1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40
41 #include "libata.h"
42
43 static struct workqueue_struct *ata_sff_wq;
44
45 const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
47
48 .qc_prep = ata_noop_qc_prep,
49 .qc_issue = ata_sff_qc_issue,
50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
51
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
54 .prereset = ata_sff_prereset,
55 .softreset = ata_sff_softreset,
56 .hardreset = sata_sff_hardreset,
57 .postreset = ata_sff_postreset,
58 .error_handler = ata_sff_error_handler,
59
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
66 .sff_drain_fifo = ata_sff_drain_fifo,
67
68 .lost_interrupt = ata_sff_lost_interrupt,
69 };
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71
72 /**
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
75 *
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
ata_sff_check_status(struct ata_port * ap)83 u8 ata_sff_check_status(struct ata_port *ap)
84 {
85 return ioread8(ap->ioaddr.status_addr);
86 }
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
88
89 /**
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
92 *
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
95 *
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
ata_sff_altstatus(struct ata_port * ap)102 static u8 ata_sff_altstatus(struct ata_port *ap)
103 {
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
106
107 return ioread8(ap->ioaddr.altstatus_addr);
108 }
109
110 /**
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
113 *
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
ata_sff_irq_status(struct ata_port * ap)122 static u8 ata_sff_irq_status(struct ata_port *ap)
123 {
124 u8 status;
125
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
130 return status;
131 }
132 /* Clear INTRQ latch */
133 status = ap->ops->sff_check_status(ap);
134 return status;
135 }
136
137 /**
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
140 *
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
144 *
145 * LOCKING:
146 * Inherited from caller.
147 */
148
ata_sff_sync(struct ata_port * ap)149 static void ata_sff_sync(struct ata_port *ap)
150 {
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
155 }
156
157 /**
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
160 *
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
ata_sff_pause(struct ata_port * ap)169 void ata_sff_pause(struct ata_port *ap)
170 {
171 ata_sff_sync(ap);
172 ndelay(400);
173 }
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
175
176 /**
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
179 *
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
182 */
183
ata_sff_dma_pause(struct ata_port * ap)184 void ata_sff_dma_pause(struct ata_port *ap)
185 {
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
191 }
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
196 }
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
198
199 /**
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
204 *
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
207 *
208 * LOCKING:
209 * Kernel thread context (may sleep).
210 *
211 * RETURNS:
212 * 0 on success, -errno otherwise.
213 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)214 int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
216 {
217 unsigned long timer_start, timeout;
218 u8 status;
219
220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 timer_start = jiffies;
222 timeout = ata_deadline(timer_start, tmout_pat);
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 ata_msleep(ap, 50);
226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
227 }
228
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
233
234 timeout = ata_deadline(timer_start, tmout);
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 ata_msleep(ap, 50);
238 status = ap->ops->sff_check_status(ap);
239 }
240
241 if (status == 0xff)
242 return -ENODEV;
243
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout, 1000), status);
248 return -EBUSY;
249 }
250
251 return 0;
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
254
ata_sff_check_ready(struct ata_link * link)255 static int ata_sff_check_ready(struct ata_link *link)
256 {
257 u8 status = link->ap->ops->sff_check_status(link->ap);
258
259 return ata_check_ready(status);
260 }
261
262 /**
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
266 *
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
269 *
270 * LOCKING:
271 * Kernel thread context (may sleep).
272 *
273 * RETURNS:
274 * 0 on success, -errno otherwise.
275 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
277 {
278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
279 }
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
281
282 /**
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
286 *
287 * Writes ATA taskfile device control register.
288 *
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
291 *
292 * LOCKING:
293 * Inherited from caller.
294 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296 {
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
301 }
302
303 /**
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
307 *
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
311 *
312 * May be used as the dev_select() entry in ata_port_operations.
313 *
314 * LOCKING:
315 * caller.
316 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
318 {
319 u8 tmp;
320
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
325
326 iowrite8(tmp, ap->ioaddr.device_addr);
327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
328 }
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
330
331 /**
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
337 *
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
341 *
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
345 *
346 * LOCKING:
347 * caller.
348 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 unsigned int wait, unsigned int can_sleep)
351 {
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
355
356 if (wait)
357 ata_wait_idle(ap);
358
359 ap->ops->sff_dev_select(ap, device);
360
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 ata_msleep(ap, 150);
364 ata_wait_idle(ap);
365 }
366 }
367
368 /**
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
371 *
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
374 *
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
377 *
378 * LOCKING:
379 * Inherited from caller.
380 */
ata_sff_irq_on(struct ata_port * ap)381 void ata_sff_irq_on(struct ata_port *ap)
382 {
383 struct ata_ioports *ioaddr = &ap->ioaddr;
384
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
388 }
389
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
392
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
396
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
399 }
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
401
402 /**
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
406 *
407 * Outputs ATA taskfile to standard ATA host controller.
408 *
409 * LOCKING:
410 * Inherited from caller.
411 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
413 {
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
421 ata_wait_idle(ap);
422 }
423
424 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
425 WARN_ON_ONCE(!ioaddr->ctl_addr);
426 iowrite8(tf->hob_feature, ioaddr->feature_addr);
427 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
428 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
429 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
430 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
432 tf->hob_feature,
433 tf->hob_nsect,
434 tf->hob_lbal,
435 tf->hob_lbam,
436 tf->hob_lbah);
437 }
438
439 if (is_addr) {
440 iowrite8(tf->feature, ioaddr->feature_addr);
441 iowrite8(tf->nsect, ioaddr->nsect_addr);
442 iowrite8(tf->lbal, ioaddr->lbal_addr);
443 iowrite8(tf->lbam, ioaddr->lbam_addr);
444 iowrite8(tf->lbah, ioaddr->lbah_addr);
445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
446 tf->feature,
447 tf->nsect,
448 tf->lbal,
449 tf->lbam,
450 tf->lbah);
451 }
452
453 if (tf->flags & ATA_TFLAG_DEVICE) {
454 iowrite8(tf->device, ioaddr->device_addr);
455 VPRINTK("device 0x%X\n", tf->device);
456 }
457
458 ata_wait_idle(ap);
459 }
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
461
462 /**
463 * ata_sff_tf_read - input device's ATA taskfile shadow registers
464 * @ap: Port from which input is read
465 * @tf: ATA taskfile register set for storing input
466 *
467 * Reads ATA taskfile registers for currently-selected device
468 * into @tf. Assumes the device has a fully SFF compliant task file
469 * layout and behaviour. If you device does not (eg has a different
470 * status method) then you will need to provide a replacement tf_read
471 *
472 * LOCKING:
473 * Inherited from caller.
474 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
476 {
477 struct ata_ioports *ioaddr = &ap->ioaddr;
478
479 tf->command = ata_sff_check_status(ap);
480 tf->feature = ioread8(ioaddr->error_addr);
481 tf->nsect = ioread8(ioaddr->nsect_addr);
482 tf->lbal = ioread8(ioaddr->lbal_addr);
483 tf->lbam = ioread8(ioaddr->lbam_addr);
484 tf->lbah = ioread8(ioaddr->lbah_addr);
485 tf->device = ioread8(ioaddr->device_addr);
486
487 if (tf->flags & ATA_TFLAG_LBA48) {
488 if (likely(ioaddr->ctl_addr)) {
489 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
490 tf->hob_feature = ioread8(ioaddr->error_addr);
491 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
492 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
493 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
494 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
495 iowrite8(tf->ctl, ioaddr->ctl_addr);
496 ap->last_ctl = tf->ctl;
497 } else
498 WARN_ON_ONCE(1);
499 }
500 }
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
502
503 /**
504 * ata_sff_exec_command - issue ATA command to host controller
505 * @ap: port to which command is being issued
506 * @tf: ATA taskfile register set
507 *
508 * Issues ATA command, with proper synchronization with interrupt
509 * handler / other threads.
510 *
511 * LOCKING:
512 * spin_lock_irqsave(host lock)
513 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
515 {
516 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
517
518 iowrite8(tf->command, ap->ioaddr.command_addr);
519 ata_sff_pause(ap);
520 }
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
522
523 /**
524 * ata_tf_to_host - issue ATA taskfile to host controller
525 * @ap: port to which command is being issued
526 * @tf: ATA taskfile register set
527 *
528 * Issues ATA taskfile register set to ATA host controller,
529 * with proper synchronization with interrupt handler and
530 * other threads.
531 *
532 * LOCKING:
533 * spin_lock_irqsave(host lock)
534 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)535 static inline void ata_tf_to_host(struct ata_port *ap,
536 const struct ata_taskfile *tf)
537 {
538 ap->ops->sff_tf_load(ap, tf);
539 ap->ops->sff_exec_command(ap, tf);
540 }
541
542 /**
543 * ata_sff_data_xfer - Transfer data by PIO
544 * @dev: device to target
545 * @buf: data buffer
546 * @buflen: buffer length
547 * @rw: read/write
548 *
549 * Transfer data from/to the device data register by PIO.
550 *
551 * LOCKING:
552 * Inherited from caller.
553 *
554 * RETURNS:
555 * Bytes consumed.
556 */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
558 unsigned int buflen, int rw)
559 {
560 struct ata_port *ap = dev->link->ap;
561 void __iomem *data_addr = ap->ioaddr.data_addr;
562 unsigned int words = buflen >> 1;
563
564 /* Transfer multiple of 2 bytes */
565 if (rw == READ)
566 ioread16_rep(data_addr, buf, words);
567 else
568 iowrite16_rep(data_addr, buf, words);
569
570 /* Transfer trailing byte, if any. */
571 if (unlikely(buflen & 0x01)) {
572 unsigned char pad[2];
573
574 /* Point buf to the tail of buffer */
575 buf += buflen - 1;
576
577 /*
578 * Use io*16_rep() accessors here as well to avoid pointlessly
579 * swapping bytes to and from on the big endian machines...
580 */
581 if (rw == READ) {
582 ioread16_rep(data_addr, pad, 1);
583 *buf = pad[0];
584 } else {
585 pad[0] = *buf;
586 iowrite16_rep(data_addr, pad, 1);
587 }
588 words++;
589 }
590
591 return words << 1;
592 }
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
594
595 /**
596 * ata_sff_data_xfer32 - Transfer data by PIO
597 * @dev: device to target
598 * @buf: data buffer
599 * @buflen: buffer length
600 * @rw: read/write
601 *
602 * Transfer data from/to the device data register by PIO using 32bit
603 * I/O operations.
604 *
605 * LOCKING:
606 * Inherited from caller.
607 *
608 * RETURNS:
609 * Bytes consumed.
610 */
611
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
613 unsigned int buflen, int rw)
614 {
615 struct ata_port *ap = dev->link->ap;
616 void __iomem *data_addr = ap->ioaddr.data_addr;
617 unsigned int words = buflen >> 2;
618 int slop = buflen & 3;
619
620 if (!(ap->pflags & ATA_PFLAG_PIO32))
621 return ata_sff_data_xfer(dev, buf, buflen, rw);
622
623 /* Transfer multiple of 4 bytes */
624 if (rw == READ)
625 ioread32_rep(data_addr, buf, words);
626 else
627 iowrite32_rep(data_addr, buf, words);
628
629 /* Transfer trailing bytes, if any */
630 if (unlikely(slop)) {
631 unsigned char pad[4];
632
633 /* Point buf to the tail of buffer */
634 buf += buflen - slop;
635
636 /*
637 * Use io*_rep() accessors here as well to avoid pointlessly
638 * swapping bytes to and from on the big endian machines...
639 */
640 if (rw == READ) {
641 if (slop < 3)
642 ioread16_rep(data_addr, pad, 1);
643 else
644 ioread32_rep(data_addr, pad, 1);
645 memcpy(buf, pad, slop);
646 } else {
647 memcpy(pad, buf, slop);
648 if (slop < 3)
649 iowrite16_rep(data_addr, pad, 1);
650 else
651 iowrite32_rep(data_addr, pad, 1);
652 }
653 }
654 return (buflen + 1) & ~1;
655 }
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
657
658 /**
659 * ata_sff_data_xfer_noirq - Transfer data by PIO
660 * @dev: device to target
661 * @buf: data buffer
662 * @buflen: buffer length
663 * @rw: read/write
664 *
665 * Transfer data from/to the device data register by PIO. Do the
666 * transfer with interrupts disabled.
667 *
668 * LOCKING:
669 * Inherited from caller.
670 *
671 * RETURNS:
672 * Bytes consumed.
673 */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
675 unsigned int buflen, int rw)
676 {
677 unsigned long flags;
678 unsigned int consumed;
679
680 local_irq_save(flags);
681 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
682 local_irq_restore(flags);
683
684 return consumed;
685 }
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
687
688 /**
689 * ata_pio_sector - Transfer a sector of data.
690 * @qc: Command on going
691 *
692 * Transfer qc->sect_size bytes of data from/to the ATA device.
693 *
694 * LOCKING:
695 * Inherited from caller.
696 */
ata_pio_sector(struct ata_queued_cmd * qc)697 static void ata_pio_sector(struct ata_queued_cmd *qc)
698 {
699 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
700 struct ata_port *ap = qc->ap;
701 struct page *page;
702 unsigned int offset;
703 unsigned char *buf;
704
705 if (qc->curbytes == qc->nbytes - qc->sect_size)
706 ap->hsm_task_state = HSM_ST_LAST;
707
708 page = sg_page(qc->cursg);
709 offset = qc->cursg->offset + qc->cursg_ofs;
710
711 /* get the current page and offset */
712 page = nth_page(page, (offset >> PAGE_SHIFT));
713 offset %= PAGE_SIZE;
714
715 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
716
717 if (PageHighMem(page)) {
718 unsigned long flags;
719
720 /* FIXME: use a bounce buffer */
721 local_irq_save(flags);
722 buf = kmap_atomic(page, KM_IRQ0);
723
724 /* do the actual data transfer */
725 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
726 do_write);
727
728 kunmap_atomic(buf, KM_IRQ0);
729 local_irq_restore(flags);
730 } else {
731 buf = page_address(page);
732 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
733 do_write);
734 }
735
736 if (!do_write && !PageSlab(page))
737 flush_dcache_page(page);
738
739 qc->curbytes += qc->sect_size;
740 qc->cursg_ofs += qc->sect_size;
741
742 if (qc->cursg_ofs == qc->cursg->length) {
743 qc->cursg = sg_next(qc->cursg);
744 qc->cursg_ofs = 0;
745 }
746 }
747
748 /**
749 * ata_pio_sectors - Transfer one or many sectors.
750 * @qc: Command on going
751 *
752 * Transfer one or many sectors of data from/to the
753 * ATA device for the DRQ request.
754 *
755 * LOCKING:
756 * Inherited from caller.
757 */
ata_pio_sectors(struct ata_queued_cmd * qc)758 static void ata_pio_sectors(struct ata_queued_cmd *qc)
759 {
760 if (is_multi_taskfile(&qc->tf)) {
761 /* READ/WRITE MULTIPLE */
762 unsigned int nsect;
763
764 WARN_ON_ONCE(qc->dev->multi_count == 0);
765
766 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
767 qc->dev->multi_count);
768 while (nsect--)
769 ata_pio_sector(qc);
770 } else
771 ata_pio_sector(qc);
772
773 ata_sff_sync(qc->ap); /* flush */
774 }
775
776 /**
777 * atapi_send_cdb - Write CDB bytes to hardware
778 * @ap: Port to which ATAPI device is attached.
779 * @qc: Taskfile currently active
780 *
781 * When device has indicated its readiness to accept
782 * a CDB, this function is called. Send the CDB.
783 *
784 * LOCKING:
785 * caller.
786 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
788 {
789 /* send SCSI cdb */
790 DPRINTK("send cdb\n");
791 WARN_ON_ONCE(qc->dev->cdb_len < 12);
792
793 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
794 ata_sff_sync(ap);
795 /* FIXME: If the CDB is for DMA do we need to do the transition delay
796 or is bmdma_start guaranteed to do it ? */
797 switch (qc->tf.protocol) {
798 case ATAPI_PROT_PIO:
799 ap->hsm_task_state = HSM_ST;
800 break;
801 case ATAPI_PROT_NODATA:
802 ap->hsm_task_state = HSM_ST_LAST;
803 break;
804 #ifdef CONFIG_ATA_BMDMA
805 case ATAPI_PROT_DMA:
806 ap->hsm_task_state = HSM_ST_LAST;
807 /* initiate bmdma */
808 ap->ops->bmdma_start(qc);
809 break;
810 #endif /* CONFIG_ATA_BMDMA */
811 default:
812 BUG();
813 }
814 }
815
816 /**
817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
818 * @qc: Command on going
819 * @bytes: number of bytes
820 *
821 * Transfer Transfer data from/to the ATAPI device.
822 *
823 * LOCKING:
824 * Inherited from caller.
825 *
826 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
828 {
829 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
830 struct ata_port *ap = qc->ap;
831 struct ata_device *dev = qc->dev;
832 struct ata_eh_info *ehi = &dev->link->eh_info;
833 struct scatterlist *sg;
834 struct page *page;
835 unsigned char *buf;
836 unsigned int offset, count, consumed;
837
838 next_sg:
839 sg = qc->cursg;
840 if (unlikely(!sg)) {
841 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
842 "buf=%u cur=%u bytes=%u",
843 qc->nbytes, qc->curbytes, bytes);
844 return -1;
845 }
846
847 page = sg_page(sg);
848 offset = sg->offset + qc->cursg_ofs;
849
850 /* get the current page and offset */
851 page = nth_page(page, (offset >> PAGE_SHIFT));
852 offset %= PAGE_SIZE;
853
854 /* don't overrun current sg */
855 count = min(sg->length - qc->cursg_ofs, bytes);
856
857 /* don't cross page boundaries */
858 count = min(count, (unsigned int)PAGE_SIZE - offset);
859
860 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
861
862 if (PageHighMem(page)) {
863 unsigned long flags;
864
865 /* FIXME: use bounce buffer */
866 local_irq_save(flags);
867 buf = kmap_atomic(page, KM_IRQ0);
868
869 /* do the actual data transfer */
870 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
871 count, rw);
872
873 kunmap_atomic(buf, KM_IRQ0);
874 local_irq_restore(flags);
875 } else {
876 buf = page_address(page);
877 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
878 count, rw);
879 }
880
881 bytes -= min(bytes, consumed);
882 qc->curbytes += count;
883 qc->cursg_ofs += count;
884
885 if (qc->cursg_ofs == sg->length) {
886 qc->cursg = sg_next(qc->cursg);
887 qc->cursg_ofs = 0;
888 }
889
890 /*
891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 * check correctly as it doesn't know if it is the last request being
894 * made. Somebody should implement a proper sanity check.
895 */
896 if (bytes)
897 goto next_sg;
898 return 0;
899 }
900
901 /**
902 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
903 * @qc: Command on going
904 *
905 * Transfer Transfer data from/to the ATAPI device.
906 *
907 * LOCKING:
908 * Inherited from caller.
909 */
atapi_pio_bytes(struct ata_queued_cmd * qc)910 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
911 {
912 struct ata_port *ap = qc->ap;
913 struct ata_device *dev = qc->dev;
914 struct ata_eh_info *ehi = &dev->link->eh_info;
915 unsigned int ireason, bc_lo, bc_hi, bytes;
916 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
917
918 /* Abuse qc->result_tf for temp storage of intermediate TF
919 * here to save some kernel stack usage.
920 * For normal completion, qc->result_tf is not relevant. For
921 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 * So, the correctness of qc->result_tf is not affected.
923 */
924 ap->ops->sff_tf_read(ap, &qc->result_tf);
925 ireason = qc->result_tf.nsect;
926 bc_lo = qc->result_tf.lbam;
927 bc_hi = qc->result_tf.lbah;
928 bytes = (bc_hi << 8) | bc_lo;
929
930 /* shall be cleared to zero, indicating xfer of data */
931 if (unlikely(ireason & (1 << 0)))
932 goto atapi_check;
933
934 /* make sure transfer direction matches expected */
935 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
936 if (unlikely(do_write != i_write))
937 goto atapi_check;
938
939 if (unlikely(!bytes))
940 goto atapi_check;
941
942 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
943
944 if (unlikely(__atapi_pio_bytes(qc, bytes)))
945 goto err_out;
946 ata_sff_sync(ap); /* flush */
947
948 return;
949
950 atapi_check:
951 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
952 ireason, bytes);
953 err_out:
954 qc->err_mask |= AC_ERR_HSM;
955 ap->hsm_task_state = HSM_ST_ERR;
956 }
957
958 /**
959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960 * @ap: the target ata_port
961 * @qc: qc on going
962 *
963 * RETURNS:
964 * 1 if ok in workqueue, 0 otherwise.
965 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
967 struct ata_queued_cmd *qc)
968 {
969 if (qc->tf.flags & ATA_TFLAG_POLLING)
970 return 1;
971
972 if (ap->hsm_task_state == HSM_ST_FIRST) {
973 if (qc->tf.protocol == ATA_PROT_PIO &&
974 (qc->tf.flags & ATA_TFLAG_WRITE))
975 return 1;
976
977 if (ata_is_atapi(qc->tf.protocol) &&
978 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
979 return 1;
980 }
981
982 return 0;
983 }
984
985 /**
986 * ata_hsm_qc_complete - finish a qc running on standard HSM
987 * @qc: Command to complete
988 * @in_wq: 1 if called from workqueue, 0 otherwise
989 *
990 * Finish @qc which is running on standard HSM.
991 *
992 * LOCKING:
993 * If @in_wq is zero, spin_lock_irqsave(host lock).
994 * Otherwise, none on entry and grabs host lock.
995 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
997 {
998 struct ata_port *ap = qc->ap;
999 unsigned long flags;
1000
1001 if (ap->ops->error_handler) {
1002 if (in_wq) {
1003 spin_lock_irqsave(ap->lock, flags);
1004
1005 /* EH might have kicked in while host lock is
1006 * released.
1007 */
1008 qc = ata_qc_from_tag(ap, qc->tag);
1009 if (qc) {
1010 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1011 ata_sff_irq_on(ap);
1012 ata_qc_complete(qc);
1013 } else
1014 ata_port_freeze(ap);
1015 }
1016
1017 spin_unlock_irqrestore(ap->lock, flags);
1018 } else {
1019 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1020 ata_qc_complete(qc);
1021 else
1022 ata_port_freeze(ap);
1023 }
1024 } else {
1025 if (in_wq) {
1026 spin_lock_irqsave(ap->lock, flags);
1027 ata_sff_irq_on(ap);
1028 ata_qc_complete(qc);
1029 spin_unlock_irqrestore(ap->lock, flags);
1030 } else
1031 ata_qc_complete(qc);
1032 }
1033 }
1034
1035 /**
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1038 * @qc: qc on going
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1041 *
1042 * RETURNS:
1043 * 1 when poll next status needed, 0 otherwise.
1044 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 u8 status, int in_wq)
1047 {
1048 struct ata_link *link = qc->dev->link;
1049 struct ata_eh_info *ehi = &link->eh_info;
1050 unsigned long flags = 0;
1051 int poll_next;
1052
1053 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1054
1055 /* Make sure ata_sff_qc_issue() does not throw things
1056 * like DMA polling into the workqueue. Notice that
1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1058 */
1059 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1060
1061 fsm_start:
1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1064
1065 switch (ap->hsm_task_state) {
1066 case HSM_ST_FIRST:
1067 /* Send first data block or PACKET CDB */
1068
1069 /* If polling, we will stay in the work queue after
1070 * sending the data. Otherwise, interrupt handler
1071 * takes over after sending the data.
1072 */
1073 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1074
1075 /* check device status */
1076 if (unlikely((status & ATA_DRQ) == 0)) {
1077 /* handle BSY=0, DRQ=0 as error */
1078 if (likely(status & (ATA_ERR | ATA_DF)))
1079 /* device stops HSM for abort/error */
1080 qc->err_mask |= AC_ERR_DEV;
1081 else {
1082 /* HSM violation. Let EH handle this */
1083 ata_ehi_push_desc(ehi,
1084 "ST_FIRST: !(DRQ|ERR|DF)");
1085 qc->err_mask |= AC_ERR_HSM;
1086 }
1087
1088 ap->hsm_task_state = HSM_ST_ERR;
1089 goto fsm_start;
1090 }
1091
1092 /* Device should not ask for data transfer (DRQ=1)
1093 * when it finds something wrong.
1094 * We ignore DRQ here and stop the HSM by
1095 * changing hsm_task_state to HSM_ST_ERR and
1096 * let the EH abort the command or reset the device.
1097 */
1098 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1099 /* Some ATAPI tape drives forget to clear the ERR bit
1100 * when doing the next command (mostly request sense).
1101 * We ignore ERR here to workaround and proceed sending
1102 * the CDB.
1103 */
1104 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1105 ata_ehi_push_desc(ehi, "ST_FIRST: "
1106 "DRQ=1 with device error, "
1107 "dev_stat 0x%X", status);
1108 qc->err_mask |= AC_ERR_HSM;
1109 ap->hsm_task_state = HSM_ST_ERR;
1110 goto fsm_start;
1111 }
1112 }
1113
1114 /* Send the CDB (atapi) or the first data block (ata pio out).
1115 * During the state transition, interrupt handler shouldn't
1116 * be invoked before the data transfer is complete and
1117 * hsm_task_state is changed. Hence, the following locking.
1118 */
1119 if (in_wq)
1120 spin_lock_irqsave(ap->lock, flags);
1121
1122 if (qc->tf.protocol == ATA_PROT_PIO) {
1123 /* PIO data out protocol.
1124 * send first data block.
1125 */
1126
1127 /* ata_pio_sectors() might change the state
1128 * to HSM_ST_LAST. so, the state is changed here
1129 * before ata_pio_sectors().
1130 */
1131 ap->hsm_task_state = HSM_ST;
1132 ata_pio_sectors(qc);
1133 } else
1134 /* send CDB */
1135 atapi_send_cdb(ap, qc);
1136
1137 if (in_wq)
1138 spin_unlock_irqrestore(ap->lock, flags);
1139
1140 /* if polling, ata_sff_pio_task() handles the rest.
1141 * otherwise, interrupt handler takes over from here.
1142 */
1143 break;
1144
1145 case HSM_ST:
1146 /* complete command or read/write the data register */
1147 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1148 /* ATAPI PIO protocol */
1149 if ((status & ATA_DRQ) == 0) {
1150 /* No more data to transfer or device error.
1151 * Device error will be tagged in HSM_ST_LAST.
1152 */
1153 ap->hsm_task_state = HSM_ST_LAST;
1154 goto fsm_start;
1155 }
1156
1157 /* Device should not ask for data transfer (DRQ=1)
1158 * when it finds something wrong.
1159 * We ignore DRQ here and stop the HSM by
1160 * changing hsm_task_state to HSM_ST_ERR and
1161 * let the EH abort the command or reset the device.
1162 */
1163 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1164 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1165 "DRQ=1 with device error, "
1166 "dev_stat 0x%X", status);
1167 qc->err_mask |= AC_ERR_HSM;
1168 ap->hsm_task_state = HSM_ST_ERR;
1169 goto fsm_start;
1170 }
1171
1172 atapi_pio_bytes(qc);
1173
1174 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1175 /* bad ireason reported by device */
1176 goto fsm_start;
1177
1178 } else {
1179 /* ATA PIO protocol */
1180 if (unlikely((status & ATA_DRQ) == 0)) {
1181 /* handle BSY=0, DRQ=0 as error */
1182 if (likely(status & (ATA_ERR | ATA_DF))) {
1183 /* device stops HSM for abort/error */
1184 qc->err_mask |= AC_ERR_DEV;
1185
1186 /* If diagnostic failed and this is
1187 * IDENTIFY, it's likely a phantom
1188 * device. Mark hint.
1189 */
1190 if (qc->dev->horkage &
1191 ATA_HORKAGE_DIAGNOSTIC)
1192 qc->err_mask |=
1193 AC_ERR_NODEV_HINT;
1194 } else {
1195 /* HSM violation. Let EH handle this.
1196 * Phantom devices also trigger this
1197 * condition. Mark hint.
1198 */
1199 ata_ehi_push_desc(ehi, "ST-ATA: "
1200 "DRQ=0 without device error, "
1201 "dev_stat 0x%X", status);
1202 qc->err_mask |= AC_ERR_HSM |
1203 AC_ERR_NODEV_HINT;
1204 }
1205
1206 ap->hsm_task_state = HSM_ST_ERR;
1207 goto fsm_start;
1208 }
1209
1210 /* For PIO reads, some devices may ask for
1211 * data transfer (DRQ=1) alone with ERR=1.
1212 * We respect DRQ here and transfer one
1213 * block of junk data before changing the
1214 * hsm_task_state to HSM_ST_ERR.
1215 *
1216 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 * sense since the data block has been
1218 * transferred to the device.
1219 */
1220 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1221 /* data might be corrputed */
1222 qc->err_mask |= AC_ERR_DEV;
1223
1224 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1225 ata_pio_sectors(qc);
1226 status = ata_wait_idle(ap);
1227 }
1228
1229 if (status & (ATA_BUSY | ATA_DRQ)) {
1230 ata_ehi_push_desc(ehi, "ST-ATA: "
1231 "BUSY|DRQ persists on ERR|DF, "
1232 "dev_stat 0x%X", status);
1233 qc->err_mask |= AC_ERR_HSM;
1234 }
1235
1236 /* There are oddball controllers with
1237 * status register stuck at 0x7f and
1238 * lbal/m/h at zero which makes it
1239 * pass all other presence detection
1240 * mechanisms we have. Set NODEV_HINT
1241 * for it. Kernel bz#7241.
1242 */
1243 if (status == 0x7f)
1244 qc->err_mask |= AC_ERR_NODEV_HINT;
1245
1246 /* ata_pio_sectors() might change the
1247 * state to HSM_ST_LAST. so, the state
1248 * is changed after ata_pio_sectors().
1249 */
1250 ap->hsm_task_state = HSM_ST_ERR;
1251 goto fsm_start;
1252 }
1253
1254 ata_pio_sectors(qc);
1255
1256 if (ap->hsm_task_state == HSM_ST_LAST &&
1257 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1258 /* all data read */
1259 status = ata_wait_idle(ap);
1260 goto fsm_start;
1261 }
1262 }
1263
1264 poll_next = 1;
1265 break;
1266
1267 case HSM_ST_LAST:
1268 if (unlikely(!ata_ok(status))) {
1269 qc->err_mask |= __ac_err_mask(status);
1270 ap->hsm_task_state = HSM_ST_ERR;
1271 goto fsm_start;
1272 }
1273
1274 /* no more data to transfer */
1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 ap->print_id, qc->dev->devno, status);
1277
1278 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1279
1280 ap->hsm_task_state = HSM_ST_IDLE;
1281
1282 /* complete taskfile transaction */
1283 ata_hsm_qc_complete(qc, in_wq);
1284
1285 poll_next = 0;
1286 break;
1287
1288 case HSM_ST_ERR:
1289 ap->hsm_task_state = HSM_ST_IDLE;
1290
1291 /* complete taskfile transaction */
1292 ata_hsm_qc_complete(qc, in_wq);
1293
1294 poll_next = 0;
1295 break;
1296 default:
1297 poll_next = 0;
1298 BUG();
1299 }
1300
1301 return poll_next;
1302 }
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1304
ata_sff_queue_work(struct work_struct * work)1305 void ata_sff_queue_work(struct work_struct *work)
1306 {
1307 queue_work(ata_sff_wq, work);
1308 }
1309 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1310
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1311 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1312 {
1313 queue_delayed_work(ata_sff_wq, dwork, delay);
1314 }
1315 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1316
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1317 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1318 {
1319 struct ata_port *ap = link->ap;
1320
1321 WARN_ON((ap->sff_pio_task_link != NULL) &&
1322 (ap->sff_pio_task_link != link));
1323 ap->sff_pio_task_link = link;
1324
1325 /* may fail if ata_sff_flush_pio_task() in progress */
1326 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1327 }
1328 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1329
ata_sff_flush_pio_task(struct ata_port * ap)1330 void ata_sff_flush_pio_task(struct ata_port *ap)
1331 {
1332 DPRINTK("ENTER\n");
1333
1334 cancel_delayed_work_sync(&ap->sff_pio_task);
1335 ap->hsm_task_state = HSM_ST_IDLE;
1336
1337 if (ata_msg_ctl(ap))
1338 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1339 }
1340
ata_sff_pio_task(struct work_struct * work)1341 static void ata_sff_pio_task(struct work_struct *work)
1342 {
1343 struct ata_port *ap =
1344 container_of(work, struct ata_port, sff_pio_task.work);
1345 struct ata_link *link = ap->sff_pio_task_link;
1346 struct ata_queued_cmd *qc;
1347 u8 status;
1348 int poll_next;
1349
1350 BUG_ON(ap->sff_pio_task_link == NULL);
1351 /* qc can be NULL if timeout occurred */
1352 qc = ata_qc_from_tag(ap, link->active_tag);
1353 if (!qc) {
1354 ap->sff_pio_task_link = NULL;
1355 return;
1356 }
1357
1358 fsm_start:
1359 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361 /*
1362 * This is purely heuristic. This is a fast path.
1363 * Sometimes when we enter, BSY will be cleared in
1364 * a chk-status or two. If not, the drive is probably seeking
1365 * or something. Snooze for a couple msecs, then
1366 * chk-status again. If still busy, queue delayed work.
1367 */
1368 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369 if (status & ATA_BUSY) {
1370 ata_msleep(ap, 2);
1371 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1372 if (status & ATA_BUSY) {
1373 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1374 return;
1375 }
1376 }
1377
1378 /*
1379 * hsm_move() may trigger another command to be processed.
1380 * clean the link beforehand.
1381 */
1382 ap->sff_pio_task_link = NULL;
1383 /* move the HSM */
1384 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1385
1386 /* another command or interrupt handler
1387 * may be running at this point.
1388 */
1389 if (poll_next)
1390 goto fsm_start;
1391 }
1392
1393 /**
1394 * ata_sff_qc_issue - issue taskfile to a SFF controller
1395 * @qc: command to issue to device
1396 *
1397 * This function issues a PIO or NODATA command to a SFF
1398 * controller.
1399 *
1400 * LOCKING:
1401 * spin_lock_irqsave(host lock)
1402 *
1403 * RETURNS:
1404 * Zero on success, AC_ERR_* mask on failure
1405 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1406 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1407 {
1408 struct ata_port *ap = qc->ap;
1409 struct ata_link *link = qc->dev->link;
1410
1411 /* Use polling pio if the LLD doesn't handle
1412 * interrupt driven pio and atapi CDB interrupt.
1413 */
1414 if (ap->flags & ATA_FLAG_PIO_POLLING)
1415 qc->tf.flags |= ATA_TFLAG_POLLING;
1416
1417 /* select the device */
1418 ata_dev_select(ap, qc->dev->devno, 1, 0);
1419
1420 /* start the command */
1421 switch (qc->tf.protocol) {
1422 case ATA_PROT_NODATA:
1423 if (qc->tf.flags & ATA_TFLAG_POLLING)
1424 ata_qc_set_polling(qc);
1425
1426 ata_tf_to_host(ap, &qc->tf);
1427 ap->hsm_task_state = HSM_ST_LAST;
1428
1429 if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 ata_sff_queue_pio_task(link, 0);
1431
1432 break;
1433
1434 case ATA_PROT_PIO:
1435 if (qc->tf.flags & ATA_TFLAG_POLLING)
1436 ata_qc_set_polling(qc);
1437
1438 ata_tf_to_host(ap, &qc->tf);
1439
1440 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1441 /* PIO data out protocol */
1442 ap->hsm_task_state = HSM_ST_FIRST;
1443 ata_sff_queue_pio_task(link, 0);
1444
1445 /* always send first data block using the
1446 * ata_sff_pio_task() codepath.
1447 */
1448 } else {
1449 /* PIO data in protocol */
1450 ap->hsm_task_state = HSM_ST;
1451
1452 if (qc->tf.flags & ATA_TFLAG_POLLING)
1453 ata_sff_queue_pio_task(link, 0);
1454
1455 /* if polling, ata_sff_pio_task() handles the
1456 * rest. otherwise, interrupt handler takes
1457 * over from here.
1458 */
1459 }
1460
1461 break;
1462
1463 case ATAPI_PROT_PIO:
1464 case ATAPI_PROT_NODATA:
1465 if (qc->tf.flags & ATA_TFLAG_POLLING)
1466 ata_qc_set_polling(qc);
1467
1468 ata_tf_to_host(ap, &qc->tf);
1469
1470 ap->hsm_task_state = HSM_ST_FIRST;
1471
1472 /* send cdb by polling if no cdb interrupt */
1473 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1474 (qc->tf.flags & ATA_TFLAG_POLLING))
1475 ata_sff_queue_pio_task(link, 0);
1476 break;
1477
1478 default:
1479 WARN_ON_ONCE(1);
1480 return AC_ERR_SYSTEM;
1481 }
1482
1483 return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1486
1487 /**
1488 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1489 * @qc: qc to fill result TF for
1490 *
1491 * @qc is finished and result TF needs to be filled. Fill it
1492 * using ->sff_tf_read.
1493 *
1494 * LOCKING:
1495 * spin_lock_irqsave(host lock)
1496 *
1497 * RETURNS:
1498 * true indicating that result TF is successfully filled.
1499 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1500 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1501 {
1502 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1503 return true;
1504 }
1505 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1506
ata_sff_idle_irq(struct ata_port * ap)1507 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1508 {
1509 ap->stats.idle_irq++;
1510
1511 #ifdef ATA_IRQ_TRAP
1512 if ((ap->stats.idle_irq % 1000) == 0) {
1513 ap->ops->sff_check_status(ap);
1514 if (ap->ops->sff_irq_clear)
1515 ap->ops->sff_irq_clear(ap);
1516 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1517 return 1;
1518 }
1519 #endif
1520 return 0; /* irq not handled */
1521 }
1522
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1523 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1524 struct ata_queued_cmd *qc,
1525 bool hsmv_on_idle)
1526 {
1527 u8 status;
1528
1529 VPRINTK("ata%u: protocol %d task_state %d\n",
1530 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1531
1532 /* Check whether we are expecting interrupt in this state */
1533 switch (ap->hsm_task_state) {
1534 case HSM_ST_FIRST:
1535 /* Some pre-ATAPI-4 devices assert INTRQ
1536 * at this state when ready to receive CDB.
1537 */
1538
1539 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1540 * The flag was turned on only for atapi devices. No
1541 * need to check ata_is_atapi(qc->tf.protocol) again.
1542 */
1543 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1544 return ata_sff_idle_irq(ap);
1545 break;
1546 case HSM_ST_IDLE:
1547 return ata_sff_idle_irq(ap);
1548 default:
1549 break;
1550 }
1551
1552 /* check main status, clearing INTRQ if needed */
1553 status = ata_sff_irq_status(ap);
1554 if (status & ATA_BUSY) {
1555 if (hsmv_on_idle) {
1556 /* BMDMA engine is already stopped, we're screwed */
1557 qc->err_mask |= AC_ERR_HSM;
1558 ap->hsm_task_state = HSM_ST_ERR;
1559 } else
1560 return ata_sff_idle_irq(ap);
1561 }
1562
1563 /* clear irq events */
1564 if (ap->ops->sff_irq_clear)
1565 ap->ops->sff_irq_clear(ap);
1566
1567 ata_sff_hsm_move(ap, qc, status, 0);
1568
1569 return 1; /* irq handled */
1570 }
1571
1572 /**
1573 * ata_sff_port_intr - Handle SFF port interrupt
1574 * @ap: Port on which interrupt arrived (possibly...)
1575 * @qc: Taskfile currently active in engine
1576 *
1577 * Handle port interrupt for given queued command.
1578 *
1579 * LOCKING:
1580 * spin_lock_irqsave(host lock)
1581 *
1582 * RETURNS:
1583 * One if interrupt was handled, zero if not (shared irq).
1584 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1585 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1586 {
1587 return __ata_sff_port_intr(ap, qc, false);
1588 }
1589 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1590
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1591 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1592 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1593 {
1594 struct ata_host *host = dev_instance;
1595 bool retried = false;
1596 unsigned int i;
1597 unsigned int handled, idle, polling;
1598 unsigned long flags;
1599
1600 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1601 spin_lock_irqsave(&host->lock, flags);
1602
1603 retry:
1604 handled = idle = polling = 0;
1605 for (i = 0; i < host->n_ports; i++) {
1606 struct ata_port *ap = host->ports[i];
1607 struct ata_queued_cmd *qc;
1608
1609 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1610 if (qc) {
1611 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1612 handled |= port_intr(ap, qc);
1613 else
1614 polling |= 1 << i;
1615 } else
1616 idle |= 1 << i;
1617 }
1618
1619 /*
1620 * If no port was expecting IRQ but the controller is actually
1621 * asserting IRQ line, nobody cared will ensue. Check IRQ
1622 * pending status if available and clear spurious IRQ.
1623 */
1624 if (!handled && !retried) {
1625 bool retry = false;
1626
1627 for (i = 0; i < host->n_ports; i++) {
1628 struct ata_port *ap = host->ports[i];
1629
1630 if (polling & (1 << i))
1631 continue;
1632
1633 if (!ap->ops->sff_irq_check ||
1634 !ap->ops->sff_irq_check(ap))
1635 continue;
1636
1637 if (idle & (1 << i)) {
1638 ap->ops->sff_check_status(ap);
1639 if (ap->ops->sff_irq_clear)
1640 ap->ops->sff_irq_clear(ap);
1641 } else {
1642 /* clear INTRQ and check if BUSY cleared */
1643 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1644 retry |= true;
1645 /*
1646 * With command in flight, we can't do
1647 * sff_irq_clear() w/o racing with completion.
1648 */
1649 }
1650 }
1651
1652 if (retry) {
1653 retried = true;
1654 goto retry;
1655 }
1656 }
1657
1658 spin_unlock_irqrestore(&host->lock, flags);
1659
1660 return IRQ_RETVAL(handled);
1661 }
1662
1663 /**
1664 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1665 * @irq: irq line (unused)
1666 * @dev_instance: pointer to our ata_host information structure
1667 *
1668 * Default interrupt handler for PCI IDE devices. Calls
1669 * ata_sff_port_intr() for each port that is not disabled.
1670 *
1671 * LOCKING:
1672 * Obtains host lock during operation.
1673 *
1674 * RETURNS:
1675 * IRQ_NONE or IRQ_HANDLED.
1676 */
ata_sff_interrupt(int irq,void * dev_instance)1677 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1678 {
1679 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1680 }
1681 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1682
1683 /**
1684 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1685 * @ap: port that appears to have timed out
1686 *
1687 * Called from the libata error handlers when the core code suspects
1688 * an interrupt has been lost. If it has complete anything we can and
1689 * then return. Interface must support altstatus for this faster
1690 * recovery to occur.
1691 *
1692 * Locking:
1693 * Caller holds host lock
1694 */
1695
ata_sff_lost_interrupt(struct ata_port * ap)1696 void ata_sff_lost_interrupt(struct ata_port *ap)
1697 {
1698 u8 status;
1699 struct ata_queued_cmd *qc;
1700
1701 /* Only one outstanding command per SFF channel */
1702 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1703 /* We cannot lose an interrupt on a non-existent or polled command */
1704 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1705 return;
1706 /* See if the controller thinks it is still busy - if so the command
1707 isn't a lost IRQ but is still in progress */
1708 status = ata_sff_altstatus(ap);
1709 if (status & ATA_BUSY)
1710 return;
1711
1712 /* There was a command running, we are no longer busy and we have
1713 no interrupt. */
1714 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1715 status);
1716 /* Run the host interrupt logic as if the interrupt had not been
1717 lost */
1718 ata_sff_port_intr(ap, qc);
1719 }
1720 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1721
1722 /**
1723 * ata_sff_freeze - Freeze SFF controller port
1724 * @ap: port to freeze
1725 *
1726 * Freeze SFF controller port.
1727 *
1728 * LOCKING:
1729 * Inherited from caller.
1730 */
ata_sff_freeze(struct ata_port * ap)1731 void ata_sff_freeze(struct ata_port *ap)
1732 {
1733 ap->ctl |= ATA_NIEN;
1734 ap->last_ctl = ap->ctl;
1735
1736 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1737 ata_sff_set_devctl(ap, ap->ctl);
1738
1739 /* Under certain circumstances, some controllers raise IRQ on
1740 * ATA_NIEN manipulation. Also, many controllers fail to mask
1741 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1742 */
1743 ap->ops->sff_check_status(ap);
1744
1745 if (ap->ops->sff_irq_clear)
1746 ap->ops->sff_irq_clear(ap);
1747 }
1748 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1749
1750 /**
1751 * ata_sff_thaw - Thaw SFF controller port
1752 * @ap: port to thaw
1753 *
1754 * Thaw SFF controller port.
1755 *
1756 * LOCKING:
1757 * Inherited from caller.
1758 */
ata_sff_thaw(struct ata_port * ap)1759 void ata_sff_thaw(struct ata_port *ap)
1760 {
1761 /* clear & re-enable interrupts */
1762 ap->ops->sff_check_status(ap);
1763 if (ap->ops->sff_irq_clear)
1764 ap->ops->sff_irq_clear(ap);
1765 ata_sff_irq_on(ap);
1766 }
1767 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1768
1769 /**
1770 * ata_sff_prereset - prepare SFF link for reset
1771 * @link: SFF link to be reset
1772 * @deadline: deadline jiffies for the operation
1773 *
1774 * SFF link @link is about to be reset. Initialize it. It first
1775 * calls ata_std_prereset() and wait for !BSY if the port is
1776 * being softreset.
1777 *
1778 * LOCKING:
1779 * Kernel thread context (may sleep)
1780 *
1781 * RETURNS:
1782 * 0 on success, -errno otherwise.
1783 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1784 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1785 {
1786 struct ata_eh_context *ehc = &link->eh_context;
1787 int rc;
1788
1789 rc = ata_std_prereset(link, deadline);
1790 if (rc)
1791 return rc;
1792
1793 /* if we're about to do hardreset, nothing more to do */
1794 if (ehc->i.action & ATA_EH_HARDRESET)
1795 return 0;
1796
1797 /* wait for !BSY if we don't know that no device is attached */
1798 if (!ata_link_offline(link)) {
1799 rc = ata_sff_wait_ready(link, deadline);
1800 if (rc && rc != -ENODEV) {
1801 ata_link_printk(link, KERN_WARNING, "device not ready "
1802 "(errno=%d), forcing hardreset\n", rc);
1803 ehc->i.action |= ATA_EH_HARDRESET;
1804 }
1805 }
1806
1807 return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1810
1811 /**
1812 * ata_devchk - PATA device presence detection
1813 * @ap: ATA channel to examine
1814 * @device: Device to examine (starting at zero)
1815 *
1816 * This technique was originally described in
1817 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1818 * later found its way into the ATA/ATAPI spec.
1819 *
1820 * Write a pattern to the ATA shadow registers,
1821 * and if a device is present, it will respond by
1822 * correctly storing and echoing back the
1823 * ATA shadow register contents.
1824 *
1825 * LOCKING:
1826 * caller.
1827 */
ata_devchk(struct ata_port * ap,unsigned int device)1828 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1829 {
1830 struct ata_ioports *ioaddr = &ap->ioaddr;
1831 u8 nsect, lbal;
1832
1833 ap->ops->sff_dev_select(ap, device);
1834
1835 iowrite8(0x55, ioaddr->nsect_addr);
1836 iowrite8(0xaa, ioaddr->lbal_addr);
1837
1838 iowrite8(0xaa, ioaddr->nsect_addr);
1839 iowrite8(0x55, ioaddr->lbal_addr);
1840
1841 iowrite8(0x55, ioaddr->nsect_addr);
1842 iowrite8(0xaa, ioaddr->lbal_addr);
1843
1844 nsect = ioread8(ioaddr->nsect_addr);
1845 lbal = ioread8(ioaddr->lbal_addr);
1846
1847 if ((nsect == 0x55) && (lbal == 0xaa))
1848 return 1; /* we found a device */
1849
1850 return 0; /* nothing found */
1851 }
1852
1853 /**
1854 * ata_sff_dev_classify - Parse returned ATA device signature
1855 * @dev: ATA device to classify (starting at zero)
1856 * @present: device seems present
1857 * @r_err: Value of error register on completion
1858 *
1859 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1860 * an ATA/ATAPI-defined set of values is placed in the ATA
1861 * shadow registers, indicating the results of device detection
1862 * and diagnostics.
1863 *
1864 * Select the ATA device, and read the values from the ATA shadow
1865 * registers. Then parse according to the Error register value,
1866 * and the spec-defined values examined by ata_dev_classify().
1867 *
1868 * LOCKING:
1869 * caller.
1870 *
1871 * RETURNS:
1872 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1873 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1874 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1875 u8 *r_err)
1876 {
1877 struct ata_port *ap = dev->link->ap;
1878 struct ata_taskfile tf;
1879 unsigned int class;
1880 u8 err;
1881
1882 ap->ops->sff_dev_select(ap, dev->devno);
1883
1884 memset(&tf, 0, sizeof(tf));
1885
1886 ap->ops->sff_tf_read(ap, &tf);
1887 err = tf.feature;
1888 if (r_err)
1889 *r_err = err;
1890
1891 /* see if device passed diags: continue and warn later */
1892 if (err == 0)
1893 /* diagnostic fail : do nothing _YET_ */
1894 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1895 else if (err == 1)
1896 /* do nothing */ ;
1897 else if ((dev->devno == 0) && (err == 0x81))
1898 /* do nothing */ ;
1899 else
1900 return ATA_DEV_NONE;
1901
1902 /* determine if device is ATA or ATAPI */
1903 class = ata_dev_classify(&tf);
1904
1905 if (class == ATA_DEV_UNKNOWN) {
1906 /* If the device failed diagnostic, it's likely to
1907 * have reported incorrect device signature too.
1908 * Assume ATA device if the device seems present but
1909 * device signature is invalid with diagnostic
1910 * failure.
1911 */
1912 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1913 class = ATA_DEV_ATA;
1914 else
1915 class = ATA_DEV_NONE;
1916 } else if ((class == ATA_DEV_ATA) &&
1917 (ap->ops->sff_check_status(ap) == 0))
1918 class = ATA_DEV_NONE;
1919
1920 return class;
1921 }
1922 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1923
1924 /**
1925 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1926 * @link: SFF link which is just reset
1927 * @devmask: mask of present devices
1928 * @deadline: deadline jiffies for the operation
1929 *
1930 * Wait devices attached to SFF @link to become ready after
1931 * reset. It contains preceding 150ms wait to avoid accessing TF
1932 * status register too early.
1933 *
1934 * LOCKING:
1935 * Kernel thread context (may sleep).
1936 *
1937 * RETURNS:
1938 * 0 on success, -ENODEV if some or all of devices in @devmask
1939 * don't seem to exist. -errno on other errors.
1940 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1941 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1942 unsigned long deadline)
1943 {
1944 struct ata_port *ap = link->ap;
1945 struct ata_ioports *ioaddr = &ap->ioaddr;
1946 unsigned int dev0 = devmask & (1 << 0);
1947 unsigned int dev1 = devmask & (1 << 1);
1948 int rc, ret = 0;
1949
1950 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1951
1952 /* always check readiness of the master device */
1953 rc = ata_sff_wait_ready(link, deadline);
1954 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1955 * and TF status is 0xff, bail out on it too.
1956 */
1957 if (rc)
1958 return rc;
1959
1960 /* if device 1 was found in ata_devchk, wait for register
1961 * access briefly, then wait for BSY to clear.
1962 */
1963 if (dev1) {
1964 int i;
1965
1966 ap->ops->sff_dev_select(ap, 1);
1967
1968 /* Wait for register access. Some ATAPI devices fail
1969 * to set nsect/lbal after reset, so don't waste too
1970 * much time on it. We're gonna wait for !BSY anyway.
1971 */
1972 for (i = 0; i < 2; i++) {
1973 u8 nsect, lbal;
1974
1975 nsect = ioread8(ioaddr->nsect_addr);
1976 lbal = ioread8(ioaddr->lbal_addr);
1977 if ((nsect == 1) && (lbal == 1))
1978 break;
1979 ata_msleep(ap, 50); /* give drive a breather */
1980 }
1981
1982 rc = ata_sff_wait_ready(link, deadline);
1983 if (rc) {
1984 if (rc != -ENODEV)
1985 return rc;
1986 ret = rc;
1987 }
1988 }
1989
1990 /* is all this really necessary? */
1991 ap->ops->sff_dev_select(ap, 0);
1992 if (dev1)
1993 ap->ops->sff_dev_select(ap, 1);
1994 if (dev0)
1995 ap->ops->sff_dev_select(ap, 0);
1996
1997 return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2000
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2001 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2002 unsigned long deadline)
2003 {
2004 struct ata_ioports *ioaddr = &ap->ioaddr;
2005
2006 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2007
2008 /* software reset. causes dev0 to be selected */
2009 iowrite8(ap->ctl, ioaddr->ctl_addr);
2010 udelay(20); /* FIXME: flush */
2011 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2012 udelay(20); /* FIXME: flush */
2013 iowrite8(ap->ctl, ioaddr->ctl_addr);
2014 ap->last_ctl = ap->ctl;
2015
2016 /* wait the port to become ready */
2017 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2018 }
2019
2020 /**
2021 * ata_sff_softreset - reset host port via ATA SRST
2022 * @link: ATA link to reset
2023 * @classes: resulting classes of attached devices
2024 * @deadline: deadline jiffies for the operation
2025 *
2026 * Reset host port using ATA SRST.
2027 *
2028 * LOCKING:
2029 * Kernel thread context (may sleep)
2030 *
2031 * RETURNS:
2032 * 0 on success, -errno otherwise.
2033 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2034 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2035 unsigned long deadline)
2036 {
2037 struct ata_port *ap = link->ap;
2038 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2039 unsigned int devmask = 0;
2040 int rc;
2041 u8 err;
2042
2043 DPRINTK("ENTER\n");
2044
2045 /* determine if device 0/1 are present */
2046 if (ata_devchk(ap, 0))
2047 devmask |= (1 << 0);
2048 if (slave_possible && ata_devchk(ap, 1))
2049 devmask |= (1 << 1);
2050
2051 /* select device 0 again */
2052 ap->ops->sff_dev_select(ap, 0);
2053
2054 /* issue bus reset */
2055 DPRINTK("about to softreset, devmask=%x\n", devmask);
2056 rc = ata_bus_softreset(ap, devmask, deadline);
2057 /* if link is occupied, -ENODEV too is an error */
2058 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2059 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2060 return rc;
2061 }
2062
2063 /* determine by signature whether we have ATA or ATAPI devices */
2064 classes[0] = ata_sff_dev_classify(&link->device[0],
2065 devmask & (1 << 0), &err);
2066 if (slave_possible && err != 0x81)
2067 classes[1] = ata_sff_dev_classify(&link->device[1],
2068 devmask & (1 << 1), &err);
2069
2070 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2074
2075 /**
2076 * sata_sff_hardreset - reset host port via SATA phy reset
2077 * @link: link to reset
2078 * @class: resulting class of attached device
2079 * @deadline: deadline jiffies for the operation
2080 *
2081 * SATA phy-reset host port using DET bits of SControl register,
2082 * wait for !BSY and classify the attached device.
2083 *
2084 * LOCKING:
2085 * Kernel thread context (may sleep)
2086 *
2087 * RETURNS:
2088 * 0 on success, -errno otherwise.
2089 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2090 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2091 unsigned long deadline)
2092 {
2093 struct ata_eh_context *ehc = &link->eh_context;
2094 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2095 bool online;
2096 int rc;
2097
2098 rc = sata_link_hardreset(link, timing, deadline, &online,
2099 ata_sff_check_ready);
2100 if (online)
2101 *class = ata_sff_dev_classify(link->device, 1, NULL);
2102
2103 DPRINTK("EXIT, class=%u\n", *class);
2104 return rc;
2105 }
2106 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2107
2108 /**
2109 * ata_sff_postreset - SFF postreset callback
2110 * @link: the target SFF ata_link
2111 * @classes: classes of attached devices
2112 *
2113 * This function is invoked after a successful reset. It first
2114 * calls ata_std_postreset() and performs SFF specific postreset
2115 * processing.
2116 *
2117 * LOCKING:
2118 * Kernel thread context (may sleep)
2119 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2120 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2121 {
2122 struct ata_port *ap = link->ap;
2123
2124 ata_std_postreset(link, classes);
2125
2126 /* is double-select really necessary? */
2127 if (classes[0] != ATA_DEV_NONE)
2128 ap->ops->sff_dev_select(ap, 1);
2129 if (classes[1] != ATA_DEV_NONE)
2130 ap->ops->sff_dev_select(ap, 0);
2131
2132 /* bail out if no device is present */
2133 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2134 DPRINTK("EXIT, no device\n");
2135 return;
2136 }
2137
2138 /* set up device control */
2139 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2140 ata_sff_set_devctl(ap, ap->ctl);
2141 ap->last_ctl = ap->ctl;
2142 }
2143 }
2144 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2145
2146 /**
2147 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2148 * @qc: command
2149 *
2150 * Drain the FIFO and device of any stuck data following a command
2151 * failing to complete. In some cases this is necessary before a
2152 * reset will recover the device.
2153 *
2154 */
2155
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2156 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2157 {
2158 int count;
2159 struct ata_port *ap;
2160
2161 /* We only need to flush incoming data when a command was running */
2162 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2163 return;
2164
2165 ap = qc->ap;
2166 /* Drain up to 64K of data before we give up this recovery method */
2167 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2168 && count < 65536; count += 2)
2169 ioread16(ap->ioaddr.data_addr);
2170
2171 /* Can become DEBUG later */
2172 if (count)
2173 ata_port_printk(ap, KERN_DEBUG,
2174 "drained %d bytes to clear DRQ.\n", count);
2175
2176 }
2177 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2178
2179 /**
2180 * ata_sff_error_handler - Stock error handler for SFF controller
2181 * @ap: port to handle error for
2182 *
2183 * Stock error handler for SFF controller. It can handle both
2184 * PATA and SATA controllers. Many controllers should be able to
2185 * use this EH as-is or with some added handling before and
2186 * after.
2187 *
2188 * LOCKING:
2189 * Kernel thread context (may sleep)
2190 */
ata_sff_error_handler(struct ata_port * ap)2191 void ata_sff_error_handler(struct ata_port *ap)
2192 {
2193 ata_reset_fn_t softreset = ap->ops->softreset;
2194 ata_reset_fn_t hardreset = ap->ops->hardreset;
2195 struct ata_queued_cmd *qc;
2196 unsigned long flags;
2197
2198 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2199 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2200 qc = NULL;
2201
2202 spin_lock_irqsave(ap->lock, flags);
2203
2204 /*
2205 * We *MUST* do FIFO draining before we issue a reset as
2206 * several devices helpfully clear their internal state and
2207 * will lock solid if we touch the data port post reset. Pass
2208 * qc in case anyone wants to do different PIO/DMA recovery or
2209 * has per command fixups
2210 */
2211 if (ap->ops->sff_drain_fifo)
2212 ap->ops->sff_drain_fifo(qc);
2213
2214 spin_unlock_irqrestore(ap->lock, flags);
2215
2216 /* ignore ata_sff_softreset if ctl isn't accessible */
2217 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2218 softreset = NULL;
2219
2220 /* ignore built-in hardresets if SCR access is not available */
2221 if ((hardreset == sata_std_hardreset ||
2222 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2223 hardreset = NULL;
2224
2225 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2226 ap->ops->postreset);
2227 }
2228 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2229
2230 /**
2231 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2232 * @ioaddr: IO address structure to be initialized
2233 *
2234 * Utility function which initializes data_addr, error_addr,
2235 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2236 * device_addr, status_addr, and command_addr to standard offsets
2237 * relative to cmd_addr.
2238 *
2239 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2240 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2241 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2242 {
2243 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2244 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2245 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2246 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2247 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2248 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2249 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2250 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2251 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2252 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2253 }
2254 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2255
2256 #ifdef CONFIG_PCI
2257
ata_resources_present(struct pci_dev * pdev,int port)2258 static int ata_resources_present(struct pci_dev *pdev, int port)
2259 {
2260 int i;
2261
2262 /* Check the PCI resources for this channel are enabled */
2263 port = port * 2;
2264 for (i = 0; i < 2; i++) {
2265 if (pci_resource_start(pdev, port + i) == 0 ||
2266 pci_resource_len(pdev, port + i) == 0)
2267 return 0;
2268 }
2269 return 1;
2270 }
2271
2272 /**
2273 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2274 * @host: target ATA host
2275 *
2276 * Acquire native PCI ATA resources for @host and initialize the
2277 * first two ports of @host accordingly. Ports marked dummy are
2278 * skipped and allocation failure makes the port dummy.
2279 *
2280 * Note that native PCI resources are valid even for legacy hosts
2281 * as we fix up pdev resources array early in boot, so this
2282 * function can be used for both native and legacy SFF hosts.
2283 *
2284 * LOCKING:
2285 * Inherited from calling layer (may sleep).
2286 *
2287 * RETURNS:
2288 * 0 if at least one port is initialized, -ENODEV if no port is
2289 * available.
2290 */
ata_pci_sff_init_host(struct ata_host * host)2291 int ata_pci_sff_init_host(struct ata_host *host)
2292 {
2293 struct device *gdev = host->dev;
2294 struct pci_dev *pdev = to_pci_dev(gdev);
2295 unsigned int mask = 0;
2296 int i, rc;
2297
2298 /* request, iomap BARs and init port addresses accordingly */
2299 for (i = 0; i < 2; i++) {
2300 struct ata_port *ap = host->ports[i];
2301 int base = i * 2;
2302 void __iomem * const *iomap;
2303
2304 if (ata_port_is_dummy(ap))
2305 continue;
2306
2307 /* Discard disabled ports. Some controllers show
2308 * their unused channels this way. Disabled ports are
2309 * made dummy.
2310 */
2311 if (!ata_resources_present(pdev, i)) {
2312 ap->ops = &ata_dummy_port_ops;
2313 continue;
2314 }
2315
2316 rc = pcim_iomap_regions(pdev, 0x3 << base,
2317 dev_driver_string(gdev));
2318 if (rc) {
2319 dev_printk(KERN_WARNING, gdev,
2320 "failed to request/iomap BARs for port %d "
2321 "(errno=%d)\n", i, rc);
2322 if (rc == -EBUSY)
2323 pcim_pin_device(pdev);
2324 ap->ops = &ata_dummy_port_ops;
2325 continue;
2326 }
2327 host->iomap = iomap = pcim_iomap_table(pdev);
2328
2329 ap->ioaddr.cmd_addr = iomap[base];
2330 ap->ioaddr.altstatus_addr =
2331 ap->ioaddr.ctl_addr = (void __iomem *)
2332 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2333 ata_sff_std_ports(&ap->ioaddr);
2334
2335 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2336 (unsigned long long)pci_resource_start(pdev, base),
2337 (unsigned long long)pci_resource_start(pdev, base + 1));
2338
2339 mask |= 1 << i;
2340 }
2341
2342 if (!mask) {
2343 dev_printk(KERN_ERR, gdev, "no available native port\n");
2344 return -ENODEV;
2345 }
2346
2347 return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2350
2351 /**
2352 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2353 * @pdev: target PCI device
2354 * @ppi: array of port_info, must be enough for two ports
2355 * @r_host: out argument for the initialized ATA host
2356 *
2357 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2358 * all PCI resources and initialize it accordingly in one go.
2359 *
2360 * LOCKING:
2361 * Inherited from calling layer (may sleep).
2362 *
2363 * RETURNS:
2364 * 0 on success, -errno otherwise.
2365 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2366 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2367 const struct ata_port_info * const *ppi,
2368 struct ata_host **r_host)
2369 {
2370 struct ata_host *host;
2371 int rc;
2372
2373 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2374 return -ENOMEM;
2375
2376 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2377 if (!host) {
2378 dev_printk(KERN_ERR, &pdev->dev,
2379 "failed to allocate ATA host\n");
2380 rc = -ENOMEM;
2381 goto err_out;
2382 }
2383
2384 rc = ata_pci_sff_init_host(host);
2385 if (rc)
2386 goto err_out;
2387
2388 devres_remove_group(&pdev->dev, NULL);
2389 *r_host = host;
2390 return 0;
2391
2392 err_out:
2393 devres_release_group(&pdev->dev, NULL);
2394 return rc;
2395 }
2396 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2397
2398 /**
2399 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2400 * @host: target SFF ATA host
2401 * @irq_handler: irq_handler used when requesting IRQ(s)
2402 * @sht: scsi_host_template to use when registering the host
2403 *
2404 * This is the counterpart of ata_host_activate() for SFF ATA
2405 * hosts. This separate helper is necessary because SFF hosts
2406 * use two separate interrupts in legacy mode.
2407 *
2408 * LOCKING:
2409 * Inherited from calling layer (may sleep).
2410 *
2411 * RETURNS:
2412 * 0 on success, -errno otherwise.
2413 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2414 int ata_pci_sff_activate_host(struct ata_host *host,
2415 irq_handler_t irq_handler,
2416 struct scsi_host_template *sht)
2417 {
2418 struct device *dev = host->dev;
2419 struct pci_dev *pdev = to_pci_dev(dev);
2420 const char *drv_name = dev_driver_string(host->dev);
2421 int legacy_mode = 0, rc;
2422
2423 rc = ata_host_start(host);
2424 if (rc)
2425 return rc;
2426
2427 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2428 u8 tmp8, mask;
2429
2430 /* TODO: What if one channel is in native mode ... */
2431 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2432 mask = (1 << 2) | (1 << 0);
2433 if ((tmp8 & mask) != mask)
2434 legacy_mode = 1;
2435 #if defined(CONFIG_NO_ATA_LEGACY)
2436 /* Some platforms with PCI limits cannot address compat
2437 port space. In that case we punt if their firmware has
2438 left a device in compatibility mode */
2439 if (legacy_mode) {
2440 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2441 return -EOPNOTSUPP;
2442 }
2443 #endif
2444 }
2445
2446 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2447 return -ENOMEM;
2448
2449 if (!legacy_mode && pdev->irq) {
2450 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2451 IRQF_SHARED, drv_name, host);
2452 if (rc)
2453 goto out;
2454
2455 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2456 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2457 } else if (legacy_mode) {
2458 if (!ata_port_is_dummy(host->ports[0])) {
2459 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2460 irq_handler, IRQF_SHARED,
2461 drv_name, host);
2462 if (rc)
2463 goto out;
2464
2465 ata_port_desc(host->ports[0], "irq %d",
2466 ATA_PRIMARY_IRQ(pdev));
2467 }
2468
2469 if (!ata_port_is_dummy(host->ports[1])) {
2470 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2471 irq_handler, IRQF_SHARED,
2472 drv_name, host);
2473 if (rc)
2474 goto out;
2475
2476 ata_port_desc(host->ports[1], "irq %d",
2477 ATA_SECONDARY_IRQ(pdev));
2478 }
2479 }
2480
2481 rc = ata_host_register(host, sht);
2482 out:
2483 if (rc == 0)
2484 devres_remove_group(dev, NULL);
2485 else
2486 devres_release_group(dev, NULL);
2487
2488 return rc;
2489 }
2490 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2491
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2492 static const struct ata_port_info *ata_sff_find_valid_pi(
2493 const struct ata_port_info * const *ppi)
2494 {
2495 int i;
2496
2497 /* look up the first valid port_info */
2498 for (i = 0; i < 2 && ppi[i]; i++)
2499 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2500 return ppi[i];
2501
2502 return NULL;
2503 }
2504
2505 /**
2506 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2507 * @pdev: Controller to be initialized
2508 * @ppi: array of port_info, must be enough for two ports
2509 * @sht: scsi_host_template to use when registering the host
2510 * @host_priv: host private_data
2511 * @hflag: host flags
2512 *
2513 * This is a helper function which can be called from a driver's
2514 * xxx_init_one() probe function if the hardware uses traditional
2515 * IDE taskfile registers and is PIO only.
2516 *
2517 * ASSUMPTION:
2518 * Nobody makes a single channel controller that appears solely as
2519 * the secondary legacy port on PCI.
2520 *
2521 * LOCKING:
2522 * Inherited from PCI layer (may sleep).
2523 *
2524 * RETURNS:
2525 * Zero on success, negative on errno-based value on error.
2526 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2527 int ata_pci_sff_init_one(struct pci_dev *pdev,
2528 const struct ata_port_info * const *ppi,
2529 struct scsi_host_template *sht, void *host_priv, int hflag)
2530 {
2531 struct device *dev = &pdev->dev;
2532 const struct ata_port_info *pi;
2533 struct ata_host *host = NULL;
2534 int rc;
2535
2536 DPRINTK("ENTER\n");
2537
2538 pi = ata_sff_find_valid_pi(ppi);
2539 if (!pi) {
2540 dev_printk(KERN_ERR, &pdev->dev,
2541 "no valid port_info specified\n");
2542 return -EINVAL;
2543 }
2544
2545 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2546 return -ENOMEM;
2547
2548 rc = pcim_enable_device(pdev);
2549 if (rc)
2550 goto out;
2551
2552 /* prepare and activate SFF host */
2553 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2554 if (rc)
2555 goto out;
2556 host->private_data = host_priv;
2557 host->flags |= hflag;
2558
2559 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2560 out:
2561 if (rc == 0)
2562 devres_remove_group(&pdev->dev, NULL);
2563 else
2564 devres_release_group(&pdev->dev, NULL);
2565
2566 return rc;
2567 }
2568 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2569
2570 #endif /* CONFIG_PCI */
2571
2572 /*
2573 * BMDMA support
2574 */
2575
2576 #ifdef CONFIG_ATA_BMDMA
2577
2578 const struct ata_port_operations ata_bmdma_port_ops = {
2579 .inherits = &ata_sff_port_ops,
2580
2581 .error_handler = ata_bmdma_error_handler,
2582 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2583
2584 .qc_prep = ata_bmdma_qc_prep,
2585 .qc_issue = ata_bmdma_qc_issue,
2586
2587 .sff_irq_clear = ata_bmdma_irq_clear,
2588 .bmdma_setup = ata_bmdma_setup,
2589 .bmdma_start = ata_bmdma_start,
2590 .bmdma_stop = ata_bmdma_stop,
2591 .bmdma_status = ata_bmdma_status,
2592
2593 .port_start = ata_bmdma_port_start,
2594 };
2595 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2596
2597 const struct ata_port_operations ata_bmdma32_port_ops = {
2598 .inherits = &ata_bmdma_port_ops,
2599
2600 .sff_data_xfer = ata_sff_data_xfer32,
2601 .port_start = ata_bmdma_port_start32,
2602 };
2603 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2604
2605 /**
2606 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2607 * @qc: Metadata associated with taskfile to be transferred
2608 *
2609 * Fill PCI IDE PRD (scatter-gather) table with segments
2610 * associated with the current disk command.
2611 *
2612 * LOCKING:
2613 * spin_lock_irqsave(host lock)
2614 *
2615 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2616 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2617 {
2618 struct ata_port *ap = qc->ap;
2619 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2620 struct scatterlist *sg;
2621 unsigned int si, pi;
2622
2623 pi = 0;
2624 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2625 u32 addr, offset;
2626 u32 sg_len, len;
2627
2628 /* determine if physical DMA addr spans 64K boundary.
2629 * Note h/w doesn't support 64-bit, so we unconditionally
2630 * truncate dma_addr_t to u32.
2631 */
2632 addr = (u32) sg_dma_address(sg);
2633 sg_len = sg_dma_len(sg);
2634
2635 while (sg_len) {
2636 offset = addr & 0xffff;
2637 len = sg_len;
2638 if ((offset + sg_len) > 0x10000)
2639 len = 0x10000 - offset;
2640
2641 prd[pi].addr = cpu_to_le32(addr);
2642 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2643 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2644
2645 pi++;
2646 sg_len -= len;
2647 addr += len;
2648 }
2649 }
2650
2651 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2652 }
2653
2654 /**
2655 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2656 * @qc: Metadata associated with taskfile to be transferred
2657 *
2658 * Fill PCI IDE PRD (scatter-gather) table with segments
2659 * associated with the current disk command. Perform the fill
2660 * so that we avoid writing any length 64K records for
2661 * controllers that don't follow the spec.
2662 *
2663 * LOCKING:
2664 * spin_lock_irqsave(host lock)
2665 *
2666 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2667 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2668 {
2669 struct ata_port *ap = qc->ap;
2670 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2671 struct scatterlist *sg;
2672 unsigned int si, pi;
2673
2674 pi = 0;
2675 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2676 u32 addr, offset;
2677 u32 sg_len, len, blen;
2678
2679 /* determine if physical DMA addr spans 64K boundary.
2680 * Note h/w doesn't support 64-bit, so we unconditionally
2681 * truncate dma_addr_t to u32.
2682 */
2683 addr = (u32) sg_dma_address(sg);
2684 sg_len = sg_dma_len(sg);
2685
2686 while (sg_len) {
2687 offset = addr & 0xffff;
2688 len = sg_len;
2689 if ((offset + sg_len) > 0x10000)
2690 len = 0x10000 - offset;
2691
2692 blen = len & 0xffff;
2693 prd[pi].addr = cpu_to_le32(addr);
2694 if (blen == 0) {
2695 /* Some PATA chipsets like the CS5530 can't
2696 cope with 0x0000 meaning 64K as the spec
2697 says */
2698 prd[pi].flags_len = cpu_to_le32(0x8000);
2699 blen = 0x8000;
2700 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2701 }
2702 prd[pi].flags_len = cpu_to_le32(blen);
2703 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2704
2705 pi++;
2706 sg_len -= len;
2707 addr += len;
2708 }
2709 }
2710
2711 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2712 }
2713
2714 /**
2715 * ata_bmdma_qc_prep - Prepare taskfile for submission
2716 * @qc: Metadata associated with taskfile to be prepared
2717 *
2718 * Prepare ATA taskfile for submission.
2719 *
2720 * LOCKING:
2721 * spin_lock_irqsave(host lock)
2722 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2723 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2724 {
2725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2726 return;
2727
2728 ata_bmdma_fill_sg(qc);
2729 }
2730 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2731
2732 /**
2733 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2734 * @qc: Metadata associated with taskfile to be prepared
2735 *
2736 * Prepare ATA taskfile for submission.
2737 *
2738 * LOCKING:
2739 * spin_lock_irqsave(host lock)
2740 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2741 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2742 {
2743 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2744 return;
2745
2746 ata_bmdma_fill_sg_dumb(qc);
2747 }
2748 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2749
2750 /**
2751 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2752 * @qc: command to issue to device
2753 *
2754 * This function issues a PIO, NODATA or DMA command to a
2755 * SFF/BMDMA controller. PIO and NODATA are handled by
2756 * ata_sff_qc_issue().
2757 *
2758 * LOCKING:
2759 * spin_lock_irqsave(host lock)
2760 *
2761 * RETURNS:
2762 * Zero on success, AC_ERR_* mask on failure
2763 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2764 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2765 {
2766 struct ata_port *ap = qc->ap;
2767 struct ata_link *link = qc->dev->link;
2768
2769 /* defer PIO handling to sff_qc_issue */
2770 if (!ata_is_dma(qc->tf.protocol))
2771 return ata_sff_qc_issue(qc);
2772
2773 /* select the device */
2774 ata_dev_select(ap, qc->dev->devno, 1, 0);
2775
2776 /* start the command */
2777 switch (qc->tf.protocol) {
2778 case ATA_PROT_DMA:
2779 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2780
2781 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2782 ap->ops->bmdma_setup(qc); /* set up bmdma */
2783 ap->ops->bmdma_start(qc); /* initiate bmdma */
2784 ap->hsm_task_state = HSM_ST_LAST;
2785 break;
2786
2787 case ATAPI_PROT_DMA:
2788 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2789
2790 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2791 ap->ops->bmdma_setup(qc); /* set up bmdma */
2792 ap->hsm_task_state = HSM_ST_FIRST;
2793
2794 /* send cdb by polling if no cdb interrupt */
2795 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2796 ata_sff_queue_pio_task(link, 0);
2797 break;
2798
2799 default:
2800 WARN_ON(1);
2801 return AC_ERR_SYSTEM;
2802 }
2803
2804 return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2807
2808 /**
2809 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2810 * @ap: Port on which interrupt arrived (possibly...)
2811 * @qc: Taskfile currently active in engine
2812 *
2813 * Handle port interrupt for given queued command.
2814 *
2815 * LOCKING:
2816 * spin_lock_irqsave(host lock)
2817 *
2818 * RETURNS:
2819 * One if interrupt was handled, zero if not (shared irq).
2820 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2821 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2822 {
2823 struct ata_eh_info *ehi = &ap->link.eh_info;
2824 u8 host_stat = 0;
2825 bool bmdma_stopped = false;
2826 unsigned int handled;
2827
2828 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2829 /* check status of DMA engine */
2830 host_stat = ap->ops->bmdma_status(ap);
2831 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2832
2833 /* if it's not our irq... */
2834 if (!(host_stat & ATA_DMA_INTR))
2835 return ata_sff_idle_irq(ap);
2836
2837 /* before we do anything else, clear DMA-Start bit */
2838 ap->ops->bmdma_stop(qc);
2839 bmdma_stopped = true;
2840
2841 if (unlikely(host_stat & ATA_DMA_ERR)) {
2842 /* error when transferring data to/from memory */
2843 qc->err_mask |= AC_ERR_HOST_BUS;
2844 ap->hsm_task_state = HSM_ST_ERR;
2845 }
2846 }
2847
2848 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2849
2850 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2851 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2852
2853 return handled;
2854 }
2855 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2856
2857 /**
2858 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2859 * @irq: irq line (unused)
2860 * @dev_instance: pointer to our ata_host information structure
2861 *
2862 * Default interrupt handler for PCI IDE devices. Calls
2863 * ata_bmdma_port_intr() for each port that is not disabled.
2864 *
2865 * LOCKING:
2866 * Obtains host lock during operation.
2867 *
2868 * RETURNS:
2869 * IRQ_NONE or IRQ_HANDLED.
2870 */
ata_bmdma_interrupt(int irq,void * dev_instance)2871 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2872 {
2873 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2874 }
2875 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2876
2877 /**
2878 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2879 * @ap: port to handle error for
2880 *
2881 * Stock error handler for BMDMA controller. It can handle both
2882 * PATA and SATA controllers. Most BMDMA controllers should be
2883 * able to use this EH as-is or with some added handling before
2884 * and after.
2885 *
2886 * LOCKING:
2887 * Kernel thread context (may sleep)
2888 */
ata_bmdma_error_handler(struct ata_port * ap)2889 void ata_bmdma_error_handler(struct ata_port *ap)
2890 {
2891 struct ata_queued_cmd *qc;
2892 unsigned long flags;
2893 bool thaw = false;
2894
2895 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2896 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2897 qc = NULL;
2898
2899 /* reset PIO HSM and stop DMA engine */
2900 spin_lock_irqsave(ap->lock, flags);
2901
2902 if (qc && ata_is_dma(qc->tf.protocol)) {
2903 u8 host_stat;
2904
2905 host_stat = ap->ops->bmdma_status(ap);
2906
2907 /* BMDMA controllers indicate host bus error by
2908 * setting DMA_ERR bit and timing out. As it wasn't
2909 * really a timeout event, adjust error mask and
2910 * cancel frozen state.
2911 */
2912 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2913 qc->err_mask = AC_ERR_HOST_BUS;
2914 thaw = true;
2915 }
2916
2917 ap->ops->bmdma_stop(qc);
2918
2919 /* if we're gonna thaw, make sure IRQ is clear */
2920 if (thaw) {
2921 ap->ops->sff_check_status(ap);
2922 if (ap->ops->sff_irq_clear)
2923 ap->ops->sff_irq_clear(ap);
2924 }
2925 }
2926
2927 spin_unlock_irqrestore(ap->lock, flags);
2928
2929 if (thaw)
2930 ata_eh_thaw_port(ap);
2931
2932 ata_sff_error_handler(ap);
2933 }
2934 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2935
2936 /**
2937 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2938 * @qc: internal command to clean up
2939 *
2940 * LOCKING:
2941 * Kernel thread context (may sleep)
2942 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2943 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2944 {
2945 struct ata_port *ap = qc->ap;
2946 unsigned long flags;
2947
2948 if (ata_is_dma(qc->tf.protocol)) {
2949 spin_lock_irqsave(ap->lock, flags);
2950 ap->ops->bmdma_stop(qc);
2951 spin_unlock_irqrestore(ap->lock, flags);
2952 }
2953 }
2954 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2955
2956 /**
2957 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2958 * @ap: Port associated with this ATA transaction.
2959 *
2960 * Clear interrupt and error flags in DMA status register.
2961 *
2962 * May be used as the irq_clear() entry in ata_port_operations.
2963 *
2964 * LOCKING:
2965 * spin_lock_irqsave(host lock)
2966 */
ata_bmdma_irq_clear(struct ata_port * ap)2967 void ata_bmdma_irq_clear(struct ata_port *ap)
2968 {
2969 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2970
2971 if (!mmio)
2972 return;
2973
2974 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2975 }
2976 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2977
2978 /**
2979 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2980 * @qc: Info associated with this ATA transaction.
2981 *
2982 * LOCKING:
2983 * spin_lock_irqsave(host lock)
2984 */
ata_bmdma_setup(struct ata_queued_cmd * qc)2985 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2986 {
2987 struct ata_port *ap = qc->ap;
2988 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2989 u8 dmactl;
2990
2991 /* load PRD table addr. */
2992 mb(); /* make sure PRD table writes are visible to controller */
2993 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2994
2995 /* specify data direction, triple-check start bit is clear */
2996 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2997 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2998 if (!rw)
2999 dmactl |= ATA_DMA_WR;
3000 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3001
3002 /* issue r/w command */
3003 ap->ops->sff_exec_command(ap, &qc->tf);
3004 }
3005 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3006
3007 /**
3008 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3009 * @qc: Info associated with this ATA transaction.
3010 *
3011 * LOCKING:
3012 * spin_lock_irqsave(host lock)
3013 */
ata_bmdma_start(struct ata_queued_cmd * qc)3014 void ata_bmdma_start(struct ata_queued_cmd *qc)
3015 {
3016 struct ata_port *ap = qc->ap;
3017 u8 dmactl;
3018
3019 /* start host DMA transaction */
3020 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3021 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022
3023 /* Strictly, one may wish to issue an ioread8() here, to
3024 * flush the mmio write. However, control also passes
3025 * to the hardware at this point, and it will interrupt
3026 * us when we are to resume control. So, in effect,
3027 * we don't care when the mmio write flushes.
3028 * Further, a read of the DMA status register _immediately_
3029 * following the write may not be what certain flaky hardware
3030 * is expected, so I think it is best to not add a readb()
3031 * without first all the MMIO ATA cards/mobos.
3032 * Or maybe I'm just being paranoid.
3033 *
3034 * FIXME: The posting of this write means I/O starts are
3035 * unnecessarily delayed for MMIO
3036 */
3037 }
3038 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3039
3040 /**
3041 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3042 * @qc: Command we are ending DMA for
3043 *
3044 * Clears the ATA_DMA_START flag in the dma control register
3045 *
3046 * May be used as the bmdma_stop() entry in ata_port_operations.
3047 *
3048 * LOCKING:
3049 * spin_lock_irqsave(host lock)
3050 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3051 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3052 {
3053 struct ata_port *ap = qc->ap;
3054 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3055
3056 /* clear start/stop bit */
3057 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3058 mmio + ATA_DMA_CMD);
3059
3060 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3061 ata_sff_dma_pause(ap);
3062 }
3063 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3064
3065 /**
3066 * ata_bmdma_status - Read PCI IDE BMDMA status
3067 * @ap: Port associated with this ATA transaction.
3068 *
3069 * Read and return BMDMA status register.
3070 *
3071 * May be used as the bmdma_status() entry in ata_port_operations.
3072 *
3073 * LOCKING:
3074 * spin_lock_irqsave(host lock)
3075 */
ata_bmdma_status(struct ata_port * ap)3076 u8 ata_bmdma_status(struct ata_port *ap)
3077 {
3078 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3079 }
3080 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3081
3082
3083 /**
3084 * ata_bmdma_port_start - Set port up for bmdma.
3085 * @ap: Port to initialize
3086 *
3087 * Called just after data structures for each port are
3088 * initialized. Allocates space for PRD table.
3089 *
3090 * May be used as the port_start() entry in ata_port_operations.
3091 *
3092 * LOCKING:
3093 * Inherited from caller.
3094 */
ata_bmdma_port_start(struct ata_port * ap)3095 int ata_bmdma_port_start(struct ata_port *ap)
3096 {
3097 if (ap->mwdma_mask || ap->udma_mask) {
3098 ap->bmdma_prd =
3099 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3100 &ap->bmdma_prd_dma, GFP_KERNEL);
3101 if (!ap->bmdma_prd)
3102 return -ENOMEM;
3103 }
3104
3105 return 0;
3106 }
3107 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3108
3109 /**
3110 * ata_bmdma_port_start32 - Set port up for dma.
3111 * @ap: Port to initialize
3112 *
3113 * Called just after data structures for each port are
3114 * initialized. Enables 32bit PIO and allocates space for PRD
3115 * table.
3116 *
3117 * May be used as the port_start() entry in ata_port_operations for
3118 * devices that are capable of 32bit PIO.
3119 *
3120 * LOCKING:
3121 * Inherited from caller.
3122 */
ata_bmdma_port_start32(struct ata_port * ap)3123 int ata_bmdma_port_start32(struct ata_port *ap)
3124 {
3125 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3126 return ata_bmdma_port_start(ap);
3127 }
3128 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3129
3130 #ifdef CONFIG_PCI
3131
3132 /**
3133 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3134 * @pdev: PCI device
3135 *
3136 * Some PCI ATA devices report simplex mode but in fact can be told to
3137 * enter non simplex mode. This implements the necessary logic to
3138 * perform the task on such devices. Calling it on other devices will
3139 * have -undefined- behaviour.
3140 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3141 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3142 {
3143 unsigned long bmdma = pci_resource_start(pdev, 4);
3144 u8 simplex;
3145
3146 if (bmdma == 0)
3147 return -ENOENT;
3148
3149 simplex = inb(bmdma + 0x02);
3150 outb(simplex & 0x60, bmdma + 0x02);
3151 simplex = inb(bmdma + 0x02);
3152 if (simplex & 0x80)
3153 return -EOPNOTSUPP;
3154 return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3157
ata_bmdma_nodma(struct ata_host * host,const char * reason)3158 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3159 {
3160 int i;
3161
3162 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3163 reason);
3164
3165 for (i = 0; i < 2; i++) {
3166 host->ports[i]->mwdma_mask = 0;
3167 host->ports[i]->udma_mask = 0;
3168 }
3169 }
3170
3171 /**
3172 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3173 * @host: target ATA host
3174 *
3175 * Acquire PCI BMDMA resources and initialize @host accordingly.
3176 *
3177 * LOCKING:
3178 * Inherited from calling layer (may sleep).
3179 */
ata_pci_bmdma_init(struct ata_host * host)3180 void ata_pci_bmdma_init(struct ata_host *host)
3181 {
3182 struct device *gdev = host->dev;
3183 struct pci_dev *pdev = to_pci_dev(gdev);
3184 int i, rc;
3185
3186 /* No BAR4 allocation: No DMA */
3187 if (pci_resource_start(pdev, 4) == 0) {
3188 ata_bmdma_nodma(host, "BAR4 is zero");
3189 return;
3190 }
3191
3192 /*
3193 * Some controllers require BMDMA region to be initialized
3194 * even if DMA is not in use to clear IRQ status via
3195 * ->sff_irq_clear method. Try to initialize bmdma_addr
3196 * regardless of dma masks.
3197 */
3198 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3199 if (rc)
3200 ata_bmdma_nodma(host, "failed to set dma mask");
3201 if (!rc) {
3202 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3203 if (rc)
3204 ata_bmdma_nodma(host,
3205 "failed to set consistent dma mask");
3206 }
3207
3208 /* request and iomap DMA region */
3209 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3210 if (rc) {
3211 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3212 return;
3213 }
3214 host->iomap = pcim_iomap_table(pdev);
3215
3216 for (i = 0; i < 2; i++) {
3217 struct ata_port *ap = host->ports[i];
3218 void __iomem *bmdma = host->iomap[4] + 8 * i;
3219
3220 if (ata_port_is_dummy(ap))
3221 continue;
3222
3223 ap->ioaddr.bmdma_addr = bmdma;
3224 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3225 (ioread8(bmdma + 2) & 0x80))
3226 host->flags |= ATA_HOST_SIMPLEX;
3227
3228 ata_port_desc(ap, "bmdma 0x%llx",
3229 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3230 }
3231 }
3232 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3233
3234 /**
3235 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3236 * @pdev: target PCI device
3237 * @ppi: array of port_info, must be enough for two ports
3238 * @r_host: out argument for the initialized ATA host
3239 *
3240 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3241 * resources and initialize it accordingly in one go.
3242 *
3243 * LOCKING:
3244 * Inherited from calling layer (may sleep).
3245 *
3246 * RETURNS:
3247 * 0 on success, -errno otherwise.
3248 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3249 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3250 const struct ata_port_info * const * ppi,
3251 struct ata_host **r_host)
3252 {
3253 int rc;
3254
3255 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3256 if (rc)
3257 return rc;
3258
3259 ata_pci_bmdma_init(*r_host);
3260 return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3263
3264 /**
3265 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3266 * @pdev: Controller to be initialized
3267 * @ppi: array of port_info, must be enough for two ports
3268 * @sht: scsi_host_template to use when registering the host
3269 * @host_priv: host private_data
3270 * @hflags: host flags
3271 *
3272 * This function is similar to ata_pci_sff_init_one() but also
3273 * takes care of BMDMA initialization.
3274 *
3275 * LOCKING:
3276 * Inherited from PCI layer (may sleep).
3277 *
3278 * RETURNS:
3279 * Zero on success, negative on errno-based value on error.
3280 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3281 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3282 const struct ata_port_info * const * ppi,
3283 struct scsi_host_template *sht, void *host_priv,
3284 int hflags)
3285 {
3286 struct device *dev = &pdev->dev;
3287 const struct ata_port_info *pi;
3288 struct ata_host *host = NULL;
3289 int rc;
3290
3291 DPRINTK("ENTER\n");
3292
3293 pi = ata_sff_find_valid_pi(ppi);
3294 if (!pi) {
3295 dev_printk(KERN_ERR, &pdev->dev,
3296 "no valid port_info specified\n");
3297 return -EINVAL;
3298 }
3299
3300 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3301 return -ENOMEM;
3302
3303 rc = pcim_enable_device(pdev);
3304 if (rc)
3305 goto out;
3306
3307 /* prepare and activate BMDMA host */
3308 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3309 if (rc)
3310 goto out;
3311 host->private_data = host_priv;
3312 host->flags |= hflags;
3313
3314 pci_set_master(pdev);
3315 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3316 out:
3317 if (rc == 0)
3318 devres_remove_group(&pdev->dev, NULL);
3319 else
3320 devres_release_group(&pdev->dev, NULL);
3321
3322 return rc;
3323 }
3324 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3325
3326 #endif /* CONFIG_PCI */
3327 #endif /* CONFIG_ATA_BMDMA */
3328
3329 /**
3330 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3331 * @ap: Port to initialize
3332 *
3333 * Called on port allocation to initialize SFF/BMDMA specific
3334 * fields.
3335 *
3336 * LOCKING:
3337 * None.
3338 */
ata_sff_port_init(struct ata_port * ap)3339 void ata_sff_port_init(struct ata_port *ap)
3340 {
3341 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3342 ap->ctl = ATA_DEVCTL_OBS;
3343 ap->last_ctl = 0xFF;
3344 }
3345
ata_sff_init(void)3346 int __init ata_sff_init(void)
3347 {
3348 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3349 if (!ata_sff_wq)
3350 return -ENOMEM;
3351
3352 return 0;
3353 }
3354
ata_sff_exit(void)3355 void ata_sff_exit(void)
3356 {
3357 destroy_workqueue(ata_sff_wq);
3358 }
3359