1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 #include <linux/nl80211.h>
56 
57 #include <net/ieee80211_radiotap.h>
58 
59 #include <asm/unaligned.h>
60 
61 #include "base.h"
62 #include "reg.h"
63 #include "debug.h"
64 #include "ani.h"
65 #include "ath5k.h"
66 #include "../regd.h"
67 
68 #define CREATE_TRACE_POINTS
69 #include "trace.h"
70 
71 bool ath5k_modparam_nohwcrypt;
72 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
73 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
74 
75 static bool modparam_all_channels;
76 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
77 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
78 
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 								bool, S_IRUGO);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87 
88 
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
94 MODULE_LICENSE("Dual BSD/GPL");
95 
96 static int ath5k_init(struct ieee80211_hw *hw);
97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
98 								bool skip_pcu);
99 
100 /* Known SREVs */
101 static const struct ath5k_srev_name srev_names[] = {
102 #ifdef CONFIG_ATHEROS_AR231X
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
104 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
105 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
107 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
109 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
110 #else
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 #endif
130 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
144 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
145 #ifdef CONFIG_ATHEROS_AR231X
146 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
147 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
148 #endif
149 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
150 };
151 
152 static const struct ieee80211_rate ath5k_rates[] = {
153 	{ .bitrate = 10,
154 	  .hw_value = ATH5K_RATE_CODE_1M, },
155 	{ .bitrate = 20,
156 	  .hw_value = ATH5K_RATE_CODE_2M,
157 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
158 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 	{ .bitrate = 55,
160 	  .hw_value = ATH5K_RATE_CODE_5_5M,
161 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
162 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
163 	{ .bitrate = 110,
164 	  .hw_value = ATH5K_RATE_CODE_11M,
165 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
166 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
167 	{ .bitrate = 60,
168 	  .hw_value = ATH5K_RATE_CODE_6M,
169 	  .flags = 0 },
170 	{ .bitrate = 90,
171 	  .hw_value = ATH5K_RATE_CODE_9M,
172 	  .flags = 0 },
173 	{ .bitrate = 120,
174 	  .hw_value = ATH5K_RATE_CODE_12M,
175 	  .flags = 0 },
176 	{ .bitrate = 180,
177 	  .hw_value = ATH5K_RATE_CODE_18M,
178 	  .flags = 0 },
179 	{ .bitrate = 240,
180 	  .hw_value = ATH5K_RATE_CODE_24M,
181 	  .flags = 0 },
182 	{ .bitrate = 360,
183 	  .hw_value = ATH5K_RATE_CODE_36M,
184 	  .flags = 0 },
185 	{ .bitrate = 480,
186 	  .hw_value = ATH5K_RATE_CODE_48M,
187 	  .flags = 0 },
188 	{ .bitrate = 540,
189 	  .hw_value = ATH5K_RATE_CODE_54M,
190 	  .flags = 0 },
191 };
192 
ath5k_extend_tsf(struct ath5k_hw * ah,u32 rstamp)193 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
194 {
195 	u64 tsf = ath5k_hw_get_tsf64(ah);
196 
197 	if ((tsf & 0x7fff) < rstamp)
198 		tsf -= 0x8000;
199 
200 	return (tsf & ~0x7fff) | rstamp;
201 }
202 
203 const char *
ath5k_chip_name(enum ath5k_srev_type type,u_int16_t val)204 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
205 {
206 	const char *name = "xxxxx";
207 	unsigned int i;
208 
209 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
210 		if (srev_names[i].sr_type != type)
211 			continue;
212 
213 		if ((val & 0xf0) == srev_names[i].sr_val)
214 			name = srev_names[i].sr_name;
215 
216 		if ((val & 0xff) == srev_names[i].sr_val) {
217 			name = srev_names[i].sr_name;
218 			break;
219 		}
220 	}
221 
222 	return name;
223 }
ath5k_ioread32(void * hw_priv,u32 reg_offset)224 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
225 {
226 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
227 	return ath5k_hw_reg_read(ah, reg_offset);
228 }
229 
ath5k_iowrite32(void * hw_priv,u32 val,u32 reg_offset)230 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
231 {
232 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
233 	ath5k_hw_reg_write(ah, val, reg_offset);
234 }
235 
236 static const struct ath_ops ath5k_common_ops = {
237 	.read = ath5k_ioread32,
238 	.write = ath5k_iowrite32,
239 };
240 
241 /***********************\
242 * Driver Initialization *
243 \***********************/
244 
ath5k_reg_notifier(struct wiphy * wiphy,struct regulatory_request * request)245 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
246 {
247 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
248 	struct ath5k_hw *ah = hw->priv;
249 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
250 
251 	return ath_reg_notifier_apply(wiphy, request, regulatory);
252 }
253 
254 /********************\
255 * Channel/mode setup *
256 \********************/
257 
258 /*
259  * Returns true for the channel numbers used without all_channels modparam.
260  */
ath5k_is_standard_channel(short chan,enum ieee80211_band band)261 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
262 {
263 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
264 		return true;
265 
266 	return	/* UNII 1,2 */
267 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
268 		/* midband */
269 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
270 		/* UNII-3 */
271 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
272 		/* 802.11j 5.030-5.080 GHz (20MHz) */
273 		(chan == 8 || chan == 12 || chan == 16) ||
274 		/* 802.11j 4.9GHz (20MHz) */
275 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
276 }
277 
278 static unsigned int
ath5k_setup_channels(struct ath5k_hw * ah,struct ieee80211_channel * channels,unsigned int mode,unsigned int max)279 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
280 		unsigned int mode, unsigned int max)
281 {
282 	unsigned int count, size, freq, ch;
283 	enum ieee80211_band band;
284 
285 	switch (mode) {
286 	case AR5K_MODE_11A:
287 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
288 		size = 220;
289 		band = IEEE80211_BAND_5GHZ;
290 		break;
291 	case AR5K_MODE_11B:
292 	case AR5K_MODE_11G:
293 		size = 26;
294 		band = IEEE80211_BAND_2GHZ;
295 		break;
296 	default:
297 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
298 		return 0;
299 	}
300 
301 	count = 0;
302 	for (ch = 1; ch <= size && count < max; ch++) {
303 		freq = ieee80211_channel_to_frequency(ch, band);
304 
305 		if (freq == 0) /* mapping failed - not a standard channel */
306 			continue;
307 
308 		/* Write channel info, needed for ath5k_channel_ok() */
309 		channels[count].center_freq = freq;
310 		channels[count].band = band;
311 		channels[count].hw_value = mode;
312 
313 		/* Check if channel is supported by the chipset */
314 		if (!ath5k_channel_ok(ah, &channels[count]))
315 			continue;
316 
317 		if (!modparam_all_channels &&
318 		    !ath5k_is_standard_channel(ch, band))
319 			continue;
320 
321 		count++;
322 	}
323 
324 	return count;
325 }
326 
327 static void
ath5k_setup_rate_idx(struct ath5k_hw * ah,struct ieee80211_supported_band * b)328 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
329 {
330 	u8 i;
331 
332 	for (i = 0; i < AR5K_MAX_RATES; i++)
333 		ah->rate_idx[b->band][i] = -1;
334 
335 	for (i = 0; i < b->n_bitrates; i++) {
336 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
337 		if (b->bitrates[i].hw_value_short)
338 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
339 	}
340 }
341 
342 static int
ath5k_setup_bands(struct ieee80211_hw * hw)343 ath5k_setup_bands(struct ieee80211_hw *hw)
344 {
345 	struct ath5k_hw *ah = hw->priv;
346 	struct ieee80211_supported_band *sband;
347 	int max_c, count_c = 0;
348 	int i;
349 
350 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
351 	max_c = ARRAY_SIZE(ah->channels);
352 
353 	/* 2GHz band */
354 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
355 	sband->band = IEEE80211_BAND_2GHZ;
356 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
357 
358 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
359 		/* G mode */
360 		memcpy(sband->bitrates, &ath5k_rates[0],
361 		       sizeof(struct ieee80211_rate) * 12);
362 		sband->n_bitrates = 12;
363 
364 		sband->channels = ah->channels;
365 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
366 					AR5K_MODE_11G, max_c);
367 
368 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
369 		count_c = sband->n_channels;
370 		max_c -= count_c;
371 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
372 		/* B mode */
373 		memcpy(sband->bitrates, &ath5k_rates[0],
374 		       sizeof(struct ieee80211_rate) * 4);
375 		sband->n_bitrates = 4;
376 
377 		/* 5211 only supports B rates and uses 4bit rate codes
378 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
379 		 * fix them up here:
380 		 */
381 		if (ah->ah_version == AR5K_AR5211) {
382 			for (i = 0; i < 4; i++) {
383 				sband->bitrates[i].hw_value =
384 					sband->bitrates[i].hw_value & 0xF;
385 				sband->bitrates[i].hw_value_short =
386 					sband->bitrates[i].hw_value_short & 0xF;
387 			}
388 		}
389 
390 		sband->channels = ah->channels;
391 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
392 					AR5K_MODE_11B, max_c);
393 
394 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
395 		count_c = sband->n_channels;
396 		max_c -= count_c;
397 	}
398 	ath5k_setup_rate_idx(ah, sband);
399 
400 	/* 5GHz band, A mode */
401 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
402 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
403 		sband->band = IEEE80211_BAND_5GHZ;
404 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
405 
406 		memcpy(sband->bitrates, &ath5k_rates[4],
407 		       sizeof(struct ieee80211_rate) * 8);
408 		sband->n_bitrates = 8;
409 
410 		sband->channels = &ah->channels[count_c];
411 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
412 					AR5K_MODE_11A, max_c);
413 
414 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
415 	}
416 	ath5k_setup_rate_idx(ah, sband);
417 
418 	ath5k_debug_dump_bands(ah);
419 
420 	return 0;
421 }
422 
423 /*
424  * Set/change channels. We always reset the chip.
425  * To accomplish this we must first cleanup any pending DMA,
426  * then restart stuff after a la  ath5k_init.
427  *
428  * Called with ah->lock.
429  */
430 int
ath5k_chan_set(struct ath5k_hw * ah,struct ieee80211_channel * chan)431 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
432 {
433 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
434 		  "channel set, resetting (%u -> %u MHz)\n",
435 		  ah->curchan->center_freq, chan->center_freq);
436 
437 	/*
438 	 * To switch channels clear any pending DMA operations;
439 	 * wait long enough for the RX fifo to drain, reset the
440 	 * hardware at the new frequency, and then re-enable
441 	 * the relevant bits of the h/w.
442 	 */
443 	return ath5k_reset(ah, chan, true);
444 }
445 
ath5k_vif_iter(void * data,u8 * mac,struct ieee80211_vif * vif)446 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
447 {
448 	struct ath5k_vif_iter_data *iter_data = data;
449 	int i;
450 	struct ath5k_vif *avf = (void *)vif->drv_priv;
451 
452 	if (iter_data->hw_macaddr)
453 		for (i = 0; i < ETH_ALEN; i++)
454 			iter_data->mask[i] &=
455 				~(iter_data->hw_macaddr[i] ^ mac[i]);
456 
457 	if (!iter_data->found_active) {
458 		iter_data->found_active = true;
459 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
460 	}
461 
462 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
463 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
464 			iter_data->need_set_hw_addr = false;
465 
466 	if (!iter_data->any_assoc) {
467 		if (avf->assoc)
468 			iter_data->any_assoc = true;
469 	}
470 
471 	/* Calculate combined mode - when APs are active, operate in AP mode.
472 	 * Otherwise use the mode of the new interface. This can currently
473 	 * only deal with combinations of APs and STAs. Only one ad-hoc
474 	 * interfaces is allowed.
475 	 */
476 	if (avf->opmode == NL80211_IFTYPE_AP)
477 		iter_data->opmode = NL80211_IFTYPE_AP;
478 	else {
479 		if (avf->opmode == NL80211_IFTYPE_STATION)
480 			iter_data->n_stas++;
481 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
482 			iter_data->opmode = avf->opmode;
483 	}
484 }
485 
486 void
ath5k_update_bssid_mask_and_opmode(struct ath5k_hw * ah,struct ieee80211_vif * vif)487 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
488 				   struct ieee80211_vif *vif)
489 {
490 	struct ath_common *common = ath5k_hw_common(ah);
491 	struct ath5k_vif_iter_data iter_data;
492 	u32 rfilt;
493 
494 	/*
495 	 * Use the hardware MAC address as reference, the hardware uses it
496 	 * together with the BSSID mask when matching addresses.
497 	 */
498 	iter_data.hw_macaddr = common->macaddr;
499 	memset(&iter_data.mask, 0xff, ETH_ALEN);
500 	iter_data.found_active = false;
501 	iter_data.need_set_hw_addr = true;
502 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
503 	iter_data.n_stas = 0;
504 
505 	if (vif)
506 		ath5k_vif_iter(&iter_data, vif->addr, vif);
507 
508 	/* Get list of all active MAC addresses */
509 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
510 						   &iter_data);
511 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
512 
513 	ah->opmode = iter_data.opmode;
514 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
515 		/* Nothing active, default to station mode */
516 		ah->opmode = NL80211_IFTYPE_STATION;
517 
518 	ath5k_hw_set_opmode(ah, ah->opmode);
519 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
520 		  ah->opmode, ath_opmode_to_string(ah->opmode));
521 
522 	if (iter_data.need_set_hw_addr && iter_data.found_active)
523 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
524 
525 	if (ath5k_hw_hasbssidmask(ah))
526 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
527 
528 	/* Set up RX Filter */
529 	if (iter_data.n_stas > 1) {
530 		/* If you have multiple STA interfaces connected to
531 		 * different APs, ARPs are not received (most of the time?)
532 		 * Enabling PROMISC appears to fix that problem.
533 		 */
534 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
535 	}
536 
537 	rfilt = ah->filter_flags;
538 	ath5k_hw_set_rx_filter(ah, rfilt);
539 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
540 }
541 
542 static inline int
ath5k_hw_to_driver_rix(struct ath5k_hw * ah,int hw_rix)543 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
544 {
545 	int rix;
546 
547 	/* return base rate on errors */
548 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
549 			"hw_rix out of bounds: %x\n", hw_rix))
550 		return 0;
551 
552 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
553 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
554 		rix = 0;
555 
556 	return rix;
557 }
558 
559 /***************\
560 * Buffers setup *
561 \***************/
562 
563 static
ath5k_rx_skb_alloc(struct ath5k_hw * ah,dma_addr_t * skb_addr)564 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
565 {
566 	struct ath_common *common = ath5k_hw_common(ah);
567 	struct sk_buff *skb;
568 
569 	/*
570 	 * Allocate buffer with headroom_needed space for the
571 	 * fake physical layer header at the start.
572 	 */
573 	skb = ath_rxbuf_alloc(common,
574 			      common->rx_bufsize,
575 			      GFP_ATOMIC);
576 
577 	if (!skb) {
578 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
579 				common->rx_bufsize);
580 		return NULL;
581 	}
582 
583 	*skb_addr = dma_map_single(ah->dev,
584 				   skb->data, common->rx_bufsize,
585 				   DMA_FROM_DEVICE);
586 
587 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
588 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
589 		dev_kfree_skb(skb);
590 		return NULL;
591 	}
592 	return skb;
593 }
594 
595 static int
ath5k_rxbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)596 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
597 {
598 	struct sk_buff *skb = bf->skb;
599 	struct ath5k_desc *ds;
600 	int ret;
601 
602 	if (!skb) {
603 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
604 		if (!skb)
605 			return -ENOMEM;
606 		bf->skb = skb;
607 	}
608 
609 	/*
610 	 * Setup descriptors.  For receive we always terminate
611 	 * the descriptor list with a self-linked entry so we'll
612 	 * not get overrun under high load (as can happen with a
613 	 * 5212 when ANI processing enables PHY error frames).
614 	 *
615 	 * To ensure the last descriptor is self-linked we create
616 	 * each descriptor as self-linked and add it to the end.  As
617 	 * each additional descriptor is added the previous self-linked
618 	 * entry is "fixed" naturally.  This should be safe even
619 	 * if DMA is happening.  When processing RX interrupts we
620 	 * never remove/process the last, self-linked, entry on the
621 	 * descriptor list.  This ensures the hardware always has
622 	 * someplace to write a new frame.
623 	 */
624 	ds = bf->desc;
625 	ds->ds_link = bf->daddr;	/* link to self */
626 	ds->ds_data = bf->skbaddr;
627 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
628 	if (ret) {
629 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
630 		return ret;
631 	}
632 
633 	if (ah->rxlink != NULL)
634 		*ah->rxlink = bf->daddr;
635 	ah->rxlink = &ds->ds_link;
636 	return 0;
637 }
638 
get_hw_packet_type(struct sk_buff * skb)639 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
640 {
641 	struct ieee80211_hdr *hdr;
642 	enum ath5k_pkt_type htype;
643 	__le16 fc;
644 
645 	hdr = (struct ieee80211_hdr *)skb->data;
646 	fc = hdr->frame_control;
647 
648 	if (ieee80211_is_beacon(fc))
649 		htype = AR5K_PKT_TYPE_BEACON;
650 	else if (ieee80211_is_probe_resp(fc))
651 		htype = AR5K_PKT_TYPE_PROBE_RESP;
652 	else if (ieee80211_is_atim(fc))
653 		htype = AR5K_PKT_TYPE_ATIM;
654 	else if (ieee80211_is_pspoll(fc))
655 		htype = AR5K_PKT_TYPE_PSPOLL;
656 	else
657 		htype = AR5K_PKT_TYPE_NORMAL;
658 
659 	return htype;
660 }
661 
662 static int
ath5k_txbuf_setup(struct ath5k_hw * ah,struct ath5k_buf * bf,struct ath5k_txq * txq,int padsize)663 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
664 		  struct ath5k_txq *txq, int padsize)
665 {
666 	struct ath5k_desc *ds = bf->desc;
667 	struct sk_buff *skb = bf->skb;
668 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
669 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
670 	struct ieee80211_rate *rate;
671 	unsigned int mrr_rate[3], mrr_tries[3];
672 	int i, ret;
673 	u16 hw_rate;
674 	u16 cts_rate = 0;
675 	u16 duration = 0;
676 	u8 rc_flags;
677 
678 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
679 
680 	/* XXX endianness */
681 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
682 			DMA_TO_DEVICE);
683 
684 	rate = ieee80211_get_tx_rate(ah->hw, info);
685 	if (!rate) {
686 		ret = -EINVAL;
687 		goto err_unmap;
688 	}
689 
690 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
691 		flags |= AR5K_TXDESC_NOACK;
692 
693 	rc_flags = info->control.rates[0].flags;
694 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
695 		rate->hw_value_short : rate->hw_value;
696 
697 	pktlen = skb->len;
698 
699 	/* FIXME: If we are in g mode and rate is a CCK rate
700 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
701 	 * from tx power (value is in dB units already) */
702 	if (info->control.hw_key) {
703 		keyidx = info->control.hw_key->hw_key_idx;
704 		pktlen += info->control.hw_key->icv_len;
705 	}
706 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
707 		flags |= AR5K_TXDESC_RTSENA;
708 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
709 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
710 			info->control.vif, pktlen, info));
711 	}
712 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
713 		flags |= AR5K_TXDESC_CTSENA;
714 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
715 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
716 			info->control.vif, pktlen, info));
717 	}
718 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
719 		ieee80211_get_hdrlen_from_skb(skb), padsize,
720 		get_hw_packet_type(skb),
721 		(ah->power_level * 2),
722 		hw_rate,
723 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
724 		cts_rate, duration);
725 	if (ret)
726 		goto err_unmap;
727 
728 	/* Set up MRR descriptor */
729 	if (ah->ah_capabilities.cap_has_mrr_support) {
730 		memset(mrr_rate, 0, sizeof(mrr_rate));
731 		memset(mrr_tries, 0, sizeof(mrr_tries));
732 		for (i = 0; i < 3; i++) {
733 			rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
734 			if (!rate)
735 				break;
736 
737 			mrr_rate[i] = rate->hw_value;
738 			mrr_tries[i] = info->control.rates[i + 1].count;
739 		}
740 
741 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
742 			mrr_rate[0], mrr_tries[0],
743 			mrr_rate[1], mrr_tries[1],
744 			mrr_rate[2], mrr_tries[2]);
745 	}
746 
747 	ds->ds_link = 0;
748 	ds->ds_data = bf->skbaddr;
749 
750 	spin_lock_bh(&txq->lock);
751 	list_add_tail(&bf->list, &txq->q);
752 	txq->txq_len++;
753 	if (txq->link == NULL) /* is this first packet? */
754 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
755 	else /* no, so only link it */
756 		*txq->link = bf->daddr;
757 
758 	txq->link = &ds->ds_link;
759 	ath5k_hw_start_tx_dma(ah, txq->qnum);
760 	mmiowb();
761 	spin_unlock_bh(&txq->lock);
762 
763 	return 0;
764 err_unmap:
765 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
766 	return ret;
767 }
768 
769 /*******************\
770 * Descriptors setup *
771 \*******************/
772 
773 static int
ath5k_desc_alloc(struct ath5k_hw * ah)774 ath5k_desc_alloc(struct ath5k_hw *ah)
775 {
776 	struct ath5k_desc *ds;
777 	struct ath5k_buf *bf;
778 	dma_addr_t da;
779 	unsigned int i;
780 	int ret;
781 
782 	/* allocate descriptors */
783 	ah->desc_len = sizeof(struct ath5k_desc) *
784 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
785 
786 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
787 				&ah->desc_daddr, GFP_KERNEL);
788 	if (ah->desc == NULL) {
789 		ATH5K_ERR(ah, "can't allocate descriptors\n");
790 		ret = -ENOMEM;
791 		goto err;
792 	}
793 	ds = ah->desc;
794 	da = ah->desc_daddr;
795 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
796 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
797 
798 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
799 			sizeof(struct ath5k_buf), GFP_KERNEL);
800 	if (bf == NULL) {
801 		ATH5K_ERR(ah, "can't allocate bufptr\n");
802 		ret = -ENOMEM;
803 		goto err_free;
804 	}
805 	ah->bufptr = bf;
806 
807 	INIT_LIST_HEAD(&ah->rxbuf);
808 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
809 		bf->desc = ds;
810 		bf->daddr = da;
811 		list_add_tail(&bf->list, &ah->rxbuf);
812 	}
813 
814 	INIT_LIST_HEAD(&ah->txbuf);
815 	ah->txbuf_len = ATH_TXBUF;
816 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
817 		bf->desc = ds;
818 		bf->daddr = da;
819 		list_add_tail(&bf->list, &ah->txbuf);
820 	}
821 
822 	/* beacon buffers */
823 	INIT_LIST_HEAD(&ah->bcbuf);
824 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
825 		bf->desc = ds;
826 		bf->daddr = da;
827 		list_add_tail(&bf->list, &ah->bcbuf);
828 	}
829 
830 	return 0;
831 err_free:
832 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
833 err:
834 	ah->desc = NULL;
835 	return ret;
836 }
837 
838 void
ath5k_txbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)839 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
840 {
841 	BUG_ON(!bf);
842 	if (!bf->skb)
843 		return;
844 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
845 			DMA_TO_DEVICE);
846 	ieee80211_free_txskb(ah->hw, bf->skb);
847 	bf->skb = NULL;
848 	bf->skbaddr = 0;
849 	bf->desc->ds_data = 0;
850 }
851 
852 void
ath5k_rxbuf_free_skb(struct ath5k_hw * ah,struct ath5k_buf * bf)853 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
854 {
855 	struct ath_common *common = ath5k_hw_common(ah);
856 
857 	BUG_ON(!bf);
858 	if (!bf->skb)
859 		return;
860 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
861 			DMA_FROM_DEVICE);
862 	dev_kfree_skb_any(bf->skb);
863 	bf->skb = NULL;
864 	bf->skbaddr = 0;
865 	bf->desc->ds_data = 0;
866 }
867 
868 static void
ath5k_desc_free(struct ath5k_hw * ah)869 ath5k_desc_free(struct ath5k_hw *ah)
870 {
871 	struct ath5k_buf *bf;
872 
873 	list_for_each_entry(bf, &ah->txbuf, list)
874 		ath5k_txbuf_free_skb(ah, bf);
875 	list_for_each_entry(bf, &ah->rxbuf, list)
876 		ath5k_rxbuf_free_skb(ah, bf);
877 	list_for_each_entry(bf, &ah->bcbuf, list)
878 		ath5k_txbuf_free_skb(ah, bf);
879 
880 	/* Free memory associated with all descriptors */
881 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
882 	ah->desc = NULL;
883 	ah->desc_daddr = 0;
884 
885 	kfree(ah->bufptr);
886 	ah->bufptr = NULL;
887 }
888 
889 
890 /**************\
891 * Queues setup *
892 \**************/
893 
894 static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_hw * ah,int qtype,int subtype)895 ath5k_txq_setup(struct ath5k_hw *ah,
896 		int qtype, int subtype)
897 {
898 	struct ath5k_txq *txq;
899 	struct ath5k_txq_info qi = {
900 		.tqi_subtype = subtype,
901 		/* XXX: default values not correct for B and XR channels,
902 		 * but who cares? */
903 		.tqi_aifs = AR5K_TUNE_AIFS,
904 		.tqi_cw_min = AR5K_TUNE_CWMIN,
905 		.tqi_cw_max = AR5K_TUNE_CWMAX
906 	};
907 	int qnum;
908 
909 	/*
910 	 * Enable interrupts only for EOL and DESC conditions.
911 	 * We mark tx descriptors to receive a DESC interrupt
912 	 * when a tx queue gets deep; otherwise we wait for the
913 	 * EOL to reap descriptors.  Note that this is done to
914 	 * reduce interrupt load and this only defers reaping
915 	 * descriptors, never transmitting frames.  Aside from
916 	 * reducing interrupts this also permits more concurrency.
917 	 * The only potential downside is if the tx queue backs
918 	 * up in which case the top half of the kernel may backup
919 	 * due to a lack of tx descriptors.
920 	 */
921 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
922 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
923 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
924 	if (qnum < 0) {
925 		/*
926 		 * NB: don't print a message, this happens
927 		 * normally on parts with too few tx queues
928 		 */
929 		return ERR_PTR(qnum);
930 	}
931 	txq = &ah->txqs[qnum];
932 	if (!txq->setup) {
933 		txq->qnum = qnum;
934 		txq->link = NULL;
935 		INIT_LIST_HEAD(&txq->q);
936 		spin_lock_init(&txq->lock);
937 		txq->setup = true;
938 		txq->txq_len = 0;
939 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
940 		txq->txq_poll_mark = false;
941 		txq->txq_stuck = 0;
942 	}
943 	return &ah->txqs[qnum];
944 }
945 
946 static int
ath5k_beaconq_setup(struct ath5k_hw * ah)947 ath5k_beaconq_setup(struct ath5k_hw *ah)
948 {
949 	struct ath5k_txq_info qi = {
950 		/* XXX: default values not correct for B and XR channels,
951 		 * but who cares? */
952 		.tqi_aifs = AR5K_TUNE_AIFS,
953 		.tqi_cw_min = AR5K_TUNE_CWMIN,
954 		.tqi_cw_max = AR5K_TUNE_CWMAX,
955 		/* NB: for dynamic turbo, don't enable any other interrupts */
956 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
957 	};
958 
959 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
960 }
961 
962 static int
ath5k_beaconq_config(struct ath5k_hw * ah)963 ath5k_beaconq_config(struct ath5k_hw *ah)
964 {
965 	struct ath5k_txq_info qi;
966 	int ret;
967 
968 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
969 	if (ret)
970 		goto err;
971 
972 	if (ah->opmode == NL80211_IFTYPE_AP ||
973 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
974 		/*
975 		 * Always burst out beacon and CAB traffic
976 		 * (aifs = cwmin = cwmax = 0)
977 		 */
978 		qi.tqi_aifs = 0;
979 		qi.tqi_cw_min = 0;
980 		qi.tqi_cw_max = 0;
981 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
982 		/*
983 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
984 		 */
985 		qi.tqi_aifs = 0;
986 		qi.tqi_cw_min = 0;
987 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
988 	}
989 
990 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
991 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
992 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
993 
994 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
995 	if (ret) {
996 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
997 			"hardware queue!\n", __func__);
998 		goto err;
999 	}
1000 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1001 	if (ret)
1002 		goto err;
1003 
1004 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1005 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1006 	if (ret)
1007 		goto err;
1008 
1009 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1010 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011 	if (ret)
1012 		goto err;
1013 
1014 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1015 err:
1016 	return ret;
1017 }
1018 
1019 /**
1020  * ath5k_drain_tx_buffs - Empty tx buffers
1021  *
1022  * @ah The &struct ath5k_hw
1023  *
1024  * Empty tx buffers from all queues in preparation
1025  * of a reset or during shutdown.
1026  *
1027  * NB:	this assumes output has been stopped and
1028  *	we do not need to block ath5k_tx_tasklet
1029  */
1030 static void
ath5k_drain_tx_buffs(struct ath5k_hw * ah)1031 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1032 {
1033 	struct ath5k_txq *txq;
1034 	struct ath5k_buf *bf, *bf0;
1035 	int i;
1036 
1037 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1038 		if (ah->txqs[i].setup) {
1039 			txq = &ah->txqs[i];
1040 			spin_lock_bh(&txq->lock);
1041 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1042 				ath5k_debug_printtxbuf(ah, bf);
1043 
1044 				ath5k_txbuf_free_skb(ah, bf);
1045 
1046 				spin_lock_bh(&ah->txbuflock);
1047 				list_move_tail(&bf->list, &ah->txbuf);
1048 				ah->txbuf_len++;
1049 				txq->txq_len--;
1050 				spin_unlock_bh(&ah->txbuflock);
1051 			}
1052 			txq->link = NULL;
1053 			txq->txq_poll_mark = false;
1054 			spin_unlock_bh(&txq->lock);
1055 		}
1056 	}
1057 }
1058 
1059 static void
ath5k_txq_release(struct ath5k_hw * ah)1060 ath5k_txq_release(struct ath5k_hw *ah)
1061 {
1062 	struct ath5k_txq *txq = ah->txqs;
1063 	unsigned int i;
1064 
1065 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1066 		if (txq->setup) {
1067 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1068 			txq->setup = false;
1069 		}
1070 }
1071 
1072 
1073 /*************\
1074 * RX Handling *
1075 \*************/
1076 
1077 /*
1078  * Enable the receive h/w following a reset.
1079  */
1080 static int
ath5k_rx_start(struct ath5k_hw * ah)1081 ath5k_rx_start(struct ath5k_hw *ah)
1082 {
1083 	struct ath_common *common = ath5k_hw_common(ah);
1084 	struct ath5k_buf *bf;
1085 	int ret;
1086 
1087 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1088 
1089 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1090 		  common->cachelsz, common->rx_bufsize);
1091 
1092 	spin_lock_bh(&ah->rxbuflock);
1093 	ah->rxlink = NULL;
1094 	list_for_each_entry(bf, &ah->rxbuf, list) {
1095 		ret = ath5k_rxbuf_setup(ah, bf);
1096 		if (ret != 0) {
1097 			spin_unlock_bh(&ah->rxbuflock);
1098 			goto err;
1099 		}
1100 	}
1101 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1102 	ath5k_hw_set_rxdp(ah, bf->daddr);
1103 	spin_unlock_bh(&ah->rxbuflock);
1104 
1105 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1106 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1107 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1108 
1109 	return 0;
1110 err:
1111 	return ret;
1112 }
1113 
1114 /*
1115  * Disable the receive logic on PCU (DRU)
1116  * In preparation for a shutdown.
1117  *
1118  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1119  * does.
1120  */
1121 static void
ath5k_rx_stop(struct ath5k_hw * ah)1122 ath5k_rx_stop(struct ath5k_hw *ah)
1123 {
1124 
1125 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1126 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1127 
1128 	ath5k_debug_printrxbuffs(ah);
1129 }
1130 
1131 static unsigned int
ath5k_rx_decrypted(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1132 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1133 		   struct ath5k_rx_status *rs)
1134 {
1135 	struct ath_common *common = ath5k_hw_common(ah);
1136 	struct ieee80211_hdr *hdr = (void *)skb->data;
1137 	unsigned int keyix, hlen;
1138 
1139 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1140 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1141 		return RX_FLAG_DECRYPTED;
1142 
1143 	/* Apparently when a default key is used to decrypt the packet
1144 	   the hw does not set the index used to decrypt.  In such cases
1145 	   get the index from the packet. */
1146 	hlen = ieee80211_hdrlen(hdr->frame_control);
1147 	if (ieee80211_has_protected(hdr->frame_control) &&
1148 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1149 	    skb->len >= hlen + 4) {
1150 		keyix = skb->data[hlen + 3] >> 6;
1151 
1152 		if (test_bit(keyix, common->keymap))
1153 			return RX_FLAG_DECRYPTED;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 
1160 static void
ath5k_check_ibss_tsf(struct ath5k_hw * ah,struct sk_buff * skb,struct ieee80211_rx_status * rxs)1161 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1162 		     struct ieee80211_rx_status *rxs)
1163 {
1164 	struct ath_common *common = ath5k_hw_common(ah);
1165 	u64 tsf, bc_tstamp;
1166 	u32 hw_tu;
1167 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1168 
1169 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1170 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1171 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1172 		/*
1173 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1174 		 * have updated the local TSF. We have to work around various
1175 		 * hardware bugs, though...
1176 		 */
1177 		tsf = ath5k_hw_get_tsf64(ah);
1178 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1179 		hw_tu = TSF_TO_TU(tsf);
1180 
1181 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1182 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1183 			(unsigned long long)bc_tstamp,
1184 			(unsigned long long)rxs->mactime,
1185 			(unsigned long long)(rxs->mactime - bc_tstamp),
1186 			(unsigned long long)tsf);
1187 
1188 		/*
1189 		 * Sometimes the HW will give us a wrong tstamp in the rx
1190 		 * status, causing the timestamp extension to go wrong.
1191 		 * (This seems to happen especially with beacon frames bigger
1192 		 * than 78 byte (incl. FCS))
1193 		 * But we know that the receive timestamp must be later than the
1194 		 * timestamp of the beacon since HW must have synced to that.
1195 		 *
1196 		 * NOTE: here we assume mactime to be after the frame was
1197 		 * received, not like mac80211 which defines it at the start.
1198 		 */
1199 		if (bc_tstamp > rxs->mactime) {
1200 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1201 				"fixing mactime from %llx to %llx\n",
1202 				(unsigned long long)rxs->mactime,
1203 				(unsigned long long)tsf);
1204 			rxs->mactime = tsf;
1205 		}
1206 
1207 		/*
1208 		 * Local TSF might have moved higher than our beacon timers,
1209 		 * in that case we have to update them to continue sending
1210 		 * beacons. This also takes care of synchronizing beacon sending
1211 		 * times with other stations.
1212 		 */
1213 		if (hw_tu >= ah->nexttbtt)
1214 			ath5k_beacon_update_timers(ah, bc_tstamp);
1215 
1216 		/* Check if the beacon timers are still correct, because a TSF
1217 		 * update might have created a window between them - for a
1218 		 * longer description see the comment of this function: */
1219 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1220 			ath5k_beacon_update_timers(ah, bc_tstamp);
1221 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1222 				"fixed beacon timers after beacon receive\n");
1223 		}
1224 	}
1225 }
1226 
1227 static void
ath5k_update_beacon_rssi(struct ath5k_hw * ah,struct sk_buff * skb,int rssi)1228 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1229 {
1230 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1231 	struct ath_common *common = ath5k_hw_common(ah);
1232 
1233 	/* only beacons from our BSSID */
1234 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1235 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1236 		return;
1237 
1238 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1239 
1240 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1241 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1242 }
1243 
1244 /*
1245  * Compute padding position. skb must contain an IEEE 802.11 frame
1246  */
ath5k_common_padpos(struct sk_buff * skb)1247 static int ath5k_common_padpos(struct sk_buff *skb)
1248 {
1249 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1250 	__le16 frame_control = hdr->frame_control;
1251 	int padpos = 24;
1252 
1253 	if (ieee80211_has_a4(frame_control))
1254 		padpos += ETH_ALEN;
1255 
1256 	if (ieee80211_is_data_qos(frame_control))
1257 		padpos += IEEE80211_QOS_CTL_LEN;
1258 
1259 	return padpos;
1260 }
1261 
1262 /*
1263  * This function expects an 802.11 frame and returns the number of
1264  * bytes added, or -1 if we don't have enough header room.
1265  */
ath5k_add_padding(struct sk_buff * skb)1266 static int ath5k_add_padding(struct sk_buff *skb)
1267 {
1268 	int padpos = ath5k_common_padpos(skb);
1269 	int padsize = padpos & 3;
1270 
1271 	if (padsize && skb->len > padpos) {
1272 
1273 		if (skb_headroom(skb) < padsize)
1274 			return -1;
1275 
1276 		skb_push(skb, padsize);
1277 		memmove(skb->data, skb->data + padsize, padpos);
1278 		return padsize;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * The MAC header is padded to have 32-bit boundary if the
1286  * packet payload is non-zero. The general calculation for
1287  * padsize would take into account odd header lengths:
1288  * padsize = 4 - (hdrlen & 3); however, since only
1289  * even-length headers are used, padding can only be 0 or 2
1290  * bytes and we can optimize this a bit.  We must not try to
1291  * remove padding from short control frames that do not have a
1292  * payload.
1293  *
1294  * This function expects an 802.11 frame and returns the number of
1295  * bytes removed.
1296  */
ath5k_remove_padding(struct sk_buff * skb)1297 static int ath5k_remove_padding(struct sk_buff *skb)
1298 {
1299 	int padpos = ath5k_common_padpos(skb);
1300 	int padsize = padpos & 3;
1301 
1302 	if (padsize && skb->len >= padpos + padsize) {
1303 		memmove(skb->data + padsize, skb->data, padpos);
1304 		skb_pull(skb, padsize);
1305 		return padsize;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static void
ath5k_receive_frame(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_rx_status * rs)1312 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1313 		    struct ath5k_rx_status *rs)
1314 {
1315 	struct ieee80211_rx_status *rxs;
1316 
1317 	ath5k_remove_padding(skb);
1318 
1319 	rxs = IEEE80211_SKB_RXCB(skb);
1320 
1321 	rxs->flag = 0;
1322 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1323 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1324 
1325 	/*
1326 	 * always extend the mac timestamp, since this information is
1327 	 * also needed for proper IBSS merging.
1328 	 *
1329 	 * XXX: it might be too late to do it here, since rs_tstamp is
1330 	 * 15bit only. that means TSF extension has to be done within
1331 	 * 32768usec (about 32ms). it might be necessary to move this to
1332 	 * the interrupt handler, like it is done in madwifi.
1333 	 *
1334 	 * Unfortunately we don't know when the hardware takes the rx
1335 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1336 	 * The only thing we know is that it is hardware specific...
1337 	 * On AR5213 it seems the rx timestamp is at the end of the
1338 	 * frame, but I'm not sure.
1339 	 *
1340 	 * NOTE: mac80211 defines mactime at the beginning of the first
1341 	 * data symbol. Since we don't have any time references it's
1342 	 * impossible to comply to that. This affects IBSS merge only
1343 	 * right now, so it's not too bad...
1344 	 */
1345 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1346 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1347 
1348 	rxs->freq = ah->curchan->center_freq;
1349 	rxs->band = ah->curchan->band;
1350 
1351 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1352 
1353 	rxs->antenna = rs->rs_antenna;
1354 
1355 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1356 		ah->stats.antenna_rx[rs->rs_antenna]++;
1357 	else
1358 		ah->stats.antenna_rx[0]++; /* invalid */
1359 
1360 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1361 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1362 
1363 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1364 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1365 		rxs->flag |= RX_FLAG_SHORTPRE;
1366 
1367 	trace_ath5k_rx(ah, skb);
1368 
1369 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1370 
1371 	/* check beacons in IBSS mode */
1372 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1373 		ath5k_check_ibss_tsf(ah, skb, rxs);
1374 
1375 	ieee80211_rx(ah->hw, skb);
1376 }
1377 
1378 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1379  *
1380  * Check if we want to further process this frame or not. Also update
1381  * statistics. Return true if we want this frame, false if not.
1382  */
1383 static bool
ath5k_receive_frame_ok(struct ath5k_hw * ah,struct ath5k_rx_status * rs)1384 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1385 {
1386 	ah->stats.rx_all_count++;
1387 	ah->stats.rx_bytes_count += rs->rs_datalen;
1388 
1389 	if (unlikely(rs->rs_status)) {
1390 		if (rs->rs_status & AR5K_RXERR_CRC)
1391 			ah->stats.rxerr_crc++;
1392 		if (rs->rs_status & AR5K_RXERR_FIFO)
1393 			ah->stats.rxerr_fifo++;
1394 		if (rs->rs_status & AR5K_RXERR_PHY) {
1395 			ah->stats.rxerr_phy++;
1396 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1397 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1398 			return false;
1399 		}
1400 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1401 			/*
1402 			 * Decrypt error.  If the error occurred
1403 			 * because there was no hardware key, then
1404 			 * let the frame through so the upper layers
1405 			 * can process it.  This is necessary for 5210
1406 			 * parts which have no way to setup a ``clear''
1407 			 * key cache entry.
1408 			 *
1409 			 * XXX do key cache faulting
1410 			 */
1411 			ah->stats.rxerr_decrypt++;
1412 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1413 			    !(rs->rs_status & AR5K_RXERR_CRC))
1414 				return true;
1415 		}
1416 		if (rs->rs_status & AR5K_RXERR_MIC) {
1417 			ah->stats.rxerr_mic++;
1418 			return true;
1419 		}
1420 
1421 		/* reject any frames with non-crypto errors */
1422 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1423 			return false;
1424 	}
1425 
1426 	if (unlikely(rs->rs_more)) {
1427 		ah->stats.rxerr_jumbo++;
1428 		return false;
1429 	}
1430 	return true;
1431 }
1432 
1433 static void
ath5k_set_current_imask(struct ath5k_hw * ah)1434 ath5k_set_current_imask(struct ath5k_hw *ah)
1435 {
1436 	enum ath5k_int imask;
1437 	unsigned long flags;
1438 
1439 	spin_lock_irqsave(&ah->irqlock, flags);
1440 	imask = ah->imask;
1441 	if (ah->rx_pending)
1442 		imask &= ~AR5K_INT_RX_ALL;
1443 	if (ah->tx_pending)
1444 		imask &= ~AR5K_INT_TX_ALL;
1445 	ath5k_hw_set_imr(ah, imask);
1446 	spin_unlock_irqrestore(&ah->irqlock, flags);
1447 }
1448 
1449 static void
ath5k_tasklet_rx(unsigned long data)1450 ath5k_tasklet_rx(unsigned long data)
1451 {
1452 	struct ath5k_rx_status rs = {};
1453 	struct sk_buff *skb, *next_skb;
1454 	dma_addr_t next_skb_addr;
1455 	struct ath5k_hw *ah = (void *)data;
1456 	struct ath_common *common = ath5k_hw_common(ah);
1457 	struct ath5k_buf *bf;
1458 	struct ath5k_desc *ds;
1459 	int ret;
1460 
1461 	spin_lock(&ah->rxbuflock);
1462 	if (list_empty(&ah->rxbuf)) {
1463 		ATH5K_WARN(ah, "empty rx buf pool\n");
1464 		goto unlock;
1465 	}
1466 	do {
1467 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1468 		BUG_ON(bf->skb == NULL);
1469 		skb = bf->skb;
1470 		ds = bf->desc;
1471 
1472 		/* bail if HW is still using self-linked descriptor */
1473 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1474 			break;
1475 
1476 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1477 		if (unlikely(ret == -EINPROGRESS))
1478 			break;
1479 		else if (unlikely(ret)) {
1480 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1481 			ah->stats.rxerr_proc++;
1482 			break;
1483 		}
1484 
1485 		if (ath5k_receive_frame_ok(ah, &rs)) {
1486 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1487 
1488 			/*
1489 			 * If we can't replace bf->skb with a new skb under
1490 			 * memory pressure, just skip this packet
1491 			 */
1492 			if (!next_skb)
1493 				goto next;
1494 
1495 			dma_unmap_single(ah->dev, bf->skbaddr,
1496 					 common->rx_bufsize,
1497 					 DMA_FROM_DEVICE);
1498 
1499 			skb_put(skb, rs.rs_datalen);
1500 
1501 			ath5k_receive_frame(ah, skb, &rs);
1502 
1503 			bf->skb = next_skb;
1504 			bf->skbaddr = next_skb_addr;
1505 		}
1506 next:
1507 		list_move_tail(&bf->list, &ah->rxbuf);
1508 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1509 unlock:
1510 	spin_unlock(&ah->rxbuflock);
1511 	ah->rx_pending = false;
1512 	ath5k_set_current_imask(ah);
1513 }
1514 
1515 
1516 /*************\
1517 * TX Handling *
1518 \*************/
1519 
1520 void
ath5k_tx_queue(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath5k_txq * txq)1521 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1522 	       struct ath5k_txq *txq)
1523 {
1524 	struct ath5k_hw *ah = hw->priv;
1525 	struct ath5k_buf *bf;
1526 	unsigned long flags;
1527 	int padsize;
1528 
1529 	trace_ath5k_tx(ah, skb, txq);
1530 
1531 	/*
1532 	 * The hardware expects the header padded to 4 byte boundaries.
1533 	 * If this is not the case, we add the padding after the header.
1534 	 */
1535 	padsize = ath5k_add_padding(skb);
1536 	if (padsize < 0) {
1537 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1538 			  " headroom to pad");
1539 		goto drop_packet;
1540 	}
1541 
1542 	if (txq->txq_len >= txq->txq_max &&
1543 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1544 		ieee80211_stop_queue(hw, txq->qnum);
1545 
1546 	spin_lock_irqsave(&ah->txbuflock, flags);
1547 	if (list_empty(&ah->txbuf)) {
1548 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1549 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1550 		ieee80211_stop_queues(hw);
1551 		goto drop_packet;
1552 	}
1553 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1554 	list_del(&bf->list);
1555 	ah->txbuf_len--;
1556 	if (list_empty(&ah->txbuf))
1557 		ieee80211_stop_queues(hw);
1558 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1559 
1560 	bf->skb = skb;
1561 
1562 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1563 		bf->skb = NULL;
1564 		spin_lock_irqsave(&ah->txbuflock, flags);
1565 		list_add_tail(&bf->list, &ah->txbuf);
1566 		ah->txbuf_len++;
1567 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1568 		goto drop_packet;
1569 	}
1570 	return;
1571 
1572 drop_packet:
1573 	ieee80211_free_txskb(hw, skb);
1574 }
1575 
1576 static void
ath5k_tx_frame_completed(struct ath5k_hw * ah,struct sk_buff * skb,struct ath5k_txq * txq,struct ath5k_tx_status * ts)1577 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1578 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1579 {
1580 	struct ieee80211_tx_info *info;
1581 	u8 tries[3];
1582 	int i;
1583 
1584 	ah->stats.tx_all_count++;
1585 	ah->stats.tx_bytes_count += skb->len;
1586 	info = IEEE80211_SKB_CB(skb);
1587 
1588 	tries[0] = info->status.rates[0].count;
1589 	tries[1] = info->status.rates[1].count;
1590 	tries[2] = info->status.rates[2].count;
1591 
1592 	ieee80211_tx_info_clear_status(info);
1593 
1594 	for (i = 0; i < ts->ts_final_idx; i++) {
1595 		struct ieee80211_tx_rate *r =
1596 			&info->status.rates[i];
1597 
1598 		r->count = tries[i];
1599 	}
1600 
1601 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1602 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1603 
1604 	if (unlikely(ts->ts_status)) {
1605 		ah->stats.ack_fail++;
1606 		if (ts->ts_status & AR5K_TXERR_FILT) {
1607 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1608 			ah->stats.txerr_filt++;
1609 		}
1610 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1611 			ah->stats.txerr_retry++;
1612 		if (ts->ts_status & AR5K_TXERR_FIFO)
1613 			ah->stats.txerr_fifo++;
1614 	} else {
1615 		info->flags |= IEEE80211_TX_STAT_ACK;
1616 		info->status.ack_signal = ts->ts_rssi;
1617 
1618 		/* count the successful attempt as well */
1619 		info->status.rates[ts->ts_final_idx].count++;
1620 	}
1621 
1622 	/*
1623 	* Remove MAC header padding before giving the frame
1624 	* back to mac80211.
1625 	*/
1626 	ath5k_remove_padding(skb);
1627 
1628 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1629 		ah->stats.antenna_tx[ts->ts_antenna]++;
1630 	else
1631 		ah->stats.antenna_tx[0]++; /* invalid */
1632 
1633 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1634 	ieee80211_tx_status(ah->hw, skb);
1635 }
1636 
1637 static void
ath5k_tx_processq(struct ath5k_hw * ah,struct ath5k_txq * txq)1638 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1639 {
1640 	struct ath5k_tx_status ts = {};
1641 	struct ath5k_buf *bf, *bf0;
1642 	struct ath5k_desc *ds;
1643 	struct sk_buff *skb;
1644 	int ret;
1645 
1646 	spin_lock(&txq->lock);
1647 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1648 
1649 		txq->txq_poll_mark = false;
1650 
1651 		/* skb might already have been processed last time. */
1652 		if (bf->skb != NULL) {
1653 			ds = bf->desc;
1654 
1655 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1656 			if (unlikely(ret == -EINPROGRESS))
1657 				break;
1658 			else if (unlikely(ret)) {
1659 				ATH5K_ERR(ah,
1660 					"error %d while processing "
1661 					"queue %u\n", ret, txq->qnum);
1662 				break;
1663 			}
1664 
1665 			skb = bf->skb;
1666 			bf->skb = NULL;
1667 
1668 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1669 					DMA_TO_DEVICE);
1670 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1671 		}
1672 
1673 		/*
1674 		 * It's possible that the hardware can say the buffer is
1675 		 * completed when it hasn't yet loaded the ds_link from
1676 		 * host memory and moved on.
1677 		 * Always keep the last descriptor to avoid HW races...
1678 		 */
1679 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1680 			spin_lock(&ah->txbuflock);
1681 			list_move_tail(&bf->list, &ah->txbuf);
1682 			ah->txbuf_len++;
1683 			txq->txq_len--;
1684 			spin_unlock(&ah->txbuflock);
1685 		}
1686 	}
1687 	spin_unlock(&txq->lock);
1688 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1689 		ieee80211_wake_queue(ah->hw, txq->qnum);
1690 }
1691 
1692 static void
ath5k_tasklet_tx(unsigned long data)1693 ath5k_tasklet_tx(unsigned long data)
1694 {
1695 	int i;
1696 	struct ath5k_hw *ah = (void *)data;
1697 
1698 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1699 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1700 			ath5k_tx_processq(ah, &ah->txqs[i]);
1701 
1702 	ah->tx_pending = false;
1703 	ath5k_set_current_imask(ah);
1704 }
1705 
1706 
1707 /*****************\
1708 * Beacon handling *
1709 \*****************/
1710 
1711 /*
1712  * Setup the beacon frame for transmit.
1713  */
1714 static int
ath5k_beacon_setup(struct ath5k_hw * ah,struct ath5k_buf * bf)1715 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1716 {
1717 	struct sk_buff *skb = bf->skb;
1718 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1719 	struct ath5k_desc *ds;
1720 	int ret = 0;
1721 	u8 antenna;
1722 	u32 flags;
1723 	const int padsize = 0;
1724 
1725 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1726 			DMA_TO_DEVICE);
1727 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1728 			"skbaddr %llx\n", skb, skb->data, skb->len,
1729 			(unsigned long long)bf->skbaddr);
1730 
1731 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1732 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1733 		dev_kfree_skb_any(skb);
1734 		bf->skb = NULL;
1735 		return -EIO;
1736 	}
1737 
1738 	ds = bf->desc;
1739 	antenna = ah->ah_tx_ant;
1740 
1741 	flags = AR5K_TXDESC_NOACK;
1742 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1743 		ds->ds_link = bf->daddr;	/* self-linked */
1744 		flags |= AR5K_TXDESC_VEOL;
1745 	} else
1746 		ds->ds_link = 0;
1747 
1748 	/*
1749 	 * If we use multiple antennas on AP and use
1750 	 * the Sectored AP scenario, switch antenna every
1751 	 * 4 beacons to make sure everybody hears our AP.
1752 	 * When a client tries to associate, hw will keep
1753 	 * track of the tx antenna to be used for this client
1754 	 * automatically, based on ACKed packets.
1755 	 *
1756 	 * Note: AP still listens and transmits RTS on the
1757 	 * default antenna which is supposed to be an omni.
1758 	 *
1759 	 * Note2: On sectored scenarios it's possible to have
1760 	 * multiple antennas (1 omni -- the default -- and 14
1761 	 * sectors), so if we choose to actually support this
1762 	 * mode, we need to allow the user to set how many antennas
1763 	 * we have and tweak the code below to send beacons
1764 	 * on all of them.
1765 	 */
1766 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1767 		antenna = ah->bsent & 4 ? 2 : 1;
1768 
1769 
1770 	/* FIXME: If we are in g mode and rate is a CCK rate
1771 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1772 	 * from tx power (value is in dB units already) */
1773 	ds->ds_data = bf->skbaddr;
1774 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1775 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1776 			AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1777 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1778 			1, AR5K_TXKEYIX_INVALID,
1779 			antenna, flags, 0, 0);
1780 	if (ret)
1781 		goto err_unmap;
1782 
1783 	return 0;
1784 err_unmap:
1785 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1791  * this is called only once at config_bss time, for AP we do it every
1792  * SWBA interrupt so that the TIM will reflect buffered frames.
1793  *
1794  * Called with the beacon lock.
1795  */
1796 int
ath5k_beacon_update(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1797 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1798 {
1799 	int ret;
1800 	struct ath5k_hw *ah = hw->priv;
1801 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1802 	struct sk_buff *skb;
1803 
1804 	if (WARN_ON(!vif)) {
1805 		ret = -EINVAL;
1806 		goto out;
1807 	}
1808 
1809 	skb = ieee80211_beacon_get(hw, vif);
1810 
1811 	if (!skb) {
1812 		ret = -ENOMEM;
1813 		goto out;
1814 	}
1815 
1816 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1817 	avf->bbuf->skb = skb;
1818 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1819 out:
1820 	return ret;
1821 }
1822 
1823 /*
1824  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1825  * frame contents are done as needed and the slot time is
1826  * also adjusted based on current state.
1827  *
1828  * This is called from software irq context (beacontq tasklets)
1829  * or user context from ath5k_beacon_config.
1830  */
1831 static void
ath5k_beacon_send(struct ath5k_hw * ah)1832 ath5k_beacon_send(struct ath5k_hw *ah)
1833 {
1834 	struct ieee80211_vif *vif;
1835 	struct ath5k_vif *avf;
1836 	struct ath5k_buf *bf;
1837 	struct sk_buff *skb;
1838 	int err;
1839 
1840 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1841 
1842 	/*
1843 	 * Check if the previous beacon has gone out.  If
1844 	 * not, don't don't try to post another: skip this
1845 	 * period and wait for the next.  Missed beacons
1846 	 * indicate a problem and should not occur.  If we
1847 	 * miss too many consecutive beacons reset the device.
1848 	 */
1849 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1850 		ah->bmisscount++;
1851 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1852 			"missed %u consecutive beacons\n", ah->bmisscount);
1853 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1854 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1855 				"stuck beacon time (%u missed)\n",
1856 				ah->bmisscount);
1857 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1858 				  "stuck beacon, resetting\n");
1859 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1860 		}
1861 		return;
1862 	}
1863 	if (unlikely(ah->bmisscount != 0)) {
1864 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1865 			"resume beacon xmit after %u misses\n",
1866 			ah->bmisscount);
1867 		ah->bmisscount = 0;
1868 	}
1869 
1870 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1871 			ah->num_mesh_vifs > 1) ||
1872 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1873 		u64 tsf = ath5k_hw_get_tsf64(ah);
1874 		u32 tsftu = TSF_TO_TU(tsf);
1875 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1876 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1877 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1878 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1879 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1880 	} else /* only one interface */
1881 		vif = ah->bslot[0];
1882 
1883 	if (!vif)
1884 		return;
1885 
1886 	avf = (void *)vif->drv_priv;
1887 	bf = avf->bbuf;
1888 
1889 	/*
1890 	 * Stop any current dma and put the new frame on the queue.
1891 	 * This should never fail since we check above that no frames
1892 	 * are still pending on the queue.
1893 	 */
1894 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1895 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1896 		/* NB: hw still stops DMA, so proceed */
1897 	}
1898 
1899 	/* refresh the beacon for AP or MESH mode */
1900 	if (ah->opmode == NL80211_IFTYPE_AP ||
1901 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1902 		err = ath5k_beacon_update(ah->hw, vif);
1903 		if (err)
1904 			return;
1905 	}
1906 
1907 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1908 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1909 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1910 		return;
1911 	}
1912 
1913 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1914 
1915 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1916 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1917 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1918 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1919 
1920 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1921 	while (skb) {
1922 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1923 
1924 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1925 			break;
1926 
1927 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1928 	}
1929 
1930 	ah->bsent++;
1931 }
1932 
1933 /**
1934  * ath5k_beacon_update_timers - update beacon timers
1935  *
1936  * @ah: struct ath5k_hw pointer we are operating on
1937  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1938  *          beacon timer update based on the current HW TSF.
1939  *
1940  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1941  * of a received beacon or the current local hardware TSF and write it to the
1942  * beacon timer registers.
1943  *
1944  * This is called in a variety of situations, e.g. when a beacon is received,
1945  * when a TSF update has been detected, but also when an new IBSS is created or
1946  * when we otherwise know we have to update the timers, but we keep it in this
1947  * function to have it all together in one place.
1948  */
1949 void
ath5k_beacon_update_timers(struct ath5k_hw * ah,u64 bc_tsf)1950 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1951 {
1952 	u32 nexttbtt, intval, hw_tu, bc_tu;
1953 	u64 hw_tsf;
1954 
1955 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1956 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1957 		+ ah->num_mesh_vifs > 1) {
1958 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1959 		if (intval < 15)
1960 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1961 				   intval);
1962 	}
1963 	if (WARN_ON(!intval))
1964 		return;
1965 
1966 	/* beacon TSF converted to TU */
1967 	bc_tu = TSF_TO_TU(bc_tsf);
1968 
1969 	/* current TSF converted to TU */
1970 	hw_tsf = ath5k_hw_get_tsf64(ah);
1971 	hw_tu = TSF_TO_TU(hw_tsf);
1972 
1973 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1974 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1975 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1976 	 * configuration we need to make sure it is bigger than that. */
1977 
1978 	if (bc_tsf == -1) {
1979 		/*
1980 		 * no beacons received, called internally.
1981 		 * just need to refresh timers based on HW TSF.
1982 		 */
1983 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1984 	} else if (bc_tsf == 0) {
1985 		/*
1986 		 * no beacon received, probably called by ath5k_reset_tsf().
1987 		 * reset TSF to start with 0.
1988 		 */
1989 		nexttbtt = intval;
1990 		intval |= AR5K_BEACON_RESET_TSF;
1991 	} else if (bc_tsf > hw_tsf) {
1992 		/*
1993 		 * beacon received, SW merge happened but HW TSF not yet updated.
1994 		 * not possible to reconfigure timers yet, but next time we
1995 		 * receive a beacon with the same BSSID, the hardware will
1996 		 * automatically update the TSF and then we need to reconfigure
1997 		 * the timers.
1998 		 */
1999 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2000 			"need to wait for HW TSF sync\n");
2001 		return;
2002 	} else {
2003 		/*
2004 		 * most important case for beacon synchronization between STA.
2005 		 *
2006 		 * beacon received and HW TSF has been already updated by HW.
2007 		 * update next TBTT based on the TSF of the beacon, but make
2008 		 * sure it is ahead of our local TSF timer.
2009 		 */
2010 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2011 	}
2012 #undef FUDGE
2013 
2014 	ah->nexttbtt = nexttbtt;
2015 
2016 	intval |= AR5K_BEACON_ENA;
2017 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2018 
2019 	/*
2020 	 * debugging output last in order to preserve the time critical aspect
2021 	 * of this function
2022 	 */
2023 	if (bc_tsf == -1)
2024 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2025 			"reconfigured timers based on HW TSF\n");
2026 	else if (bc_tsf == 0)
2027 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028 			"reset HW TSF and timers\n");
2029 	else
2030 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031 			"updated timers based on beacon TSF\n");
2032 
2033 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2034 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2035 			  (unsigned long long) bc_tsf,
2036 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2037 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2038 		intval & AR5K_BEACON_PERIOD,
2039 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2040 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2041 }
2042 
2043 /**
2044  * ath5k_beacon_config - Configure the beacon queues and interrupts
2045  *
2046  * @ah: struct ath5k_hw pointer we are operating on
2047  *
2048  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2049  * interrupts to detect TSF updates only.
2050  */
2051 void
ath5k_beacon_config(struct ath5k_hw * ah)2052 ath5k_beacon_config(struct ath5k_hw *ah)
2053 {
2054 	unsigned long flags;
2055 
2056 	spin_lock_irqsave(&ah->block, flags);
2057 	ah->bmisscount = 0;
2058 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2059 
2060 	if (ah->enable_beacon) {
2061 		/*
2062 		 * In IBSS mode we use a self-linked tx descriptor and let the
2063 		 * hardware send the beacons automatically. We have to load it
2064 		 * only once here.
2065 		 * We use the SWBA interrupt only to keep track of the beacon
2066 		 * timers in order to detect automatic TSF updates.
2067 		 */
2068 		ath5k_beaconq_config(ah);
2069 
2070 		ah->imask |= AR5K_INT_SWBA;
2071 
2072 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2073 			if (ath5k_hw_hasveol(ah))
2074 				ath5k_beacon_send(ah);
2075 		} else
2076 			ath5k_beacon_update_timers(ah, -1);
2077 	} else {
2078 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2079 	}
2080 
2081 	ath5k_hw_set_imr(ah, ah->imask);
2082 	mmiowb();
2083 	spin_unlock_irqrestore(&ah->block, flags);
2084 }
2085 
ath5k_tasklet_beacon(unsigned long data)2086 static void ath5k_tasklet_beacon(unsigned long data)
2087 {
2088 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2089 
2090 	/*
2091 	 * Software beacon alert--time to send a beacon.
2092 	 *
2093 	 * In IBSS mode we use this interrupt just to
2094 	 * keep track of the next TBTT (target beacon
2095 	 * transmission time) in order to detect whether
2096 	 * automatic TSF updates happened.
2097 	 */
2098 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2099 		/* XXX: only if VEOL supported */
2100 		u64 tsf = ath5k_hw_get_tsf64(ah);
2101 		ah->nexttbtt += ah->bintval;
2102 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2103 				"SWBA nexttbtt: %x hw_tu: %x "
2104 				"TSF: %llx\n",
2105 				ah->nexttbtt,
2106 				TSF_TO_TU(tsf),
2107 				(unsigned long long) tsf);
2108 	} else {
2109 		spin_lock(&ah->block);
2110 		ath5k_beacon_send(ah);
2111 		spin_unlock(&ah->block);
2112 	}
2113 }
2114 
2115 
2116 /********************\
2117 * Interrupt handling *
2118 \********************/
2119 
2120 static void
ath5k_intr_calibration_poll(struct ath5k_hw * ah)2121 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2122 {
2123 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2124 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2125 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2126 
2127 		/* Run ANI only when calibration is not active */
2128 
2129 		ah->ah_cal_next_ani = jiffies +
2130 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2131 		tasklet_schedule(&ah->ani_tasklet);
2132 
2133 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2134 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2135 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2136 
2137 		/* Run calibration only when another calibration
2138 		 * is not running.
2139 		 *
2140 		 * Note: This is for both full/short calibration,
2141 		 * if it's time for a full one, ath5k_calibrate_work will deal
2142 		 * with it. */
2143 
2144 		ah->ah_cal_next_short = jiffies +
2145 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2146 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2147 	}
2148 	/* we could use SWI to generate enough interrupts to meet our
2149 	 * calibration interval requirements, if necessary:
2150 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2151 }
2152 
2153 static void
ath5k_schedule_rx(struct ath5k_hw * ah)2154 ath5k_schedule_rx(struct ath5k_hw *ah)
2155 {
2156 	ah->rx_pending = true;
2157 	tasklet_schedule(&ah->rxtq);
2158 }
2159 
2160 static void
ath5k_schedule_tx(struct ath5k_hw * ah)2161 ath5k_schedule_tx(struct ath5k_hw *ah)
2162 {
2163 	ah->tx_pending = true;
2164 	tasklet_schedule(&ah->txtq);
2165 }
2166 
2167 static irqreturn_t
ath5k_intr(int irq,void * dev_id)2168 ath5k_intr(int irq, void *dev_id)
2169 {
2170 	struct ath5k_hw *ah = dev_id;
2171 	enum ath5k_int status;
2172 	unsigned int counter = 1000;
2173 
2174 
2175 	/*
2176 	 * If hw is not ready (or detached) and we get an
2177 	 * interrupt, or if we have no interrupts pending
2178 	 * (that means it's not for us) skip it.
2179 	 *
2180 	 * NOTE: Group 0/1 PCI interface registers are not
2181 	 * supported on WiSOCs, so we can't check for pending
2182 	 * interrupts (ISR belongs to another register group
2183 	 * so we are ok).
2184 	 */
2185 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2186 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2187 			!ath5k_hw_is_intr_pending(ah))))
2188 		return IRQ_NONE;
2189 
2190 	/** Main loop **/
2191 	do {
2192 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2193 
2194 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2195 				status, ah->imask);
2196 
2197 		/*
2198 		 * Fatal hw error -> Log and reset
2199 		 *
2200 		 * Fatal errors are unrecoverable so we have to
2201 		 * reset the card. These errors include bus and
2202 		 * dma errors.
2203 		 */
2204 		if (unlikely(status & AR5K_INT_FATAL)) {
2205 
2206 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2207 				  "fatal int, resetting\n");
2208 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2209 
2210 		/*
2211 		 * RX Overrun -> Count and reset if needed
2212 		 *
2213 		 * Receive buffers are full. Either the bus is busy or
2214 		 * the CPU is not fast enough to process all received
2215 		 * frames.
2216 		 */
2217 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2218 
2219 			/*
2220 			 * Older chipsets need a reset to come out of this
2221 			 * condition, but we treat it as RX for newer chips.
2222 			 * We don't know exactly which versions need a reset
2223 			 * this guess is copied from the HAL.
2224 			 */
2225 			ah->stats.rxorn_intr++;
2226 
2227 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2228 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2229 					  "rx overrun, resetting\n");
2230 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2231 			} else
2232 				ath5k_schedule_rx(ah);
2233 
2234 		} else {
2235 
2236 			/* Software Beacon Alert -> Schedule beacon tasklet */
2237 			if (status & AR5K_INT_SWBA)
2238 				tasklet_hi_schedule(&ah->beacontq);
2239 
2240 			/*
2241 			 * No more RX descriptors -> Just count
2242 			 *
2243 			 * NB: the hardware should re-read the link when
2244 			 *     RXE bit is written, but it doesn't work at
2245 			 *     least on older hardware revs.
2246 			 */
2247 			if (status & AR5K_INT_RXEOL)
2248 				ah->stats.rxeol_intr++;
2249 
2250 
2251 			/* TX Underrun -> Bump tx trigger level */
2252 			if (status & AR5K_INT_TXURN)
2253 				ath5k_hw_update_tx_triglevel(ah, true);
2254 
2255 			/* RX -> Schedule rx tasklet */
2256 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2257 				ath5k_schedule_rx(ah);
2258 
2259 			/* TX -> Schedule tx tasklet */
2260 			if (status & (AR5K_INT_TXOK
2261 					| AR5K_INT_TXDESC
2262 					| AR5K_INT_TXERR
2263 					| AR5K_INT_TXEOL))
2264 				ath5k_schedule_tx(ah);
2265 
2266 			/* Missed beacon -> TODO
2267 			if (status & AR5K_INT_BMISS)
2268 			*/
2269 
2270 			/* MIB event -> Update counters and notify ANI */
2271 			if (status & AR5K_INT_MIB) {
2272 				ah->stats.mib_intr++;
2273 				ath5k_hw_update_mib_counters(ah);
2274 				ath5k_ani_mib_intr(ah);
2275 			}
2276 
2277 			/* GPIO -> Notify RFKill layer */
2278 			if (status & AR5K_INT_GPIO)
2279 				tasklet_schedule(&ah->rf_kill.toggleq);
2280 
2281 		}
2282 
2283 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2284 			break;
2285 
2286 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2287 
2288 	/*
2289 	 * Until we handle rx/tx interrupts mask them on IMR
2290 	 *
2291 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2292 	 * and unset after we 've handled the interrupts.
2293 	 */
2294 	if (ah->rx_pending || ah->tx_pending)
2295 		ath5k_set_current_imask(ah);
2296 
2297 	if (unlikely(!counter))
2298 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2299 
2300 	/* Fire up calibration poll */
2301 	ath5k_intr_calibration_poll(ah);
2302 
2303 	return IRQ_HANDLED;
2304 }
2305 
2306 /*
2307  * Periodically recalibrate the PHY to account
2308  * for temperature/environment changes.
2309  */
2310 static void
ath5k_calibrate_work(struct work_struct * work)2311 ath5k_calibrate_work(struct work_struct *work)
2312 {
2313 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2314 		calib_work);
2315 
2316 	/* Should we run a full calibration ? */
2317 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2318 
2319 		ah->ah_cal_next_full = jiffies +
2320 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2321 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2322 
2323 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2324 				"running full calibration\n");
2325 
2326 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2327 			/*
2328 			 * Rfgain is out of bounds, reset the chip
2329 			 * to load new gain values.
2330 			 */
2331 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2332 					"got new rfgain, resetting\n");
2333 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2334 		}
2335 	} else
2336 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2337 
2338 
2339 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2340 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2341 		ah->curchan->hw_value);
2342 
2343 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2344 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2345 			ieee80211_frequency_to_channel(
2346 				ah->curchan->center_freq));
2347 
2348 	/* Clear calibration flags */
2349 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2350 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2351 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2352 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2353 }
2354 
2355 
2356 static void
ath5k_tasklet_ani(unsigned long data)2357 ath5k_tasklet_ani(unsigned long data)
2358 {
2359 	struct ath5k_hw *ah = (void *)data;
2360 
2361 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2362 	ath5k_ani_calibration(ah);
2363 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2364 }
2365 
2366 
2367 static void
ath5k_tx_complete_poll_work(struct work_struct * work)2368 ath5k_tx_complete_poll_work(struct work_struct *work)
2369 {
2370 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2371 			tx_complete_work.work);
2372 	struct ath5k_txq *txq;
2373 	int i;
2374 	bool needreset = false;
2375 
2376 	mutex_lock(&ah->lock);
2377 
2378 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2379 		if (ah->txqs[i].setup) {
2380 			txq = &ah->txqs[i];
2381 			spin_lock_bh(&txq->lock);
2382 			if (txq->txq_len > 1) {
2383 				if (txq->txq_poll_mark) {
2384 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2385 						  "TX queue stuck %d\n",
2386 						  txq->qnum);
2387 					needreset = true;
2388 					txq->txq_stuck++;
2389 					spin_unlock_bh(&txq->lock);
2390 					break;
2391 				} else {
2392 					txq->txq_poll_mark = true;
2393 				}
2394 			}
2395 			spin_unlock_bh(&txq->lock);
2396 		}
2397 	}
2398 
2399 	if (needreset) {
2400 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2401 			  "TX queues stuck, resetting\n");
2402 		ath5k_reset(ah, NULL, true);
2403 	}
2404 
2405 	mutex_unlock(&ah->lock);
2406 
2407 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2408 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2409 }
2410 
2411 
2412 /*************************\
2413 * Initialization routines *
2414 \*************************/
2415 
2416 int __devinit
ath5k_init_ah(struct ath5k_hw * ah,const struct ath_bus_ops * bus_ops)2417 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2418 {
2419 	struct ieee80211_hw *hw = ah->hw;
2420 	struct ath_common *common;
2421 	int ret;
2422 	int csz;
2423 
2424 	/* Initialize driver private data */
2425 	SET_IEEE80211_DEV(hw, ah->dev);
2426 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2427 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2428 			IEEE80211_HW_SIGNAL_DBM |
2429 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2430 
2431 	hw->wiphy->interface_modes =
2432 		BIT(NL80211_IFTYPE_AP) |
2433 		BIT(NL80211_IFTYPE_STATION) |
2434 		BIT(NL80211_IFTYPE_ADHOC) |
2435 		BIT(NL80211_IFTYPE_MESH_POINT);
2436 
2437 	/* SW support for IBSS_RSN is provided by mac80211 */
2438 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2439 
2440 	/* both antennas can be configured as RX or TX */
2441 	hw->wiphy->available_antennas_tx = 0x3;
2442 	hw->wiphy->available_antennas_rx = 0x3;
2443 
2444 	hw->extra_tx_headroom = 2;
2445 	hw->channel_change_time = 5000;
2446 
2447 	/*
2448 	 * Mark the device as detached to avoid processing
2449 	 * interrupts until setup is complete.
2450 	 */
2451 	__set_bit(ATH_STAT_INVALID, ah->status);
2452 
2453 	ah->opmode = NL80211_IFTYPE_STATION;
2454 	ah->bintval = 1000;
2455 	mutex_init(&ah->lock);
2456 	spin_lock_init(&ah->rxbuflock);
2457 	spin_lock_init(&ah->txbuflock);
2458 	spin_lock_init(&ah->block);
2459 	spin_lock_init(&ah->irqlock);
2460 
2461 	/* Setup interrupt handler */
2462 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2463 	if (ret) {
2464 		ATH5K_ERR(ah, "request_irq failed\n");
2465 		goto err;
2466 	}
2467 
2468 	common = ath5k_hw_common(ah);
2469 	common->ops = &ath5k_common_ops;
2470 	common->bus_ops = bus_ops;
2471 	common->ah = ah;
2472 	common->hw = hw;
2473 	common->priv = ah;
2474 	common->clockrate = 40;
2475 
2476 	/*
2477 	 * Cache line size is used to size and align various
2478 	 * structures used to communicate with the hardware.
2479 	 */
2480 	ath5k_read_cachesize(common, &csz);
2481 	common->cachelsz = csz << 2; /* convert to bytes */
2482 
2483 	spin_lock_init(&common->cc_lock);
2484 
2485 	/* Initialize device */
2486 	ret = ath5k_hw_init(ah);
2487 	if (ret)
2488 		goto err_irq;
2489 
2490 	/* Set up multi-rate retry capabilities */
2491 	if (ah->ah_capabilities.cap_has_mrr_support) {
2492 		hw->max_rates = 4;
2493 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2494 					 AR5K_INIT_RETRY_LONG);
2495 	}
2496 
2497 	hw->vif_data_size = sizeof(struct ath5k_vif);
2498 
2499 	/* Finish private driver data initialization */
2500 	ret = ath5k_init(hw);
2501 	if (ret)
2502 		goto err_ah;
2503 
2504 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2505 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2506 					ah->ah_mac_srev,
2507 					ah->ah_phy_revision);
2508 
2509 	if (!ah->ah_single_chip) {
2510 		/* Single chip radio (!RF5111) */
2511 		if (ah->ah_radio_5ghz_revision &&
2512 			!ah->ah_radio_2ghz_revision) {
2513 			/* No 5GHz support -> report 2GHz radio */
2514 			if (!test_bit(AR5K_MODE_11A,
2515 				ah->ah_capabilities.cap_mode)) {
2516 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2517 					ath5k_chip_name(AR5K_VERSION_RAD,
2518 						ah->ah_radio_5ghz_revision),
2519 						ah->ah_radio_5ghz_revision);
2520 			/* No 2GHz support (5110 and some
2521 			 * 5GHz only cards) -> report 5GHz radio */
2522 			} else if (!test_bit(AR5K_MODE_11B,
2523 				ah->ah_capabilities.cap_mode)) {
2524 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2525 					ath5k_chip_name(AR5K_VERSION_RAD,
2526 						ah->ah_radio_5ghz_revision),
2527 						ah->ah_radio_5ghz_revision);
2528 			/* Multiband radio */
2529 			} else {
2530 				ATH5K_INFO(ah, "RF%s multiband radio found"
2531 					" (0x%x)\n",
2532 					ath5k_chip_name(AR5K_VERSION_RAD,
2533 						ah->ah_radio_5ghz_revision),
2534 						ah->ah_radio_5ghz_revision);
2535 			}
2536 		}
2537 		/* Multi chip radio (RF5111 - RF2111) ->
2538 		 * report both 2GHz/5GHz radios */
2539 		else if (ah->ah_radio_5ghz_revision &&
2540 				ah->ah_radio_2ghz_revision) {
2541 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2542 				ath5k_chip_name(AR5K_VERSION_RAD,
2543 					ah->ah_radio_5ghz_revision),
2544 					ah->ah_radio_5ghz_revision);
2545 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2546 				ath5k_chip_name(AR5K_VERSION_RAD,
2547 					ah->ah_radio_2ghz_revision),
2548 					ah->ah_radio_2ghz_revision);
2549 		}
2550 	}
2551 
2552 	ath5k_debug_init_device(ah);
2553 
2554 	/* ready to process interrupts */
2555 	__clear_bit(ATH_STAT_INVALID, ah->status);
2556 
2557 	return 0;
2558 err_ah:
2559 	ath5k_hw_deinit(ah);
2560 err_irq:
2561 	free_irq(ah->irq, ah);
2562 err:
2563 	return ret;
2564 }
2565 
2566 static int
ath5k_stop_locked(struct ath5k_hw * ah)2567 ath5k_stop_locked(struct ath5k_hw *ah)
2568 {
2569 
2570 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2571 			test_bit(ATH_STAT_INVALID, ah->status));
2572 
2573 	/*
2574 	 * Shutdown the hardware and driver:
2575 	 *    stop output from above
2576 	 *    disable interrupts
2577 	 *    turn off timers
2578 	 *    turn off the radio
2579 	 *    clear transmit machinery
2580 	 *    clear receive machinery
2581 	 *    drain and release tx queues
2582 	 *    reclaim beacon resources
2583 	 *    power down hardware
2584 	 *
2585 	 * Note that some of this work is not possible if the
2586 	 * hardware is gone (invalid).
2587 	 */
2588 	ieee80211_stop_queues(ah->hw);
2589 
2590 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2591 		ath5k_led_off(ah);
2592 		ath5k_hw_set_imr(ah, 0);
2593 		synchronize_irq(ah->irq);
2594 		ath5k_rx_stop(ah);
2595 		ath5k_hw_dma_stop(ah);
2596 		ath5k_drain_tx_buffs(ah);
2597 		ath5k_hw_phy_disable(ah);
2598 	}
2599 
2600 	return 0;
2601 }
2602 
ath5k_start(struct ieee80211_hw * hw)2603 int ath5k_start(struct ieee80211_hw *hw)
2604 {
2605 	struct ath5k_hw *ah = hw->priv;
2606 	struct ath_common *common = ath5k_hw_common(ah);
2607 	int ret, i;
2608 
2609 	mutex_lock(&ah->lock);
2610 
2611 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2612 
2613 	/*
2614 	 * Stop anything previously setup.  This is safe
2615 	 * no matter this is the first time through or not.
2616 	 */
2617 	ath5k_stop_locked(ah);
2618 
2619 	/*
2620 	 * The basic interface to setting the hardware in a good
2621 	 * state is ``reset''.  On return the hardware is known to
2622 	 * be powered up and with interrupts disabled.  This must
2623 	 * be followed by initialization of the appropriate bits
2624 	 * and then setup of the interrupt mask.
2625 	 */
2626 	ah->curchan = ah->hw->conf.channel;
2627 	ah->imask = AR5K_INT_RXOK
2628 		| AR5K_INT_RXERR
2629 		| AR5K_INT_RXEOL
2630 		| AR5K_INT_RXORN
2631 		| AR5K_INT_TXDESC
2632 		| AR5K_INT_TXEOL
2633 		| AR5K_INT_FATAL
2634 		| AR5K_INT_GLOBAL
2635 		| AR5K_INT_MIB;
2636 
2637 	ret = ath5k_reset(ah, NULL, false);
2638 	if (ret)
2639 		goto done;
2640 
2641 	if (!ath5k_modparam_no_hw_rfkill_switch)
2642 		ath5k_rfkill_hw_start(ah);
2643 
2644 	/*
2645 	 * Reset the key cache since some parts do not reset the
2646 	 * contents on initial power up or resume from suspend.
2647 	 */
2648 	for (i = 0; i < common->keymax; i++)
2649 		ath_hw_keyreset(common, (u16) i);
2650 
2651 	/* Use higher rates for acks instead of base
2652 	 * rate */
2653 	ah->ah_ack_bitrate_high = true;
2654 
2655 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2656 		ah->bslot[i] = NULL;
2657 
2658 	ret = 0;
2659 done:
2660 	mmiowb();
2661 	mutex_unlock(&ah->lock);
2662 
2663 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2664 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2665 
2666 	return ret;
2667 }
2668 
ath5k_stop_tasklets(struct ath5k_hw * ah)2669 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2670 {
2671 	ah->rx_pending = false;
2672 	ah->tx_pending = false;
2673 	tasklet_kill(&ah->rxtq);
2674 	tasklet_kill(&ah->txtq);
2675 	tasklet_kill(&ah->beacontq);
2676 	tasklet_kill(&ah->ani_tasklet);
2677 }
2678 
2679 /*
2680  * Stop the device, grabbing the top-level lock to protect
2681  * against concurrent entry through ath5k_init (which can happen
2682  * if another thread does a system call and the thread doing the
2683  * stop is preempted).
2684  */
ath5k_stop(struct ieee80211_hw * hw)2685 void ath5k_stop(struct ieee80211_hw *hw)
2686 {
2687 	struct ath5k_hw *ah = hw->priv;
2688 	int ret;
2689 
2690 	mutex_lock(&ah->lock);
2691 	ret = ath5k_stop_locked(ah);
2692 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2693 		/*
2694 		 * Don't set the card in full sleep mode!
2695 		 *
2696 		 * a) When the device is in this state it must be carefully
2697 		 * woken up or references to registers in the PCI clock
2698 		 * domain may freeze the bus (and system).  This varies
2699 		 * by chip and is mostly an issue with newer parts
2700 		 * (madwifi sources mentioned srev >= 0x78) that go to
2701 		 * sleep more quickly.
2702 		 *
2703 		 * b) On older chips full sleep results a weird behaviour
2704 		 * during wakeup. I tested various cards with srev < 0x78
2705 		 * and they don't wake up after module reload, a second
2706 		 * module reload is needed to bring the card up again.
2707 		 *
2708 		 * Until we figure out what's going on don't enable
2709 		 * full chip reset on any chip (this is what Legacy HAL
2710 		 * and Sam's HAL do anyway). Instead Perform a full reset
2711 		 * on the device (same as initial state after attach) and
2712 		 * leave it idle (keep MAC/BB on warm reset) */
2713 		ret = ath5k_hw_on_hold(ah);
2714 
2715 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2716 				"putting device to sleep\n");
2717 	}
2718 
2719 	mmiowb();
2720 	mutex_unlock(&ah->lock);
2721 
2722 	ath5k_stop_tasklets(ah);
2723 
2724 	cancel_delayed_work_sync(&ah->tx_complete_work);
2725 
2726 	if (!ath5k_modparam_no_hw_rfkill_switch)
2727 		ath5k_rfkill_hw_stop(ah);
2728 }
2729 
2730 /*
2731  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2732  * and change to the given channel.
2733  *
2734  * This should be called with ah->lock.
2735  */
2736 static int
ath5k_reset(struct ath5k_hw * ah,struct ieee80211_channel * chan,bool skip_pcu)2737 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2738 							bool skip_pcu)
2739 {
2740 	struct ath_common *common = ath5k_hw_common(ah);
2741 	int ret, ani_mode;
2742 	bool fast;
2743 
2744 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2745 
2746 	ath5k_hw_set_imr(ah, 0);
2747 	synchronize_irq(ah->irq);
2748 	ath5k_stop_tasklets(ah);
2749 
2750 	/* Save ani mode and disable ANI during
2751 	 * reset. If we don't we might get false
2752 	 * PHY error interrupts. */
2753 	ani_mode = ah->ani_state.ani_mode;
2754 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2755 
2756 	/* We are going to empty hw queues
2757 	 * so we should also free any remaining
2758 	 * tx buffers */
2759 	ath5k_drain_tx_buffs(ah);
2760 	if (chan)
2761 		ah->curchan = chan;
2762 
2763 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2764 
2765 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2766 	if (ret) {
2767 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2768 		goto err;
2769 	}
2770 
2771 	ret = ath5k_rx_start(ah);
2772 	if (ret) {
2773 		ATH5K_ERR(ah, "can't start recv logic\n");
2774 		goto err;
2775 	}
2776 
2777 	ath5k_ani_init(ah, ani_mode);
2778 
2779 	/*
2780 	 * Set calibration intervals
2781 	 *
2782 	 * Note: We don't need to run calibration imediately
2783 	 * since some initial calibration is done on reset
2784 	 * even for fast channel switching. Also on scanning
2785 	 * this will get set again and again and it won't get
2786 	 * executed unless we connect somewhere and spend some
2787 	 * time on the channel (that's what calibration needs
2788 	 * anyway to be accurate).
2789 	 */
2790 	ah->ah_cal_next_full = jiffies +
2791 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2792 	ah->ah_cal_next_ani = jiffies +
2793 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2794 	ah->ah_cal_next_short = jiffies +
2795 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2796 
2797 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2798 
2799 	/* clear survey data and cycle counters */
2800 	memset(&ah->survey, 0, sizeof(ah->survey));
2801 	spin_lock_bh(&common->cc_lock);
2802 	ath_hw_cycle_counters_update(common);
2803 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2804 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2805 	spin_unlock_bh(&common->cc_lock);
2806 
2807 	/*
2808 	 * Change channels and update the h/w rate map if we're switching;
2809 	 * e.g. 11a to 11b/g.
2810 	 *
2811 	 * We may be doing a reset in response to an ioctl that changes the
2812 	 * channel so update any state that might change as a result.
2813 	 *
2814 	 * XXX needed?
2815 	 */
2816 /*	ath5k_chan_change(ah, c); */
2817 
2818 	ath5k_beacon_config(ah);
2819 	/* intrs are enabled by ath5k_beacon_config */
2820 
2821 	ieee80211_wake_queues(ah->hw);
2822 
2823 	return 0;
2824 err:
2825 	return ret;
2826 }
2827 
ath5k_reset_work(struct work_struct * work)2828 static void ath5k_reset_work(struct work_struct *work)
2829 {
2830 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2831 		reset_work);
2832 
2833 	mutex_lock(&ah->lock);
2834 	ath5k_reset(ah, NULL, true);
2835 	mutex_unlock(&ah->lock);
2836 }
2837 
2838 static int __devinit
ath5k_init(struct ieee80211_hw * hw)2839 ath5k_init(struct ieee80211_hw *hw)
2840 {
2841 
2842 	struct ath5k_hw *ah = hw->priv;
2843 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2844 	struct ath5k_txq *txq;
2845 	u8 mac[ETH_ALEN] = {};
2846 	int ret;
2847 
2848 
2849 	/*
2850 	 * Collect the channel list.  The 802.11 layer
2851 	 * is responsible for filtering this list based
2852 	 * on settings like the phy mode and regulatory
2853 	 * domain restrictions.
2854 	 */
2855 	ret = ath5k_setup_bands(hw);
2856 	if (ret) {
2857 		ATH5K_ERR(ah, "can't get channels\n");
2858 		goto err;
2859 	}
2860 
2861 	/*
2862 	 * Allocate tx+rx descriptors and populate the lists.
2863 	 */
2864 	ret = ath5k_desc_alloc(ah);
2865 	if (ret) {
2866 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2867 		goto err;
2868 	}
2869 
2870 	/*
2871 	 * Allocate hardware transmit queues: one queue for
2872 	 * beacon frames and one data queue for each QoS
2873 	 * priority.  Note that hw functions handle resetting
2874 	 * these queues at the needed time.
2875 	 */
2876 	ret = ath5k_beaconq_setup(ah);
2877 	if (ret < 0) {
2878 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2879 		goto err_desc;
2880 	}
2881 	ah->bhalq = ret;
2882 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2883 	if (IS_ERR(ah->cabq)) {
2884 		ATH5K_ERR(ah, "can't setup cab queue\n");
2885 		ret = PTR_ERR(ah->cabq);
2886 		goto err_bhal;
2887 	}
2888 
2889 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2890 	 * capability information */
2891 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2892 		/* This order matches mac80211's queue priority, so we can
2893 		* directly use the mac80211 queue number without any mapping */
2894 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2895 		if (IS_ERR(txq)) {
2896 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2897 			ret = PTR_ERR(txq);
2898 			goto err_queues;
2899 		}
2900 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2901 		if (IS_ERR(txq)) {
2902 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2903 			ret = PTR_ERR(txq);
2904 			goto err_queues;
2905 		}
2906 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2907 		if (IS_ERR(txq)) {
2908 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2909 			ret = PTR_ERR(txq);
2910 			goto err_queues;
2911 		}
2912 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2913 		if (IS_ERR(txq)) {
2914 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2915 			ret = PTR_ERR(txq);
2916 			goto err_queues;
2917 		}
2918 		hw->queues = 4;
2919 	} else {
2920 		/* older hardware (5210) can only support one data queue */
2921 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2922 		if (IS_ERR(txq)) {
2923 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2924 			ret = PTR_ERR(txq);
2925 			goto err_queues;
2926 		}
2927 		hw->queues = 1;
2928 	}
2929 
2930 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2931 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2932 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2933 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2934 
2935 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2936 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2937 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2938 
2939 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2940 	if (ret) {
2941 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2942 		goto err_queues;
2943 	}
2944 
2945 	SET_IEEE80211_PERM_ADDR(hw, mac);
2946 	/* All MAC address bits matter for ACKs */
2947 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2948 
2949 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2950 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2951 	if (ret) {
2952 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2953 		goto err_queues;
2954 	}
2955 
2956 	ret = ieee80211_register_hw(hw);
2957 	if (ret) {
2958 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2959 		goto err_queues;
2960 	}
2961 
2962 	if (!ath_is_world_regd(regulatory))
2963 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2964 
2965 	ath5k_init_leds(ah);
2966 
2967 	ath5k_sysfs_register(ah);
2968 
2969 	return 0;
2970 err_queues:
2971 	ath5k_txq_release(ah);
2972 err_bhal:
2973 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2974 err_desc:
2975 	ath5k_desc_free(ah);
2976 err:
2977 	return ret;
2978 }
2979 
2980 void
ath5k_deinit_ah(struct ath5k_hw * ah)2981 ath5k_deinit_ah(struct ath5k_hw *ah)
2982 {
2983 	struct ieee80211_hw *hw = ah->hw;
2984 
2985 	/*
2986 	 * NB: the order of these is important:
2987 	 * o call the 802.11 layer before detaching ath5k_hw to
2988 	 *   ensure callbacks into the driver to delete global
2989 	 *   key cache entries can be handled
2990 	 * o reclaim the tx queue data structures after calling
2991 	 *   the 802.11 layer as we'll get called back to reclaim
2992 	 *   node state and potentially want to use them
2993 	 * o to cleanup the tx queues the hal is called, so detach
2994 	 *   it last
2995 	 * XXX: ??? detach ath5k_hw ???
2996 	 * Other than that, it's straightforward...
2997 	 */
2998 	ieee80211_unregister_hw(hw);
2999 	ath5k_desc_free(ah);
3000 	ath5k_txq_release(ah);
3001 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3002 	ath5k_unregister_leds(ah);
3003 
3004 	ath5k_sysfs_unregister(ah);
3005 	/*
3006 	 * NB: can't reclaim these until after ieee80211_ifdetach
3007 	 * returns because we'll get called back to reclaim node
3008 	 * state and potentially want to use them.
3009 	 */
3010 	ath5k_hw_deinit(ah);
3011 	free_irq(ah->irq, ah);
3012 }
3013 
3014 bool
ath5k_any_vif_assoc(struct ath5k_hw * ah)3015 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3016 {
3017 	struct ath5k_vif_iter_data iter_data;
3018 	iter_data.hw_macaddr = NULL;
3019 	iter_data.any_assoc = false;
3020 	iter_data.need_set_hw_addr = false;
3021 	iter_data.found_active = true;
3022 
3023 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
3024 						   &iter_data);
3025 	return iter_data.any_assoc;
3026 }
3027 
3028 void
ath5k_set_beacon_filter(struct ieee80211_hw * hw,bool enable)3029 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3030 {
3031 	struct ath5k_hw *ah = hw->priv;
3032 	u32 rfilt;
3033 	rfilt = ath5k_hw_get_rx_filter(ah);
3034 	if (enable)
3035 		rfilt |= AR5K_RX_FILTER_BEACON;
3036 	else
3037 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3038 	ath5k_hw_set_rx_filter(ah, rfilt);
3039 	ah->filter_flags = rfilt;
3040 }
3041