1 /*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
27 *
28 * NO WARRANTY
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 #include <linux/nl80211.h>
56
57 #include <net/ieee80211_radiotap.h>
58
59 #include <asm/unaligned.h>
60
61 #include "base.h"
62 #include "reg.h"
63 #include "debug.h"
64 #include "ani.h"
65 #include "ath5k.h"
66 #include "../regd.h"
67
68 #define CREATE_TRACE_POINTS
69 #include "trace.h"
70
71 bool ath5k_modparam_nohwcrypt;
72 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
73 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
74
75 static bool modparam_all_channels;
76 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
77 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
78
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 bool, S_IRUGO);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87
88
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
95
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 bool skip_pcu);
99
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATHEROS_AR231X
103 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
104 { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
105 { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
106 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
107 { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
108 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
109 { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
110 #else
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129 #endif
130 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
131 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
132 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
133 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
134 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
135 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
136 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
137 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
138 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
139 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
140 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
141 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
142 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
143 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
144 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATHEROS_AR231X
146 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
147 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
148 #endif
149 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
150 };
151
152 static const struct ieee80211_rate ath5k_rates[] = {
153 { .bitrate = 10,
154 .hw_value = ATH5K_RATE_CODE_1M, },
155 { .bitrate = 20,
156 .hw_value = ATH5K_RATE_CODE_2M,
157 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 { .bitrate = 55,
160 .hw_value = ATH5K_RATE_CODE_5_5M,
161 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 { .bitrate = 110,
164 .hw_value = ATH5K_RATE_CODE_11M,
165 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 { .bitrate = 60,
168 .hw_value = ATH5K_RATE_CODE_6M,
169 .flags = 0 },
170 { .bitrate = 90,
171 .hw_value = ATH5K_RATE_CODE_9M,
172 .flags = 0 },
173 { .bitrate = 120,
174 .hw_value = ATH5K_RATE_CODE_12M,
175 .flags = 0 },
176 { .bitrate = 180,
177 .hw_value = ATH5K_RATE_CODE_18M,
178 .flags = 0 },
179 { .bitrate = 240,
180 .hw_value = ATH5K_RATE_CODE_24M,
181 .flags = 0 },
182 { .bitrate = 360,
183 .hw_value = ATH5K_RATE_CODE_36M,
184 .flags = 0 },
185 { .bitrate = 480,
186 .hw_value = ATH5K_RATE_CODE_48M,
187 .flags = 0 },
188 { .bitrate = 540,
189 .hw_value = ATH5K_RATE_CODE_54M,
190 .flags = 0 },
191 };
192
ath5k_extend_tsf(struct ath5k_hw * ah,u32 rstamp)193 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
194 {
195 u64 tsf = ath5k_hw_get_tsf64(ah);
196
197 if ((tsf & 0x7fff) < rstamp)
198 tsf -= 0x8000;
199
200 return (tsf & ~0x7fff) | rstamp;
201 }
202
203 const char *
ath5k_chip_name(enum ath5k_srev_type type,u_int16_t val)204 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
205 {
206 const char *name = "xxxxx";
207 unsigned int i;
208
209 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
210 if (srev_names[i].sr_type != type)
211 continue;
212
213 if ((val & 0xf0) == srev_names[i].sr_val)
214 name = srev_names[i].sr_name;
215
216 if ((val & 0xff) == srev_names[i].sr_val) {
217 name = srev_names[i].sr_name;
218 break;
219 }
220 }
221
222 return name;
223 }
ath5k_ioread32(void * hw_priv,u32 reg_offset)224 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
225 {
226 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
227 return ath5k_hw_reg_read(ah, reg_offset);
228 }
229
ath5k_iowrite32(void * hw_priv,u32 val,u32 reg_offset)230 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
231 {
232 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
233 ath5k_hw_reg_write(ah, val, reg_offset);
234 }
235
236 static const struct ath_ops ath5k_common_ops = {
237 .read = ath5k_ioread32,
238 .write = ath5k_iowrite32,
239 };
240
241 /***********************\
242 * Driver Initialization *
243 \***********************/
244
ath5k_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)245 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
246 {
247 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
248 struct ath5k_hw *ah = hw->priv;
249 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
250
251 return ath_reg_notifier_apply(wiphy, request, regulatory);
252 }
253
254 /********************\
255 * Channel/mode setup *
256 \********************/
257
258 /*
259 * Returns true for the channel numbers used without all_channels modparam.
260 */
ath5k_is_standard_channel(short chan,enum ieee80211_band band)261 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
262 {
263 if (band == IEEE80211_BAND_2GHZ && chan <= 14)
264 return true;
265
266 return /* UNII 1,2 */
267 (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
268 /* midband */
269 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
270 /* UNII-3 */
271 ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
272 /* 802.11j 5.030-5.080 GHz (20MHz) */
273 (chan == 8 || chan == 12 || chan == 16) ||
274 /* 802.11j 4.9GHz (20MHz) */
275 (chan == 184 || chan == 188 || chan == 192 || chan == 196));
276 }
277
278 static unsigned int
ath5k_setup_channels(struct ath5k_hw * ah,struct ieee80211_channel * channels,unsigned int mode,unsigned int max)279 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
280 unsigned int mode, unsigned int max)
281 {
282 unsigned int count, size, freq, ch;
283 enum ieee80211_band band;
284
285 switch (mode) {
286 case AR5K_MODE_11A:
287 /* 1..220, but 2GHz frequencies are filtered by check_channel */
288 size = 220;
289 band = IEEE80211_BAND_5GHZ;
290 break;
291 case AR5K_MODE_11B:
292 case AR5K_MODE_11G:
293 size = 26;
294 band = IEEE80211_BAND_2GHZ;
295 break;
296 default:
297 ATH5K_WARN(ah, "bad mode, not copying channels\n");
298 return 0;
299 }
300
301 count = 0;
302 for (ch = 1; ch <= size && count < max; ch++) {
303 freq = ieee80211_channel_to_frequency(ch, band);
304
305 if (freq == 0) /* mapping failed - not a standard channel */
306 continue;
307
308 /* Write channel info, needed for ath5k_channel_ok() */
309 channels[count].center_freq = freq;
310 channels[count].band = band;
311 channels[count].hw_value = mode;
312
313 /* Check if channel is supported by the chipset */
314 if (!ath5k_channel_ok(ah, &channels[count]))
315 continue;
316
317 if (!modparam_all_channels &&
318 !ath5k_is_standard_channel(ch, band))
319 continue;
320
321 count++;
322 }
323
324 return count;
325 }
326
327 static void
ath5k_setup_rate_idx(struct ath5k_hw * ah,struct ieee80211_supported_band * b)328 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
329 {
330 u8 i;
331
332 for (i = 0; i < AR5K_MAX_RATES; i++)
333 ah->rate_idx[b->band][i] = -1;
334
335 for (i = 0; i < b->n_bitrates; i++) {
336 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
337 if (b->bitrates[i].hw_value_short)
338 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
339 }
340 }
341
342 static int
ath5k_setup_bands(struct ieee80211_hw * hw)343 ath5k_setup_bands(struct ieee80211_hw *hw)
344 {
345 struct ath5k_hw *ah = hw->priv;
346 struct ieee80211_supported_band *sband;
347 int max_c, count_c = 0;
348 int i;
349
350 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
351 max_c = ARRAY_SIZE(ah->channels);
352
353 /* 2GHz band */
354 sband = &ah->sbands[IEEE80211_BAND_2GHZ];
355 sband->band = IEEE80211_BAND_2GHZ;
356 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
357
358 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
359 /* G mode */
360 memcpy(sband->bitrates, &ath5k_rates[0],
361 sizeof(struct ieee80211_rate) * 12);
362 sband->n_bitrates = 12;
363
364 sband->channels = ah->channels;
365 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
366 AR5K_MODE_11G, max_c);
367
368 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
369 count_c = sband->n_channels;
370 max_c -= count_c;
371 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
372 /* B mode */
373 memcpy(sband->bitrates, &ath5k_rates[0],
374 sizeof(struct ieee80211_rate) * 4);
375 sband->n_bitrates = 4;
376
377 /* 5211 only supports B rates and uses 4bit rate codes
378 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
379 * fix them up here:
380 */
381 if (ah->ah_version == AR5K_AR5211) {
382 for (i = 0; i < 4; i++) {
383 sband->bitrates[i].hw_value =
384 sband->bitrates[i].hw_value & 0xF;
385 sband->bitrates[i].hw_value_short =
386 sband->bitrates[i].hw_value_short & 0xF;
387 }
388 }
389
390 sband->channels = ah->channels;
391 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
392 AR5K_MODE_11B, max_c);
393
394 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
395 count_c = sband->n_channels;
396 max_c -= count_c;
397 }
398 ath5k_setup_rate_idx(ah, sband);
399
400 /* 5GHz band, A mode */
401 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
402 sband = &ah->sbands[IEEE80211_BAND_5GHZ];
403 sband->band = IEEE80211_BAND_5GHZ;
404 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
405
406 memcpy(sband->bitrates, &ath5k_rates[4],
407 sizeof(struct ieee80211_rate) * 8);
408 sband->n_bitrates = 8;
409
410 sband->channels = &ah->channels[count_c];
411 sband->n_channels = ath5k_setup_channels(ah, sband->channels,
412 AR5K_MODE_11A, max_c);
413
414 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
415 }
416 ath5k_setup_rate_idx(ah, sband);
417
418 ath5k_debug_dump_bands(ah);
419
420 return 0;
421 }
422
423 /*
424 * Set/change channels. We always reset the chip.
425 * To accomplish this we must first cleanup any pending DMA,
426 * then restart stuff after a la ath5k_init.
427 *
428 * Called with ah->lock.
429 */
430 int
ath5k_chan_set(struct ath5k_hw * ah,struct ieee80211_channel * chan)431 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
432 {
433 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
434 "channel set, resetting (%u -> %u MHz)\n",
435 ah->curchan->center_freq, chan->center_freq);
436
437 /*
438 * To switch channels clear any pending DMA operations;
439 * wait long enough for the RX fifo to drain, reset the
440 * hardware at the new frequency, and then re-enable
441 * the relevant bits of the h/w.
442 */
443 return ath5k_reset(ah, chan, true);
444 }
445
ath5k_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)446 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
447 {
448 struct ath5k_vif_iter_data *iter_data = data;
449 int i;
450 struct ath5k_vif *avf = (void *)vif->drv_priv;
451
452 if (iter_data->hw_macaddr)
453 for (i = 0; i < ETH_ALEN; i++)
454 iter_data->mask[i] &=
455 ~(iter_data->hw_macaddr[i] ^ mac[i]);
456
457 if (!iter_data->found_active) {
458 iter_data->found_active = true;
459 memcpy(iter_data->active_mac, mac, ETH_ALEN);
460 }
461
462 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
463 if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
464 iter_data->need_set_hw_addr = false;
465
466 if (!iter_data->any_assoc) {
467 if (avf->assoc)
468 iter_data->any_assoc = true;
469 }
470
471 /* Calculate combined mode - when APs are active, operate in AP mode.
472 * Otherwise use the mode of the new interface. This can currently
473 * only deal with combinations of APs and STAs. Only one ad-hoc
474 * interfaces is allowed.
475 */
476 if (avf->opmode == NL80211_IFTYPE_AP)
477 iter_data->opmode = NL80211_IFTYPE_AP;
478 else {
479 if (avf->opmode == NL80211_IFTYPE_STATION)
480 iter_data->n_stas++;
481 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
482 iter_data->opmode = avf->opmode;
483 }
484 }
485
486 void
ath5k_update_bssid_mask_and_opmode(struct ath5k_hw * ah,struct ieee80211_vif * vif)487 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
488 struct ieee80211_vif *vif)
489 {
490 struct ath_common *common = ath5k_hw_common(ah);
491 struct ath5k_vif_iter_data iter_data;
492 u32 rfilt;
493
494 /*
495 * Use the hardware MAC address as reference, the hardware uses it
496 * together with the BSSID mask when matching addresses.
497 */
498 iter_data.hw_macaddr = common->macaddr;
499 memset(&iter_data.mask, 0xff, ETH_ALEN);
500 iter_data.found_active = false;
501 iter_data.need_set_hw_addr = true;
502 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
503 iter_data.n_stas = 0;
504
505 if (vif)
506 ath5k_vif_iter(&iter_data, vif->addr, vif);
507
508 /* Get list of all active MAC addresses */
509 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
510 &iter_data);
511 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
512
513 ah->opmode = iter_data.opmode;
514 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
515 /* Nothing active, default to station mode */
516 ah->opmode = NL80211_IFTYPE_STATION;
517
518 ath5k_hw_set_opmode(ah, ah->opmode);
519 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
520 ah->opmode, ath_opmode_to_string(ah->opmode));
521
522 if (iter_data.need_set_hw_addr && iter_data.found_active)
523 ath5k_hw_set_lladdr(ah, iter_data.active_mac);
524
525 if (ath5k_hw_hasbssidmask(ah))
526 ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
527
528 /* Set up RX Filter */
529 if (iter_data.n_stas > 1) {
530 /* If you have multiple STA interfaces connected to
531 * different APs, ARPs are not received (most of the time?)
532 * Enabling PROMISC appears to fix that problem.
533 */
534 ah->filter_flags |= AR5K_RX_FILTER_PROM;
535 }
536
537 rfilt = ah->filter_flags;
538 ath5k_hw_set_rx_filter(ah, rfilt);
539 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
540 }
541
542 static inline int
ath5k_hw_to_driver_rix(struct ath5k_hw * ah,int hw_rix)543 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
544 {
545 int rix;
546
547 /* return base rate on errors */
548 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
549 "hw_rix out of bounds: %x\n", hw_rix))
550 return 0;
551
552 rix = ah->rate_idx[ah->curchan->band][hw_rix];
553 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
554 rix = 0;
555
556 return rix;
557 }
558
559 /***************\
560 * Buffers setup *
561 \***************/
562
563 static
ath5k_rx_skb_alloc(struct ath5k_hw * ah,dma_addr_t * skb_addr)564 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
565 {
566 struct ath_common *common = ath5k_hw_common(ah);
567 struct sk_buff *skb;
568
569 /*
570 * Allocate buffer with headroom_needed space for the
571 * fake physical layer header at the start.
572 */
573 skb = ath_rxbuf_alloc(common,
574 common->rx_bufsize,
575 GFP_ATOMIC);
576
577 if (!skb) {
578 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
579 common->rx_bufsize);
580 return NULL;
581 }
582
583 *skb_addr = dma_map_single(ah->dev,
584 skb->data, common->rx_bufsize,
585 DMA_FROM_DEVICE);
586
587 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
588 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
589 dev_kfree_skb(skb);
590 return NULL;
591 }
592 return skb;
593 }
594
595 static int
ath5k_rxbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)596 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
597 {
598 struct sk_buff *skb = bf->skb;
599 struct ath5k_desc *ds;
600 int ret;
601
602 if (!skb) {
603 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
604 if (!skb)
605 return -ENOMEM;
606 bf->skb = skb;
607 }
608
609 /*
610 * Setup descriptors. For receive we always terminate
611 * the descriptor list with a self-linked entry so we'll
612 * not get overrun under high load (as can happen with a
613 * 5212 when ANI processing enables PHY error frames).
614 *
615 * To ensure the last descriptor is self-linked we create
616 * each descriptor as self-linked and add it to the end. As
617 * each additional descriptor is added the previous self-linked
618 * entry is "fixed" naturally. This should be safe even
619 * if DMA is happening. When processing RX interrupts we
620 * never remove/process the last, self-linked, entry on the
621 * descriptor list. This ensures the hardware always has
622 * someplace to write a new frame.
623 */
624 ds = bf->desc;
625 ds->ds_link = bf->daddr; /* link to self */
626 ds->ds_data = bf->skbaddr;
627 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
628 if (ret) {
629 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
630 return ret;
631 }
632
633 if (ah->rxlink != NULL)
634 *ah->rxlink = bf->daddr;
635 ah->rxlink = &ds->ds_link;
636 return 0;
637 }
638
get_hw_packet_type(struct sk_buff * skb)639 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
640 {
641 struct ieee80211_hdr *hdr;
642 enum ath5k_pkt_type htype;
643 __le16 fc;
644
645 hdr = (struct ieee80211_hdr *)skb->data;
646 fc = hdr->frame_control;
647
648 if (ieee80211_is_beacon(fc))
649 htype = AR5K_PKT_TYPE_BEACON;
650 else if (ieee80211_is_probe_resp(fc))
651 htype = AR5K_PKT_TYPE_PROBE_RESP;
652 else if (ieee80211_is_atim(fc))
653 htype = AR5K_PKT_TYPE_ATIM;
654 else if (ieee80211_is_pspoll(fc))
655 htype = AR5K_PKT_TYPE_PSPOLL;
656 else
657 htype = AR5K_PKT_TYPE_NORMAL;
658
659 return htype;
660 }
661
662 static int
ath5k_txbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf,struct ath5k_txq * txq,int padsize)663 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
664 struct ath5k_txq *txq, int padsize)
665 {
666 struct ath5k_desc *ds = bf->desc;
667 struct sk_buff *skb = bf->skb;
668 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
669 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
670 struct ieee80211_rate *rate;
671 unsigned int mrr_rate[3], mrr_tries[3];
672 int i, ret;
673 u16 hw_rate;
674 u16 cts_rate = 0;
675 u16 duration = 0;
676 u8 rc_flags;
677
678 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
679
680 /* XXX endianness */
681 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
682 DMA_TO_DEVICE);
683
684 rate = ieee80211_get_tx_rate(ah->hw, info);
685 if (!rate) {
686 ret = -EINVAL;
687 goto err_unmap;
688 }
689
690 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
691 flags |= AR5K_TXDESC_NOACK;
692
693 rc_flags = info->control.rates[0].flags;
694 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
695 rate->hw_value_short : rate->hw_value;
696
697 pktlen = skb->len;
698
699 /* FIXME: If we are in g mode and rate is a CCK rate
700 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
701 * from tx power (value is in dB units already) */
702 if (info->control.hw_key) {
703 keyidx = info->control.hw_key->hw_key_idx;
704 pktlen += info->control.hw_key->icv_len;
705 }
706 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
707 flags |= AR5K_TXDESC_RTSENA;
708 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
709 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
710 info->control.vif, pktlen, info));
711 }
712 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
713 flags |= AR5K_TXDESC_CTSENA;
714 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
715 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
716 info->control.vif, pktlen, info));
717 }
718 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
719 ieee80211_get_hdrlen_from_skb(skb), padsize,
720 get_hw_packet_type(skb),
721 (ah->power_level * 2),
722 hw_rate,
723 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
724 cts_rate, duration);
725 if (ret)
726 goto err_unmap;
727
728 /* Set up MRR descriptor */
729 if (ah->ah_capabilities.cap_has_mrr_support) {
730 memset(mrr_rate, 0, sizeof(mrr_rate));
731 memset(mrr_tries, 0, sizeof(mrr_tries));
732 for (i = 0; i < 3; i++) {
733 rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
734 if (!rate)
735 break;
736
737 mrr_rate[i] = rate->hw_value;
738 mrr_tries[i] = info->control.rates[i + 1].count;
739 }
740
741 ath5k_hw_setup_mrr_tx_desc(ah, ds,
742 mrr_rate[0], mrr_tries[0],
743 mrr_rate[1], mrr_tries[1],
744 mrr_rate[2], mrr_tries[2]);
745 }
746
747 ds->ds_link = 0;
748 ds->ds_data = bf->skbaddr;
749
750 spin_lock_bh(&txq->lock);
751 list_add_tail(&bf->list, &txq->q);
752 txq->txq_len++;
753 if (txq->link == NULL) /* is this first packet? */
754 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
755 else /* no, so only link it */
756 *txq->link = bf->daddr;
757
758 txq->link = &ds->ds_link;
759 ath5k_hw_start_tx_dma(ah, txq->qnum);
760 mmiowb();
761 spin_unlock_bh(&txq->lock);
762
763 return 0;
764 err_unmap:
765 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
766 return ret;
767 }
768
769 /*******************\
770 * Descriptors setup *
771 \*******************/
772
773 static int
ath5k_desc_alloc(struct ath5k_hw * ah)774 ath5k_desc_alloc(struct ath5k_hw *ah)
775 {
776 struct ath5k_desc *ds;
777 struct ath5k_buf *bf;
778 dma_addr_t da;
779 unsigned int i;
780 int ret;
781
782 /* allocate descriptors */
783 ah->desc_len = sizeof(struct ath5k_desc) *
784 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
785
786 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
787 &ah->desc_daddr, GFP_KERNEL);
788 if (ah->desc == NULL) {
789 ATH5K_ERR(ah, "can't allocate descriptors\n");
790 ret = -ENOMEM;
791 goto err;
792 }
793 ds = ah->desc;
794 da = ah->desc_daddr;
795 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
796 ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
797
798 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
799 sizeof(struct ath5k_buf), GFP_KERNEL);
800 if (bf == NULL) {
801 ATH5K_ERR(ah, "can't allocate bufptr\n");
802 ret = -ENOMEM;
803 goto err_free;
804 }
805 ah->bufptr = bf;
806
807 INIT_LIST_HEAD(&ah->rxbuf);
808 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
809 bf->desc = ds;
810 bf->daddr = da;
811 list_add_tail(&bf->list, &ah->rxbuf);
812 }
813
814 INIT_LIST_HEAD(&ah->txbuf);
815 ah->txbuf_len = ATH_TXBUF;
816 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
817 bf->desc = ds;
818 bf->daddr = da;
819 list_add_tail(&bf->list, &ah->txbuf);
820 }
821
822 /* beacon buffers */
823 INIT_LIST_HEAD(&ah->bcbuf);
824 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
825 bf->desc = ds;
826 bf->daddr = da;
827 list_add_tail(&bf->list, &ah->bcbuf);
828 }
829
830 return 0;
831 err_free:
832 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
833 err:
834 ah->desc = NULL;
835 return ret;
836 }
837
838 void
ath5k_txbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)839 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
840 {
841 BUG_ON(!bf);
842 if (!bf->skb)
843 return;
844 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
845 DMA_TO_DEVICE);
846 ieee80211_free_txskb(ah->hw, bf->skb);
847 bf->skb = NULL;
848 bf->skbaddr = 0;
849 bf->desc->ds_data = 0;
850 }
851
852 void
ath5k_rxbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)853 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
854 {
855 struct ath_common *common = ath5k_hw_common(ah);
856
857 BUG_ON(!bf);
858 if (!bf->skb)
859 return;
860 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
861 DMA_FROM_DEVICE);
862 dev_kfree_skb_any(bf->skb);
863 bf->skb = NULL;
864 bf->skbaddr = 0;
865 bf->desc->ds_data = 0;
866 }
867
868 static void
ath5k_desc_free(struct ath5k_hw * ah)869 ath5k_desc_free(struct ath5k_hw *ah)
870 {
871 struct ath5k_buf *bf;
872
873 list_for_each_entry(bf, &ah->txbuf, list)
874 ath5k_txbuf_free_skb(ah, bf);
875 list_for_each_entry(bf, &ah->rxbuf, list)
876 ath5k_rxbuf_free_skb(ah, bf);
877 list_for_each_entry(bf, &ah->bcbuf, list)
878 ath5k_txbuf_free_skb(ah, bf);
879
880 /* Free memory associated with all descriptors */
881 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
882 ah->desc = NULL;
883 ah->desc_daddr = 0;
884
885 kfree(ah->bufptr);
886 ah->bufptr = NULL;
887 }
888
889
890 /**************\
891 * Queues setup *
892 \**************/
893
894 static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_hw * ah,int qtype,int subtype)895 ath5k_txq_setup(struct ath5k_hw *ah,
896 int qtype, int subtype)
897 {
898 struct ath5k_txq *txq;
899 struct ath5k_txq_info qi = {
900 .tqi_subtype = subtype,
901 /* XXX: default values not correct for B and XR channels,
902 * but who cares? */
903 .tqi_aifs = AR5K_TUNE_AIFS,
904 .tqi_cw_min = AR5K_TUNE_CWMIN,
905 .tqi_cw_max = AR5K_TUNE_CWMAX
906 };
907 int qnum;
908
909 /*
910 * Enable interrupts only for EOL and DESC conditions.
911 * We mark tx descriptors to receive a DESC interrupt
912 * when a tx queue gets deep; otherwise we wait for the
913 * EOL to reap descriptors. Note that this is done to
914 * reduce interrupt load and this only defers reaping
915 * descriptors, never transmitting frames. Aside from
916 * reducing interrupts this also permits more concurrency.
917 * The only potential downside is if the tx queue backs
918 * up in which case the top half of the kernel may backup
919 * due to a lack of tx descriptors.
920 */
921 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
922 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
923 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
924 if (qnum < 0) {
925 /*
926 * NB: don't print a message, this happens
927 * normally on parts with too few tx queues
928 */
929 return ERR_PTR(qnum);
930 }
931 txq = &ah->txqs[qnum];
932 if (!txq->setup) {
933 txq->qnum = qnum;
934 txq->link = NULL;
935 INIT_LIST_HEAD(&txq->q);
936 spin_lock_init(&txq->lock);
937 txq->setup = true;
938 txq->txq_len = 0;
939 txq->txq_max = ATH5K_TXQ_LEN_MAX;
940 txq->txq_poll_mark = false;
941 txq->txq_stuck = 0;
942 }
943 return &ah->txqs[qnum];
944 }
945
946 static int
ath5k_beaconq_setup(struct ath5k_hw * ah)947 ath5k_beaconq_setup(struct ath5k_hw *ah)
948 {
949 struct ath5k_txq_info qi = {
950 /* XXX: default values not correct for B and XR channels,
951 * but who cares? */
952 .tqi_aifs = AR5K_TUNE_AIFS,
953 .tqi_cw_min = AR5K_TUNE_CWMIN,
954 .tqi_cw_max = AR5K_TUNE_CWMAX,
955 /* NB: for dynamic turbo, don't enable any other interrupts */
956 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
957 };
958
959 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
960 }
961
962 static int
ath5k_beaconq_config(struct ath5k_hw * ah)963 ath5k_beaconq_config(struct ath5k_hw *ah)
964 {
965 struct ath5k_txq_info qi;
966 int ret;
967
968 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
969 if (ret)
970 goto err;
971
972 if (ah->opmode == NL80211_IFTYPE_AP ||
973 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
974 /*
975 * Always burst out beacon and CAB traffic
976 * (aifs = cwmin = cwmax = 0)
977 */
978 qi.tqi_aifs = 0;
979 qi.tqi_cw_min = 0;
980 qi.tqi_cw_max = 0;
981 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
982 /*
983 * Adhoc mode; backoff between 0 and (2 * cw_min).
984 */
985 qi.tqi_aifs = 0;
986 qi.tqi_cw_min = 0;
987 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
988 }
989
990 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
991 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
992 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
993
994 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
995 if (ret) {
996 ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
997 "hardware queue!\n", __func__);
998 goto err;
999 }
1000 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1001 if (ret)
1002 goto err;
1003
1004 /* reconfigure cabq with ready time to 80% of beacon_interval */
1005 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1006 if (ret)
1007 goto err;
1008
1009 qi.tqi_ready_time = (ah->bintval * 80) / 100;
1010 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011 if (ret)
1012 goto err;
1013
1014 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1015 err:
1016 return ret;
1017 }
1018
1019 /**
1020 * ath5k_drain_tx_buffs - Empty tx buffers
1021 *
1022 * @ah The &struct ath5k_hw
1023 *
1024 * Empty tx buffers from all queues in preparation
1025 * of a reset or during shutdown.
1026 *
1027 * NB: this assumes output has been stopped and
1028 * we do not need to block ath5k_tx_tasklet
1029 */
1030 static void
ath5k_drain_tx_buffs(struct ath5k_hw * ah)1031 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1032 {
1033 struct ath5k_txq *txq;
1034 struct ath5k_buf *bf, *bf0;
1035 int i;
1036
1037 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1038 if (ah->txqs[i].setup) {
1039 txq = &ah->txqs[i];
1040 spin_lock_bh(&txq->lock);
1041 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1042 ath5k_debug_printtxbuf(ah, bf);
1043
1044 ath5k_txbuf_free_skb(ah, bf);
1045
1046 spin_lock_bh(&ah->txbuflock);
1047 list_move_tail(&bf->list, &ah->txbuf);
1048 ah->txbuf_len++;
1049 txq->txq_len--;
1050 spin_unlock_bh(&ah->txbuflock);
1051 }
1052 txq->link = NULL;
1053 txq->txq_poll_mark = false;
1054 spin_unlock_bh(&txq->lock);
1055 }
1056 }
1057 }
1058
1059 static void
ath5k_txq_release(struct ath5k_hw * ah)1060 ath5k_txq_release(struct ath5k_hw *ah)
1061 {
1062 struct ath5k_txq *txq = ah->txqs;
1063 unsigned int i;
1064
1065 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1066 if (txq->setup) {
1067 ath5k_hw_release_tx_queue(ah, txq->qnum);
1068 txq->setup = false;
1069 }
1070 }
1071
1072
1073 /*************\
1074 * RX Handling *
1075 \*************/
1076
1077 /*
1078 * Enable the receive h/w following a reset.
1079 */
1080 static int
ath5k_rx_start(struct ath5k_hw * ah)1081 ath5k_rx_start(struct ath5k_hw *ah)
1082 {
1083 struct ath_common *common = ath5k_hw_common(ah);
1084 struct ath5k_buf *bf;
1085 int ret;
1086
1087 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1088
1089 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1090 common->cachelsz, common->rx_bufsize);
1091
1092 spin_lock_bh(&ah->rxbuflock);
1093 ah->rxlink = NULL;
1094 list_for_each_entry(bf, &ah->rxbuf, list) {
1095 ret = ath5k_rxbuf_setup(ah, bf);
1096 if (ret != 0) {
1097 spin_unlock_bh(&ah->rxbuflock);
1098 goto err;
1099 }
1100 }
1101 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1102 ath5k_hw_set_rxdp(ah, bf->daddr);
1103 spin_unlock_bh(&ah->rxbuflock);
1104
1105 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1106 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1107 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1108
1109 return 0;
1110 err:
1111 return ret;
1112 }
1113
1114 /*
1115 * Disable the receive logic on PCU (DRU)
1116 * In preparation for a shutdown.
1117 *
1118 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1119 * does.
1120 */
1121 static void
ath5k_rx_stop(struct ath5k_hw * ah)1122 ath5k_rx_stop(struct ath5k_hw *ah)
1123 {
1124
1125 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1126 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1127
1128 ath5k_debug_printrxbuffs(ah);
1129 }
1130
1131 static unsigned int
ath5k_rx_decrypted(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1132 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1133 struct ath5k_rx_status *rs)
1134 {
1135 struct ath_common *common = ath5k_hw_common(ah);
1136 struct ieee80211_hdr *hdr = (void *)skb->data;
1137 unsigned int keyix, hlen;
1138
1139 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1140 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1141 return RX_FLAG_DECRYPTED;
1142
1143 /* Apparently when a default key is used to decrypt the packet
1144 the hw does not set the index used to decrypt. In such cases
1145 get the index from the packet. */
1146 hlen = ieee80211_hdrlen(hdr->frame_control);
1147 if (ieee80211_has_protected(hdr->frame_control) &&
1148 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1149 skb->len >= hlen + 4) {
1150 keyix = skb->data[hlen + 3] >> 6;
1151
1152 if (test_bit(keyix, common->keymap))
1153 return RX_FLAG_DECRYPTED;
1154 }
1155
1156 return 0;
1157 }
1158
1159
1160 static void
ath5k_check_ibss_tsf(struct ath5k_hw * ah,struct sk_buff * skb,struct ieee80211_rx_status * rxs)1161 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1162 struct ieee80211_rx_status *rxs)
1163 {
1164 struct ath_common *common = ath5k_hw_common(ah);
1165 u64 tsf, bc_tstamp;
1166 u32 hw_tu;
1167 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1168
1169 if (ieee80211_is_beacon(mgmt->frame_control) &&
1170 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1171 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1172 /*
1173 * Received an IBSS beacon with the same BSSID. Hardware *must*
1174 * have updated the local TSF. We have to work around various
1175 * hardware bugs, though...
1176 */
1177 tsf = ath5k_hw_get_tsf64(ah);
1178 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1179 hw_tu = TSF_TO_TU(tsf);
1180
1181 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1182 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1183 (unsigned long long)bc_tstamp,
1184 (unsigned long long)rxs->mactime,
1185 (unsigned long long)(rxs->mactime - bc_tstamp),
1186 (unsigned long long)tsf);
1187
1188 /*
1189 * Sometimes the HW will give us a wrong tstamp in the rx
1190 * status, causing the timestamp extension to go wrong.
1191 * (This seems to happen especially with beacon frames bigger
1192 * than 78 byte (incl. FCS))
1193 * But we know that the receive timestamp must be later than the
1194 * timestamp of the beacon since HW must have synced to that.
1195 *
1196 * NOTE: here we assume mactime to be after the frame was
1197 * received, not like mac80211 which defines it at the start.
1198 */
1199 if (bc_tstamp > rxs->mactime) {
1200 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1201 "fixing mactime from %llx to %llx\n",
1202 (unsigned long long)rxs->mactime,
1203 (unsigned long long)tsf);
1204 rxs->mactime = tsf;
1205 }
1206
1207 /*
1208 * Local TSF might have moved higher than our beacon timers,
1209 * in that case we have to update them to continue sending
1210 * beacons. This also takes care of synchronizing beacon sending
1211 * times with other stations.
1212 */
1213 if (hw_tu >= ah->nexttbtt)
1214 ath5k_beacon_update_timers(ah, bc_tstamp);
1215
1216 /* Check if the beacon timers are still correct, because a TSF
1217 * update might have created a window between them - for a
1218 * longer description see the comment of this function: */
1219 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1220 ath5k_beacon_update_timers(ah, bc_tstamp);
1221 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1222 "fixed beacon timers after beacon receive\n");
1223 }
1224 }
1225 }
1226
1227 static void
ath5k_update_beacon_rssi(struct ath5k_hw * ah,struct sk_buff * skb,int rssi)1228 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1229 {
1230 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1231 struct ath_common *common = ath5k_hw_common(ah);
1232
1233 /* only beacons from our BSSID */
1234 if (!ieee80211_is_beacon(mgmt->frame_control) ||
1235 memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1236 return;
1237
1238 ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1239
1240 /* in IBSS mode we should keep RSSI statistics per neighbour */
1241 /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1242 }
1243
1244 /*
1245 * Compute padding position. skb must contain an IEEE 802.11 frame
1246 */
ath5k_common_padpos(struct sk_buff * skb)1247 static int ath5k_common_padpos(struct sk_buff *skb)
1248 {
1249 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1250 __le16 frame_control = hdr->frame_control;
1251 int padpos = 24;
1252
1253 if (ieee80211_has_a4(frame_control))
1254 padpos += ETH_ALEN;
1255
1256 if (ieee80211_is_data_qos(frame_control))
1257 padpos += IEEE80211_QOS_CTL_LEN;
1258
1259 return padpos;
1260 }
1261
1262 /*
1263 * This function expects an 802.11 frame and returns the number of
1264 * bytes added, or -1 if we don't have enough header room.
1265 */
ath5k_add_padding(struct sk_buff * skb)1266 static int ath5k_add_padding(struct sk_buff *skb)
1267 {
1268 int padpos = ath5k_common_padpos(skb);
1269 int padsize = padpos & 3;
1270
1271 if (padsize && skb->len > padpos) {
1272
1273 if (skb_headroom(skb) < padsize)
1274 return -1;
1275
1276 skb_push(skb, padsize);
1277 memmove(skb->data, skb->data + padsize, padpos);
1278 return padsize;
1279 }
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * The MAC header is padded to have 32-bit boundary if the
1286 * packet payload is non-zero. The general calculation for
1287 * padsize would take into account odd header lengths:
1288 * padsize = 4 - (hdrlen & 3); however, since only
1289 * even-length headers are used, padding can only be 0 or 2
1290 * bytes and we can optimize this a bit. We must not try to
1291 * remove padding from short control frames that do not have a
1292 * payload.
1293 *
1294 * This function expects an 802.11 frame and returns the number of
1295 * bytes removed.
1296 */
ath5k_remove_padding(struct sk_buff * skb)1297 static int ath5k_remove_padding(struct sk_buff *skb)
1298 {
1299 int padpos = ath5k_common_padpos(skb);
1300 int padsize = padpos & 3;
1301
1302 if (padsize && skb->len >= padpos + padsize) {
1303 memmove(skb->data + padsize, skb->data, padpos);
1304 skb_pull(skb, padsize);
1305 return padsize;
1306 }
1307
1308 return 0;
1309 }
1310
1311 static void
ath5k_receive_frame(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1312 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1313 struct ath5k_rx_status *rs)
1314 {
1315 struct ieee80211_rx_status *rxs;
1316
1317 ath5k_remove_padding(skb);
1318
1319 rxs = IEEE80211_SKB_RXCB(skb);
1320
1321 rxs->flag = 0;
1322 if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1323 rxs->flag |= RX_FLAG_MMIC_ERROR;
1324
1325 /*
1326 * always extend the mac timestamp, since this information is
1327 * also needed for proper IBSS merging.
1328 *
1329 * XXX: it might be too late to do it here, since rs_tstamp is
1330 * 15bit only. that means TSF extension has to be done within
1331 * 32768usec (about 32ms). it might be necessary to move this to
1332 * the interrupt handler, like it is done in madwifi.
1333 *
1334 * Unfortunately we don't know when the hardware takes the rx
1335 * timestamp (beginning of phy frame, data frame, end of rx?).
1336 * The only thing we know is that it is hardware specific...
1337 * On AR5213 it seems the rx timestamp is at the end of the
1338 * frame, but I'm not sure.
1339 *
1340 * NOTE: mac80211 defines mactime at the beginning of the first
1341 * data symbol. Since we don't have any time references it's
1342 * impossible to comply to that. This affects IBSS merge only
1343 * right now, so it's not too bad...
1344 */
1345 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1346 rxs->flag |= RX_FLAG_MACTIME_MPDU;
1347
1348 rxs->freq = ah->curchan->center_freq;
1349 rxs->band = ah->curchan->band;
1350
1351 rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1352
1353 rxs->antenna = rs->rs_antenna;
1354
1355 if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1356 ah->stats.antenna_rx[rs->rs_antenna]++;
1357 else
1358 ah->stats.antenna_rx[0]++; /* invalid */
1359
1360 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1361 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1362
1363 if (rxs->rate_idx >= 0 && rs->rs_rate ==
1364 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1365 rxs->flag |= RX_FLAG_SHORTPRE;
1366
1367 trace_ath5k_rx(ah, skb);
1368
1369 ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1370
1371 /* check beacons in IBSS mode */
1372 if (ah->opmode == NL80211_IFTYPE_ADHOC)
1373 ath5k_check_ibss_tsf(ah, skb, rxs);
1374
1375 ieee80211_rx(ah->hw, skb);
1376 }
1377
1378 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1379 *
1380 * Check if we want to further process this frame or not. Also update
1381 * statistics. Return true if we want this frame, false if not.
1382 */
1383 static bool
ath5k_receive_frame_ok(struct ath5k_hw * ah,struct ath5k_rx_status * rs)1384 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1385 {
1386 ah->stats.rx_all_count++;
1387 ah->stats.rx_bytes_count += rs->rs_datalen;
1388
1389 if (unlikely(rs->rs_status)) {
1390 if (rs->rs_status & AR5K_RXERR_CRC)
1391 ah->stats.rxerr_crc++;
1392 if (rs->rs_status & AR5K_RXERR_FIFO)
1393 ah->stats.rxerr_fifo++;
1394 if (rs->rs_status & AR5K_RXERR_PHY) {
1395 ah->stats.rxerr_phy++;
1396 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1397 ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1398 return false;
1399 }
1400 if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1401 /*
1402 * Decrypt error. If the error occurred
1403 * because there was no hardware key, then
1404 * let the frame through so the upper layers
1405 * can process it. This is necessary for 5210
1406 * parts which have no way to setup a ``clear''
1407 * key cache entry.
1408 *
1409 * XXX do key cache faulting
1410 */
1411 ah->stats.rxerr_decrypt++;
1412 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1413 !(rs->rs_status & AR5K_RXERR_CRC))
1414 return true;
1415 }
1416 if (rs->rs_status & AR5K_RXERR_MIC) {
1417 ah->stats.rxerr_mic++;
1418 return true;
1419 }
1420
1421 /* reject any frames with non-crypto errors */
1422 if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1423 return false;
1424 }
1425
1426 if (unlikely(rs->rs_more)) {
1427 ah->stats.rxerr_jumbo++;
1428 return false;
1429 }
1430 return true;
1431 }
1432
1433 static void
ath5k_set_current_imask(struct ath5k_hw * ah)1434 ath5k_set_current_imask(struct ath5k_hw *ah)
1435 {
1436 enum ath5k_int imask;
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(&ah->irqlock, flags);
1440 imask = ah->imask;
1441 if (ah->rx_pending)
1442 imask &= ~AR5K_INT_RX_ALL;
1443 if (ah->tx_pending)
1444 imask &= ~AR5K_INT_TX_ALL;
1445 ath5k_hw_set_imr(ah, imask);
1446 spin_unlock_irqrestore(&ah->irqlock, flags);
1447 }
1448
1449 static void
ath5k_tasklet_rx(unsigned long data)1450 ath5k_tasklet_rx(unsigned long data)
1451 {
1452 struct ath5k_rx_status rs = {};
1453 struct sk_buff *skb, *next_skb;
1454 dma_addr_t next_skb_addr;
1455 struct ath5k_hw *ah = (void *)data;
1456 struct ath_common *common = ath5k_hw_common(ah);
1457 struct ath5k_buf *bf;
1458 struct ath5k_desc *ds;
1459 int ret;
1460
1461 spin_lock(&ah->rxbuflock);
1462 if (list_empty(&ah->rxbuf)) {
1463 ATH5K_WARN(ah, "empty rx buf pool\n");
1464 goto unlock;
1465 }
1466 do {
1467 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1468 BUG_ON(bf->skb == NULL);
1469 skb = bf->skb;
1470 ds = bf->desc;
1471
1472 /* bail if HW is still using self-linked descriptor */
1473 if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1474 break;
1475
1476 ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1477 if (unlikely(ret == -EINPROGRESS))
1478 break;
1479 else if (unlikely(ret)) {
1480 ATH5K_ERR(ah, "error in processing rx descriptor\n");
1481 ah->stats.rxerr_proc++;
1482 break;
1483 }
1484
1485 if (ath5k_receive_frame_ok(ah, &rs)) {
1486 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1487
1488 /*
1489 * If we can't replace bf->skb with a new skb under
1490 * memory pressure, just skip this packet
1491 */
1492 if (!next_skb)
1493 goto next;
1494
1495 dma_unmap_single(ah->dev, bf->skbaddr,
1496 common->rx_bufsize,
1497 DMA_FROM_DEVICE);
1498
1499 skb_put(skb, rs.rs_datalen);
1500
1501 ath5k_receive_frame(ah, skb, &rs);
1502
1503 bf->skb = next_skb;
1504 bf->skbaddr = next_skb_addr;
1505 }
1506 next:
1507 list_move_tail(&bf->list, &ah->rxbuf);
1508 } while (ath5k_rxbuf_setup(ah, bf) == 0);
1509 unlock:
1510 spin_unlock(&ah->rxbuflock);
1511 ah->rx_pending = false;
1512 ath5k_set_current_imask(ah);
1513 }
1514
1515
1516 /*************\
1517 * TX Handling *
1518 \*************/
1519
1520 void
ath5k_tx_queue(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath5k_txq * txq)1521 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1522 struct ath5k_txq *txq)
1523 {
1524 struct ath5k_hw *ah = hw->priv;
1525 struct ath5k_buf *bf;
1526 unsigned long flags;
1527 int padsize;
1528
1529 trace_ath5k_tx(ah, skb, txq);
1530
1531 /*
1532 * The hardware expects the header padded to 4 byte boundaries.
1533 * If this is not the case, we add the padding after the header.
1534 */
1535 padsize = ath5k_add_padding(skb);
1536 if (padsize < 0) {
1537 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1538 " headroom to pad");
1539 goto drop_packet;
1540 }
1541
1542 if (txq->txq_len >= txq->txq_max &&
1543 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1544 ieee80211_stop_queue(hw, txq->qnum);
1545
1546 spin_lock_irqsave(&ah->txbuflock, flags);
1547 if (list_empty(&ah->txbuf)) {
1548 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1549 spin_unlock_irqrestore(&ah->txbuflock, flags);
1550 ieee80211_stop_queues(hw);
1551 goto drop_packet;
1552 }
1553 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1554 list_del(&bf->list);
1555 ah->txbuf_len--;
1556 if (list_empty(&ah->txbuf))
1557 ieee80211_stop_queues(hw);
1558 spin_unlock_irqrestore(&ah->txbuflock, flags);
1559
1560 bf->skb = skb;
1561
1562 if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1563 bf->skb = NULL;
1564 spin_lock_irqsave(&ah->txbuflock, flags);
1565 list_add_tail(&bf->list, &ah->txbuf);
1566 ah->txbuf_len++;
1567 spin_unlock_irqrestore(&ah->txbuflock, flags);
1568 goto drop_packet;
1569 }
1570 return;
1571
1572 drop_packet:
1573 ieee80211_free_txskb(hw, skb);
1574 }
1575
1576 static void
ath5k_tx_frame_completed(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_txq * txq,struct ath5k_tx_status * ts)1577 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1578 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1579 {
1580 struct ieee80211_tx_info *info;
1581 u8 tries[3];
1582 int i;
1583
1584 ah->stats.tx_all_count++;
1585 ah->stats.tx_bytes_count += skb->len;
1586 info = IEEE80211_SKB_CB(skb);
1587
1588 tries[0] = info->status.rates[0].count;
1589 tries[1] = info->status.rates[1].count;
1590 tries[2] = info->status.rates[2].count;
1591
1592 ieee80211_tx_info_clear_status(info);
1593
1594 for (i = 0; i < ts->ts_final_idx; i++) {
1595 struct ieee80211_tx_rate *r =
1596 &info->status.rates[i];
1597
1598 r->count = tries[i];
1599 }
1600
1601 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1602 info->status.rates[ts->ts_final_idx + 1].idx = -1;
1603
1604 if (unlikely(ts->ts_status)) {
1605 ah->stats.ack_fail++;
1606 if (ts->ts_status & AR5K_TXERR_FILT) {
1607 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1608 ah->stats.txerr_filt++;
1609 }
1610 if (ts->ts_status & AR5K_TXERR_XRETRY)
1611 ah->stats.txerr_retry++;
1612 if (ts->ts_status & AR5K_TXERR_FIFO)
1613 ah->stats.txerr_fifo++;
1614 } else {
1615 info->flags |= IEEE80211_TX_STAT_ACK;
1616 info->status.ack_signal = ts->ts_rssi;
1617
1618 /* count the successful attempt as well */
1619 info->status.rates[ts->ts_final_idx].count++;
1620 }
1621
1622 /*
1623 * Remove MAC header padding before giving the frame
1624 * back to mac80211.
1625 */
1626 ath5k_remove_padding(skb);
1627
1628 if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1629 ah->stats.antenna_tx[ts->ts_antenna]++;
1630 else
1631 ah->stats.antenna_tx[0]++; /* invalid */
1632
1633 trace_ath5k_tx_complete(ah, skb, txq, ts);
1634 ieee80211_tx_status(ah->hw, skb);
1635 }
1636
1637 static void
ath5k_tx_processq(struct ath5k_hw * ah,struct ath5k_txq * txq)1638 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1639 {
1640 struct ath5k_tx_status ts = {};
1641 struct ath5k_buf *bf, *bf0;
1642 struct ath5k_desc *ds;
1643 struct sk_buff *skb;
1644 int ret;
1645
1646 spin_lock(&txq->lock);
1647 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1648
1649 txq->txq_poll_mark = false;
1650
1651 /* skb might already have been processed last time. */
1652 if (bf->skb != NULL) {
1653 ds = bf->desc;
1654
1655 ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1656 if (unlikely(ret == -EINPROGRESS))
1657 break;
1658 else if (unlikely(ret)) {
1659 ATH5K_ERR(ah,
1660 "error %d while processing "
1661 "queue %u\n", ret, txq->qnum);
1662 break;
1663 }
1664
1665 skb = bf->skb;
1666 bf->skb = NULL;
1667
1668 dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1669 DMA_TO_DEVICE);
1670 ath5k_tx_frame_completed(ah, skb, txq, &ts);
1671 }
1672
1673 /*
1674 * It's possible that the hardware can say the buffer is
1675 * completed when it hasn't yet loaded the ds_link from
1676 * host memory and moved on.
1677 * Always keep the last descriptor to avoid HW races...
1678 */
1679 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1680 spin_lock(&ah->txbuflock);
1681 list_move_tail(&bf->list, &ah->txbuf);
1682 ah->txbuf_len++;
1683 txq->txq_len--;
1684 spin_unlock(&ah->txbuflock);
1685 }
1686 }
1687 spin_unlock(&txq->lock);
1688 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1689 ieee80211_wake_queue(ah->hw, txq->qnum);
1690 }
1691
1692 static void
ath5k_tasklet_tx(unsigned long data)1693 ath5k_tasklet_tx(unsigned long data)
1694 {
1695 int i;
1696 struct ath5k_hw *ah = (void *)data;
1697
1698 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1699 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1700 ath5k_tx_processq(ah, &ah->txqs[i]);
1701
1702 ah->tx_pending = false;
1703 ath5k_set_current_imask(ah);
1704 }
1705
1706
1707 /*****************\
1708 * Beacon handling *
1709 \*****************/
1710
1711 /*
1712 * Setup the beacon frame for transmit.
1713 */
1714 static int
ath5k_beacon_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)1715 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1716 {
1717 struct sk_buff *skb = bf->skb;
1718 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1719 struct ath5k_desc *ds;
1720 int ret = 0;
1721 u8 antenna;
1722 u32 flags;
1723 const int padsize = 0;
1724
1725 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1726 DMA_TO_DEVICE);
1727 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1728 "skbaddr %llx\n", skb, skb->data, skb->len,
1729 (unsigned long long)bf->skbaddr);
1730
1731 if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1732 ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1733 dev_kfree_skb_any(skb);
1734 bf->skb = NULL;
1735 return -EIO;
1736 }
1737
1738 ds = bf->desc;
1739 antenna = ah->ah_tx_ant;
1740
1741 flags = AR5K_TXDESC_NOACK;
1742 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1743 ds->ds_link = bf->daddr; /* self-linked */
1744 flags |= AR5K_TXDESC_VEOL;
1745 } else
1746 ds->ds_link = 0;
1747
1748 /*
1749 * If we use multiple antennas on AP and use
1750 * the Sectored AP scenario, switch antenna every
1751 * 4 beacons to make sure everybody hears our AP.
1752 * When a client tries to associate, hw will keep
1753 * track of the tx antenna to be used for this client
1754 * automatically, based on ACKed packets.
1755 *
1756 * Note: AP still listens and transmits RTS on the
1757 * default antenna which is supposed to be an omni.
1758 *
1759 * Note2: On sectored scenarios it's possible to have
1760 * multiple antennas (1 omni -- the default -- and 14
1761 * sectors), so if we choose to actually support this
1762 * mode, we need to allow the user to set how many antennas
1763 * we have and tweak the code below to send beacons
1764 * on all of them.
1765 */
1766 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1767 antenna = ah->bsent & 4 ? 2 : 1;
1768
1769
1770 /* FIXME: If we are in g mode and rate is a CCK rate
1771 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1772 * from tx power (value is in dB units already) */
1773 ds->ds_data = bf->skbaddr;
1774 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1775 ieee80211_get_hdrlen_from_skb(skb), padsize,
1776 AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1777 ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1778 1, AR5K_TXKEYIX_INVALID,
1779 antenna, flags, 0, 0);
1780 if (ret)
1781 goto err_unmap;
1782
1783 return 0;
1784 err_unmap:
1785 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1786 return ret;
1787 }
1788
1789 /*
1790 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
1791 * this is called only once at config_bss time, for AP we do it every
1792 * SWBA interrupt so that the TIM will reflect buffered frames.
1793 *
1794 * Called with the beacon lock.
1795 */
1796 int
ath5k_beacon_update(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1797 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1798 {
1799 int ret;
1800 struct ath5k_hw *ah = hw->priv;
1801 struct ath5k_vif *avf = (void *)vif->drv_priv;
1802 struct sk_buff *skb;
1803
1804 if (WARN_ON(!vif)) {
1805 ret = -EINVAL;
1806 goto out;
1807 }
1808
1809 skb = ieee80211_beacon_get(hw, vif);
1810
1811 if (!skb) {
1812 ret = -ENOMEM;
1813 goto out;
1814 }
1815
1816 ath5k_txbuf_free_skb(ah, avf->bbuf);
1817 avf->bbuf->skb = skb;
1818 ret = ath5k_beacon_setup(ah, avf->bbuf);
1819 out:
1820 return ret;
1821 }
1822
1823 /*
1824 * Transmit a beacon frame at SWBA. Dynamic updates to the
1825 * frame contents are done as needed and the slot time is
1826 * also adjusted based on current state.
1827 *
1828 * This is called from software irq context (beacontq tasklets)
1829 * or user context from ath5k_beacon_config.
1830 */
1831 static void
ath5k_beacon_send(struct ath5k_hw * ah)1832 ath5k_beacon_send(struct ath5k_hw *ah)
1833 {
1834 struct ieee80211_vif *vif;
1835 struct ath5k_vif *avf;
1836 struct ath5k_buf *bf;
1837 struct sk_buff *skb;
1838 int err;
1839
1840 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1841
1842 /*
1843 * Check if the previous beacon has gone out. If
1844 * not, don't don't try to post another: skip this
1845 * period and wait for the next. Missed beacons
1846 * indicate a problem and should not occur. If we
1847 * miss too many consecutive beacons reset the device.
1848 */
1849 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1850 ah->bmisscount++;
1851 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1852 "missed %u consecutive beacons\n", ah->bmisscount);
1853 if (ah->bmisscount > 10) { /* NB: 10 is a guess */
1854 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1855 "stuck beacon time (%u missed)\n",
1856 ah->bmisscount);
1857 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1858 "stuck beacon, resetting\n");
1859 ieee80211_queue_work(ah->hw, &ah->reset_work);
1860 }
1861 return;
1862 }
1863 if (unlikely(ah->bmisscount != 0)) {
1864 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1865 "resume beacon xmit after %u misses\n",
1866 ah->bmisscount);
1867 ah->bmisscount = 0;
1868 }
1869
1870 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1871 ah->num_mesh_vifs > 1) ||
1872 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1873 u64 tsf = ath5k_hw_get_tsf64(ah);
1874 u32 tsftu = TSF_TO_TU(tsf);
1875 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1876 vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1877 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1878 "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1879 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1880 } else /* only one interface */
1881 vif = ah->bslot[0];
1882
1883 if (!vif)
1884 return;
1885
1886 avf = (void *)vif->drv_priv;
1887 bf = avf->bbuf;
1888
1889 /*
1890 * Stop any current dma and put the new frame on the queue.
1891 * This should never fail since we check above that no frames
1892 * are still pending on the queue.
1893 */
1894 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1895 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1896 /* NB: hw still stops DMA, so proceed */
1897 }
1898
1899 /* refresh the beacon for AP or MESH mode */
1900 if (ah->opmode == NL80211_IFTYPE_AP ||
1901 ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1902 err = ath5k_beacon_update(ah->hw, vif);
1903 if (err)
1904 return;
1905 }
1906
1907 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1908 ah->opmode == NL80211_IFTYPE_MONITOR)) {
1909 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1910 return;
1911 }
1912
1913 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1914
1915 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1916 ath5k_hw_start_tx_dma(ah, ah->bhalq);
1917 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1918 ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1919
1920 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1921 while (skb) {
1922 ath5k_tx_queue(ah->hw, skb, ah->cabq);
1923
1924 if (ah->cabq->txq_len >= ah->cabq->txq_max)
1925 break;
1926
1927 skb = ieee80211_get_buffered_bc(ah->hw, vif);
1928 }
1929
1930 ah->bsent++;
1931 }
1932
1933 /**
1934 * ath5k_beacon_update_timers - update beacon timers
1935 *
1936 * @ah: struct ath5k_hw pointer we are operating on
1937 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1938 * beacon timer update based on the current HW TSF.
1939 *
1940 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1941 * of a received beacon or the current local hardware TSF and write it to the
1942 * beacon timer registers.
1943 *
1944 * This is called in a variety of situations, e.g. when a beacon is received,
1945 * when a TSF update has been detected, but also when an new IBSS is created or
1946 * when we otherwise know we have to update the timers, but we keep it in this
1947 * function to have it all together in one place.
1948 */
1949 void
ath5k_beacon_update_timers(struct ath5k_hw * ah,u64 bc_tsf)1950 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1951 {
1952 u32 nexttbtt, intval, hw_tu, bc_tu;
1953 u64 hw_tsf;
1954
1955 intval = ah->bintval & AR5K_BEACON_PERIOD;
1956 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1957 + ah->num_mesh_vifs > 1) {
1958 intval /= ATH_BCBUF; /* staggered multi-bss beacons */
1959 if (intval < 15)
1960 ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1961 intval);
1962 }
1963 if (WARN_ON(!intval))
1964 return;
1965
1966 /* beacon TSF converted to TU */
1967 bc_tu = TSF_TO_TU(bc_tsf);
1968
1969 /* current TSF converted to TU */
1970 hw_tsf = ath5k_hw_get_tsf64(ah);
1971 hw_tu = TSF_TO_TU(hw_tsf);
1972
1973 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1974 /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1975 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1976 * configuration we need to make sure it is bigger than that. */
1977
1978 if (bc_tsf == -1) {
1979 /*
1980 * no beacons received, called internally.
1981 * just need to refresh timers based on HW TSF.
1982 */
1983 nexttbtt = roundup(hw_tu + FUDGE, intval);
1984 } else if (bc_tsf == 0) {
1985 /*
1986 * no beacon received, probably called by ath5k_reset_tsf().
1987 * reset TSF to start with 0.
1988 */
1989 nexttbtt = intval;
1990 intval |= AR5K_BEACON_RESET_TSF;
1991 } else if (bc_tsf > hw_tsf) {
1992 /*
1993 * beacon received, SW merge happened but HW TSF not yet updated.
1994 * not possible to reconfigure timers yet, but next time we
1995 * receive a beacon with the same BSSID, the hardware will
1996 * automatically update the TSF and then we need to reconfigure
1997 * the timers.
1998 */
1999 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2000 "need to wait for HW TSF sync\n");
2001 return;
2002 } else {
2003 /*
2004 * most important case for beacon synchronization between STA.
2005 *
2006 * beacon received and HW TSF has been already updated by HW.
2007 * update next TBTT based on the TSF of the beacon, but make
2008 * sure it is ahead of our local TSF timer.
2009 */
2010 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2011 }
2012 #undef FUDGE
2013
2014 ah->nexttbtt = nexttbtt;
2015
2016 intval |= AR5K_BEACON_ENA;
2017 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2018
2019 /*
2020 * debugging output last in order to preserve the time critical aspect
2021 * of this function
2022 */
2023 if (bc_tsf == -1)
2024 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2025 "reconfigured timers based on HW TSF\n");
2026 else if (bc_tsf == 0)
2027 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028 "reset HW TSF and timers\n");
2029 else
2030 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031 "updated timers based on beacon TSF\n");
2032
2033 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2034 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2035 (unsigned long long) bc_tsf,
2036 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2037 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2038 intval & AR5K_BEACON_PERIOD,
2039 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2040 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2041 }
2042
2043 /**
2044 * ath5k_beacon_config - Configure the beacon queues and interrupts
2045 *
2046 * @ah: struct ath5k_hw pointer we are operating on
2047 *
2048 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2049 * interrupts to detect TSF updates only.
2050 */
2051 void
ath5k_beacon_config(struct ath5k_hw * ah)2052 ath5k_beacon_config(struct ath5k_hw *ah)
2053 {
2054 unsigned long flags;
2055
2056 spin_lock_irqsave(&ah->block, flags);
2057 ah->bmisscount = 0;
2058 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2059
2060 if (ah->enable_beacon) {
2061 /*
2062 * In IBSS mode we use a self-linked tx descriptor and let the
2063 * hardware send the beacons automatically. We have to load it
2064 * only once here.
2065 * We use the SWBA interrupt only to keep track of the beacon
2066 * timers in order to detect automatic TSF updates.
2067 */
2068 ath5k_beaconq_config(ah);
2069
2070 ah->imask |= AR5K_INT_SWBA;
2071
2072 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2073 if (ath5k_hw_hasveol(ah))
2074 ath5k_beacon_send(ah);
2075 } else
2076 ath5k_beacon_update_timers(ah, -1);
2077 } else {
2078 ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2079 }
2080
2081 ath5k_hw_set_imr(ah, ah->imask);
2082 mmiowb();
2083 spin_unlock_irqrestore(&ah->block, flags);
2084 }
2085
ath5k_tasklet_beacon(unsigned long data)2086 static void ath5k_tasklet_beacon(unsigned long data)
2087 {
2088 struct ath5k_hw *ah = (struct ath5k_hw *) data;
2089
2090 /*
2091 * Software beacon alert--time to send a beacon.
2092 *
2093 * In IBSS mode we use this interrupt just to
2094 * keep track of the next TBTT (target beacon
2095 * transmission time) in order to detect whether
2096 * automatic TSF updates happened.
2097 */
2098 if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2099 /* XXX: only if VEOL supported */
2100 u64 tsf = ath5k_hw_get_tsf64(ah);
2101 ah->nexttbtt += ah->bintval;
2102 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2103 "SWBA nexttbtt: %x hw_tu: %x "
2104 "TSF: %llx\n",
2105 ah->nexttbtt,
2106 TSF_TO_TU(tsf),
2107 (unsigned long long) tsf);
2108 } else {
2109 spin_lock(&ah->block);
2110 ath5k_beacon_send(ah);
2111 spin_unlock(&ah->block);
2112 }
2113 }
2114
2115
2116 /********************\
2117 * Interrupt handling *
2118 \********************/
2119
2120 static void
ath5k_intr_calibration_poll(struct ath5k_hw * ah)2121 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2122 {
2123 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2124 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2125 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2126
2127 /* Run ANI only when calibration is not active */
2128
2129 ah->ah_cal_next_ani = jiffies +
2130 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2131 tasklet_schedule(&ah->ani_tasklet);
2132
2133 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2134 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2135 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2136
2137 /* Run calibration only when another calibration
2138 * is not running.
2139 *
2140 * Note: This is for both full/short calibration,
2141 * if it's time for a full one, ath5k_calibrate_work will deal
2142 * with it. */
2143
2144 ah->ah_cal_next_short = jiffies +
2145 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2146 ieee80211_queue_work(ah->hw, &ah->calib_work);
2147 }
2148 /* we could use SWI to generate enough interrupts to meet our
2149 * calibration interval requirements, if necessary:
2150 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2151 }
2152
2153 static void
ath5k_schedule_rx(struct ath5k_hw * ah)2154 ath5k_schedule_rx(struct ath5k_hw *ah)
2155 {
2156 ah->rx_pending = true;
2157 tasklet_schedule(&ah->rxtq);
2158 }
2159
2160 static void
ath5k_schedule_tx(struct ath5k_hw * ah)2161 ath5k_schedule_tx(struct ath5k_hw *ah)
2162 {
2163 ah->tx_pending = true;
2164 tasklet_schedule(&ah->txtq);
2165 }
2166
2167 static irqreturn_t
ath5k_intr(int irq,void * dev_id)2168 ath5k_intr(int irq, void *dev_id)
2169 {
2170 struct ath5k_hw *ah = dev_id;
2171 enum ath5k_int status;
2172 unsigned int counter = 1000;
2173
2174
2175 /*
2176 * If hw is not ready (or detached) and we get an
2177 * interrupt, or if we have no interrupts pending
2178 * (that means it's not for us) skip it.
2179 *
2180 * NOTE: Group 0/1 PCI interface registers are not
2181 * supported on WiSOCs, so we can't check for pending
2182 * interrupts (ISR belongs to another register group
2183 * so we are ok).
2184 */
2185 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2186 ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2187 !ath5k_hw_is_intr_pending(ah))))
2188 return IRQ_NONE;
2189
2190 /** Main loop **/
2191 do {
2192 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2193
2194 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2195 status, ah->imask);
2196
2197 /*
2198 * Fatal hw error -> Log and reset
2199 *
2200 * Fatal errors are unrecoverable so we have to
2201 * reset the card. These errors include bus and
2202 * dma errors.
2203 */
2204 if (unlikely(status & AR5K_INT_FATAL)) {
2205
2206 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2207 "fatal int, resetting\n");
2208 ieee80211_queue_work(ah->hw, &ah->reset_work);
2209
2210 /*
2211 * RX Overrun -> Count and reset if needed
2212 *
2213 * Receive buffers are full. Either the bus is busy or
2214 * the CPU is not fast enough to process all received
2215 * frames.
2216 */
2217 } else if (unlikely(status & AR5K_INT_RXORN)) {
2218
2219 /*
2220 * Older chipsets need a reset to come out of this
2221 * condition, but we treat it as RX for newer chips.
2222 * We don't know exactly which versions need a reset
2223 * this guess is copied from the HAL.
2224 */
2225 ah->stats.rxorn_intr++;
2226
2227 if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2228 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2229 "rx overrun, resetting\n");
2230 ieee80211_queue_work(ah->hw, &ah->reset_work);
2231 } else
2232 ath5k_schedule_rx(ah);
2233
2234 } else {
2235
2236 /* Software Beacon Alert -> Schedule beacon tasklet */
2237 if (status & AR5K_INT_SWBA)
2238 tasklet_hi_schedule(&ah->beacontq);
2239
2240 /*
2241 * No more RX descriptors -> Just count
2242 *
2243 * NB: the hardware should re-read the link when
2244 * RXE bit is written, but it doesn't work at
2245 * least on older hardware revs.
2246 */
2247 if (status & AR5K_INT_RXEOL)
2248 ah->stats.rxeol_intr++;
2249
2250
2251 /* TX Underrun -> Bump tx trigger level */
2252 if (status & AR5K_INT_TXURN)
2253 ath5k_hw_update_tx_triglevel(ah, true);
2254
2255 /* RX -> Schedule rx tasklet */
2256 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2257 ath5k_schedule_rx(ah);
2258
2259 /* TX -> Schedule tx tasklet */
2260 if (status & (AR5K_INT_TXOK
2261 | AR5K_INT_TXDESC
2262 | AR5K_INT_TXERR
2263 | AR5K_INT_TXEOL))
2264 ath5k_schedule_tx(ah);
2265
2266 /* Missed beacon -> TODO
2267 if (status & AR5K_INT_BMISS)
2268 */
2269
2270 /* MIB event -> Update counters and notify ANI */
2271 if (status & AR5K_INT_MIB) {
2272 ah->stats.mib_intr++;
2273 ath5k_hw_update_mib_counters(ah);
2274 ath5k_ani_mib_intr(ah);
2275 }
2276
2277 /* GPIO -> Notify RFKill layer */
2278 if (status & AR5K_INT_GPIO)
2279 tasklet_schedule(&ah->rf_kill.toggleq);
2280
2281 }
2282
2283 if (ath5k_get_bus_type(ah) == ATH_AHB)
2284 break;
2285
2286 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2287
2288 /*
2289 * Until we handle rx/tx interrupts mask them on IMR
2290 *
2291 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2292 * and unset after we 've handled the interrupts.
2293 */
2294 if (ah->rx_pending || ah->tx_pending)
2295 ath5k_set_current_imask(ah);
2296
2297 if (unlikely(!counter))
2298 ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2299
2300 /* Fire up calibration poll */
2301 ath5k_intr_calibration_poll(ah);
2302
2303 return IRQ_HANDLED;
2304 }
2305
2306 /*
2307 * Periodically recalibrate the PHY to account
2308 * for temperature/environment changes.
2309 */
2310 static void
ath5k_calibrate_work(struct work_struct * work)2311 ath5k_calibrate_work(struct work_struct *work)
2312 {
2313 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2314 calib_work);
2315
2316 /* Should we run a full calibration ? */
2317 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2318
2319 ah->ah_cal_next_full = jiffies +
2320 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2321 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2322
2323 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2324 "running full calibration\n");
2325
2326 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2327 /*
2328 * Rfgain is out of bounds, reset the chip
2329 * to load new gain values.
2330 */
2331 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2332 "got new rfgain, resetting\n");
2333 ieee80211_queue_work(ah->hw, &ah->reset_work);
2334 }
2335 } else
2336 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2337
2338
2339 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2340 ieee80211_frequency_to_channel(ah->curchan->center_freq),
2341 ah->curchan->hw_value);
2342
2343 if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2344 ATH5K_ERR(ah, "calibration of channel %u failed\n",
2345 ieee80211_frequency_to_channel(
2346 ah->curchan->center_freq));
2347
2348 /* Clear calibration flags */
2349 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2350 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2351 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2352 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2353 }
2354
2355
2356 static void
ath5k_tasklet_ani(unsigned long data)2357 ath5k_tasklet_ani(unsigned long data)
2358 {
2359 struct ath5k_hw *ah = (void *)data;
2360
2361 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2362 ath5k_ani_calibration(ah);
2363 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2364 }
2365
2366
2367 static void
ath5k_tx_complete_poll_work(struct work_struct * work)2368 ath5k_tx_complete_poll_work(struct work_struct *work)
2369 {
2370 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2371 tx_complete_work.work);
2372 struct ath5k_txq *txq;
2373 int i;
2374 bool needreset = false;
2375
2376 mutex_lock(&ah->lock);
2377
2378 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2379 if (ah->txqs[i].setup) {
2380 txq = &ah->txqs[i];
2381 spin_lock_bh(&txq->lock);
2382 if (txq->txq_len > 1) {
2383 if (txq->txq_poll_mark) {
2384 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2385 "TX queue stuck %d\n",
2386 txq->qnum);
2387 needreset = true;
2388 txq->txq_stuck++;
2389 spin_unlock_bh(&txq->lock);
2390 break;
2391 } else {
2392 txq->txq_poll_mark = true;
2393 }
2394 }
2395 spin_unlock_bh(&txq->lock);
2396 }
2397 }
2398
2399 if (needreset) {
2400 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2401 "TX queues stuck, resetting\n");
2402 ath5k_reset(ah, NULL, true);
2403 }
2404
2405 mutex_unlock(&ah->lock);
2406
2407 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2408 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2409 }
2410
2411
2412 /*************************\
2413 * Initialization routines *
2414 \*************************/
2415
2416 int __devinit
ath5k_init_ah(struct ath5k_hw * ah,const struct ath_bus_ops * bus_ops)2417 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2418 {
2419 struct ieee80211_hw *hw = ah->hw;
2420 struct ath_common *common;
2421 int ret;
2422 int csz;
2423
2424 /* Initialize driver private data */
2425 SET_IEEE80211_DEV(hw, ah->dev);
2426 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2427 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2428 IEEE80211_HW_SIGNAL_DBM |
2429 IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2430
2431 hw->wiphy->interface_modes =
2432 BIT(NL80211_IFTYPE_AP) |
2433 BIT(NL80211_IFTYPE_STATION) |
2434 BIT(NL80211_IFTYPE_ADHOC) |
2435 BIT(NL80211_IFTYPE_MESH_POINT);
2436
2437 /* SW support for IBSS_RSN is provided by mac80211 */
2438 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2439
2440 /* both antennas can be configured as RX or TX */
2441 hw->wiphy->available_antennas_tx = 0x3;
2442 hw->wiphy->available_antennas_rx = 0x3;
2443
2444 hw->extra_tx_headroom = 2;
2445 hw->channel_change_time = 5000;
2446
2447 /*
2448 * Mark the device as detached to avoid processing
2449 * interrupts until setup is complete.
2450 */
2451 __set_bit(ATH_STAT_INVALID, ah->status);
2452
2453 ah->opmode = NL80211_IFTYPE_STATION;
2454 ah->bintval = 1000;
2455 mutex_init(&ah->lock);
2456 spin_lock_init(&ah->rxbuflock);
2457 spin_lock_init(&ah->txbuflock);
2458 spin_lock_init(&ah->block);
2459 spin_lock_init(&ah->irqlock);
2460
2461 /* Setup interrupt handler */
2462 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2463 if (ret) {
2464 ATH5K_ERR(ah, "request_irq failed\n");
2465 goto err;
2466 }
2467
2468 common = ath5k_hw_common(ah);
2469 common->ops = &ath5k_common_ops;
2470 common->bus_ops = bus_ops;
2471 common->ah = ah;
2472 common->hw = hw;
2473 common->priv = ah;
2474 common->clockrate = 40;
2475
2476 /*
2477 * Cache line size is used to size and align various
2478 * structures used to communicate with the hardware.
2479 */
2480 ath5k_read_cachesize(common, &csz);
2481 common->cachelsz = csz << 2; /* convert to bytes */
2482
2483 spin_lock_init(&common->cc_lock);
2484
2485 /* Initialize device */
2486 ret = ath5k_hw_init(ah);
2487 if (ret)
2488 goto err_irq;
2489
2490 /* Set up multi-rate retry capabilities */
2491 if (ah->ah_capabilities.cap_has_mrr_support) {
2492 hw->max_rates = 4;
2493 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2494 AR5K_INIT_RETRY_LONG);
2495 }
2496
2497 hw->vif_data_size = sizeof(struct ath5k_vif);
2498
2499 /* Finish private driver data initialization */
2500 ret = ath5k_init(hw);
2501 if (ret)
2502 goto err_ah;
2503
2504 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2505 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2506 ah->ah_mac_srev,
2507 ah->ah_phy_revision);
2508
2509 if (!ah->ah_single_chip) {
2510 /* Single chip radio (!RF5111) */
2511 if (ah->ah_radio_5ghz_revision &&
2512 !ah->ah_radio_2ghz_revision) {
2513 /* No 5GHz support -> report 2GHz radio */
2514 if (!test_bit(AR5K_MODE_11A,
2515 ah->ah_capabilities.cap_mode)) {
2516 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2517 ath5k_chip_name(AR5K_VERSION_RAD,
2518 ah->ah_radio_5ghz_revision),
2519 ah->ah_radio_5ghz_revision);
2520 /* No 2GHz support (5110 and some
2521 * 5GHz only cards) -> report 5GHz radio */
2522 } else if (!test_bit(AR5K_MODE_11B,
2523 ah->ah_capabilities.cap_mode)) {
2524 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2525 ath5k_chip_name(AR5K_VERSION_RAD,
2526 ah->ah_radio_5ghz_revision),
2527 ah->ah_radio_5ghz_revision);
2528 /* Multiband radio */
2529 } else {
2530 ATH5K_INFO(ah, "RF%s multiband radio found"
2531 " (0x%x)\n",
2532 ath5k_chip_name(AR5K_VERSION_RAD,
2533 ah->ah_radio_5ghz_revision),
2534 ah->ah_radio_5ghz_revision);
2535 }
2536 }
2537 /* Multi chip radio (RF5111 - RF2111) ->
2538 * report both 2GHz/5GHz radios */
2539 else if (ah->ah_radio_5ghz_revision &&
2540 ah->ah_radio_2ghz_revision) {
2541 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2542 ath5k_chip_name(AR5K_VERSION_RAD,
2543 ah->ah_radio_5ghz_revision),
2544 ah->ah_radio_5ghz_revision);
2545 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2546 ath5k_chip_name(AR5K_VERSION_RAD,
2547 ah->ah_radio_2ghz_revision),
2548 ah->ah_radio_2ghz_revision);
2549 }
2550 }
2551
2552 ath5k_debug_init_device(ah);
2553
2554 /* ready to process interrupts */
2555 __clear_bit(ATH_STAT_INVALID, ah->status);
2556
2557 return 0;
2558 err_ah:
2559 ath5k_hw_deinit(ah);
2560 err_irq:
2561 free_irq(ah->irq, ah);
2562 err:
2563 return ret;
2564 }
2565
2566 static int
ath5k_stop_locked(struct ath5k_hw * ah)2567 ath5k_stop_locked(struct ath5k_hw *ah)
2568 {
2569
2570 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2571 test_bit(ATH_STAT_INVALID, ah->status));
2572
2573 /*
2574 * Shutdown the hardware and driver:
2575 * stop output from above
2576 * disable interrupts
2577 * turn off timers
2578 * turn off the radio
2579 * clear transmit machinery
2580 * clear receive machinery
2581 * drain and release tx queues
2582 * reclaim beacon resources
2583 * power down hardware
2584 *
2585 * Note that some of this work is not possible if the
2586 * hardware is gone (invalid).
2587 */
2588 ieee80211_stop_queues(ah->hw);
2589
2590 if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2591 ath5k_led_off(ah);
2592 ath5k_hw_set_imr(ah, 0);
2593 synchronize_irq(ah->irq);
2594 ath5k_rx_stop(ah);
2595 ath5k_hw_dma_stop(ah);
2596 ath5k_drain_tx_buffs(ah);
2597 ath5k_hw_phy_disable(ah);
2598 }
2599
2600 return 0;
2601 }
2602
ath5k_start(struct ieee80211_hw * hw)2603 int ath5k_start(struct ieee80211_hw *hw)
2604 {
2605 struct ath5k_hw *ah = hw->priv;
2606 struct ath_common *common = ath5k_hw_common(ah);
2607 int ret, i;
2608
2609 mutex_lock(&ah->lock);
2610
2611 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2612
2613 /*
2614 * Stop anything previously setup. This is safe
2615 * no matter this is the first time through or not.
2616 */
2617 ath5k_stop_locked(ah);
2618
2619 /*
2620 * The basic interface to setting the hardware in a good
2621 * state is ``reset''. On return the hardware is known to
2622 * be powered up and with interrupts disabled. This must
2623 * be followed by initialization of the appropriate bits
2624 * and then setup of the interrupt mask.
2625 */
2626 ah->curchan = ah->hw->conf.channel;
2627 ah->imask = AR5K_INT_RXOK
2628 | AR5K_INT_RXERR
2629 | AR5K_INT_RXEOL
2630 | AR5K_INT_RXORN
2631 | AR5K_INT_TXDESC
2632 | AR5K_INT_TXEOL
2633 | AR5K_INT_FATAL
2634 | AR5K_INT_GLOBAL
2635 | AR5K_INT_MIB;
2636
2637 ret = ath5k_reset(ah, NULL, false);
2638 if (ret)
2639 goto done;
2640
2641 if (!ath5k_modparam_no_hw_rfkill_switch)
2642 ath5k_rfkill_hw_start(ah);
2643
2644 /*
2645 * Reset the key cache since some parts do not reset the
2646 * contents on initial power up or resume from suspend.
2647 */
2648 for (i = 0; i < common->keymax; i++)
2649 ath_hw_keyreset(common, (u16) i);
2650
2651 /* Use higher rates for acks instead of base
2652 * rate */
2653 ah->ah_ack_bitrate_high = true;
2654
2655 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2656 ah->bslot[i] = NULL;
2657
2658 ret = 0;
2659 done:
2660 mmiowb();
2661 mutex_unlock(&ah->lock);
2662
2663 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2664 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2665
2666 return ret;
2667 }
2668
ath5k_stop_tasklets(struct ath5k_hw * ah)2669 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2670 {
2671 ah->rx_pending = false;
2672 ah->tx_pending = false;
2673 tasklet_kill(&ah->rxtq);
2674 tasklet_kill(&ah->txtq);
2675 tasklet_kill(&ah->beacontq);
2676 tasklet_kill(&ah->ani_tasklet);
2677 }
2678
2679 /*
2680 * Stop the device, grabbing the top-level lock to protect
2681 * against concurrent entry through ath5k_init (which can happen
2682 * if another thread does a system call and the thread doing the
2683 * stop is preempted).
2684 */
ath5k_stop(struct ieee80211_hw * hw)2685 void ath5k_stop(struct ieee80211_hw *hw)
2686 {
2687 struct ath5k_hw *ah = hw->priv;
2688 int ret;
2689
2690 mutex_lock(&ah->lock);
2691 ret = ath5k_stop_locked(ah);
2692 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2693 /*
2694 * Don't set the card in full sleep mode!
2695 *
2696 * a) When the device is in this state it must be carefully
2697 * woken up or references to registers in the PCI clock
2698 * domain may freeze the bus (and system). This varies
2699 * by chip and is mostly an issue with newer parts
2700 * (madwifi sources mentioned srev >= 0x78) that go to
2701 * sleep more quickly.
2702 *
2703 * b) On older chips full sleep results a weird behaviour
2704 * during wakeup. I tested various cards with srev < 0x78
2705 * and they don't wake up after module reload, a second
2706 * module reload is needed to bring the card up again.
2707 *
2708 * Until we figure out what's going on don't enable
2709 * full chip reset on any chip (this is what Legacy HAL
2710 * and Sam's HAL do anyway). Instead Perform a full reset
2711 * on the device (same as initial state after attach) and
2712 * leave it idle (keep MAC/BB on warm reset) */
2713 ret = ath5k_hw_on_hold(ah);
2714
2715 ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2716 "putting device to sleep\n");
2717 }
2718
2719 mmiowb();
2720 mutex_unlock(&ah->lock);
2721
2722 ath5k_stop_tasklets(ah);
2723
2724 cancel_delayed_work_sync(&ah->tx_complete_work);
2725
2726 if (!ath5k_modparam_no_hw_rfkill_switch)
2727 ath5k_rfkill_hw_stop(ah);
2728 }
2729
2730 /*
2731 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2732 * and change to the given channel.
2733 *
2734 * This should be called with ah->lock.
2735 */
2736 static int
ath5k_reset(struct ath5k_hw * ah,struct ieee80211_channel * chan,bool skip_pcu)2737 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2738 bool skip_pcu)
2739 {
2740 struct ath_common *common = ath5k_hw_common(ah);
2741 int ret, ani_mode;
2742 bool fast;
2743
2744 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2745
2746 ath5k_hw_set_imr(ah, 0);
2747 synchronize_irq(ah->irq);
2748 ath5k_stop_tasklets(ah);
2749
2750 /* Save ani mode and disable ANI during
2751 * reset. If we don't we might get false
2752 * PHY error interrupts. */
2753 ani_mode = ah->ani_state.ani_mode;
2754 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2755
2756 /* We are going to empty hw queues
2757 * so we should also free any remaining
2758 * tx buffers */
2759 ath5k_drain_tx_buffs(ah);
2760 if (chan)
2761 ah->curchan = chan;
2762
2763 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2764
2765 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2766 if (ret) {
2767 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2768 goto err;
2769 }
2770
2771 ret = ath5k_rx_start(ah);
2772 if (ret) {
2773 ATH5K_ERR(ah, "can't start recv logic\n");
2774 goto err;
2775 }
2776
2777 ath5k_ani_init(ah, ani_mode);
2778
2779 /*
2780 * Set calibration intervals
2781 *
2782 * Note: We don't need to run calibration imediately
2783 * since some initial calibration is done on reset
2784 * even for fast channel switching. Also on scanning
2785 * this will get set again and again and it won't get
2786 * executed unless we connect somewhere and spend some
2787 * time on the channel (that's what calibration needs
2788 * anyway to be accurate).
2789 */
2790 ah->ah_cal_next_full = jiffies +
2791 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2792 ah->ah_cal_next_ani = jiffies +
2793 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2794 ah->ah_cal_next_short = jiffies +
2795 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2796
2797 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2798
2799 /* clear survey data and cycle counters */
2800 memset(&ah->survey, 0, sizeof(ah->survey));
2801 spin_lock_bh(&common->cc_lock);
2802 ath_hw_cycle_counters_update(common);
2803 memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2804 memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2805 spin_unlock_bh(&common->cc_lock);
2806
2807 /*
2808 * Change channels and update the h/w rate map if we're switching;
2809 * e.g. 11a to 11b/g.
2810 *
2811 * We may be doing a reset in response to an ioctl that changes the
2812 * channel so update any state that might change as a result.
2813 *
2814 * XXX needed?
2815 */
2816 /* ath5k_chan_change(ah, c); */
2817
2818 ath5k_beacon_config(ah);
2819 /* intrs are enabled by ath5k_beacon_config */
2820
2821 ieee80211_wake_queues(ah->hw);
2822
2823 return 0;
2824 err:
2825 return ret;
2826 }
2827
ath5k_reset_work(struct work_struct * work)2828 static void ath5k_reset_work(struct work_struct *work)
2829 {
2830 struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2831 reset_work);
2832
2833 mutex_lock(&ah->lock);
2834 ath5k_reset(ah, NULL, true);
2835 mutex_unlock(&ah->lock);
2836 }
2837
2838 static int __devinit
ath5k_init(struct ieee80211_hw * hw)2839 ath5k_init(struct ieee80211_hw *hw)
2840 {
2841
2842 struct ath5k_hw *ah = hw->priv;
2843 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2844 struct ath5k_txq *txq;
2845 u8 mac[ETH_ALEN] = {};
2846 int ret;
2847
2848
2849 /*
2850 * Collect the channel list. The 802.11 layer
2851 * is responsible for filtering this list based
2852 * on settings like the phy mode and regulatory
2853 * domain restrictions.
2854 */
2855 ret = ath5k_setup_bands(hw);
2856 if (ret) {
2857 ATH5K_ERR(ah, "can't get channels\n");
2858 goto err;
2859 }
2860
2861 /*
2862 * Allocate tx+rx descriptors and populate the lists.
2863 */
2864 ret = ath5k_desc_alloc(ah);
2865 if (ret) {
2866 ATH5K_ERR(ah, "can't allocate descriptors\n");
2867 goto err;
2868 }
2869
2870 /*
2871 * Allocate hardware transmit queues: one queue for
2872 * beacon frames and one data queue for each QoS
2873 * priority. Note that hw functions handle resetting
2874 * these queues at the needed time.
2875 */
2876 ret = ath5k_beaconq_setup(ah);
2877 if (ret < 0) {
2878 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2879 goto err_desc;
2880 }
2881 ah->bhalq = ret;
2882 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2883 if (IS_ERR(ah->cabq)) {
2884 ATH5K_ERR(ah, "can't setup cab queue\n");
2885 ret = PTR_ERR(ah->cabq);
2886 goto err_bhal;
2887 }
2888
2889 /* 5211 and 5212 usually support 10 queues but we better rely on the
2890 * capability information */
2891 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2892 /* This order matches mac80211's queue priority, so we can
2893 * directly use the mac80211 queue number without any mapping */
2894 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2895 if (IS_ERR(txq)) {
2896 ATH5K_ERR(ah, "can't setup xmit queue\n");
2897 ret = PTR_ERR(txq);
2898 goto err_queues;
2899 }
2900 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2901 if (IS_ERR(txq)) {
2902 ATH5K_ERR(ah, "can't setup xmit queue\n");
2903 ret = PTR_ERR(txq);
2904 goto err_queues;
2905 }
2906 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2907 if (IS_ERR(txq)) {
2908 ATH5K_ERR(ah, "can't setup xmit queue\n");
2909 ret = PTR_ERR(txq);
2910 goto err_queues;
2911 }
2912 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2913 if (IS_ERR(txq)) {
2914 ATH5K_ERR(ah, "can't setup xmit queue\n");
2915 ret = PTR_ERR(txq);
2916 goto err_queues;
2917 }
2918 hw->queues = 4;
2919 } else {
2920 /* older hardware (5210) can only support one data queue */
2921 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2922 if (IS_ERR(txq)) {
2923 ATH5K_ERR(ah, "can't setup xmit queue\n");
2924 ret = PTR_ERR(txq);
2925 goto err_queues;
2926 }
2927 hw->queues = 1;
2928 }
2929
2930 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2931 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2932 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2933 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2934
2935 INIT_WORK(&ah->reset_work, ath5k_reset_work);
2936 INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2937 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2938
2939 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2940 if (ret) {
2941 ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2942 goto err_queues;
2943 }
2944
2945 SET_IEEE80211_PERM_ADDR(hw, mac);
2946 /* All MAC address bits matter for ACKs */
2947 ath5k_update_bssid_mask_and_opmode(ah, NULL);
2948
2949 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2950 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2951 if (ret) {
2952 ATH5K_ERR(ah, "can't initialize regulatory system\n");
2953 goto err_queues;
2954 }
2955
2956 ret = ieee80211_register_hw(hw);
2957 if (ret) {
2958 ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2959 goto err_queues;
2960 }
2961
2962 if (!ath_is_world_regd(regulatory))
2963 regulatory_hint(hw->wiphy, regulatory->alpha2);
2964
2965 ath5k_init_leds(ah);
2966
2967 ath5k_sysfs_register(ah);
2968
2969 return 0;
2970 err_queues:
2971 ath5k_txq_release(ah);
2972 err_bhal:
2973 ath5k_hw_release_tx_queue(ah, ah->bhalq);
2974 err_desc:
2975 ath5k_desc_free(ah);
2976 err:
2977 return ret;
2978 }
2979
2980 void
ath5k_deinit_ah(struct ath5k_hw * ah)2981 ath5k_deinit_ah(struct ath5k_hw *ah)
2982 {
2983 struct ieee80211_hw *hw = ah->hw;
2984
2985 /*
2986 * NB: the order of these is important:
2987 * o call the 802.11 layer before detaching ath5k_hw to
2988 * ensure callbacks into the driver to delete global
2989 * key cache entries can be handled
2990 * o reclaim the tx queue data structures after calling
2991 * the 802.11 layer as we'll get called back to reclaim
2992 * node state and potentially want to use them
2993 * o to cleanup the tx queues the hal is called, so detach
2994 * it last
2995 * XXX: ??? detach ath5k_hw ???
2996 * Other than that, it's straightforward...
2997 */
2998 ieee80211_unregister_hw(hw);
2999 ath5k_desc_free(ah);
3000 ath5k_txq_release(ah);
3001 ath5k_hw_release_tx_queue(ah, ah->bhalq);
3002 ath5k_unregister_leds(ah);
3003
3004 ath5k_sysfs_unregister(ah);
3005 /*
3006 * NB: can't reclaim these until after ieee80211_ifdetach
3007 * returns because we'll get called back to reclaim node
3008 * state and potentially want to use them.
3009 */
3010 ath5k_hw_deinit(ah);
3011 free_irq(ah->irq, ah);
3012 }
3013
3014 bool
ath5k_any_vif_assoc(struct ath5k_hw * ah)3015 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3016 {
3017 struct ath5k_vif_iter_data iter_data;
3018 iter_data.hw_macaddr = NULL;
3019 iter_data.any_assoc = false;
3020 iter_data.need_set_hw_addr = false;
3021 iter_data.found_active = true;
3022
3023 ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
3024 &iter_data);
3025 return iter_data.any_assoc;
3026 }
3027
3028 void
ath5k_set_beacon_filter(struct ieee80211_hw * hw,bool enable)3029 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3030 {
3031 struct ath5k_hw *ah = hw->priv;
3032 u32 rfilt;
3033 rfilt = ath5k_hw_get_rx_filter(ah);
3034 if (enable)
3035 rfilt |= AR5K_RX_FILTER_BEACON;
3036 else
3037 rfilt &= ~AR5K_RX_FILTER_BEACON;
3038 ath5k_hw_set_rx_filter(ah, rfilt);
3039 ah->filter_flags = rfilt;
3040 }
3041