREV_9100(ah))
1438 udelay(50);
1439
1440 return true;
1441 }
1442
ath9k_hw_set_reset_power_on(struct ath_hw * ah)1443 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444 {
1445 ENABLE_REGWRITE_BUFFER(ah);
1446
1447 if (AR_SREV_9300_20_OR_LATER(ah)) {
1448 REG_WRITE(ah, AR_WA, ah->WARegVal);
1449 udelay(10);
1450 }
1451
1452 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1453 AR_RTC_FORCE_WAKE_ON_INT);
1454
1455 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457
1458 REG_WRITE(ah, AR_RTC_RESET, 0);
1459
1460 REGWRITE_BUFFER_FLUSH(ah);
1461
1462 udelay(2);
1463
1464 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465 REG_WRITE(ah, AR_RC, 0);
1466
1467 REG_WRITE(ah, AR_RTC_RESET, 1);
1468
1469 if (!ath9k_hw_wait(ah,
1470 AR_RTC_STATUS,
1471 AR_RTC_STATUS_M,
1472 AR_RTC_STATUS_ON,
1473 AH_WAIT_TIMEOUT)) {
1474 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475 return false;
1476 }
1477
1478 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479 }
1480
ath9k_hw_set_reset_reg(struct ath_hw * ah,u32 type)1481 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482 {
1483 bool ret = false;
1484
1485 if (AR_SREV_9300_20_OR_LATER(ah)) {
1486 REG_WRITE(ah, AR_WA, ah->WARegVal);
1487 udelay(10);
1488 }
1489
1490 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1491 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492
1493 if (!ah->reset_power_on)
1494 type = ATH9K_RESET_POWER_ON;
1495
1496 switch (type) {
1497 case ATH9K_RESET_POWER_ON:
1498 ret = ath9k_hw_set_reset_power_on(ah);
1499 if (ret)
1500 ah->reset_power_on = true;
1501 break;
1502 case ATH9K_RESET_WARM:
1503 case ATH9K_RESET_COLD:
1504 ret = ath9k_hw_set_reset(ah, type);
1505 break;
1506 default:
1507 break;
1508 }
1509
1510 return ret;
1511 }
1512
ath9k_hw_chip_reset(struct ath_hw * ah,struct ath9k_channel * chan)1513 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514 struct ath9k_channel *chan)
1515 {
1516 int reset_type = ATH9K_RESET_WARM;
1517
1518 if (AR_SREV_9280(ah)) {
1519 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520 reset_type = ATH9K_RESET_POWER_ON;
1521 else
1522 reset_type = ATH9K_RESET_COLD;
1523 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1525 reset_type = ATH9K_RESET_COLD;
1526
1527 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528 return false;
1529
1530 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531 return false;
1532
1533 ah->chip_fullsleep = false;
1534
1535 if (AR_SREV_9330(ah))
1536 ar9003_hw_internal_regulator_apply(ah);
1537 ath9k_hw_init_pll(ah, chan);
1538
1539 return true;
1540 }
1541
ath9k_hw_channel_change(struct ath_hw * ah,struct ath9k_channel * chan)1542 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543 struct ath9k_channel *chan)
1544 {
1545 struct ath_common *common = ath9k_hw_common(ah);
1546 struct ath9k_hw_capabilities *pCap = &ah->caps;
1547 bool band_switch = false, mode_diff = false;
1548 u8 ini_reloaded = 0;
1549 u32 qnum;
1550 int r;
1551
1552 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556 }
1557
1558 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559 if (ath9k_hw_numtxpending(ah, qnum)) {
1560 ath_dbg(common, QUEUE,
1561 "Transmit frames pending on queue %d\n", qnum);
1562 return false;
1563 }
1564 }
1565
1566 if (!ath9k_hw_rfbus_req(ah)) {
1567 ath_err(common, "Could not kill baseband RX\n");
1568 return false;
1569 }
1570
1571 if (band_switch || mode_diff) {
1572 ath9k_hw_mark_phy_inactive(ah);
1573 udelay(5);
1574
1575 if (band_switch)
1576 ath9k_hw_init_pll(ah, chan);
1577
1578 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579 ath_err(common, "Failed to do fast channel change\n");
1580 return false;
1581 }
1582 }
1583
1584 ath9k_hw_set_channel_regs(ah, chan);
1585
1586 r = ath9k_hw_rf_set_freq(ah, chan);
1587 if (r) {
1588 ath_err(common, "Failed to set channel\n");
1589 return false;
1590 }
1591 ath9k_hw_set_clockrate(ah);
1592 ath9k_hw_apply_txpower(ah, chan, false);
1593
1594 ath9k_hw_set_delta_slope(ah, chan);
1595 ath9k_hw_spur_mitigate_freq(ah, chan);
1596
1597 if (band_switch || ini_reloaded)
1598 ah->eep_ops->set_board_values(ah, chan);
1599
1600 ath9k_hw_init_bb(ah, chan);
1601 ath9k_hw_rfbus_done(ah);
1602
1603 if (band_switch || ini_reloaded) {
1604 ah->ah_flags |= AH_FASTCC;
1605 ath9k_hw_init_cal(ah, chan);
1606 ah->ah_flags &= ~AH_FASTCC;
1607 }
1608
1609 return true;
1610 }
1611
ath9k_hw_apply_gpio_override(struct ath_hw * ah)1612 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613 {
1614 u32 gpio_mask = ah->gpio_mask;
1615 int i;
1616
1617 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618 if (!(gpio_mask & 1))
1619 continue;
1620
1621 ath9k_hw_gpio_request_out(ah, i, NULL,
1622 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1624 }
1625 }
1626
ath9k_hw_check_nav(struct ath_hw * ah)1627 void ath9k_hw_check_nav(struct ath_hw *ah)
1628 {
1629 struct ath_common *common = ath9k_hw_common(ah);
1630 u32 val;
1631
1632 val = REG_READ(ah, AR_NAV);
1633 if (val != 0xdeadbeef && val > 0x7fff) {
1634 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635 REG_WRITE(ah, AR_NAV, 0);
1636 }
1637 }
1638 EXPORT_SYMBOL(ath9k_hw_check_nav);
1639
ath9k_hw_check_alive(struct ath_hw * ah)1640 bool ath9k_hw_check_alive(struct ath_hw *ah)
1641 {
1642 int count = 50;
1643 u32 reg, last_val;
1644
1645 /* Check if chip failed to wake up */
1646 if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647 return false;
1648
1649 if (AR_SREV_9300(ah))
1650 return !ath9k_hw_detect_mac_hang(ah);
1651
1652 if (AR_SREV_9285_12_OR_LATER(ah))
1653 return true;
1654
1655 last_val = REG_READ(ah, AR_OBS_BUS_1);
1656 do {
1657 reg = REG_READ(ah, AR_OBS_BUS_1);
1658 if (reg != last_val)
1659 return true;
1660
1661 udelay(1);
1662 last_val = reg;
1663 if ((reg & 0x7E7FFFEF) == 0x00702400)
1664 continue;
1665
1666 switch (reg & 0x7E000B00) {
1667 case 0x1E000000:
1668 case 0x52000B00:
1669 case 0x18000B00:
1670 continue;
1671 default:
1672 return true;
1673 }
1674 } while (count-- > 0);
1675
1676 return false;
1677 }
1678 EXPORT_SYMBOL(ath9k_hw_check_alive);
1679
ath9k_hw_init_mfp(struct ath_hw * ah)1680 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681 {
1682 /* Setup MFP options for CCMP */
1683 if (AR_SREV_9280_20_OR_LATER(ah)) {
1684 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685 * frames when constructing CCMP AAD. */
1686 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687 0xc7ff);
1688 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689 ah->sw_mgmt_crypto_tx = true;
1690 else
1691 ah->sw_mgmt_crypto_tx = false;
1692 ah->sw_mgmt_crypto_rx = false;
1693 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694 /* Disable hardware crypto for management frames */
1695 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699 ah->sw_mgmt_crypto_tx = true;
1700 ah->sw_mgmt_crypto_rx = true;
1701 } else {
1702 ah->sw_mgmt_crypto_tx = true;
1703 ah->sw_mgmt_crypto_rx = true;
1704 }
1705 }
1706
ath9k_hw_reset_opmode(struct ath_hw * ah,u32 macStaId1,u32 saveDefAntenna)1707 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708 u32 macStaId1, u32 saveDefAntenna)
1709 {
1710 struct ath_common *common = ath9k_hw_common(ah);
1711
1712 ENABLE_REGWRITE_BUFFER(ah);
1713
1714 REG_RMW(ah, AR_STA_ID1, macStaId1
1715 | AR_STA_ID1_RTS_USE_DEF
1716 | ah->sta_id1_defaults,
1717 ~AR_STA_ID1_SADH_MASK);
1718 ath_hw_setbssidmask(common);
1719 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720 ath9k_hw_write_associd(ah);
1721 REG_WRITE(ah, AR_ISR, ~0);
1722 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723
1724 REGWRITE_BUFFER_FLUSH(ah);
1725
1726 ath9k_hw_set_operating_mode(ah, ah->opmode);
1727 }
1728
ath9k_hw_init_queues(struct ath_hw * ah)1729 static void ath9k_hw_init_queues(struct ath_hw *ah)
1730 {
1731 int i;
1732
1733 ENABLE_REGWRITE_BUFFER(ah);
1734
1735 for (i = 0; i < AR_NUM_DCU; i++)
1736 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737
1738 REGWRITE_BUFFER_FLUSH(ah);
1739
1740 ah->intr_txqs = 0;
1741 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742 ath9k_hw_resettxqueue(ah, i);
1743 }
1744
1745 /*
1746 * For big endian systems turn on swapping for descriptors
1747 */
ath9k_hw_init_desc(struct ath_hw * ah)1748 static void ath9k_hw_init_desc(struct ath_hw *ah)
1749 {
1750 struct ath_common *common = ath9k_hw_common(ah);
1751
1752 if (AR_SREV_9100(ah)) {
1753 u32 mask;
1754 mask = REG_READ(ah, AR_CFG);
1755 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757 mask);
1758 } else {
1759 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760 REG_WRITE(ah, AR_CFG, mask);
1761 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762 REG_READ(ah, AR_CFG));
1763 }
1764 } else {
1765 if (common->bus_ops->ath_bus_type == ATH_USB) {
1766 /* Configure AR9271 target WLAN */
1767 if (AR_SREV_9271(ah))
1768 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769 else
1770 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771 }
1772 #ifdef __BIG_ENDIAN
1773 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775 AR_SREV_9561(ah))
1776 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777 else
1778 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779 #endif
1780 }
1781 }
1782
1783 /*
1784 * Fast channel change:
1785 * (Change synthesizer based on channel freq without resetting chip)
1786 */
ath9k_hw_do_fastcc(struct ath_hw * ah,struct ath9k_channel * chan)1787 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788 {
1789 struct ath_common *common = ath9k_hw_common(ah);
1790 struct ath9k_hw_capabilities *pCap = &ah->caps;
1791 int ret;
1792
1793 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794 goto fail;
1795
1796 if (ah->chip_fullsleep)
1797 goto fail;
1798
1799 if (!ah->curchan)
1800 goto fail;
1801
1802 if (chan->channel == ah->curchan->channel)
1803 goto fail;
1804
1805 if ((ah->curchan->channelFlags | chan->channelFlags) &
1806 (CHANNEL_HALF | CHANNEL_QUARTER))
1807 goto fail;
1808
1809 /*
1810 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811 */
1812 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814 goto fail;
1815
1816 if (!ath9k_hw_check_alive(ah))
1817 goto fail;
1818
1819 /*
1820 * For AR9462, make sure that calibration data for
1821 * re-using are present.
1822 */
1823 if (AR_SREV_9462(ah) && (ah->caldata &&
1824 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827 goto fail;
1828
1829 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830 ah->curchan->channel, chan->channel);
1831
1832 ret = ath9k_hw_channel_change(ah, chan);
1833 if (!ret)
1834 goto fail;
1835
1836 if (ath9k_hw_mci_is_enabled(ah))
1837 ar9003_mci_2g5g_switch(ah, false);
1838
1839 ath9k_hw_loadnf(ah, ah->curchan);
1840 ath9k_hw_start_nfcal(ah, true);
1841
1842 if (AR_SREV_9271(ah))
1843 ar9002_hw_load_ani_reg(ah, chan);
1844
1845 return 0;
1846 fail:
1847 return -EINVAL;
1848 }
1849
ath9k_hw_get_tsf_offset(struct timespec64 * last,struct timespec64 * cur)1850 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851 {
1852 struct timespec64 ts;
1853 s64 usec;
1854
1855 if (!cur) {
1856 ktime_get_raw_ts64(&ts);
1857 cur = &ts;
1858 }
1859
1860 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862
1863 return (u32) usec;
1864 }
1865 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866
ath9k_hw_reset(struct ath_hw * ah,struct ath9k_channel * chan,struct ath9k_hw_cal_data * caldata,bool fastcc)1867 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868 struct ath9k_hw_cal_data *caldata, bool fastcc)
1869 {
1870 struct ath_common *common = ath9k_hw_common(ah);
1871 u32 saveLedState;
1872 u32 saveDefAntenna;
1873 u32 macStaId1;
1874 struct timespec64 tsf_ts;
1875 u32 tsf_offset;
1876 u64 tsf = 0;
1877 int r;
1878 bool start_mci_reset = false;
1879 bool save_fullsleep = ah->chip_fullsleep;
1880
1881 if (ath9k_hw_mci_is_enabled(ah)) {
1882 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883 if (start_mci_reset)
1884 return 0;
1885 }
1886
1887 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888 return -EIO;
1889
1890 if (ah->curchan && !ah->chip_fullsleep)
1891 ath9k_hw_getnf(ah, ah->curchan);
1892
1893 ah->caldata = caldata;
1894 if (caldata && (chan->channel != caldata->channel ||
1895 chan->channelFlags != caldata->channelFlags)) {
1896 /* Operating channel changed, reset channel calibration data */
1897 memset(caldata, 0, sizeof(*caldata));
1898 ath9k_init_nfcal_hist_buffer(ah, chan);
1899 } else if (caldata) {
1900 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901 }
1902 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903
1904 if (fastcc) {
1905 r = ath9k_hw_do_fastcc(ah, chan);
1906 if (!r)
1907 return r;
1908 }
1909
1910 if (ath9k_hw_mci_is_enabled(ah))
1911 ar9003_mci_stop_bt(ah, save_fullsleep);
1912
1913 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914 if (saveDefAntenna == 0)
1915 saveDefAntenna = 1;
1916
1917 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918
1919 /* Save TSF before chip reset, a cold reset clears it */
1920 ktime_get_raw_ts64(&tsf_ts);
1921 tsf = ath9k_hw_gettsf64(ah);
1922
1923 saveLedState = REG_READ(ah, AR_CFG_LED) &
1924 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926
1927 ath9k_hw_mark_phy_inactive(ah);
1928
1929 ah->paprd_table_write_done = false;
1930
1931 /* Only required on the first reset */
1932 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933 REG_WRITE(ah,
1934 AR9271_RESET_POWER_DOWN_CONTROL,
1935 AR9271_RADIO_RF_RST);
1936 udelay(50);
1937 }
1938
1939 if (!ath9k_hw_chip_reset(ah, chan)) {
1940 ath_err(common, "Chip reset failed\n");
1941 return -EINVAL;
1942 }
1943
1944 /* Only required on the first reset */
1945 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946 ah->htc_reset_init = false;
1947 REG_WRITE(ah,
1948 AR9271_RESET_POWER_DOWN_CONTROL,
1949 AR9271_GATE_MAC_CTL);
1950 udelay(50);
1951 }
1952
1953 /* Restore TSF */
1954 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956
1957 if (AR_SREV_9280_20_OR_LATER(ah))
1958 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1959
1960 if (!AR_SREV_9300_20_OR_LATER(ah))
1961 ar9002_hw_enable_async_fifo(ah);
1962
1963 r = ath9k_hw_process_ini(ah, chan);
1964 if (r)
1965 return r;
1966
1967 ath9k_hw_set_rfmode(ah, chan);
1968
1969 if (ath9k_hw_mci_is_enabled(ah))
1970 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971
1972 /*
1973 * Some AR91xx SoC devices frequently fail to accept TSF writes
1974 * right after the chip reset. When that happens, write a new
1975 * value after the initvals have been applied.
1976 */
1977 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979 ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980 }
1981
1982 ath9k_hw_init_mfp(ah);
1983
1984 ath9k_hw_set_delta_slope(ah, chan);
1985 ath9k_hw_spur_mitigate_freq(ah, chan);
1986 ah->eep_ops->set_board_values(ah, chan);
1987
1988 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989
1990 r = ath9k_hw_rf_set_freq(ah, chan);
1991 if (r)
1992 return r;
1993
1994 ath9k_hw_set_clockrate(ah);
1995
1996 ath9k_hw_init_queues(ah);
1997 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998 ath9k_hw_ani_cache_ini_regs(ah);
1999 ath9k_hw_init_qos(ah);
2000
2001 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003
2004 ath9k_hw_init_global_settings(ah);
2005
2006 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013 }
2014
2015 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016
2017 ath9k_hw_set_dma(ah);
2018
2019 if (!ath9k_hw_mci_is_enabled(ah))
2020 REG_WRITE(ah, AR_OBS, 8);
2021
2022 ENABLE_REG_RMW_BUFFER(ah);
2023 if (ah->config.rx_intr_mitigation) {
2024 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026 }
2027
2028 if (ah->config.tx_intr_mitigation) {
2029 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031 }
2032 REG_RMW_BUFFER_FLUSH(ah);
2033
2034 ath9k_hw_init_bb(ah, chan);
2035
2036 if (caldata) {
2037 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039 }
2040 if (!ath9k_hw_init_cal(ah, chan))
2041 return -EIO;
2042
2043 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044 return -EIO;
2045
2046 ENABLE_REGWRITE_BUFFER(ah);
2047
2048 ath9k_hw_restore_chainmask(ah);
2049 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050
2051 REGWRITE_BUFFER_FLUSH(ah);
2052
2053 ath9k_hw_gen_timer_start_tsf2(ah);
2054
2055 ath9k_hw_init_desc(ah);
2056
2057 if (ath9k_hw_btcoex_is_enabled(ah))
2058 ath9k_hw_btcoex_enable(ah);
2059
2060 if (ath9k_hw_mci_is_enabled(ah))
2061 ar9003_mci_check_bt(ah);
2062
2063 if (AR_SREV_9300_20_OR_LATER(ah)) {
2064 ath9k_hw_loadnf(ah, chan);
2065 ath9k_hw_start_nfcal(ah, true);
2066 }
2067
2068 if (AR_SREV_9300_20_OR_LATER(ah))
2069 ar9003_hw_bb_watchdog_config(ah);
2070
2071 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072 ar9003_hw_disable_phy_restart(ah);
2073
2074 ath9k_hw_apply_gpio_override(ah);
2075
2076 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078
2079 if (ah->hw->conf.radar_enabled) {
2080 /* set HW specific DFS configuration */
2081 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082 ath9k_hw_set_radar_params(ah);
2083 }
2084
2085 return 0;
2086 }
2087 EXPORT_SYMBOL(ath9k_hw_reset);
2088
2089 /******************************/
2090 /* Power Management (Chipset) */
2091 /******************************/
2092
2093 /*
2094 * Notify Power Mgt is disabled in self-generated frames.
2095 * If requested, force chip to sleep.
2096 */
ath9k_set_power_sleep(struct ath_hw * ah)2097 static void ath9k_set_power_sleep(struct ath_hw *ah)
2098 {
2099 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100
2101 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105 /* xxx Required for WLAN only case ? */
2106 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107 udelay(100);
2108 }
2109
2110 /*
2111 * Clear the RTC force wake bit to allow the
2112 * mac to go to sleep.
2113 */
2114 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2115
2116 if (ath9k_hw_mci_is_enabled(ah))
2117 udelay(100);
2118
2119 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121
2122 /* Shutdown chip. Active low */
2123 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2125 udelay(2);
2126 }
2127
2128 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2129 if (AR_SREV_9300_20_OR_LATER(ah))
2130 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131 }
2132
2133 /*
2134 * Notify Power Management is enabled in self-generating
2135 * frames. If request, set power mode of chip to
2136 * auto/normal. Duration in units of 128us (1/8 TU).
2137 */
ath9k_set_power_network_sleep(struct ath_hw * ah)2138 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139 {
2140 struct ath9k_hw_capabilities *pCap = &ah->caps;
2141
2142 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143
2144 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2146 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2147 AR_RTC_FORCE_WAKE_ON_INT);
2148 } else {
2149
2150 /* When chip goes into network sleep, it could be waken
2151 * up by MCI_INT interrupt caused by BT's HW messages
2152 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153 * rate (~100us). This will cause chip to leave and
2154 * re-enter network sleep mode frequently, which in
2155 * consequence will have WLAN MCI HW to generate lots of
2156 * SYS_WAKING and SYS_SLEEPING messages which will make
2157 * BT CPU to busy to process.
2158 */
2159 if (ath9k_hw_mci_is_enabled(ah))
2160 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162 /*
2163 * Clear the RTC force wake bit to allow the
2164 * mac to go to sleep.
2165 */
2166 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2167
2168 if (ath9k_hw_mci_is_enabled(ah))
2169 udelay(30);
2170 }
2171
2172 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2173 if (AR_SREV_9300_20_OR_LATER(ah))
2174 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175 }
2176
ath9k_hw_set_power_awake(struct ath_hw * ah)2177 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178 {
2179 u32 val;
2180 int i;
2181
2182 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2183 if (AR_SREV_9300_20_OR_LATER(ah)) {
2184 REG_WRITE(ah, AR_WA, ah->WARegVal);
2185 udelay(10);
2186 }
2187
2188 if ((REG_READ(ah, AR_RTC_STATUS) &
2189 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2190 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191 return false;
2192 }
2193 if (!AR_SREV_9300_20_OR_LATER(ah))
2194 ath9k_hw_init_pll(ah, NULL);
2195 }
2196 if (AR_SREV_9100(ah))
2197 REG_SET_BIT(ah, AR_RTC_RESET,
2198 AR_RTC_RESET_EN);
2199
2200 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2201 AR_RTC_FORCE_WAKE_EN);
2202 if (AR_SREV_9100(ah))
2203 mdelay(10);
2204 else
2205 udelay(50);
2206
2207 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2209 if (val == AR_RTC_STATUS_ON)
2210 break;
2211 udelay(50);
2212 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2213 AR_RTC_FORCE_WAKE_EN);
2214 }
2215 if (i == 0) {
2216 ath_err(ath9k_hw_common(ah),
2217 "Failed to wakeup in %uus\n",
2218 POWER_UP_TIME / 20);
2219 return false;
2220 }
2221
2222 if (ath9k_hw_mci_is_enabled(ah))
2223 ar9003_mci_set_power_awake(ah);
2224
2225 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226
2227 return true;
2228 }
2229
ath9k_hw_setpower(struct ath_hw * ah,enum ath9k_power_mode mode)2230 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231 {
2232 struct ath_common *common = ath9k_hw_common(ah);
2233 int status = true;
2234 static const char *modes[] = {
2235 "AWAKE",
2236 "FULL-SLEEP",
2237 "NETWORK SLEEP",
2238 "UNDEFINED"
2239 };
2240
2241 if (ah->power_mode == mode)
2242 return status;
2243
2244 ath_dbg(common, RESET, "%s -> %s\n",
2245 modes[ah->power_mode], modes[mode]);
2246
2247 switch (mode) {
2248 case ATH9K_PM_AWAKE:
2249 status = ath9k_hw_set_power_awake(ah);
2250 break;
2251 case ATH9K_PM_FULL_SLEEP:
2252 if (ath9k_hw_mci_is_enabled(ah))
2253 ar9003_mci_set_full_sleep(ah);
2254
2255 ath9k_set_power_sleep(ah);
2256 ah->chip_fullsleep = true;
2257 break;
2258 case ATH9K_PM_NETWORK_SLEEP:
2259 ath9k_set_power_network_sleep(ah);
2260 break;
2261 default:
2262 ath_err(common, "Unknown power mode %u\n", mode);
2263 return false;
2264 }
2265 ah->power_mode = mode;
2266
2267 /*
2268 * XXX: If this warning never comes up after a while then
2269 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270 * ath9k_hw_setpower() return type void.
2271 */
2272
2273 if (!(ah->ah_flags & AH_UNPLUGGED))
2274 ATH_DBG_WARN_ON_ONCE(!status);
2275
2276 return status;
2277 }
2278 EXPORT_SYMBOL(ath9k_hw_setpower);
2279
2280 /*******************/
2281 /* Beacon Handling */
2282 /*******************/
2283
ath9k_hw_beaconinit(struct ath_hw * ah,u32 next_beacon,u32 beacon_period)2284 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285 {
2286 int flags = 0;
2287
2288 ENABLE_REGWRITE_BUFFER(ah);
2289
2290 switch (ah->opmode) {
2291 case NL80211_IFTYPE_ADHOC:
2292 REG_SET_BIT(ah, AR_TXCFG,
2293 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294 fallthrough;
2295 case NL80211_IFTYPE_MESH_POINT:
2296 case NL80211_IFTYPE_AP:
2297 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299 TU_TO_USEC(ah->config.dma_beacon_response_time));
2300 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301 TU_TO_USEC(ah->config.sw_beacon_response_time));
2302 flags |=
2303 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304 break;
2305 default:
2306 ath_dbg(ath9k_hw_common(ah), BEACON,
2307 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308 return;
2309 }
2310
2311 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314
2315 REGWRITE_BUFFER_FLUSH(ah);
2316
2317 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318 }
2319 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320
ath9k_hw_set_sta_beacon_timers(struct ath_hw * ah,const struct ath9k_beacon_state * bs)2321 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322 const struct ath9k_beacon_state *bs)
2323 {
2324 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325 struct ath9k_hw_capabilities *pCap = &ah->caps;
2326 struct ath_common *common = ath9k_hw_common(ah);
2327
2328 ENABLE_REGWRITE_BUFFER(ah);
2329
2330 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333
2334 REGWRITE_BUFFER_FLUSH(ah);
2335
2336 REG_RMW_FIELD(ah, AR_RSSI_THR,
2337 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338
2339 beaconintval = bs->bs_intval;
2340
2341 if (bs->bs_sleepduration > beaconintval)
2342 beaconintval = bs->bs_sleepduration;
2343
2344 dtimperiod = bs->bs_dtimperiod;
2345 if (bs->bs_sleepduration > dtimperiod)
2346 dtimperiod = bs->bs_sleepduration;
2347
2348 if (beaconintval == dtimperiod)
2349 nextTbtt = bs->bs_nextdtim;
2350 else
2351 nextTbtt = bs->bs_nexttbtt;
2352
2353 ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354 ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355 ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356 ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357
2358 ENABLE_REGWRITE_BUFFER(ah);
2359
2360 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362
2363 REG_WRITE(ah, AR_SLEEP1,
2364 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365 | AR_SLEEP1_ASSUME_DTIM);
2366
2367 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369 else
2370 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371
2372 REG_WRITE(ah, AR_SLEEP2,
2373 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374
2375 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377
2378 REGWRITE_BUFFER_FLUSH(ah);
2379
2380 REG_SET_BIT(ah, AR_TIMER_MODE,
2381 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382 AR_DTIM_TIMER_EN);
2383
2384 /* TSF Out of Range Threshold */
2385 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386 }
2387 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388
2389 /*******************/
2390 /* HW Capabilities */
2391 /*******************/
2392
fixup_chainmask(u8 chip_chainmask,u8 eeprom_chainmask)2393 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394 {
2395 eeprom_chainmask &= chip_chainmask;
2396 if (eeprom_chainmask)
2397 return eeprom_chainmask;
2398 else
2399 return chip_chainmask;
2400 }
2401
2402 /**
2403 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404 * @ah: the atheros hardware data structure
2405 *
2406 * We enable DFS support upstream on chipsets which have passed a series
2407 * of tests. The testing requirements are going to be documented. Desired
2408 * test requirements are documented at:
2409 *
2410 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411 *
2412 * Once a new chipset gets properly tested an individual commit can be used
2413 * to document the testing for DFS for that chipset.
2414 */
ath9k_hw_dfs_tested(struct ath_hw * ah)2415 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416 {
2417
2418 switch (ah->hw_version.macVersion) {
2419 /* for temporary testing DFS with 9280 */
2420 case AR_SREV_VERSION_9280:
2421 /* AR9580 will likely be our first target to get testing on */
2422 case AR_SREV_VERSION_9580:
2423 return true;
2424 default:
2425 return false;
2426 }
2427 }
2428
ath9k_gpio_cap_init(struct ath_hw * ah)2429 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430 {
2431 struct ath9k_hw_capabilities *pCap = &ah->caps;
2432
2433 if (AR_SREV_9271(ah)) {
2434 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435 pCap->gpio_mask = AR9271_GPIO_MASK;
2436 } else if (AR_DEVID_7010(ah)) {
2437 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438 pCap->gpio_mask = AR7010_GPIO_MASK;
2439 } else if (AR_SREV_9287(ah)) {
2440 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441 pCap->gpio_mask = AR9287_GPIO_MASK;
2442 } else if (AR_SREV_9285(ah)) {
2443 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444 pCap->gpio_mask = AR9285_GPIO_MASK;
2445 } else if (AR_SREV_9280(ah)) {
2446 pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447 pCap->gpio_mask = AR9280_GPIO_MASK;
2448 } else if (AR_SREV_9300(ah)) {
2449 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450 pCap->gpio_mask = AR9300_GPIO_MASK;
2451 } else if (AR_SREV_9330(ah)) {
2452 pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453 pCap->gpio_mask = AR9330_GPIO_MASK;
2454 } else if (AR_SREV_9340(ah)) {
2455 pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456 pCap->gpio_mask = AR9340_GPIO_MASK;
2457 } else if (AR_SREV_9462(ah)) {
2458 pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459 pCap->gpio_mask = AR9462_GPIO_MASK;
2460 } else if (AR_SREV_9485(ah)) {
2461 pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462 pCap->gpio_mask = AR9485_GPIO_MASK;
2463 } else if (AR_SREV_9531(ah)) {
2464 pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465 pCap->gpio_mask = AR9531_GPIO_MASK;
2466 } else if (AR_SREV_9550(ah)) {
2467 pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468 pCap->gpio_mask = AR9550_GPIO_MASK;
2469 } else if (AR_SREV_9561(ah)) {
2470 pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471 pCap->gpio_mask = AR9561_GPIO_MASK;
2472 } else if (AR_SREV_9565(ah)) {
2473 pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474 pCap->gpio_mask = AR9565_GPIO_MASK;
2475 } else if (AR_SREV_9580(ah)) {
2476 pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477 pCap->gpio_mask = AR9580_GPIO_MASK;
2478 } else {
2479 pCap->num_gpio_pins = AR_NUM_GPIO;
2480 pCap->gpio_mask = AR_GPIO_MASK;
2481 }
2482 }
2483
ath9k_hw_fill_cap_info(struct ath_hw * ah)2484 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485 {
2486 struct ath9k_hw_capabilities *pCap = &ah->caps;
2487 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488 struct ath_common *common = ath9k_hw_common(ah);
2489
2490 u16 eeval;
2491 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492
2493 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494 regulatory->current_rd = eeval;
2495
2496 if (ah->opmode != NL80211_IFTYPE_AP &&
2497 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498 if (regulatory->current_rd == 0x64 ||
2499 regulatory->current_rd == 0x65)
2500 regulatory->current_rd += 5;
2501 else if (regulatory->current_rd == 0x41)
2502 regulatory->current_rd = 0x43;
2503 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504 regulatory->current_rd);
2505 }
2506
2507 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508
2509 if (eeval & AR5416_OPFLAGS_11A) {
2510 if (ah->disable_5ghz)
2511 ath_warn(common, "disabling 5GHz band\n");
2512 else
2513 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514 }
2515
2516 if (eeval & AR5416_OPFLAGS_11G) {
2517 if (ah->disable_2ghz)
2518 ath_warn(common, "disabling 2GHz band\n");
2519 else
2520 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521 }
2522
2523 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524 ath_err(common, "both bands are disabled\n");
2525 return -EINVAL;
2526 }
2527
2528 ath9k_gpio_cap_init(ah);
2529
2530 if (AR_SREV_9485(ah) ||
2531 AR_SREV_9285(ah) ||
2532 AR_SREV_9330(ah) ||
2533 AR_SREV_9565(ah))
2534 pCap->chip_chainmask = 1;
2535 else if (!AR_SREV_9280_20_OR_LATER(ah))
2536 pCap->chip_chainmask = 7;
2537 else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538 AR_SREV_9340(ah) ||
2539 AR_SREV_9462(ah) ||
2540 AR_SREV_9531(ah))
2541 pCap->chip_chainmask = 3;
2542 else
2543 pCap->chip_chainmask = 7;
2544
2545 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546 /*
2547 * For AR9271 we will temporarilly uses the rx chainmax as read from
2548 * the EEPROM.
2549 */
2550 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551 !(eeval & AR5416_OPFLAGS_11A) &&
2552 !(AR_SREV_9271(ah)))
2553 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555 else if (AR_SREV_9100(ah))
2556 pCap->rx_chainmask = 0x7;
2557 else
2558 /* Use rx_chainmask from EEPROM. */
2559 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560
2561 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563 ah->txchainmask = pCap->tx_chainmask;
2564 ah->rxchainmask = pCap->rx_chainmask;
2565
2566 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567
2568 /* enable key search for every frame in an aggregate */
2569 if (AR_SREV_9300_20_OR_LATER(ah))
2570 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571
2572 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573
2574 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576 else
2577 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578
2579 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581 else
2582 pCap->rts_aggr_limit = (8 * 1024);
2583
2584 #ifdef CONFIG_ATH9K_RFKILL
2585 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587 ah->rfkill_gpio =
2588 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589 ah->rfkill_polarity =
2590 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591
2592 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593 }
2594 #endif
2595 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597 else
2598 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599
2600 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602 else
2603 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604
2605 if (AR_SREV_9300_20_OR_LATER(ah)) {
2606 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608 !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610
2611 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615 pCap->txs_len = sizeof(struct ar9003_txs);
2616 } else {
2617 pCap->tx_desc_len = sizeof(struct ath_desc);
2618 if (AR_SREV_9280_20(ah))
2619 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620 }
2621
2622 if (AR_SREV_9300_20_OR_LATER(ah))
2623 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624
2625 if (AR_SREV_9561(ah))
2626 ah->ent_mode = 0x3BDA000;
2627 else if (AR_SREV_9300_20_OR_LATER(ah))
2628 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629
2630 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632
2633 if (AR_SREV_9285(ah)) {
2634 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635 ant_div_ctl1 =
2636 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639 ath_info(common, "Enable LNA combining\n");
2640 }
2641 }
2642 }
2643
2644 if (AR_SREV_9300_20_OR_LATER(ah)) {
2645 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647 }
2648
2649 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653 ath_info(common, "Enable LNA combining\n");
2654 }
2655 }
2656
2657 if (ath9k_hw_dfs_tested(ah))
2658 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659
2660 tx_chainmask = pCap->tx_chainmask;
2661 rx_chainmask = pCap->rx_chainmask;
2662 while (tx_chainmask || rx_chainmask) {
2663 if (tx_chainmask & BIT(0))
2664 pCap->max_txchains++;
2665 if (rx_chainmask & BIT(0))
2666 pCap->max_rxchains++;
2667
2668 tx_chainmask >>= 1;
2669 rx_chainmask >>= 1;
2670 }
2671
2672 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675
2676 if (AR_SREV_9462_20_OR_LATER(ah))
2677 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678 }
2679
2680 if (AR_SREV_9300_20_OR_LATER(ah) &&
2681 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683
2684 #ifdef CONFIG_ATH9K_WOW
2685 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686 ah->wow.max_patterns = MAX_NUM_PATTERN;
2687 else
2688 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689 #endif
2690
2691 return 0;
2692 }
2693
2694 /****************************/
2695 /* GPIO / RFKILL / Antennae */
2696 /****************************/
2697
ath9k_hw_gpio_cfg_output_mux(struct ath_hw * ah,u32 gpio,u32 type)2698 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2699 {
2700 int addr;
2701 u32 gpio_shift, tmp;
2702
2703 if (gpio > 11)
2704 addr = AR_GPIO_OUTPUT_MUX3;
2705 else if (gpio > 5)
2706 addr = AR_GPIO_OUTPUT_MUX2;
2707 else
2708 addr = AR_GPIO_OUTPUT_MUX1;
2709
2710 gpio_shift = (gpio % 6) * 5;
2711
2712 if (AR_SREV_9280_20_OR_LATER(ah) ||
2713 (addr != AR_GPIO_OUTPUT_MUX1)) {
2714 REG_RMW(ah, addr, (type << gpio_shift),
2715 (0x1f << gpio_shift));
2716 } else {
2717 tmp = REG_READ(ah, addr);
2718 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719 tmp &= ~(0x1f << gpio_shift);
2720 tmp |= (type << gpio_shift);
2721 REG_WRITE(ah, addr, tmp);
2722 }
2723 }
2724
2725 /* BSP should set the corresponding MUX register correctly.
2726 */
ath9k_hw_gpio_cfg_soc(struct ath_hw * ah,u32 gpio,bool out,const char * label)2727 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728 const char *label)
2729 {
2730 int err;
2731
2732 if (ah->caps.gpio_requested & BIT(gpio))
2733 return;
2734
2735 err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736 if (err) {
2737 ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738 gpio, err);
2739 return;
2740 }
2741
2742 ah->caps.gpio_requested |= BIT(gpio);
2743 }
2744
ath9k_hw_gpio_cfg_wmac(struct ath_hw * ah,u32 gpio,bool out,u32 ah_signal_type)2745 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746 u32 ah_signal_type)
2747 {
2748 u32 gpio_set, gpio_shift = gpio;
2749
2750 if (AR_DEVID_7010(ah)) {
2751 gpio_set = out ?
2752 AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754 AR7010_GPIO_OE_MASK << gpio_shift);
2755 } else if (AR_SREV_SOC(ah)) {
2756 gpio_set = out ? 1 : 0;
2757 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758 gpio_set << gpio_shift);
2759 } else {
2760 gpio_shift = gpio << 1;
2761 gpio_set = out ?
2762 AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764 AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766 if (out)
2767 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768 }
2769 }
2770
ath9k_hw_gpio_request(struct ath_hw * ah,u32 gpio,bool out,const char * label,u32 ah_signal_type)2771 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772 const char *label, u32 ah_signal_type)
2773 {
2774 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776 if (BIT(gpio) & ah->caps.gpio_mask)
2777 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778 else if (AR_SREV_SOC(ah))
2779 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780 else
2781 WARN_ON(1);
2782 }
2783
ath9k_hw_gpio_request_in(struct ath_hw * ah,u32 gpio,const char * label)2784 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785 {
2786 ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
ath9k_hw_gpio_request_out(struct ath_hw * ah,u32 gpio,const char * label,u32 ah_signal_type)2790 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791 u32 ah_signal_type)
2792 {
2793 ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794 }
2795 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
ath9k_hw_gpio_free(struct ath_hw * ah,u32 gpio)2797 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798 {
2799 if (!AR_SREV_SOC(ah))
2800 return;
2801
2802 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804 if (ah->caps.gpio_requested & BIT(gpio)) {
2805 gpio_free(gpio);
2806 ah->caps.gpio_requested &= ~BIT(gpio);
2807 }
2808 }
2809 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
ath9k_hw_gpio_get(struct ath_hw * ah,u32 gpio)2811 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812 {
2813 u32 val = 0xffffffff;
2814
2815 #define MS_REG_READ(x, y) \
2816 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817
2818 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820 if (BIT(gpio) & ah->caps.gpio_mask) {
2821 if (AR_SREV_9271(ah))
2822 val = MS_REG_READ(AR9271, gpio);
2823 else if (AR_SREV_9287(ah))
2824 val = MS_REG_READ(AR9287, gpio);
2825 else if (AR_SREV_9285(ah))
2826 val = MS_REG_READ(AR9285, gpio);
2827 else if (AR_SREV_9280(ah))
2828 val = MS_REG_READ(AR928X, gpio);
2829 else if (AR_DEVID_7010(ah))
2830 val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831 else if (AR_SREV_9300_20_OR_LATER(ah))
2832 val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833 else
2834 val = MS_REG_READ(AR, gpio);
2835 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2836 val = gpio_get_value(gpio) & BIT(gpio);
2837 } else {
2838 WARN_ON(1);
2839 }
2840
2841 return !!val;
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
ath9k_hw_set_gpio(struct ath_hw * ah,u32 gpio,u32 val)2845 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846 {
2847 WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848
2849 if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850 val = !val;
2851 else
2852 val = !!val;
2853
2854 if (BIT(gpio) & ah->caps.gpio_mask) {
2855 u32 out_addr = AR_DEVID_7010(ah) ?
2856 AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857
2858 REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859 } else if (BIT(gpio) & ah->caps.gpio_requested) {
2860 gpio_set_value(gpio, val);
2861 } else {
2862 WARN_ON(1);
2863 }
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
ath9k_hw_setantenna(struct ath_hw * ah,u32 antenna)2867 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868 {
2869 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873 /*********************/
2874 /* General Operation */
2875 /*********************/
2876
ath9k_hw_getrxfilter(struct ath_hw * ah)2877 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878 {
2879 u32 bits = REG_READ(ah, AR_RX_FILTER);
2880 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882 if (phybits & AR_PHY_ERR_RADAR)
2883 bits |= ATH9K_RX_FILTER_PHYRADAR;
2884 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885 bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887 return bits;
2888 }
2889 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
ath9k_hw_setrxfilter(struct ath_hw * ah,u32 bits)2891 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892 {
2893 u32 phybits;
2894
2895 ENABLE_REGWRITE_BUFFER(ah);
2896
2897 REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899 phybits = 0;
2900 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901 phybits |= AR_PHY_ERR_RADAR;
2902 if (bits & ATH9K_RX_FILTER_PHYERR)
2903 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904 REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906 if (phybits)
2907 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908 else
2909 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911 REGWRITE_BUFFER_FLUSH(ah);
2912 }
2913 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
ath9k_hw_phy_disable(struct ath_hw * ah)2915 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916 {
2917 if (ath9k_hw_mci_is_enabled(ah))
2918 ar9003_mci_bt_gain_ctrl(ah);
2919
2920 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921 return false;
2922
2923 ath9k_hw_init_pll(ah, NULL);
2924 ah->htc_reset_init = true;
2925 return true;
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
ath9k_hw_disable(struct ath_hw * ah)2929 bool ath9k_hw_disable(struct ath_hw *ah)
2930 {
2931 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932 return false;
2933
2934 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935 return false;
2936
2937 ath9k_hw_init_pll(ah, NULL);
2938 return true;
2939 }
2940 EXPORT_SYMBOL(ath9k_hw_disable);
2941
get_antenna_gain(struct ath_hw * ah,struct ath9k_channel * chan)2942 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943 {
2944 enum eeprom_param gain_param;
2945
2946 if (IS_CHAN_2GHZ(chan))
2947 gain_param = EEP_ANTENNA_GAIN_2G;
2948 else
2949 gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951 return ah->eep_ops->get_eeprom(ah, gain_param);
2952 }
2953
ath9k_hw_apply_txpower(struct ath_hw * ah,struct ath9k_channel * chan,bool test)2954 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955 bool test)
2956 {
2957 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958 struct ieee80211_channel *channel;
2959 int chan_pwr, new_pwr;
2960 u16 ctl = NO_CTL;
2961
2962 if (!chan)
2963 return;
2964
2965 if (!test)
2966 ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968 channel = chan->chan;
2969 chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971
2972 ah->eep_ops->set_txpower(ah, chan, ctl,
2973 get_antenna_gain(ah, chan), new_pwr, test);
2974 }
2975
ath9k_hw_set_txpowerlimit(struct ath_hw * ah,u32 limit,bool test)2976 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977 {
2978 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979 struct ath9k_channel *chan = ah->curchan;
2980 struct ieee80211_channel *channel = chan->chan;
2981
2982 reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983 if (test)
2984 channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986 ath9k_hw_apply_txpower(ah, chan, test);
2987
2988 if (test)
2989 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990 }
2991 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
ath9k_hw_setopmode(struct ath_hw * ah)2993 void ath9k_hw_setopmode(struct ath_hw *ah)
2994 {
2995 ath9k_hw_set_operating_mode(ah, ah->opmode);
2996 }
2997 EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
ath9k_hw_setmcastfilter(struct ath_hw * ah,u32 filter0,u32 filter1)2999 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000 {
3001 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003 }
3004 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
ath9k_hw_write_associd(struct ath_hw * ah)3006 void ath9k_hw_write_associd(struct ath_hw *ah)
3007 {
3008 struct ath_common *common = ath9k_hw_common(ah);
3009
3010 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013 }
3014 EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016 #define ATH9K_MAX_TSF_READ 10
3017
ath9k_hw_gettsf64(struct ath_hw * ah)3018 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019 {
3020 u32 tsf_lower, tsf_upper1, tsf_upper2;
3021 int i;
3022
3023 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025 tsf_lower = REG_READ(ah, AR_TSF_L32);
3026 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027 if (tsf_upper2 == tsf_upper1)
3028 break;
3029 tsf_upper1 = tsf_upper2;
3030 }
3031
3032 WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034 return (((u64)tsf_upper1 << 32) | tsf_lower);
3035 }
3036 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
ath9k_hw_settsf64(struct ath_hw * ah,u64 tsf64)3038 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039 {
3040 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042 }
3043 EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
ath9k_hw_reset_tsf(struct ath_hw * ah)3045 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046 {
3047 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048 AH_TSF_WRITE_TIMEOUT))
3049 ath_dbg(ath9k_hw_common(ah), RESET,
3050 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053 }
3054 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
ath9k_hw_set_tsfadjust(struct ath_hw * ah,bool set)3056 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057 {
3058 if (set)
3059 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060 else
3061 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062 }
3063 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
ath9k_hw_set11nmac2040(struct ath_hw * ah,struct ath9k_channel * chan)3065 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066 {
3067 u32 macmode;
3068
3069 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070 macmode = AR_2040_JOINED_RX_CLEAR;
3071 else
3072 macmode = 0;
3073
3074 REG_WRITE(ah, AR_2040_MODE, macmode);
3075 }
3076
3077 /* HW Generic timers configuration */
3078
3079 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080 {
3081 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091 AR_NDP2_TIMER_MODE, 0x0002},
3092 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093 AR_NDP2_TIMER_MODE, 0x0004},
3094 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095 AR_NDP2_TIMER_MODE, 0x0008},
3096 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097 AR_NDP2_TIMER_MODE, 0x0010},
3098 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099 AR_NDP2_TIMER_MODE, 0x0020},
3100 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101 AR_NDP2_TIMER_MODE, 0x0040},
3102 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103 AR_NDP2_TIMER_MODE, 0x0080}
3104 };
3105
3106 /* HW generic timer primitives */
3107
ath9k_hw_gettsf32(struct ath_hw * ah)3108 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109 {
3110 return REG_READ(ah, AR_TSF_L32);
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
ath9k_hw_gen_timer_start_tsf2(struct ath_hw * ah)3114 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115 {
3116 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118 if (timer_table->tsf2_enabled) {
3119 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121 }
3122 }
3123
ath_gen_timer_alloc(struct ath_hw * ah,void (* trigger)(void *),void (* overflow)(void *),void * arg,u8 timer_index)3124 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125 void (*trigger)(void *),
3126 void (*overflow)(void *),
3127 void *arg,
3128 u8 timer_index)
3129 {
3130 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131 struct ath_gen_timer *timer;
3132
3133 if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134 (timer_index >= ATH_MAX_GEN_TIMER))
3135 return NULL;
3136
3137 if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138 !AR_SREV_9300_20_OR_LATER(ah))
3139 return NULL;
3140
3141 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142 if (timer == NULL)
3143 return NULL;
3144
3145 /* allocate a hardware generic timer slot */
3146 timer_table->timers[timer_index] = timer;
3147 timer->index = timer_index;
3148 timer->trigger = trigger;
3149 timer->overflow = overflow;
3150 timer->arg = arg;
3151
3152 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153 timer_table->tsf2_enabled = true;
3154 ath9k_hw_gen_timer_start_tsf2(ah);
3155 }
3156
3157 return timer;
3158 }
3159 EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
ath9k_hw_gen_timer_start(struct ath_hw * ah,struct ath_gen_timer * timer,u32 timer_next,u32 timer_period)3161 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162 struct ath_gen_timer *timer,
3163 u32 timer_next,
3164 u32 timer_period)
3165 {
3166 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167 u32 mask = 0;
3168
3169 timer_table->timer_mask |= BIT(timer->index);
3170
3171 /*
3172 * Program generic timer registers
3173 */
3174 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175 timer_next);
3176 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177 timer_period);
3178 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179 gen_tmr_configuration[timer->index].mode_mask);
3180
3181 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182 /*
3183 * Starting from AR9462, each generic timer can select which tsf
3184 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185 * 8 - 15 use tsf2.
3186 */
3187 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189 (1 << timer->index));
3190 else
3191 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192 (1 << timer->index));
3193 }
3194
3195 if (timer->trigger)
3196 mask |= SM(AR_GENTMR_BIT(timer->index),
3197 AR_IMR_S5_GENTIMER_TRIG);
3198 if (timer->overflow)
3199 mask |= SM(AR_GENTMR_BIT(timer->index),
3200 AR_IMR_S5_GENTIMER_THRESH);
3201
3202 REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205 ah->imask |= ATH9K_INT_GENTIMER;
3206 ath9k_hw_set_interrupts(ah);
3207 }
3208 }
3209 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
ath9k_hw_gen_timer_stop(struct ath_hw * ah,struct ath_gen_timer * timer)3211 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212 {
3213 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215 /* Clear generic timer enable bits. */
3216 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217 gen_tmr_configuration[timer->index].mode_mask);
3218
3219 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220 /*
3221 * Need to switch back to TSF if it was using TSF2.
3222 */
3223 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225 (1 << timer->index));
3226 }
3227 }
3228
3229 /* Disable both trigger and thresh interrupt masks */
3230 REG_CLR_BIT(ah, AR_IMR_S5,
3231 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234 timer_table->timer_mask &= ~BIT(timer->index);
3235
3236 if (timer_table->timer_mask == 0) {
3237 ah->imask &= ~ATH9K_INT_GENTIMER;
3238 ath9k_hw_set_interrupts(ah);
3239 }
3240 }
3241 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
ath_gen_timer_free(struct ath_hw * ah,struct ath_gen_timer * timer)3243 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244 {
3245 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247 /* free the hardware generic timer slot */
3248 timer_table->timers[timer->index] = NULL;
3249 kfree(timer);
3250 }
3251 EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253 /*
3254 * Generic Timer Interrupts handling
3255 */
ath_gen_timer_isr(struct ath_hw * ah)3256 void ath_gen_timer_isr(struct ath_hw *ah)
3257 {
3258 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259 struct ath_gen_timer *timer;
3260 unsigned long trigger_mask, thresh_mask;
3261 unsigned int index;
3262
3263 /* get hardware generic timer interrupt status */
3264 trigger_mask = ah->intr_gen_timer_trigger;
3265 thresh_mask = ah->intr_gen_timer_thresh;
3266 trigger_mask &= timer_table->timer_mask;
3267 thresh_mask &= timer_table->timer_mask;
3268
3269 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270 timer = timer_table->timers[index];
3271 if (!timer)
3272 continue;
3273 if (!timer->overflow)
3274 continue;
3275
3276 trigger_mask &= ~BIT(index);
3277 timer->overflow(timer->arg);
3278 }
3279
3280 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281 timer = timer_table->timers[index];
3282 if (!timer)
3283 continue;
3284 if (!timer->trigger)
3285 continue;
3286 timer->trigger(timer->arg);
3287 }
3288 }
3289 EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291 /********/
3292 /* HTC */
3293 /********/
3294
3295 static struct {
3296 u32 version;
3297 const char * name;
3298 } ath_mac_bb_names[] = {
3299 /* Devices with external radios */
3300 { AR_SREV_VERSION_5416_PCI, "5416" },
3301 { AR_SREV_VERSION_5416_PCIE, "5418" },
3302 { AR_SREV_VERSION_9100, "9100" },
3303 { AR_SREV_VERSION_9160, "9160" },
3304 /* Single-chip solutions */
3305 { AR_SREV_VERSION_9280, "9280" },
3306 { AR_SREV_VERSION_9285, "9285" },
3307 { AR_SREV_VERSION_9287, "9287" },
3308 { AR_SREV_VERSION_9271, "9271" },
3309 { AR_SREV_VERSION_9300, "9300" },
3310 { AR_SREV_VERSION_9330, "9330" },
3311 { AR_SREV_VERSION_9340, "9340" },
3312 { AR_SREV_VERSION_9485, "9485" },
3313 { AR_SREV_VERSION_9462, "9462" },
3314 { AR_SREV_VERSION_9550, "9550" },
3315 { AR_SREV_VERSION_9565, "9565" },
3316 { AR_SREV_VERSION_9531, "9531" },
3317 { AR_SREV_VERSION_9561, "9561" },
3318 };
3319
3320 /* For devices with external radios */
3321 static struct {
3322 u16 version;
3323 const char * name;
3324 } ath_rf_names[] = {
3325 { 0, "5133" },
3326 { AR_RAD5133_SREV_MAJOR, "5133" },
3327 { AR_RAD5122_SREV_MAJOR, "5122" },
3328 { AR_RAD2133_SREV_MAJOR, "2133" },
3329 { AR_RAD2122_SREV_MAJOR, "2122" }
3330 };
3331
3332 /*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
ath9k_hw_mac_bb_name(u32 mac_bb_version)3335 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336 {
3337 int i;
3338
3339 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340 if (ath_mac_bb_names[i].version == mac_bb_version) {
3341 return ath_mac_bb_names[i].name;
3342 }
3343 }
3344
3345 return "????";
3346 }
3347
3348 /*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
ath9k_hw_rf_name(u16 rf_version)3352 static const char *ath9k_hw_rf_name(u16 rf_version)
3353 {
3354 int i;
3355
3356 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357 if (ath_rf_names[i].version == rf_version) {
3358 return ath_rf_names[i].name;
3359 }
3360 }
3361
3362 return "????";
3363 }
3364
ath9k_hw_name(struct ath_hw * ah,char * hw_name,size_t len)3365 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366 {
3367 int used;
3368
3369 /* chipsets >= AR9280 are single-chip */
3370 if (AR_SREV_9280_20_OR_LATER(ah)) {
3371 used = scnprintf(hw_name, len,
3372 "Atheros AR%s Rev:%x",
3373 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374 ah->hw_version.macRev);
3375 }
3376 else {
3377 used = scnprintf(hw_name, len,
3378 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380 ah->hw_version.macRev,
3381 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382 & AR_RADIO_SREV_MAJOR)),
3383 ah->hw_version.phyRev);
3384 }
3385
3386 hw_name[used] = '\0';
3387 }
3388 EXPORT_SYMBOL(ath9k_hw_name);
3389