1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52 #include <linux/slab.h>
53 #include <linux/etherdevice.h>
54 
55 #include <net/ieee80211_radiotap.h>
56 
57 #include <asm/unaligned.h>
58 
59 #include "base.h"
60 #include "reg.h"
61 #include "debug.h"
62 #include "ani.h"
63 
64 #define CREATE_TRACE_POINTS
65 #include "trace.h"
66 
67 int ath5k_modparam_nohwcrypt;
68 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
69 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
70 
71 static int modparam_all_channels;
72 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
73 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
74 
75 /* Module info */
76 MODULE_AUTHOR("Jiri Slaby");
77 MODULE_AUTHOR("Nick Kossifidis");
78 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
79 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
80 MODULE_LICENSE("Dual BSD/GPL");
81 
82 static int ath5k_init(struct ieee80211_hw *hw);
83 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
84 								bool skip_pcu);
85 int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
86 void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
87 
88 /* Known SREVs */
89 static const struct ath5k_srev_name srev_names[] = {
90 #ifdef CONFIG_ATHEROS_AR231X
91 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
92 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
93 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
94 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
95 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
96 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
97 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
98 #else
99 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
100 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
101 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
102 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
103 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
104 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
105 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
106 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
107 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
108 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
109 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
110 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
111 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
112 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
113 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
114 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
115 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
116 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
117 #endif
118 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
119 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
120 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
121 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
122 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
123 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
124 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
125 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
126 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
127 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
128 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
129 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
130 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
131 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
132 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
133 #ifdef CONFIG_ATHEROS_AR231X
134 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
135 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
136 #endif
137 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
138 };
139 
140 static const struct ieee80211_rate ath5k_rates[] = {
141 	{ .bitrate = 10,
142 	  .hw_value = ATH5K_RATE_CODE_1M, },
143 	{ .bitrate = 20,
144 	  .hw_value = ATH5K_RATE_CODE_2M,
145 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
146 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
147 	{ .bitrate = 55,
148 	  .hw_value = ATH5K_RATE_CODE_5_5M,
149 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
150 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
151 	{ .bitrate = 110,
152 	  .hw_value = ATH5K_RATE_CODE_11M,
153 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
154 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
155 	{ .bitrate = 60,
156 	  .hw_value = ATH5K_RATE_CODE_6M,
157 	  .flags = 0 },
158 	{ .bitrate = 90,
159 	  .hw_value = ATH5K_RATE_CODE_9M,
160 	  .flags = 0 },
161 	{ .bitrate = 120,
162 	  .hw_value = ATH5K_RATE_CODE_12M,
163 	  .flags = 0 },
164 	{ .bitrate = 180,
165 	  .hw_value = ATH5K_RATE_CODE_18M,
166 	  .flags = 0 },
167 	{ .bitrate = 240,
168 	  .hw_value = ATH5K_RATE_CODE_24M,
169 	  .flags = 0 },
170 	{ .bitrate = 360,
171 	  .hw_value = ATH5K_RATE_CODE_36M,
172 	  .flags = 0 },
173 	{ .bitrate = 480,
174 	  .hw_value = ATH5K_RATE_CODE_48M,
175 	  .flags = 0 },
176 	{ .bitrate = 540,
177 	  .hw_value = ATH5K_RATE_CODE_54M,
178 	  .flags = 0 },
179 	/* XR missing */
180 };
181 
ath5k_extend_tsf(struct ath5k_hw * ah,u32 rstamp)182 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
183 {
184 	u64 tsf = ath5k_hw_get_tsf64(ah);
185 
186 	if ((tsf & 0x7fff) < rstamp)
187 		tsf -= 0x8000;
188 
189 	return (tsf & ~0x7fff) | rstamp;
190 }
191 
192 const char *
ath5k_chip_name(enum ath5k_srev_type type,u_int16_t val)193 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
194 {
195 	const char *name = "xxxxx";
196 	unsigned int i;
197 
198 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
199 		if (srev_names[i].sr_type != type)
200 			continue;
201 
202 		if ((val & 0xf0) == srev_names[i].sr_val)
203 			name = srev_names[i].sr_name;
204 
205 		if ((val & 0xff) == srev_names[i].sr_val) {
206 			name = srev_names[i].sr_name;
207 			break;
208 		}
209 	}
210 
211 	return name;
212 }
ath5k_ioread32(void * hw_priv,u32 reg_offset)213 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
214 {
215 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
216 	return ath5k_hw_reg_read(ah, reg_offset);
217 }
218 
ath5k_iowrite32(void * hw_priv,u32 val,u32 reg_offset)219 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
220 {
221 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
222 	ath5k_hw_reg_write(ah, val, reg_offset);
223 }
224 
225 static const struct ath_ops ath5k_common_ops = {
226 	.read = ath5k_ioread32,
227 	.write = ath5k_iowrite32,
228 };
229 
230 /***********************\
231 * Driver Initialization *
232 \***********************/
233 
ath5k_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)234 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
235 {
236 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
237 	struct ath5k_softc *sc = hw->priv;
238 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
239 
240 	return ath_reg_notifier_apply(wiphy, request, regulatory);
241 }
242 
243 /********************\
244 * Channel/mode setup *
245 \********************/
246 
247 /*
248  * Returns true for the channel numbers used without all_channels modparam.
249  */
ath5k_is_standard_channel(short chan,enum ieee80211_band band)250 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
251 {
252 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
253 		return true;
254 
255 	return	/* UNII 1,2 */
256 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
257 		/* midband */
258 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
259 		/* UNII-3 */
260 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
261 		/* 802.11j 5.030-5.080 GHz (20MHz) */
262 		(chan == 8 || chan == 12 || chan == 16) ||
263 		/* 802.11j 4.9GHz (20MHz) */
264 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
265 }
266 
267 static unsigned int
ath5k_setup_channels(struct ath5k_hw * ah,struct ieee80211_channel * channels,unsigned int mode,unsigned int max)268 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
269 		unsigned int mode, unsigned int max)
270 {
271 	unsigned int count, size, chfreq, freq, ch;
272 	enum ieee80211_band band;
273 
274 	switch (mode) {
275 	case AR5K_MODE_11A:
276 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
277 		size = 220;
278 		chfreq = CHANNEL_5GHZ;
279 		band = IEEE80211_BAND_5GHZ;
280 		break;
281 	case AR5K_MODE_11B:
282 	case AR5K_MODE_11G:
283 		size = 26;
284 		chfreq = CHANNEL_2GHZ;
285 		band = IEEE80211_BAND_2GHZ;
286 		break;
287 	default:
288 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
289 		return 0;
290 	}
291 
292 	count = 0;
293 	for (ch = 1; ch <= size && count < max; ch++) {
294 		freq = ieee80211_channel_to_frequency(ch, band);
295 
296 		if (freq == 0) /* mapping failed - not a standard channel */
297 			continue;
298 
299 		/* Check if channel is supported by the chipset */
300 		if (!ath5k_channel_ok(ah, freq, chfreq))
301 			continue;
302 
303 		if (!modparam_all_channels &&
304 		    !ath5k_is_standard_channel(ch, band))
305 			continue;
306 
307 		/* Write channel info and increment counter */
308 		channels[count].center_freq = freq;
309 		channels[count].band = band;
310 		switch (mode) {
311 		case AR5K_MODE_11A:
312 		case AR5K_MODE_11G:
313 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
314 			break;
315 		case AR5K_MODE_11B:
316 			channels[count].hw_value = CHANNEL_B;
317 		}
318 
319 		count++;
320 	}
321 
322 	return count;
323 }
324 
325 static void
ath5k_setup_rate_idx(struct ath5k_softc * sc,struct ieee80211_supported_band * b)326 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
327 {
328 	u8 i;
329 
330 	for (i = 0; i < AR5K_MAX_RATES; i++)
331 		sc->rate_idx[b->band][i] = -1;
332 
333 	for (i = 0; i < b->n_bitrates; i++) {
334 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
335 		if (b->bitrates[i].hw_value_short)
336 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
337 	}
338 }
339 
340 static int
ath5k_setup_bands(struct ieee80211_hw * hw)341 ath5k_setup_bands(struct ieee80211_hw *hw)
342 {
343 	struct ath5k_softc *sc = hw->priv;
344 	struct ath5k_hw *ah = sc->ah;
345 	struct ieee80211_supported_band *sband;
346 	int max_c, count_c = 0;
347 	int i;
348 
349 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
350 	max_c = ARRAY_SIZE(sc->channels);
351 
352 	/* 2GHz band */
353 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
354 	sband->band = IEEE80211_BAND_2GHZ;
355 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
356 
357 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
358 		/* G mode */
359 		memcpy(sband->bitrates, &ath5k_rates[0],
360 		       sizeof(struct ieee80211_rate) * 12);
361 		sband->n_bitrates = 12;
362 
363 		sband->channels = sc->channels;
364 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
365 					AR5K_MODE_11G, max_c);
366 
367 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
368 		count_c = sband->n_channels;
369 		max_c -= count_c;
370 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
371 		/* B mode */
372 		memcpy(sband->bitrates, &ath5k_rates[0],
373 		       sizeof(struct ieee80211_rate) * 4);
374 		sband->n_bitrates = 4;
375 
376 		/* 5211 only supports B rates and uses 4bit rate codes
377 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
378 		 * fix them up here:
379 		 */
380 		if (ah->ah_version == AR5K_AR5211) {
381 			for (i = 0; i < 4; i++) {
382 				sband->bitrates[i].hw_value =
383 					sband->bitrates[i].hw_value & 0xF;
384 				sband->bitrates[i].hw_value_short =
385 					sband->bitrates[i].hw_value_short & 0xF;
386 			}
387 		}
388 
389 		sband->channels = sc->channels;
390 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
391 					AR5K_MODE_11B, max_c);
392 
393 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
394 		count_c = sband->n_channels;
395 		max_c -= count_c;
396 	}
397 	ath5k_setup_rate_idx(sc, sband);
398 
399 	/* 5GHz band, A mode */
400 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
401 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
402 		sband->band = IEEE80211_BAND_5GHZ;
403 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
404 
405 		memcpy(sband->bitrates, &ath5k_rates[4],
406 		       sizeof(struct ieee80211_rate) * 8);
407 		sband->n_bitrates = 8;
408 
409 		sband->channels = &sc->channels[count_c];
410 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
411 					AR5K_MODE_11A, max_c);
412 
413 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
414 	}
415 	ath5k_setup_rate_idx(sc, sband);
416 
417 	ath5k_debug_dump_bands(sc);
418 
419 	return 0;
420 }
421 
422 /*
423  * Set/change channels. We always reset the chip.
424  * To accomplish this we must first cleanup any pending DMA,
425  * then restart stuff after a la  ath5k_init.
426  *
427  * Called with sc->lock.
428  */
429 int
ath5k_chan_set(struct ath5k_softc * sc,struct ieee80211_channel * chan)430 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
431 {
432 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
433 		  "channel set, resetting (%u -> %u MHz)\n",
434 		  sc->curchan->center_freq, chan->center_freq);
435 
436 	/*
437 	 * To switch channels clear any pending DMA operations;
438 	 * wait long enough for the RX fifo to drain, reset the
439 	 * hardware at the new frequency, and then re-enable
440 	 * the relevant bits of the h/w.
441 	 */
442 	return ath5k_reset(sc, chan, true);
443 }
444 
ath5k_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)445 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
446 {
447 	struct ath5k_vif_iter_data *iter_data = data;
448 	int i;
449 	struct ath5k_vif *avf = (void *)vif->drv_priv;
450 
451 	if (iter_data->hw_macaddr)
452 		for (i = 0; i < ETH_ALEN; i++)
453 			iter_data->mask[i] &=
454 				~(iter_data->hw_macaddr[i] ^ mac[i]);
455 
456 	if (!iter_data->found_active) {
457 		iter_data->found_active = true;
458 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
459 	}
460 
461 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
462 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
463 			iter_data->need_set_hw_addr = false;
464 
465 	if (!iter_data->any_assoc) {
466 		if (avf->assoc)
467 			iter_data->any_assoc = true;
468 	}
469 
470 	/* Calculate combined mode - when APs are active, operate in AP mode.
471 	 * Otherwise use the mode of the new interface. This can currently
472 	 * only deal with combinations of APs and STAs. Only one ad-hoc
473 	 * interfaces is allowed.
474 	 */
475 	if (avf->opmode == NL80211_IFTYPE_AP)
476 		iter_data->opmode = NL80211_IFTYPE_AP;
477 	else {
478 		if (avf->opmode == NL80211_IFTYPE_STATION)
479 			iter_data->n_stas++;
480 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
481 			iter_data->opmode = avf->opmode;
482 	}
483 }
484 
485 void
ath5k_update_bssid_mask_and_opmode(struct ath5k_softc * sc,struct ieee80211_vif * vif)486 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
487 				   struct ieee80211_vif *vif)
488 {
489 	struct ath_common *common = ath5k_hw_common(sc->ah);
490 	struct ath5k_vif_iter_data iter_data;
491 	u32 rfilt;
492 
493 	/*
494 	 * Use the hardware MAC address as reference, the hardware uses it
495 	 * together with the BSSID mask when matching addresses.
496 	 */
497 	iter_data.hw_macaddr = common->macaddr;
498 	memset(&iter_data.mask, 0xff, ETH_ALEN);
499 	iter_data.found_active = false;
500 	iter_data.need_set_hw_addr = true;
501 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
502 	iter_data.n_stas = 0;
503 
504 	if (vif)
505 		ath5k_vif_iter(&iter_data, vif->addr, vif);
506 
507 	/* Get list of all active MAC addresses */
508 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
509 						   &iter_data);
510 	memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
511 
512 	sc->opmode = iter_data.opmode;
513 	if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
514 		/* Nothing active, default to station mode */
515 		sc->opmode = NL80211_IFTYPE_STATION;
516 
517 	ath5k_hw_set_opmode(sc->ah, sc->opmode);
518 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
519 		  sc->opmode, ath_opmode_to_string(sc->opmode));
520 
521 	if (iter_data.need_set_hw_addr && iter_data.found_active)
522 		ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
523 
524 	if (ath5k_hw_hasbssidmask(sc->ah))
525 		ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
526 
527 	/* Set up RX Filter */
528 	if (iter_data.n_stas > 1) {
529 		/* If you have multiple STA interfaces connected to
530 		 * different APs, ARPs are not received (most of the time?)
531 		 * Enabling PROMISC appears to fix that probem.
532 		 */
533 		sc->filter_flags |= AR5K_RX_FILTER_PROM;
534 	}
535 
536 	rfilt = sc->filter_flags;
537 	ath5k_hw_set_rx_filter(sc->ah, rfilt);
538 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
539 }
540 
541 static inline int
ath5k_hw_to_driver_rix(struct ath5k_softc * sc,int hw_rix)542 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
543 {
544 	int rix;
545 
546 	/* return base rate on errors */
547 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
548 			"hw_rix out of bounds: %x\n", hw_rix))
549 		return 0;
550 
551 	rix = sc->rate_idx[sc->curchan->band][hw_rix];
552 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
553 		rix = 0;
554 
555 	return rix;
556 }
557 
558 /***************\
559 * Buffers setup *
560 \***************/
561 
562 static
ath5k_rx_skb_alloc(struct ath5k_softc * sc,dma_addr_t * skb_addr)563 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
564 {
565 	struct ath_common *common = ath5k_hw_common(sc->ah);
566 	struct sk_buff *skb;
567 
568 	/*
569 	 * Allocate buffer with headroom_needed space for the
570 	 * fake physical layer header at the start.
571 	 */
572 	skb = ath_rxbuf_alloc(common,
573 			      common->rx_bufsize,
574 			      GFP_ATOMIC);
575 
576 	if (!skb) {
577 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
578 				common->rx_bufsize);
579 		return NULL;
580 	}
581 
582 	*skb_addr = dma_map_single(sc->dev,
583 				   skb->data, common->rx_bufsize,
584 				   DMA_FROM_DEVICE);
585 
586 	if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
587 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
588 		dev_kfree_skb(skb);
589 		return NULL;
590 	}
591 	return skb;
592 }
593 
594 static int
ath5k_rxbuf_setup(struct ath5k_softc * sc,struct ath5k_buf * bf)595 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
596 {
597 	struct ath5k_hw *ah = sc->ah;
598 	struct sk_buff *skb = bf->skb;
599 	struct ath5k_desc *ds;
600 	int ret;
601 
602 	if (!skb) {
603 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
604 		if (!skb)
605 			return -ENOMEM;
606 		bf->skb = skb;
607 	}
608 
609 	/*
610 	 * Setup descriptors.  For receive we always terminate
611 	 * the descriptor list with a self-linked entry so we'll
612 	 * not get overrun under high load (as can happen with a
613 	 * 5212 when ANI processing enables PHY error frames).
614 	 *
615 	 * To ensure the last descriptor is self-linked we create
616 	 * each descriptor as self-linked and add it to the end.  As
617 	 * each additional descriptor is added the previous self-linked
618 	 * entry is "fixed" naturally.  This should be safe even
619 	 * if DMA is happening.  When processing RX interrupts we
620 	 * never remove/process the last, self-linked, entry on the
621 	 * descriptor list.  This ensures the hardware always has
622 	 * someplace to write a new frame.
623 	 */
624 	ds = bf->desc;
625 	ds->ds_link = bf->daddr;	/* link to self */
626 	ds->ds_data = bf->skbaddr;
627 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
628 	if (ret) {
629 		ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
630 		return ret;
631 	}
632 
633 	if (sc->rxlink != NULL)
634 		*sc->rxlink = bf->daddr;
635 	sc->rxlink = &ds->ds_link;
636 	return 0;
637 }
638 
get_hw_packet_type(struct sk_buff * skb)639 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
640 {
641 	struct ieee80211_hdr *hdr;
642 	enum ath5k_pkt_type htype;
643 	__le16 fc;
644 
645 	hdr = (struct ieee80211_hdr *)skb->data;
646 	fc = hdr->frame_control;
647 
648 	if (ieee80211_is_beacon(fc))
649 		htype = AR5K_PKT_TYPE_BEACON;
650 	else if (ieee80211_is_probe_resp(fc))
651 		htype = AR5K_PKT_TYPE_PROBE_RESP;
652 	else if (ieee80211_is_atim(fc))
653 		htype = AR5K_PKT_TYPE_ATIM;
654 	else if (ieee80211_is_pspoll(fc))
655 		htype = AR5K_PKT_TYPE_PSPOLL;
656 	else
657 		htype = AR5K_PKT_TYPE_NORMAL;
658 
659 	return htype;
660 }
661 
662 static int
ath5k_txbuf_setup(struct ath5k_softc * sc,struct ath5k_buf * bf,struct ath5k_txq * txq,int padsize)663 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
664 		  struct ath5k_txq *txq, int padsize)
665 {
666 	struct ath5k_hw *ah = sc->ah;
667 	struct ath5k_desc *ds = bf->desc;
668 	struct sk_buff *skb = bf->skb;
669 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
670 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
671 	struct ieee80211_rate *rate;
672 	unsigned int mrr_rate[3], mrr_tries[3];
673 	int i, ret;
674 	u16 hw_rate;
675 	u16 cts_rate = 0;
676 	u16 duration = 0;
677 	u8 rc_flags;
678 
679 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
680 
681 	/* XXX endianness */
682 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
683 			DMA_TO_DEVICE);
684 
685 	rate = ieee80211_get_tx_rate(sc->hw, info);
686 	if (!rate) {
687 		ret = -EINVAL;
688 		goto err_unmap;
689 	}
690 
691 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
692 		flags |= AR5K_TXDESC_NOACK;
693 
694 	rc_flags = info->control.rates[0].flags;
695 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
696 		rate->hw_value_short : rate->hw_value;
697 
698 	pktlen = skb->len;
699 
700 	/* FIXME: If we are in g mode and rate is a CCK rate
701 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
702 	 * from tx power (value is in dB units already) */
703 	if (info->control.hw_key) {
704 		keyidx = info->control.hw_key->hw_key_idx;
705 		pktlen += info->control.hw_key->icv_len;
706 	}
707 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
708 		flags |= AR5K_TXDESC_RTSENA;
709 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
710 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
711 			info->control.vif, pktlen, info));
712 	}
713 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
714 		flags |= AR5K_TXDESC_CTSENA;
715 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
716 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
717 			info->control.vif, pktlen, info));
718 	}
719 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
720 		ieee80211_get_hdrlen_from_skb(skb), padsize,
721 		get_hw_packet_type(skb),
722 		(sc->power_level * 2),
723 		hw_rate,
724 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
725 		cts_rate, duration);
726 	if (ret)
727 		goto err_unmap;
728 
729 	memset(mrr_rate, 0, sizeof(mrr_rate));
730 	memset(mrr_tries, 0, sizeof(mrr_tries));
731 	for (i = 0; i < 3; i++) {
732 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
733 		if (!rate)
734 			break;
735 
736 		mrr_rate[i] = rate->hw_value;
737 		mrr_tries[i] = info->control.rates[i + 1].count;
738 	}
739 
740 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
741 		mrr_rate[0], mrr_tries[0],
742 		mrr_rate[1], mrr_tries[1],
743 		mrr_rate[2], mrr_tries[2]);
744 
745 	ds->ds_link = 0;
746 	ds->ds_data = bf->skbaddr;
747 
748 	spin_lock_bh(&txq->lock);
749 	list_add_tail(&bf->list, &txq->q);
750 	txq->txq_len++;
751 	if (txq->link == NULL) /* is this first packet? */
752 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
753 	else /* no, so only link it */
754 		*txq->link = bf->daddr;
755 
756 	txq->link = &ds->ds_link;
757 	ath5k_hw_start_tx_dma(ah, txq->qnum);
758 	mmiowb();
759 	spin_unlock_bh(&txq->lock);
760 
761 	return 0;
762 err_unmap:
763 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
764 	return ret;
765 }
766 
767 /*******************\
768 * Descriptors setup *
769 \*******************/
770 
771 static int
ath5k_desc_alloc(struct ath5k_softc * sc)772 ath5k_desc_alloc(struct ath5k_softc *sc)
773 {
774 	struct ath5k_desc *ds;
775 	struct ath5k_buf *bf;
776 	dma_addr_t da;
777 	unsigned int i;
778 	int ret;
779 
780 	/* allocate descriptors */
781 	sc->desc_len = sizeof(struct ath5k_desc) *
782 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
783 
784 	sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
785 				&sc->desc_daddr, GFP_KERNEL);
786 	if (sc->desc == NULL) {
787 		ATH5K_ERR(sc, "can't allocate descriptors\n");
788 		ret = -ENOMEM;
789 		goto err;
790 	}
791 	ds = sc->desc;
792 	da = sc->desc_daddr;
793 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
794 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
795 
796 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
797 			sizeof(struct ath5k_buf), GFP_KERNEL);
798 	if (bf == NULL) {
799 		ATH5K_ERR(sc, "can't allocate bufptr\n");
800 		ret = -ENOMEM;
801 		goto err_free;
802 	}
803 	sc->bufptr = bf;
804 
805 	INIT_LIST_HEAD(&sc->rxbuf);
806 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
807 		bf->desc = ds;
808 		bf->daddr = da;
809 		list_add_tail(&bf->list, &sc->rxbuf);
810 	}
811 
812 	INIT_LIST_HEAD(&sc->txbuf);
813 	sc->txbuf_len = ATH_TXBUF;
814 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
815 			da += sizeof(*ds)) {
816 		bf->desc = ds;
817 		bf->daddr = da;
818 		list_add_tail(&bf->list, &sc->txbuf);
819 	}
820 
821 	/* beacon buffers */
822 	INIT_LIST_HEAD(&sc->bcbuf);
823 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
824 		bf->desc = ds;
825 		bf->daddr = da;
826 		list_add_tail(&bf->list, &sc->bcbuf);
827 	}
828 
829 	return 0;
830 err_free:
831 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
832 err:
833 	sc->desc = NULL;
834 	return ret;
835 }
836 
837 void
ath5k_txbuf_free_skb(struct ath5k_softc * sc,struct ath5k_buf * bf)838 ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
839 {
840 	BUG_ON(!bf);
841 	if (!bf->skb)
842 		return;
843 	dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
844 			DMA_TO_DEVICE);
845 	dev_kfree_skb_any(bf->skb);
846 	bf->skb = NULL;
847 	bf->skbaddr = 0;
848 	bf->desc->ds_data = 0;
849 }
850 
851 void
ath5k_rxbuf_free_skb(struct ath5k_softc * sc,struct ath5k_buf * bf)852 ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
853 {
854 	struct ath5k_hw *ah = sc->ah;
855 	struct ath_common *common = ath5k_hw_common(ah);
856 
857 	BUG_ON(!bf);
858 	if (!bf->skb)
859 		return;
860 	dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
861 			DMA_FROM_DEVICE);
862 	dev_kfree_skb_any(bf->skb);
863 	bf->skb = NULL;
864 	bf->skbaddr = 0;
865 	bf->desc->ds_data = 0;
866 }
867 
868 static void
ath5k_desc_free(struct ath5k_softc * sc)869 ath5k_desc_free(struct ath5k_softc *sc)
870 {
871 	struct ath5k_buf *bf;
872 
873 	list_for_each_entry(bf, &sc->txbuf, list)
874 		ath5k_txbuf_free_skb(sc, bf);
875 	list_for_each_entry(bf, &sc->rxbuf, list)
876 		ath5k_rxbuf_free_skb(sc, bf);
877 	list_for_each_entry(bf, &sc->bcbuf, list)
878 		ath5k_txbuf_free_skb(sc, bf);
879 
880 	/* Free memory associated with all descriptors */
881 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
882 	sc->desc = NULL;
883 	sc->desc_daddr = 0;
884 
885 	kfree(sc->bufptr);
886 	sc->bufptr = NULL;
887 }
888 
889 
890 /**************\
891 * Queues setup *
892 \**************/
893 
894 static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_softc * sc,int qtype,int subtype)895 ath5k_txq_setup(struct ath5k_softc *sc,
896 		int qtype, int subtype)
897 {
898 	struct ath5k_hw *ah = sc->ah;
899 	struct ath5k_txq *txq;
900 	struct ath5k_txq_info qi = {
901 		.tqi_subtype = subtype,
902 		/* XXX: default values not correct for B and XR channels,
903 		 * but who cares? */
904 		.tqi_aifs = AR5K_TUNE_AIFS,
905 		.tqi_cw_min = AR5K_TUNE_CWMIN,
906 		.tqi_cw_max = AR5K_TUNE_CWMAX
907 	};
908 	int qnum;
909 
910 	/*
911 	 * Enable interrupts only for EOL and DESC conditions.
912 	 * We mark tx descriptors to receive a DESC interrupt
913 	 * when a tx queue gets deep; otherwise we wait for the
914 	 * EOL to reap descriptors.  Note that this is done to
915 	 * reduce interrupt load and this only defers reaping
916 	 * descriptors, never transmitting frames.  Aside from
917 	 * reducing interrupts this also permits more concurrency.
918 	 * The only potential downside is if the tx queue backs
919 	 * up in which case the top half of the kernel may backup
920 	 * due to a lack of tx descriptors.
921 	 */
922 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
923 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
924 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
925 	if (qnum < 0) {
926 		/*
927 		 * NB: don't print a message, this happens
928 		 * normally on parts with too few tx queues
929 		 */
930 		return ERR_PTR(qnum);
931 	}
932 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
933 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
934 			qnum, ARRAY_SIZE(sc->txqs));
935 		ath5k_hw_release_tx_queue(ah, qnum);
936 		return ERR_PTR(-EINVAL);
937 	}
938 	txq = &sc->txqs[qnum];
939 	if (!txq->setup) {
940 		txq->qnum = qnum;
941 		txq->link = NULL;
942 		INIT_LIST_HEAD(&txq->q);
943 		spin_lock_init(&txq->lock);
944 		txq->setup = true;
945 		txq->txq_len = 0;
946 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
947 		txq->txq_poll_mark = false;
948 		txq->txq_stuck = 0;
949 	}
950 	return &sc->txqs[qnum];
951 }
952 
953 static int
ath5k_beaconq_setup(struct ath5k_hw * ah)954 ath5k_beaconq_setup(struct ath5k_hw *ah)
955 {
956 	struct ath5k_txq_info qi = {
957 		/* XXX: default values not correct for B and XR channels,
958 		 * but who cares? */
959 		.tqi_aifs = AR5K_TUNE_AIFS,
960 		.tqi_cw_min = AR5K_TUNE_CWMIN,
961 		.tqi_cw_max = AR5K_TUNE_CWMAX,
962 		/* NB: for dynamic turbo, don't enable any other interrupts */
963 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
964 	};
965 
966 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
967 }
968 
969 static int
ath5k_beaconq_config(struct ath5k_softc * sc)970 ath5k_beaconq_config(struct ath5k_softc *sc)
971 {
972 	struct ath5k_hw *ah = sc->ah;
973 	struct ath5k_txq_info qi;
974 	int ret;
975 
976 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
977 	if (ret)
978 		goto err;
979 
980 	if (sc->opmode == NL80211_IFTYPE_AP ||
981 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
982 		/*
983 		 * Always burst out beacon and CAB traffic
984 		 * (aifs = cwmin = cwmax = 0)
985 		 */
986 		qi.tqi_aifs = 0;
987 		qi.tqi_cw_min = 0;
988 		qi.tqi_cw_max = 0;
989 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
990 		/*
991 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
992 		 */
993 		qi.tqi_aifs = 0;
994 		qi.tqi_cw_min = 0;
995 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
996 	}
997 
998 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
999 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1000 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1001 
1002 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1003 	if (ret) {
1004 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1005 			"hardware queue!\n", __func__);
1006 		goto err;
1007 	}
1008 	ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1009 	if (ret)
1010 		goto err;
1011 
1012 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1013 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1014 	if (ret)
1015 		goto err;
1016 
1017 	qi.tqi_ready_time = (sc->bintval * 80) / 100;
1018 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1019 	if (ret)
1020 		goto err;
1021 
1022 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1023 err:
1024 	return ret;
1025 }
1026 
1027 /**
1028  * ath5k_drain_tx_buffs - Empty tx buffers
1029  *
1030  * @sc The &struct ath5k_softc
1031  *
1032  * Empty tx buffers from all queues in preparation
1033  * of a reset or during shutdown.
1034  *
1035  * NB:	this assumes output has been stopped and
1036  *	we do not need to block ath5k_tx_tasklet
1037  */
1038 static void
ath5k_drain_tx_buffs(struct ath5k_softc * sc)1039 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1040 {
1041 	struct ath5k_txq *txq;
1042 	struct ath5k_buf *bf, *bf0;
1043 	int i;
1044 
1045 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1046 		if (sc->txqs[i].setup) {
1047 			txq = &sc->txqs[i];
1048 			spin_lock_bh(&txq->lock);
1049 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1050 				ath5k_debug_printtxbuf(sc, bf);
1051 
1052 				ath5k_txbuf_free_skb(sc, bf);
1053 
1054 				spin_lock_bh(&sc->txbuflock);
1055 				list_move_tail(&bf->list, &sc->txbuf);
1056 				sc->txbuf_len++;
1057 				txq->txq_len--;
1058 				spin_unlock_bh(&sc->txbuflock);
1059 			}
1060 			txq->link = NULL;
1061 			txq->txq_poll_mark = false;
1062 			spin_unlock_bh(&txq->lock);
1063 		}
1064 	}
1065 }
1066 
1067 static void
ath5k_txq_release(struct ath5k_softc * sc)1068 ath5k_txq_release(struct ath5k_softc *sc)
1069 {
1070 	struct ath5k_txq *txq = sc->txqs;
1071 	unsigned int i;
1072 
1073 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1074 		if (txq->setup) {
1075 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1076 			txq->setup = false;
1077 		}
1078 }
1079 
1080 
1081 /*************\
1082 * RX Handling *
1083 \*************/
1084 
1085 /*
1086  * Enable the receive h/w following a reset.
1087  */
1088 static int
ath5k_rx_start(struct ath5k_softc * sc)1089 ath5k_rx_start(struct ath5k_softc *sc)
1090 {
1091 	struct ath5k_hw *ah = sc->ah;
1092 	struct ath_common *common = ath5k_hw_common(ah);
1093 	struct ath5k_buf *bf;
1094 	int ret;
1095 
1096 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1097 
1098 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1099 		  common->cachelsz, common->rx_bufsize);
1100 
1101 	spin_lock_bh(&sc->rxbuflock);
1102 	sc->rxlink = NULL;
1103 	list_for_each_entry(bf, &sc->rxbuf, list) {
1104 		ret = ath5k_rxbuf_setup(sc, bf);
1105 		if (ret != 0) {
1106 			spin_unlock_bh(&sc->rxbuflock);
1107 			goto err;
1108 		}
1109 	}
1110 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1111 	ath5k_hw_set_rxdp(ah, bf->daddr);
1112 	spin_unlock_bh(&sc->rxbuflock);
1113 
1114 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1115 	ath5k_update_bssid_mask_and_opmode(sc, NULL); /* set filters, etc. */
1116 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1117 
1118 	return 0;
1119 err:
1120 	return ret;
1121 }
1122 
1123 /*
1124  * Disable the receive logic on PCU (DRU)
1125  * In preparation for a shutdown.
1126  *
1127  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1128  * does.
1129  */
1130 static void
ath5k_rx_stop(struct ath5k_softc * sc)1131 ath5k_rx_stop(struct ath5k_softc *sc)
1132 {
1133 	struct ath5k_hw *ah = sc->ah;
1134 
1135 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1136 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1137 
1138 	ath5k_debug_printrxbuffs(sc, ah);
1139 }
1140 
1141 static unsigned int
ath5k_rx_decrypted(struct ath5k_softc * sc,struct sk_buff * skb,struct ath5k_rx_status * rs)1142 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1143 		   struct ath5k_rx_status *rs)
1144 {
1145 	struct ath5k_hw *ah = sc->ah;
1146 	struct ath_common *common = ath5k_hw_common(ah);
1147 	struct ieee80211_hdr *hdr = (void *)skb->data;
1148 	unsigned int keyix, hlen;
1149 
1150 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1151 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1152 		return RX_FLAG_DECRYPTED;
1153 
1154 	/* Apparently when a default key is used to decrypt the packet
1155 	   the hw does not set the index used to decrypt.  In such cases
1156 	   get the index from the packet. */
1157 	hlen = ieee80211_hdrlen(hdr->frame_control);
1158 	if (ieee80211_has_protected(hdr->frame_control) &&
1159 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1160 	    skb->len >= hlen + 4) {
1161 		keyix = skb->data[hlen + 3] >> 6;
1162 
1163 		if (test_bit(keyix, common->keymap))
1164 			return RX_FLAG_DECRYPTED;
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 
1171 static void
ath5k_check_ibss_tsf(struct ath5k_softc * sc,struct sk_buff * skb,struct ieee80211_rx_status * rxs)1172 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1173 		     struct ieee80211_rx_status *rxs)
1174 {
1175 	struct ath_common *common = ath5k_hw_common(sc->ah);
1176 	u64 tsf, bc_tstamp;
1177 	u32 hw_tu;
1178 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1179 
1180 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1181 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1182 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1183 		/*
1184 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1185 		 * have updated the local TSF. We have to work around various
1186 		 * hardware bugs, though...
1187 		 */
1188 		tsf = ath5k_hw_get_tsf64(sc->ah);
1189 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1190 		hw_tu = TSF_TO_TU(tsf);
1191 
1192 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1193 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1194 			(unsigned long long)bc_tstamp,
1195 			(unsigned long long)rxs->mactime,
1196 			(unsigned long long)(rxs->mactime - bc_tstamp),
1197 			(unsigned long long)tsf);
1198 
1199 		/*
1200 		 * Sometimes the HW will give us a wrong tstamp in the rx
1201 		 * status, causing the timestamp extension to go wrong.
1202 		 * (This seems to happen especially with beacon frames bigger
1203 		 * than 78 byte (incl. FCS))
1204 		 * But we know that the receive timestamp must be later than the
1205 		 * timestamp of the beacon since HW must have synced to that.
1206 		 *
1207 		 * NOTE: here we assume mactime to be after the frame was
1208 		 * received, not like mac80211 which defines it at the start.
1209 		 */
1210 		if (bc_tstamp > rxs->mactime) {
1211 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1212 				"fixing mactime from %llx to %llx\n",
1213 				(unsigned long long)rxs->mactime,
1214 				(unsigned long long)tsf);
1215 			rxs->mactime = tsf;
1216 		}
1217 
1218 		/*
1219 		 * Local TSF might have moved higher than our beacon timers,
1220 		 * in that case we have to update them to continue sending
1221 		 * beacons. This also takes care of synchronizing beacon sending
1222 		 * times with other stations.
1223 		 */
1224 		if (hw_tu >= sc->nexttbtt)
1225 			ath5k_beacon_update_timers(sc, bc_tstamp);
1226 
1227 		/* Check if the beacon timers are still correct, because a TSF
1228 		 * update might have created a window between them - for a
1229 		 * longer description see the comment of this function: */
1230 		if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1231 			ath5k_beacon_update_timers(sc, bc_tstamp);
1232 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1233 				"fixed beacon timers after beacon receive\n");
1234 		}
1235 	}
1236 }
1237 
1238 static void
ath5k_update_beacon_rssi(struct ath5k_softc * sc,struct sk_buff * skb,int rssi)1239 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1240 {
1241 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1242 	struct ath5k_hw *ah = sc->ah;
1243 	struct ath_common *common = ath5k_hw_common(ah);
1244 
1245 	/* only beacons from our BSSID */
1246 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1247 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1248 		return;
1249 
1250 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1251 
1252 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1253 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1254 }
1255 
1256 /*
1257  * Compute padding position. skb must contain an IEEE 802.11 frame
1258  */
ath5k_common_padpos(struct sk_buff * skb)1259 static int ath5k_common_padpos(struct sk_buff *skb)
1260 {
1261 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1262 	__le16 frame_control = hdr->frame_control;
1263 	int padpos = 24;
1264 
1265 	if (ieee80211_has_a4(frame_control)) {
1266 		padpos += ETH_ALEN;
1267 	}
1268 	if (ieee80211_is_data_qos(frame_control)) {
1269 		padpos += IEEE80211_QOS_CTL_LEN;
1270 	}
1271 
1272 	return padpos;
1273 }
1274 
1275 /*
1276  * This function expects an 802.11 frame and returns the number of
1277  * bytes added, or -1 if we don't have enough header room.
1278  */
ath5k_add_padding(struct sk_buff * skb)1279 static int ath5k_add_padding(struct sk_buff *skb)
1280 {
1281 	int padpos = ath5k_common_padpos(skb);
1282 	int padsize = padpos & 3;
1283 
1284 	if (padsize && skb->len>padpos) {
1285 
1286 		if (skb_headroom(skb) < padsize)
1287 			return -1;
1288 
1289 		skb_push(skb, padsize);
1290 		memmove(skb->data, skb->data+padsize, padpos);
1291 		return padsize;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * The MAC header is padded to have 32-bit boundary if the
1299  * packet payload is non-zero. The general calculation for
1300  * padsize would take into account odd header lengths:
1301  * padsize = 4 - (hdrlen & 3); however, since only
1302  * even-length headers are used, padding can only be 0 or 2
1303  * bytes and we can optimize this a bit.  We must not try to
1304  * remove padding from short control frames that do not have a
1305  * payload.
1306  *
1307  * This function expects an 802.11 frame and returns the number of
1308  * bytes removed.
1309  */
ath5k_remove_padding(struct sk_buff * skb)1310 static int ath5k_remove_padding(struct sk_buff *skb)
1311 {
1312 	int padpos = ath5k_common_padpos(skb);
1313 	int padsize = padpos & 3;
1314 
1315 	if (padsize && skb->len>=padpos+padsize) {
1316 		memmove(skb->data + padsize, skb->data, padpos);
1317 		skb_pull(skb, padsize);
1318 		return padsize;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static void
ath5k_receive_frame(struct ath5k_softc * sc,struct sk_buff * skb,struct ath5k_rx_status * rs)1325 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1326 		    struct ath5k_rx_status *rs)
1327 {
1328 	struct ieee80211_rx_status *rxs;
1329 
1330 	ath5k_remove_padding(skb);
1331 
1332 	rxs = IEEE80211_SKB_RXCB(skb);
1333 
1334 	rxs->flag = 0;
1335 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1336 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1337 
1338 	/*
1339 	 * always extend the mac timestamp, since this information is
1340 	 * also needed for proper IBSS merging.
1341 	 *
1342 	 * XXX: it might be too late to do it here, since rs_tstamp is
1343 	 * 15bit only. that means TSF extension has to be done within
1344 	 * 32768usec (about 32ms). it might be necessary to move this to
1345 	 * the interrupt handler, like it is done in madwifi.
1346 	 *
1347 	 * Unfortunately we don't know when the hardware takes the rx
1348 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1349 	 * The only thing we know is that it is hardware specific...
1350 	 * On AR5213 it seems the rx timestamp is at the end of the
1351 	 * frame, but i'm not sure.
1352 	 *
1353 	 * NOTE: mac80211 defines mactime at the beginning of the first
1354 	 * data symbol. Since we don't have any time references it's
1355 	 * impossible to comply to that. This affects IBSS merge only
1356 	 * right now, so it's not too bad...
1357 	 */
1358 	rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1359 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1360 
1361 	rxs->freq = sc->curchan->center_freq;
1362 	rxs->band = sc->curchan->band;
1363 
1364 	rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1365 
1366 	rxs->antenna = rs->rs_antenna;
1367 
1368 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1369 		sc->stats.antenna_rx[rs->rs_antenna]++;
1370 	else
1371 		sc->stats.antenna_rx[0]++; /* invalid */
1372 
1373 	rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1374 	rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1375 
1376 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1377 	    sc->sbands[sc->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1378 		rxs->flag |= RX_FLAG_SHORTPRE;
1379 
1380 	trace_ath5k_rx(sc, skb);
1381 
1382 	ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1383 
1384 	/* check beacons in IBSS mode */
1385 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
1386 		ath5k_check_ibss_tsf(sc, skb, rxs);
1387 
1388 	ieee80211_rx(sc->hw, skb);
1389 }
1390 
1391 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1392  *
1393  * Check if we want to further process this frame or not. Also update
1394  * statistics. Return true if we want this frame, false if not.
1395  */
1396 static bool
ath5k_receive_frame_ok(struct ath5k_softc * sc,struct ath5k_rx_status * rs)1397 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1398 {
1399 	sc->stats.rx_all_count++;
1400 	sc->stats.rx_bytes_count += rs->rs_datalen;
1401 
1402 	if (unlikely(rs->rs_status)) {
1403 		if (rs->rs_status & AR5K_RXERR_CRC)
1404 			sc->stats.rxerr_crc++;
1405 		if (rs->rs_status & AR5K_RXERR_FIFO)
1406 			sc->stats.rxerr_fifo++;
1407 		if (rs->rs_status & AR5K_RXERR_PHY) {
1408 			sc->stats.rxerr_phy++;
1409 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1410 				sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1411 			return false;
1412 		}
1413 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1414 			/*
1415 			 * Decrypt error.  If the error occurred
1416 			 * because there was no hardware key, then
1417 			 * let the frame through so the upper layers
1418 			 * can process it.  This is necessary for 5210
1419 			 * parts which have no way to setup a ``clear''
1420 			 * key cache entry.
1421 			 *
1422 			 * XXX do key cache faulting
1423 			 */
1424 			sc->stats.rxerr_decrypt++;
1425 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1426 			    !(rs->rs_status & AR5K_RXERR_CRC))
1427 				return true;
1428 		}
1429 		if (rs->rs_status & AR5K_RXERR_MIC) {
1430 			sc->stats.rxerr_mic++;
1431 			return true;
1432 		}
1433 
1434 		/* reject any frames with non-crypto errors */
1435 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1436 			return false;
1437 	}
1438 
1439 	if (unlikely(rs->rs_more)) {
1440 		sc->stats.rxerr_jumbo++;
1441 		return false;
1442 	}
1443 	return true;
1444 }
1445 
1446 static void
ath5k_tasklet_rx(unsigned long data)1447 ath5k_tasklet_rx(unsigned long data)
1448 {
1449 	struct ath5k_rx_status rs = {};
1450 	struct sk_buff *skb, *next_skb;
1451 	dma_addr_t next_skb_addr;
1452 	struct ath5k_softc *sc = (void *)data;
1453 	struct ath5k_hw *ah = sc->ah;
1454 	struct ath_common *common = ath5k_hw_common(ah);
1455 	struct ath5k_buf *bf;
1456 	struct ath5k_desc *ds;
1457 	int ret;
1458 
1459 	spin_lock(&sc->rxbuflock);
1460 	if (list_empty(&sc->rxbuf)) {
1461 		ATH5K_WARN(sc, "empty rx buf pool\n");
1462 		goto unlock;
1463 	}
1464 	do {
1465 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1466 		BUG_ON(bf->skb == NULL);
1467 		skb = bf->skb;
1468 		ds = bf->desc;
1469 
1470 		/* bail if HW is still using self-linked descriptor */
1471 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1472 			break;
1473 
1474 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1475 		if (unlikely(ret == -EINPROGRESS))
1476 			break;
1477 		else if (unlikely(ret)) {
1478 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1479 			sc->stats.rxerr_proc++;
1480 			break;
1481 		}
1482 
1483 		if (ath5k_receive_frame_ok(sc, &rs)) {
1484 			next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1485 
1486 			/*
1487 			 * If we can't replace bf->skb with a new skb under
1488 			 * memory pressure, just skip this packet
1489 			 */
1490 			if (!next_skb)
1491 				goto next;
1492 
1493 			dma_unmap_single(sc->dev, bf->skbaddr,
1494 					 common->rx_bufsize,
1495 					 DMA_FROM_DEVICE);
1496 
1497 			skb_put(skb, rs.rs_datalen);
1498 
1499 			ath5k_receive_frame(sc, skb, &rs);
1500 
1501 			bf->skb = next_skb;
1502 			bf->skbaddr = next_skb_addr;
1503 		}
1504 next:
1505 		list_move_tail(&bf->list, &sc->rxbuf);
1506 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1507 unlock:
1508 	spin_unlock(&sc->rxbuflock);
1509 }
1510 
1511 
1512 /*************\
1513 * TX Handling *
1514 \*************/
1515 
1516 void
ath5k_tx_queue(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath5k_txq * txq)1517 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1518 	       struct ath5k_txq *txq)
1519 {
1520 	struct ath5k_softc *sc = hw->priv;
1521 	struct ath5k_buf *bf;
1522 	unsigned long flags;
1523 	int padsize;
1524 
1525 	trace_ath5k_tx(sc, skb, txq);
1526 
1527 	/*
1528 	 * The hardware expects the header padded to 4 byte boundaries.
1529 	 * If this is not the case, we add the padding after the header.
1530 	 */
1531 	padsize = ath5k_add_padding(skb);
1532 	if (padsize < 0) {
1533 		ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1534 			  " headroom to pad");
1535 		goto drop_packet;
1536 	}
1537 
1538 	if (txq->txq_len >= txq->txq_max)
1539 		ieee80211_stop_queue(hw, txq->qnum);
1540 
1541 	spin_lock_irqsave(&sc->txbuflock, flags);
1542 	if (list_empty(&sc->txbuf)) {
1543 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1544 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1545 		ieee80211_stop_queues(hw);
1546 		goto drop_packet;
1547 	}
1548 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1549 	list_del(&bf->list);
1550 	sc->txbuf_len--;
1551 	if (list_empty(&sc->txbuf))
1552 		ieee80211_stop_queues(hw);
1553 	spin_unlock_irqrestore(&sc->txbuflock, flags);
1554 
1555 	bf->skb = skb;
1556 
1557 	if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1558 		bf->skb = NULL;
1559 		spin_lock_irqsave(&sc->txbuflock, flags);
1560 		list_add_tail(&bf->list, &sc->txbuf);
1561 		sc->txbuf_len++;
1562 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1563 		goto drop_packet;
1564 	}
1565 	return;
1566 
1567 drop_packet:
1568 	dev_kfree_skb_any(skb);
1569 }
1570 
1571 static void
ath5k_tx_frame_completed(struct ath5k_softc * sc,struct sk_buff * skb,struct ath5k_txq * txq,struct ath5k_tx_status * ts)1572 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1573 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1574 {
1575 	struct ieee80211_tx_info *info;
1576 	int i;
1577 
1578 	sc->stats.tx_all_count++;
1579 	sc->stats.tx_bytes_count += skb->len;
1580 	info = IEEE80211_SKB_CB(skb);
1581 
1582 	ieee80211_tx_info_clear_status(info);
1583 	for (i = 0; i < 4; i++) {
1584 		struct ieee80211_tx_rate *r =
1585 			&info->status.rates[i];
1586 
1587 		if (ts->ts_rate[i]) {
1588 			r->idx = ath5k_hw_to_driver_rix(sc, ts->ts_rate[i]);
1589 			r->count = ts->ts_retry[i];
1590 		} else {
1591 			r->idx = -1;
1592 			r->count = 0;
1593 		}
1594 	}
1595 
1596 	/* count the successful attempt as well */
1597 	info->status.rates[ts->ts_final_idx].count++;
1598 
1599 	if (unlikely(ts->ts_status)) {
1600 		sc->stats.ack_fail++;
1601 		if (ts->ts_status & AR5K_TXERR_FILT) {
1602 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1603 			sc->stats.txerr_filt++;
1604 		}
1605 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1606 			sc->stats.txerr_retry++;
1607 		if (ts->ts_status & AR5K_TXERR_FIFO)
1608 			sc->stats.txerr_fifo++;
1609 	} else {
1610 		info->flags |= IEEE80211_TX_STAT_ACK;
1611 		info->status.ack_signal = ts->ts_rssi;
1612 	}
1613 
1614 	/*
1615 	* Remove MAC header padding before giving the frame
1616 	* back to mac80211.
1617 	*/
1618 	ath5k_remove_padding(skb);
1619 
1620 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1621 		sc->stats.antenna_tx[ts->ts_antenna]++;
1622 	else
1623 		sc->stats.antenna_tx[0]++; /* invalid */
1624 
1625 	trace_ath5k_tx_complete(sc, skb, txq, ts);
1626 	ieee80211_tx_status(sc->hw, skb);
1627 }
1628 
1629 static void
ath5k_tx_processq(struct ath5k_softc * sc,struct ath5k_txq * txq)1630 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1631 {
1632 	struct ath5k_tx_status ts = {};
1633 	struct ath5k_buf *bf, *bf0;
1634 	struct ath5k_desc *ds;
1635 	struct sk_buff *skb;
1636 	int ret;
1637 
1638 	spin_lock(&txq->lock);
1639 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1640 
1641 		txq->txq_poll_mark = false;
1642 
1643 		/* skb might already have been processed last time. */
1644 		if (bf->skb != NULL) {
1645 			ds = bf->desc;
1646 
1647 			ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1648 			if (unlikely(ret == -EINPROGRESS))
1649 				break;
1650 			else if (unlikely(ret)) {
1651 				ATH5K_ERR(sc,
1652 					"error %d while processing "
1653 					"queue %u\n", ret, txq->qnum);
1654 				break;
1655 			}
1656 
1657 			skb = bf->skb;
1658 			bf->skb = NULL;
1659 
1660 			dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1661 					DMA_TO_DEVICE);
1662 			ath5k_tx_frame_completed(sc, skb, txq, &ts);
1663 		}
1664 
1665 		/*
1666 		 * It's possible that the hardware can say the buffer is
1667 		 * completed when it hasn't yet loaded the ds_link from
1668 		 * host memory and moved on.
1669 		 * Always keep the last descriptor to avoid HW races...
1670 		 */
1671 		if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1672 			spin_lock(&sc->txbuflock);
1673 			list_move_tail(&bf->list, &sc->txbuf);
1674 			sc->txbuf_len++;
1675 			txq->txq_len--;
1676 			spin_unlock(&sc->txbuflock);
1677 		}
1678 	}
1679 	spin_unlock(&txq->lock);
1680 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1681 		ieee80211_wake_queue(sc->hw, txq->qnum);
1682 }
1683 
1684 static void
ath5k_tasklet_tx(unsigned long data)1685 ath5k_tasklet_tx(unsigned long data)
1686 {
1687 	int i;
1688 	struct ath5k_softc *sc = (void *)data;
1689 
1690 	for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1691 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1692 			ath5k_tx_processq(sc, &sc->txqs[i]);
1693 }
1694 
1695 
1696 /*****************\
1697 * Beacon handling *
1698 \*****************/
1699 
1700 /*
1701  * Setup the beacon frame for transmit.
1702  */
1703 static int
ath5k_beacon_setup(struct ath5k_softc * sc,struct ath5k_buf * bf)1704 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1705 {
1706 	struct sk_buff *skb = bf->skb;
1707 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1708 	struct ath5k_hw *ah = sc->ah;
1709 	struct ath5k_desc *ds;
1710 	int ret = 0;
1711 	u8 antenna;
1712 	u32 flags;
1713 	const int padsize = 0;
1714 
1715 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1716 			DMA_TO_DEVICE);
1717 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1718 			"skbaddr %llx\n", skb, skb->data, skb->len,
1719 			(unsigned long long)bf->skbaddr);
1720 
1721 	if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1722 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1723 		return -EIO;
1724 	}
1725 
1726 	ds = bf->desc;
1727 	antenna = ah->ah_tx_ant;
1728 
1729 	flags = AR5K_TXDESC_NOACK;
1730 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1731 		ds->ds_link = bf->daddr;	/* self-linked */
1732 		flags |= AR5K_TXDESC_VEOL;
1733 	} else
1734 		ds->ds_link = 0;
1735 
1736 	/*
1737 	 * If we use multiple antennas on AP and use
1738 	 * the Sectored AP scenario, switch antenna every
1739 	 * 4 beacons to make sure everybody hears our AP.
1740 	 * When a client tries to associate, hw will keep
1741 	 * track of the tx antenna to be used for this client
1742 	 * automaticaly, based on ACKed packets.
1743 	 *
1744 	 * Note: AP still listens and transmits RTS on the
1745 	 * default antenna which is supposed to be an omni.
1746 	 *
1747 	 * Note2: On sectored scenarios it's possible to have
1748 	 * multiple antennas (1 omni -- the default -- and 14
1749 	 * sectors), so if we choose to actually support this
1750 	 * mode, we need to allow the user to set how many antennas
1751 	 * we have and tweak the code below to send beacons
1752 	 * on all of them.
1753 	 */
1754 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1755 		antenna = sc->bsent & 4 ? 2 : 1;
1756 
1757 
1758 	/* FIXME: If we are in g mode and rate is a CCK rate
1759 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1760 	 * from tx power (value is in dB units already) */
1761 	ds->ds_data = bf->skbaddr;
1762 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1763 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1764 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1765 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1766 			1, AR5K_TXKEYIX_INVALID,
1767 			antenna, flags, 0, 0);
1768 	if (ret)
1769 		goto err_unmap;
1770 
1771 	return 0;
1772 err_unmap:
1773 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1774 	return ret;
1775 }
1776 
1777 /*
1778  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1779  * this is called only once at config_bss time, for AP we do it every
1780  * SWBA interrupt so that the TIM will reflect buffered frames.
1781  *
1782  * Called with the beacon lock.
1783  */
1784 int
ath5k_beacon_update(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1785 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1786 {
1787 	int ret;
1788 	struct ath5k_softc *sc = hw->priv;
1789 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1790 	struct sk_buff *skb;
1791 
1792 	if (WARN_ON(!vif)) {
1793 		ret = -EINVAL;
1794 		goto out;
1795 	}
1796 
1797 	skb = ieee80211_beacon_get(hw, vif);
1798 
1799 	if (!skb) {
1800 		ret = -ENOMEM;
1801 		goto out;
1802 	}
1803 
1804 	ath5k_txbuf_free_skb(sc, avf->bbuf);
1805 	avf->bbuf->skb = skb;
1806 	ret = ath5k_beacon_setup(sc, avf->bbuf);
1807 	if (ret)
1808 		avf->bbuf->skb = NULL;
1809 out:
1810 	return ret;
1811 }
1812 
1813 /*
1814  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1815  * frame contents are done as needed and the slot time is
1816  * also adjusted based on current state.
1817  *
1818  * This is called from software irq context (beacontq tasklets)
1819  * or user context from ath5k_beacon_config.
1820  */
1821 static void
ath5k_beacon_send(struct ath5k_softc * sc)1822 ath5k_beacon_send(struct ath5k_softc *sc)
1823 {
1824 	struct ath5k_hw *ah = sc->ah;
1825 	struct ieee80211_vif *vif;
1826 	struct ath5k_vif *avf;
1827 	struct ath5k_buf *bf;
1828 	struct sk_buff *skb;
1829 
1830 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1831 
1832 	/*
1833 	 * Check if the previous beacon has gone out.  If
1834 	 * not, don't don't try to post another: skip this
1835 	 * period and wait for the next.  Missed beacons
1836 	 * indicate a problem and should not occur.  If we
1837 	 * miss too many consecutive beacons reset the device.
1838 	 */
1839 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1840 		sc->bmisscount++;
1841 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1842 			"missed %u consecutive beacons\n", sc->bmisscount);
1843 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
1844 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1845 				"stuck beacon time (%u missed)\n",
1846 				sc->bmisscount);
1847 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1848 				  "stuck beacon, resetting\n");
1849 			ieee80211_queue_work(sc->hw, &sc->reset_work);
1850 		}
1851 		return;
1852 	}
1853 	if (unlikely(sc->bmisscount != 0)) {
1854 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1855 			"resume beacon xmit after %u misses\n",
1856 			sc->bmisscount);
1857 		sc->bmisscount = 0;
1858 	}
1859 
1860 	if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1861 			sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1862 		u64 tsf = ath5k_hw_get_tsf64(ah);
1863 		u32 tsftu = TSF_TO_TU(tsf);
1864 		int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1865 		vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1866 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1867 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1868 			(unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1869 	} else /* only one interface */
1870 		vif = sc->bslot[0];
1871 
1872 	if (!vif)
1873 		return;
1874 
1875 	avf = (void *)vif->drv_priv;
1876 	bf = avf->bbuf;
1877 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1878 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
1879 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1880 		return;
1881 	}
1882 
1883 	/*
1884 	 * Stop any current dma and put the new frame on the queue.
1885 	 * This should never fail since we check above that no frames
1886 	 * are still pending on the queue.
1887 	 */
1888 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1889 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1890 		/* NB: hw still stops DMA, so proceed */
1891 	}
1892 
1893 	/* refresh the beacon for AP or MESH mode */
1894 	if (sc->opmode == NL80211_IFTYPE_AP ||
1895 			sc->opmode == NL80211_IFTYPE_MESH_POINT)
1896 		ath5k_beacon_update(sc->hw, vif);
1897 
1898 	trace_ath5k_tx(sc, bf->skb, &sc->txqs[sc->bhalq]);
1899 
1900 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1901 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
1902 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1903 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1904 
1905 	skb = ieee80211_get_buffered_bc(sc->hw, vif);
1906 	while (skb) {
1907 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
1908 		skb = ieee80211_get_buffered_bc(sc->hw, vif);
1909 	}
1910 
1911 	sc->bsent++;
1912 }
1913 
1914 /**
1915  * ath5k_beacon_update_timers - update beacon timers
1916  *
1917  * @sc: struct ath5k_softc pointer we are operating on
1918  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1919  *          beacon timer update based on the current HW TSF.
1920  *
1921  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1922  * of a received beacon or the current local hardware TSF and write it to the
1923  * beacon timer registers.
1924  *
1925  * This is called in a variety of situations, e.g. when a beacon is received,
1926  * when a TSF update has been detected, but also when an new IBSS is created or
1927  * when we otherwise know we have to update the timers, but we keep it in this
1928  * function to have it all together in one place.
1929  */
1930 void
ath5k_beacon_update_timers(struct ath5k_softc * sc,u64 bc_tsf)1931 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1932 {
1933 	struct ath5k_hw *ah = sc->ah;
1934 	u32 nexttbtt, intval, hw_tu, bc_tu;
1935 	u64 hw_tsf;
1936 
1937 	intval = sc->bintval & AR5K_BEACON_PERIOD;
1938 	if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1939 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1940 		if (intval < 15)
1941 			ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1942 				   intval);
1943 	}
1944 	if (WARN_ON(!intval))
1945 		return;
1946 
1947 	/* beacon TSF converted to TU */
1948 	bc_tu = TSF_TO_TU(bc_tsf);
1949 
1950 	/* current TSF converted to TU */
1951 	hw_tsf = ath5k_hw_get_tsf64(ah);
1952 	hw_tu = TSF_TO_TU(hw_tsf);
1953 
1954 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1955 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1956 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1957 	 * configuration we need to make sure it is bigger than that. */
1958 
1959 	if (bc_tsf == -1) {
1960 		/*
1961 		 * no beacons received, called internally.
1962 		 * just need to refresh timers based on HW TSF.
1963 		 */
1964 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1965 	} else if (bc_tsf == 0) {
1966 		/*
1967 		 * no beacon received, probably called by ath5k_reset_tsf().
1968 		 * reset TSF to start with 0.
1969 		 */
1970 		nexttbtt = intval;
1971 		intval |= AR5K_BEACON_RESET_TSF;
1972 	} else if (bc_tsf > hw_tsf) {
1973 		/*
1974 		 * beacon received, SW merge happened but HW TSF not yet updated.
1975 		 * not possible to reconfigure timers yet, but next time we
1976 		 * receive a beacon with the same BSSID, the hardware will
1977 		 * automatically update the TSF and then we need to reconfigure
1978 		 * the timers.
1979 		 */
1980 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1981 			"need to wait for HW TSF sync\n");
1982 		return;
1983 	} else {
1984 		/*
1985 		 * most important case for beacon synchronization between STA.
1986 		 *
1987 		 * beacon received and HW TSF has been already updated by HW.
1988 		 * update next TBTT based on the TSF of the beacon, but make
1989 		 * sure it is ahead of our local TSF timer.
1990 		 */
1991 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
1992 	}
1993 #undef FUDGE
1994 
1995 	sc->nexttbtt = nexttbtt;
1996 
1997 	intval |= AR5K_BEACON_ENA;
1998 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
1999 
2000 	/*
2001 	 * debugging output last in order to preserve the time critical aspect
2002 	 * of this function
2003 	 */
2004 	if (bc_tsf == -1)
2005 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2006 			"reconfigured timers based on HW TSF\n");
2007 	else if (bc_tsf == 0)
2008 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2009 			"reset HW TSF and timers\n");
2010 	else
2011 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2012 			"updated timers based on beacon TSF\n");
2013 
2014 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2015 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2016 			  (unsigned long long) bc_tsf,
2017 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2018 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2019 		intval & AR5K_BEACON_PERIOD,
2020 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2021 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2022 }
2023 
2024 /**
2025  * ath5k_beacon_config - Configure the beacon queues and interrupts
2026  *
2027  * @sc: struct ath5k_softc pointer we are operating on
2028  *
2029  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2030  * interrupts to detect TSF updates only.
2031  */
2032 void
ath5k_beacon_config(struct ath5k_softc * sc)2033 ath5k_beacon_config(struct ath5k_softc *sc)
2034 {
2035 	struct ath5k_hw *ah = sc->ah;
2036 	unsigned long flags;
2037 
2038 	spin_lock_irqsave(&sc->block, flags);
2039 	sc->bmisscount = 0;
2040 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2041 
2042 	if (sc->enable_beacon) {
2043 		/*
2044 		 * In IBSS mode we use a self-linked tx descriptor and let the
2045 		 * hardware send the beacons automatically. We have to load it
2046 		 * only once here.
2047 		 * We use the SWBA interrupt only to keep track of the beacon
2048 		 * timers in order to detect automatic TSF updates.
2049 		 */
2050 		ath5k_beaconq_config(sc);
2051 
2052 		sc->imask |= AR5K_INT_SWBA;
2053 
2054 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2055 			if (ath5k_hw_hasveol(ah))
2056 				ath5k_beacon_send(sc);
2057 		} else
2058 			ath5k_beacon_update_timers(sc, -1);
2059 	} else {
2060 		ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2061 	}
2062 
2063 	ath5k_hw_set_imr(ah, sc->imask);
2064 	mmiowb();
2065 	spin_unlock_irqrestore(&sc->block, flags);
2066 }
2067 
ath5k_tasklet_beacon(unsigned long data)2068 static void ath5k_tasklet_beacon(unsigned long data)
2069 {
2070 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2071 
2072 	/*
2073 	 * Software beacon alert--time to send a beacon.
2074 	 *
2075 	 * In IBSS mode we use this interrupt just to
2076 	 * keep track of the next TBTT (target beacon
2077 	 * transmission time) in order to detect wether
2078 	 * automatic TSF updates happened.
2079 	 */
2080 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2081 		/* XXX: only if VEOL suppported */
2082 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2083 		sc->nexttbtt += sc->bintval;
2084 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2085 				"SWBA nexttbtt: %x hw_tu: %x "
2086 				"TSF: %llx\n",
2087 				sc->nexttbtt,
2088 				TSF_TO_TU(tsf),
2089 				(unsigned long long) tsf);
2090 	} else {
2091 		spin_lock(&sc->block);
2092 		ath5k_beacon_send(sc);
2093 		spin_unlock(&sc->block);
2094 	}
2095 }
2096 
2097 
2098 /********************\
2099 * Interrupt handling *
2100 \********************/
2101 
2102 static void
ath5k_intr_calibration_poll(struct ath5k_hw * ah)2103 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2104 {
2105 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2106 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2107 		/* run ANI only when full calibration is not active */
2108 		ah->ah_cal_next_ani = jiffies +
2109 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2110 		tasklet_schedule(&ah->ah_sc->ani_tasklet);
2111 
2112 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2113 		ah->ah_cal_next_full = jiffies +
2114 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2115 		tasklet_schedule(&ah->ah_sc->calib);
2116 	}
2117 	/* we could use SWI to generate enough interrupts to meet our
2118 	 * calibration interval requirements, if necessary:
2119 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2120 }
2121 
2122 irqreturn_t
ath5k_intr(int irq,void * dev_id)2123 ath5k_intr(int irq, void *dev_id)
2124 {
2125 	struct ath5k_softc *sc = dev_id;
2126 	struct ath5k_hw *ah = sc->ah;
2127 	enum ath5k_int status;
2128 	unsigned int counter = 1000;
2129 
2130 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2131 		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2132 				!ath5k_hw_is_intr_pending(ah))))
2133 		return IRQ_NONE;
2134 
2135 	do {
2136 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2137 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2138 				status, sc->imask);
2139 		if (unlikely(status & AR5K_INT_FATAL)) {
2140 			/*
2141 			 * Fatal errors are unrecoverable.
2142 			 * Typically these are caused by DMA errors.
2143 			 */
2144 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2145 				  "fatal int, resetting\n");
2146 			ieee80211_queue_work(sc->hw, &sc->reset_work);
2147 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2148 			/*
2149 			 * Receive buffers are full. Either the bus is busy or
2150 			 * the CPU is not fast enough to process all received
2151 			 * frames.
2152 			 * Older chipsets need a reset to come out of this
2153 			 * condition, but we treat it as RX for newer chips.
2154 			 * We don't know exactly which versions need a reset -
2155 			 * this guess is copied from the HAL.
2156 			 */
2157 			sc->stats.rxorn_intr++;
2158 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2159 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2160 					  "rx overrun, resetting\n");
2161 				ieee80211_queue_work(sc->hw, &sc->reset_work);
2162 			}
2163 			else
2164 				tasklet_schedule(&sc->rxtq);
2165 		} else {
2166 			if (status & AR5K_INT_SWBA) {
2167 				tasklet_hi_schedule(&sc->beacontq);
2168 			}
2169 			if (status & AR5K_INT_RXEOL) {
2170 				/*
2171 				* NB: the hardware should re-read the link when
2172 				*     RXE bit is written, but it doesn't work at
2173 				*     least on older hardware revs.
2174 				*/
2175 				sc->stats.rxeol_intr++;
2176 			}
2177 			if (status & AR5K_INT_TXURN) {
2178 				/* bump tx trigger level */
2179 				ath5k_hw_update_tx_triglevel(ah, true);
2180 			}
2181 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2182 				tasklet_schedule(&sc->rxtq);
2183 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2184 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2185 				tasklet_schedule(&sc->txtq);
2186 			if (status & AR5K_INT_BMISS) {
2187 				/* TODO */
2188 			}
2189 			if (status & AR5K_INT_MIB) {
2190 				sc->stats.mib_intr++;
2191 				ath5k_hw_update_mib_counters(ah);
2192 				ath5k_ani_mib_intr(ah);
2193 			}
2194 			if (status & AR5K_INT_GPIO)
2195 				tasklet_schedule(&sc->rf_kill.toggleq);
2196 
2197 		}
2198 
2199 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2200 			break;
2201 
2202 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2203 
2204 	if (unlikely(!counter))
2205 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2206 
2207 	ath5k_intr_calibration_poll(ah);
2208 
2209 	return IRQ_HANDLED;
2210 }
2211 
2212 /*
2213  * Periodically recalibrate the PHY to account
2214  * for temperature/environment changes.
2215  */
2216 static void
ath5k_tasklet_calibrate(unsigned long data)2217 ath5k_tasklet_calibrate(unsigned long data)
2218 {
2219 	struct ath5k_softc *sc = (void *)data;
2220 	struct ath5k_hw *ah = sc->ah;
2221 
2222 	/* Only full calibration for now */
2223 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2224 
2225 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2226 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2227 		sc->curchan->hw_value);
2228 
2229 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2230 		/*
2231 		 * Rfgain is out of bounds, reset the chip
2232 		 * to load new gain values.
2233 		 */
2234 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2235 		ieee80211_queue_work(sc->hw, &sc->reset_work);
2236 	}
2237 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2238 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2239 			ieee80211_frequency_to_channel(
2240 				sc->curchan->center_freq));
2241 
2242 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2243 	 * doesn't.
2244 	 * TODO: We should stop TX here, so that it doesn't interfere.
2245 	 * Note that stopping the queues is not enough to stop TX! */
2246 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2247 		ah->ah_cal_next_nf = jiffies +
2248 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2249 		ath5k_hw_update_noise_floor(ah);
2250 	}
2251 
2252 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2253 }
2254 
2255 
2256 static void
ath5k_tasklet_ani(unsigned long data)2257 ath5k_tasklet_ani(unsigned long data)
2258 {
2259 	struct ath5k_softc *sc = (void *)data;
2260 	struct ath5k_hw *ah = sc->ah;
2261 
2262 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2263 	ath5k_ani_calibration(ah);
2264 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2265 }
2266 
2267 
2268 static void
ath5k_tx_complete_poll_work(struct work_struct * work)2269 ath5k_tx_complete_poll_work(struct work_struct *work)
2270 {
2271 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2272 			tx_complete_work.work);
2273 	struct ath5k_txq *txq;
2274 	int i;
2275 	bool needreset = false;
2276 
2277 	mutex_lock(&sc->lock);
2278 
2279 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2280 		if (sc->txqs[i].setup) {
2281 			txq = &sc->txqs[i];
2282 			spin_lock_bh(&txq->lock);
2283 			if (txq->txq_len > 1) {
2284 				if (txq->txq_poll_mark) {
2285 					ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2286 						  "TX queue stuck %d\n",
2287 						  txq->qnum);
2288 					needreset = true;
2289 					txq->txq_stuck++;
2290 					spin_unlock_bh(&txq->lock);
2291 					break;
2292 				} else {
2293 					txq->txq_poll_mark = true;
2294 				}
2295 			}
2296 			spin_unlock_bh(&txq->lock);
2297 		}
2298 	}
2299 
2300 	if (needreset) {
2301 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2302 			  "TX queues stuck, resetting\n");
2303 		ath5k_reset(sc, NULL, true);
2304 	}
2305 
2306 	mutex_unlock(&sc->lock);
2307 
2308 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2309 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2310 }
2311 
2312 
2313 /*************************\
2314 * Initialization routines *
2315 \*************************/
2316 
2317 int
ath5k_init_softc(struct ath5k_softc * sc,const struct ath_bus_ops * bus_ops)2318 ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2319 {
2320 	struct ieee80211_hw *hw = sc->hw;
2321 	struct ath_common *common;
2322 	int ret;
2323 	int csz;
2324 
2325 	/* Initialize driver private data */
2326 	SET_IEEE80211_DEV(hw, sc->dev);
2327 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2328 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2329 			IEEE80211_HW_SIGNAL_DBM |
2330 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2331 
2332 	hw->wiphy->interface_modes =
2333 		BIT(NL80211_IFTYPE_AP) |
2334 		BIT(NL80211_IFTYPE_STATION) |
2335 		BIT(NL80211_IFTYPE_ADHOC) |
2336 		BIT(NL80211_IFTYPE_MESH_POINT);
2337 
2338 	/* both antennas can be configured as RX or TX */
2339 	hw->wiphy->available_antennas_tx = 0x3;
2340 	hw->wiphy->available_antennas_rx = 0x3;
2341 
2342 	hw->extra_tx_headroom = 2;
2343 	hw->channel_change_time = 5000;
2344 
2345 	/*
2346 	 * Mark the device as detached to avoid processing
2347 	 * interrupts until setup is complete.
2348 	 */
2349 	__set_bit(ATH_STAT_INVALID, sc->status);
2350 
2351 	sc->opmode = NL80211_IFTYPE_STATION;
2352 	sc->bintval = 1000;
2353 	mutex_init(&sc->lock);
2354 	spin_lock_init(&sc->rxbuflock);
2355 	spin_lock_init(&sc->txbuflock);
2356 	spin_lock_init(&sc->block);
2357 
2358 
2359 	/* Setup interrupt handler */
2360 	ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2361 	if (ret) {
2362 		ATH5K_ERR(sc, "request_irq failed\n");
2363 		goto err;
2364 	}
2365 
2366 	/* If we passed the test, malloc an ath5k_hw struct */
2367 	sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2368 	if (!sc->ah) {
2369 		ret = -ENOMEM;
2370 		ATH5K_ERR(sc, "out of memory\n");
2371 		goto err_irq;
2372 	}
2373 
2374 	sc->ah->ah_sc = sc;
2375 	sc->ah->ah_iobase = sc->iobase;
2376 	common = ath5k_hw_common(sc->ah);
2377 	common->ops = &ath5k_common_ops;
2378 	common->bus_ops = bus_ops;
2379 	common->ah = sc->ah;
2380 	common->hw = hw;
2381 	common->priv = sc;
2382 
2383 	/*
2384 	 * Cache line size is used to size and align various
2385 	 * structures used to communicate with the hardware.
2386 	 */
2387 	ath5k_read_cachesize(common, &csz);
2388 	common->cachelsz = csz << 2; /* convert to bytes */
2389 
2390 	spin_lock_init(&common->cc_lock);
2391 
2392 	/* Initialize device */
2393 	ret = ath5k_hw_init(sc);
2394 	if (ret)
2395 		goto err_free_ah;
2396 
2397 	/* set up multi-rate retry capabilities */
2398 	if (sc->ah->ah_version == AR5K_AR5212) {
2399 		hw->max_rates = 4;
2400 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2401 					 AR5K_INIT_RETRY_LONG);
2402 	}
2403 
2404 	hw->vif_data_size = sizeof(struct ath5k_vif);
2405 
2406 	/* Finish private driver data initialization */
2407 	ret = ath5k_init(hw);
2408 	if (ret)
2409 		goto err_ah;
2410 
2411 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2412 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2413 					sc->ah->ah_mac_srev,
2414 					sc->ah->ah_phy_revision);
2415 
2416 	if (!sc->ah->ah_single_chip) {
2417 		/* Single chip radio (!RF5111) */
2418 		if (sc->ah->ah_radio_5ghz_revision &&
2419 			!sc->ah->ah_radio_2ghz_revision) {
2420 			/* No 5GHz support -> report 2GHz radio */
2421 			if (!test_bit(AR5K_MODE_11A,
2422 				sc->ah->ah_capabilities.cap_mode)) {
2423 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2424 					ath5k_chip_name(AR5K_VERSION_RAD,
2425 						sc->ah->ah_radio_5ghz_revision),
2426 						sc->ah->ah_radio_5ghz_revision);
2427 			/* No 2GHz support (5110 and some
2428 			 * 5Ghz only cards) -> report 5Ghz radio */
2429 			} else if (!test_bit(AR5K_MODE_11B,
2430 				sc->ah->ah_capabilities.cap_mode)) {
2431 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2432 					ath5k_chip_name(AR5K_VERSION_RAD,
2433 						sc->ah->ah_radio_5ghz_revision),
2434 						sc->ah->ah_radio_5ghz_revision);
2435 			/* Multiband radio */
2436 			} else {
2437 				ATH5K_INFO(sc, "RF%s multiband radio found"
2438 					" (0x%x)\n",
2439 					ath5k_chip_name(AR5K_VERSION_RAD,
2440 						sc->ah->ah_radio_5ghz_revision),
2441 						sc->ah->ah_radio_5ghz_revision);
2442 			}
2443 		}
2444 		/* Multi chip radio (RF5111 - RF2111) ->
2445 		 * report both 2GHz/5GHz radios */
2446 		else if (sc->ah->ah_radio_5ghz_revision &&
2447 				sc->ah->ah_radio_2ghz_revision){
2448 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2449 				ath5k_chip_name(AR5K_VERSION_RAD,
2450 					sc->ah->ah_radio_5ghz_revision),
2451 					sc->ah->ah_radio_5ghz_revision);
2452 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2453 				ath5k_chip_name(AR5K_VERSION_RAD,
2454 					sc->ah->ah_radio_2ghz_revision),
2455 					sc->ah->ah_radio_2ghz_revision);
2456 		}
2457 	}
2458 
2459 	ath5k_debug_init_device(sc);
2460 
2461 	/* ready to process interrupts */
2462 	__clear_bit(ATH_STAT_INVALID, sc->status);
2463 
2464 	return 0;
2465 err_ah:
2466 	ath5k_hw_deinit(sc->ah);
2467 err_free_ah:
2468 	kfree(sc->ah);
2469 err_irq:
2470 	free_irq(sc->irq, sc);
2471 err:
2472 	return ret;
2473 }
2474 
2475 static int
ath5k_stop_locked(struct ath5k_softc * sc)2476 ath5k_stop_locked(struct ath5k_softc *sc)
2477 {
2478 	struct ath5k_hw *ah = sc->ah;
2479 
2480 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2481 			test_bit(ATH_STAT_INVALID, sc->status));
2482 
2483 	/*
2484 	 * Shutdown the hardware and driver:
2485 	 *    stop output from above
2486 	 *    disable interrupts
2487 	 *    turn off timers
2488 	 *    turn off the radio
2489 	 *    clear transmit machinery
2490 	 *    clear receive machinery
2491 	 *    drain and release tx queues
2492 	 *    reclaim beacon resources
2493 	 *    power down hardware
2494 	 *
2495 	 * Note that some of this work is not possible if the
2496 	 * hardware is gone (invalid).
2497 	 */
2498 	ieee80211_stop_queues(sc->hw);
2499 
2500 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2501 		ath5k_led_off(sc);
2502 		ath5k_hw_set_imr(ah, 0);
2503 		synchronize_irq(sc->irq);
2504 		ath5k_rx_stop(sc);
2505 		ath5k_hw_dma_stop(ah);
2506 		ath5k_drain_tx_buffs(sc);
2507 		ath5k_hw_phy_disable(ah);
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 int
ath5k_init_hw(struct ath5k_softc * sc)2514 ath5k_init_hw(struct ath5k_softc *sc)
2515 {
2516 	struct ath5k_hw *ah = sc->ah;
2517 	struct ath_common *common = ath5k_hw_common(ah);
2518 	int ret, i;
2519 
2520 	mutex_lock(&sc->lock);
2521 
2522 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2523 
2524 	/*
2525 	 * Stop anything previously setup.  This is safe
2526 	 * no matter this is the first time through or not.
2527 	 */
2528 	ath5k_stop_locked(sc);
2529 
2530 	/*
2531 	 * The basic interface to setting the hardware in a good
2532 	 * state is ``reset''.  On return the hardware is known to
2533 	 * be powered up and with interrupts disabled.  This must
2534 	 * be followed by initialization of the appropriate bits
2535 	 * and then setup of the interrupt mask.
2536 	 */
2537 	sc->curchan = sc->hw->conf.channel;
2538 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2539 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2540 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2541 
2542 	ret = ath5k_reset(sc, NULL, false);
2543 	if (ret)
2544 		goto done;
2545 
2546 	ath5k_rfkill_hw_start(ah);
2547 
2548 	/*
2549 	 * Reset the key cache since some parts do not reset the
2550 	 * contents on initial power up or resume from suspend.
2551 	 */
2552 	for (i = 0; i < common->keymax; i++)
2553 		ath_hw_keyreset(common, (u16) i);
2554 
2555 	/* Use higher rates for acks instead of base
2556 	 * rate */
2557 	ah->ah_ack_bitrate_high = true;
2558 
2559 	for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2560 		sc->bslot[i] = NULL;
2561 
2562 	ret = 0;
2563 done:
2564 	mmiowb();
2565 	mutex_unlock(&sc->lock);
2566 
2567 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2568 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2569 
2570 	return ret;
2571 }
2572 
stop_tasklets(struct ath5k_softc * sc)2573 static void stop_tasklets(struct ath5k_softc *sc)
2574 {
2575 	tasklet_kill(&sc->rxtq);
2576 	tasklet_kill(&sc->txtq);
2577 	tasklet_kill(&sc->calib);
2578 	tasklet_kill(&sc->beacontq);
2579 	tasklet_kill(&sc->ani_tasklet);
2580 }
2581 
2582 /*
2583  * Stop the device, grabbing the top-level lock to protect
2584  * against concurrent entry through ath5k_init (which can happen
2585  * if another thread does a system call and the thread doing the
2586  * stop is preempted).
2587  */
2588 int
ath5k_stop_hw(struct ath5k_softc * sc)2589 ath5k_stop_hw(struct ath5k_softc *sc)
2590 {
2591 	int ret;
2592 
2593 	mutex_lock(&sc->lock);
2594 	ret = ath5k_stop_locked(sc);
2595 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2596 		/*
2597 		 * Don't set the card in full sleep mode!
2598 		 *
2599 		 * a) When the device is in this state it must be carefully
2600 		 * woken up or references to registers in the PCI clock
2601 		 * domain may freeze the bus (and system).  This varies
2602 		 * by chip and is mostly an issue with newer parts
2603 		 * (madwifi sources mentioned srev >= 0x78) that go to
2604 		 * sleep more quickly.
2605 		 *
2606 		 * b) On older chips full sleep results a weird behaviour
2607 		 * during wakeup. I tested various cards with srev < 0x78
2608 		 * and they don't wake up after module reload, a second
2609 		 * module reload is needed to bring the card up again.
2610 		 *
2611 		 * Until we figure out what's going on don't enable
2612 		 * full chip reset on any chip (this is what Legacy HAL
2613 		 * and Sam's HAL do anyway). Instead Perform a full reset
2614 		 * on the device (same as initial state after attach) and
2615 		 * leave it idle (keep MAC/BB on warm reset) */
2616 		ret = ath5k_hw_on_hold(sc->ah);
2617 
2618 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2619 				"putting device to sleep\n");
2620 	}
2621 
2622 	mmiowb();
2623 	mutex_unlock(&sc->lock);
2624 
2625 	stop_tasklets(sc);
2626 
2627 	cancel_delayed_work_sync(&sc->tx_complete_work);
2628 
2629 	ath5k_rfkill_hw_stop(sc->ah);
2630 
2631 	return ret;
2632 }
2633 
2634 /*
2635  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2636  * and change to the given channel.
2637  *
2638  * This should be called with sc->lock.
2639  */
2640 static int
ath5k_reset(struct ath5k_softc * sc,struct ieee80211_channel * chan,bool skip_pcu)2641 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2642 							bool skip_pcu)
2643 {
2644 	struct ath5k_hw *ah = sc->ah;
2645 	struct ath_common *common = ath5k_hw_common(ah);
2646 	int ret, ani_mode;
2647 
2648 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2649 
2650 	ath5k_hw_set_imr(ah, 0);
2651 	synchronize_irq(sc->irq);
2652 	stop_tasklets(sc);
2653 
2654 	/* Save ani mode and disable ANI during
2655 	 * reset. If we don't we might get false
2656 	 * PHY error interrupts. */
2657 	ani_mode = ah->ah_sc->ani_state.ani_mode;
2658 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2659 
2660 	/* We are going to empty hw queues
2661 	 * so we should also free any remaining
2662 	 * tx buffers */
2663 	ath5k_drain_tx_buffs(sc);
2664 	if (chan)
2665 		sc->curchan = chan;
2666 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL,
2667 								skip_pcu);
2668 	if (ret) {
2669 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2670 		goto err;
2671 	}
2672 
2673 	ret = ath5k_rx_start(sc);
2674 	if (ret) {
2675 		ATH5K_ERR(sc, "can't start recv logic\n");
2676 		goto err;
2677 	}
2678 
2679 	ath5k_ani_init(ah, ani_mode);
2680 
2681 	ah->ah_cal_next_full = jiffies;
2682 	ah->ah_cal_next_ani = jiffies;
2683 	ah->ah_cal_next_nf = jiffies;
2684 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2685 
2686 	/* clear survey data and cycle counters */
2687 	memset(&sc->survey, 0, sizeof(sc->survey));
2688 	spin_lock_bh(&common->cc_lock);
2689 	ath_hw_cycle_counters_update(common);
2690 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2691 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2692 	spin_unlock_bh(&common->cc_lock);
2693 
2694 	/*
2695 	 * Change channels and update the h/w rate map if we're switching;
2696 	 * e.g. 11a to 11b/g.
2697 	 *
2698 	 * We may be doing a reset in response to an ioctl that changes the
2699 	 * channel so update any state that might change as a result.
2700 	 *
2701 	 * XXX needed?
2702 	 */
2703 /*	ath5k_chan_change(sc, c); */
2704 
2705 	ath5k_beacon_config(sc);
2706 	/* intrs are enabled by ath5k_beacon_config */
2707 
2708 	ieee80211_wake_queues(sc->hw);
2709 
2710 	return 0;
2711 err:
2712 	return ret;
2713 }
2714 
ath5k_reset_work(struct work_struct * work)2715 static void ath5k_reset_work(struct work_struct *work)
2716 {
2717 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2718 		reset_work);
2719 
2720 	mutex_lock(&sc->lock);
2721 	ath5k_reset(sc, NULL, true);
2722 	mutex_unlock(&sc->lock);
2723 }
2724 
2725 static int
ath5k_init(struct ieee80211_hw * hw)2726 ath5k_init(struct ieee80211_hw *hw)
2727 {
2728 
2729 	struct ath5k_softc *sc = hw->priv;
2730 	struct ath5k_hw *ah = sc->ah;
2731 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2732 	struct ath5k_txq *txq;
2733 	u8 mac[ETH_ALEN] = {};
2734 	int ret;
2735 
2736 
2737 	/*
2738 	 * Check if the MAC has multi-rate retry support.
2739 	 * We do this by trying to setup a fake extended
2740 	 * descriptor.  MACs that don't have support will
2741 	 * return false w/o doing anything.  MACs that do
2742 	 * support it will return true w/o doing anything.
2743 	 */
2744 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2745 
2746 	if (ret < 0)
2747 		goto err;
2748 	if (ret > 0)
2749 		__set_bit(ATH_STAT_MRRETRY, sc->status);
2750 
2751 	/*
2752 	 * Collect the channel list.  The 802.11 layer
2753 	 * is resposible for filtering this list based
2754 	 * on settings like the phy mode and regulatory
2755 	 * domain restrictions.
2756 	 */
2757 	ret = ath5k_setup_bands(hw);
2758 	if (ret) {
2759 		ATH5K_ERR(sc, "can't get channels\n");
2760 		goto err;
2761 	}
2762 
2763 	/*
2764 	 * Allocate tx+rx descriptors and populate the lists.
2765 	 */
2766 	ret = ath5k_desc_alloc(sc);
2767 	if (ret) {
2768 		ATH5K_ERR(sc, "can't allocate descriptors\n");
2769 		goto err;
2770 	}
2771 
2772 	/*
2773 	 * Allocate hardware transmit queues: one queue for
2774 	 * beacon frames and one data queue for each QoS
2775 	 * priority.  Note that hw functions handle resetting
2776 	 * these queues at the needed time.
2777 	 */
2778 	ret = ath5k_beaconq_setup(ah);
2779 	if (ret < 0) {
2780 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2781 		goto err_desc;
2782 	}
2783 	sc->bhalq = ret;
2784 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2785 	if (IS_ERR(sc->cabq)) {
2786 		ATH5K_ERR(sc, "can't setup cab queue\n");
2787 		ret = PTR_ERR(sc->cabq);
2788 		goto err_bhal;
2789 	}
2790 
2791 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2792 	 * capability information */
2793 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2794 		/* This order matches mac80211's queue priority, so we can
2795 		* directly use the mac80211 queue number without any mapping */
2796 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2797 		if (IS_ERR(txq)) {
2798 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2799 			ret = PTR_ERR(txq);
2800 			goto err_queues;
2801 		}
2802 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2803 		if (IS_ERR(txq)) {
2804 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2805 			ret = PTR_ERR(txq);
2806 			goto err_queues;
2807 		}
2808 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2809 		if (IS_ERR(txq)) {
2810 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2811 			ret = PTR_ERR(txq);
2812 			goto err_queues;
2813 		}
2814 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2815 		if (IS_ERR(txq)) {
2816 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2817 			ret = PTR_ERR(txq);
2818 			goto err_queues;
2819 		}
2820 		hw->queues = 4;
2821 	} else {
2822 		/* older hardware (5210) can only support one data queue */
2823 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2824 		if (IS_ERR(txq)) {
2825 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2826 			ret = PTR_ERR(txq);
2827 			goto err_queues;
2828 		}
2829 		hw->queues = 1;
2830 	}
2831 
2832 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2833 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2834 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2835 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2836 	tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2837 
2838 	INIT_WORK(&sc->reset_work, ath5k_reset_work);
2839 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2840 
2841 	ret = ath5k_eeprom_read_mac(ah, mac);
2842 	if (ret) {
2843 		ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2844 		goto err_queues;
2845 	}
2846 
2847 	SET_IEEE80211_PERM_ADDR(hw, mac);
2848 	memcpy(&sc->lladdr, mac, ETH_ALEN);
2849 	/* All MAC address bits matter for ACKs */
2850 	ath5k_update_bssid_mask_and_opmode(sc, NULL);
2851 
2852 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2853 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2854 	if (ret) {
2855 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
2856 		goto err_queues;
2857 	}
2858 
2859 	ret = ieee80211_register_hw(hw);
2860 	if (ret) {
2861 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2862 		goto err_queues;
2863 	}
2864 
2865 	if (!ath_is_world_regd(regulatory))
2866 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2867 
2868 	ath5k_init_leds(sc);
2869 
2870 	ath5k_sysfs_register(sc);
2871 
2872 	return 0;
2873 err_queues:
2874 	ath5k_txq_release(sc);
2875 err_bhal:
2876 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
2877 err_desc:
2878 	ath5k_desc_free(sc);
2879 err:
2880 	return ret;
2881 }
2882 
2883 void
ath5k_deinit_softc(struct ath5k_softc * sc)2884 ath5k_deinit_softc(struct ath5k_softc *sc)
2885 {
2886 	struct ieee80211_hw *hw = sc->hw;
2887 
2888 	/*
2889 	 * NB: the order of these is important:
2890 	 * o call the 802.11 layer before detaching ath5k_hw to
2891 	 *   ensure callbacks into the driver to delete global
2892 	 *   key cache entries can be handled
2893 	 * o reclaim the tx queue data structures after calling
2894 	 *   the 802.11 layer as we'll get called back to reclaim
2895 	 *   node state and potentially want to use them
2896 	 * o to cleanup the tx queues the hal is called, so detach
2897 	 *   it last
2898 	 * XXX: ??? detach ath5k_hw ???
2899 	 * Other than that, it's straightforward...
2900 	 */
2901 	ath5k_debug_finish_device(sc);
2902 	ieee80211_unregister_hw(hw);
2903 	ath5k_desc_free(sc);
2904 	ath5k_txq_release(sc);
2905 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2906 	ath5k_unregister_leds(sc);
2907 
2908 	ath5k_sysfs_unregister(sc);
2909 	/*
2910 	 * NB: can't reclaim these until after ieee80211_ifdetach
2911 	 * returns because we'll get called back to reclaim node
2912 	 * state and potentially want to use them.
2913 	 */
2914 	ath5k_hw_deinit(sc->ah);
2915 	free_irq(sc->irq, sc);
2916 }
2917 
2918 bool
ath_any_vif_assoc(struct ath5k_softc * sc)2919 ath_any_vif_assoc(struct ath5k_softc *sc)
2920 {
2921 	struct ath5k_vif_iter_data iter_data;
2922 	iter_data.hw_macaddr = NULL;
2923 	iter_data.any_assoc = false;
2924 	iter_data.need_set_hw_addr = false;
2925 	iter_data.found_active = true;
2926 
2927 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath5k_vif_iter,
2928 						   &iter_data);
2929 	return iter_data.any_assoc;
2930 }
2931 
2932 void
set_beacon_filter(struct ieee80211_hw * hw,bool enable)2933 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2934 {
2935 	struct ath5k_softc *sc = hw->priv;
2936 	struct ath5k_hw *ah = sc->ah;
2937 	u32 rfilt;
2938 	rfilt = ath5k_hw_get_rx_filter(ah);
2939 	if (enable)
2940 		rfilt |= AR5K_RX_FILTER_BEACON;
2941 	else
2942 		rfilt &= ~AR5K_RX_FILTER_BEACON;
2943 	ath5k_hw_set_rx_filter(ah, rfilt);
2944 	sc->filter_flags = rfilt;
2945 }
2946