1 /*
2  *  libata-sff.c - helper library for PCI IDE BMDMA
3  *
4  *  Maintained by:  Jeff Garzik <jgarzik@pobox.com>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2006 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  */
34 
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
40 
41 #include "libata.h"
42 
43 static struct workqueue_struct *ata_sff_wq;
44 
45 const struct ata_port_operations ata_sff_port_ops = {
46 	.inherits		= &ata_base_port_ops,
47 
48 	.qc_prep		= ata_noop_qc_prep,
49 	.qc_issue		= ata_sff_qc_issue,
50 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
51 
52 	.freeze			= ata_sff_freeze,
53 	.thaw			= ata_sff_thaw,
54 	.prereset		= ata_sff_prereset,
55 	.softreset		= ata_sff_softreset,
56 	.hardreset		= sata_sff_hardreset,
57 	.postreset		= ata_sff_postreset,
58 	.error_handler		= ata_sff_error_handler,
59 
60 	.sff_dev_select		= ata_sff_dev_select,
61 	.sff_check_status	= ata_sff_check_status,
62 	.sff_tf_load		= ata_sff_tf_load,
63 	.sff_tf_read		= ata_sff_tf_read,
64 	.sff_exec_command	= ata_sff_exec_command,
65 	.sff_data_xfer		= ata_sff_data_xfer,
66 	.sff_drain_fifo		= ata_sff_drain_fifo,
67 
68 	.lost_interrupt		= ata_sff_lost_interrupt,
69 };
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71 
72 /**
73  *	ata_sff_check_status - Read device status reg & clear interrupt
74  *	@ap: port where the device is
75  *
76  *	Reads ATA taskfile status register for currently-selected device
77  *	and return its value. This also clears pending interrupts
78  *      from this device
79  *
80  *	LOCKING:
81  *	Inherited from caller.
82  */
ata_sff_check_status(struct ata_port * ap)83 u8 ata_sff_check_status(struct ata_port *ap)
84 {
85 	return ioread8(ap->ioaddr.status_addr);
86 }
87 EXPORT_SYMBOL_GPL(ata_sff_check_status);
88 
89 /**
90  *	ata_sff_altstatus - Read device alternate status reg
91  *	@ap: port where the device is
92  *
93  *	Reads ATA taskfile alternate status register for
94  *	currently-selected device and return its value.
95  *
96  *	Note: may NOT be used as the check_altstatus() entry in
97  *	ata_port_operations.
98  *
99  *	LOCKING:
100  *	Inherited from caller.
101  */
ata_sff_altstatus(struct ata_port * ap)102 static u8 ata_sff_altstatus(struct ata_port *ap)
103 {
104 	if (ap->ops->sff_check_altstatus)
105 		return ap->ops->sff_check_altstatus(ap);
106 
107 	return ioread8(ap->ioaddr.altstatus_addr);
108 }
109 
110 /**
111  *	ata_sff_irq_status - Check if the device is busy
112  *	@ap: port where the device is
113  *
114  *	Determine if the port is currently busy. Uses altstatus
115  *	if available in order to avoid clearing shared IRQ status
116  *	when finding an IRQ source. Non ctl capable devices don't
117  *	share interrupt lines fortunately for us.
118  *
119  *	LOCKING:
120  *	Inherited from caller.
121  */
ata_sff_irq_status(struct ata_port * ap)122 static u8 ata_sff_irq_status(struct ata_port *ap)
123 {
124 	u8 status;
125 
126 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 		status = ata_sff_altstatus(ap);
128 		/* Not us: We are busy */
129 		if (status & ATA_BUSY)
130 			return status;
131 	}
132 	/* Clear INTRQ latch */
133 	status = ap->ops->sff_check_status(ap);
134 	return status;
135 }
136 
137 /**
138  *	ata_sff_sync - Flush writes
139  *	@ap: Port to wait for.
140  *
141  *	CAUTION:
142  *	If we have an mmio device with no ctl and no altstatus
143  *	method this will fail. No such devices are known to exist.
144  *
145  *	LOCKING:
146  *	Inherited from caller.
147  */
148 
ata_sff_sync(struct ata_port * ap)149 static void ata_sff_sync(struct ata_port *ap)
150 {
151 	if (ap->ops->sff_check_altstatus)
152 		ap->ops->sff_check_altstatus(ap);
153 	else if (ap->ioaddr.altstatus_addr)
154 		ioread8(ap->ioaddr.altstatus_addr);
155 }
156 
157 /**
158  *	ata_sff_pause		-	Flush writes and wait 400nS
159  *	@ap: Port to pause for.
160  *
161  *	CAUTION:
162  *	If we have an mmio device with no ctl and no altstatus
163  *	method this will fail. No such devices are known to exist.
164  *
165  *	LOCKING:
166  *	Inherited from caller.
167  */
168 
ata_sff_pause(struct ata_port * ap)169 void ata_sff_pause(struct ata_port *ap)
170 {
171 	ata_sff_sync(ap);
172 	ndelay(400);
173 }
174 EXPORT_SYMBOL_GPL(ata_sff_pause);
175 
176 /**
177  *	ata_sff_dma_pause	-	Pause before commencing DMA
178  *	@ap: Port to pause for.
179  *
180  *	Perform I/O fencing and ensure sufficient cycle delays occur
181  *	for the HDMA1:0 transition
182  */
183 
ata_sff_dma_pause(struct ata_port * ap)184 void ata_sff_dma_pause(struct ata_port *ap)
185 {
186 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 		/* An altstatus read will cause the needed delay without
188 		   messing up the IRQ status */
189 		ata_sff_altstatus(ap);
190 		return;
191 	}
192 	/* There are no DMA controllers without ctl. BUG here to ensure
193 	   we never violate the HDMA1:0 transition timing and risk
194 	   corruption. */
195 	BUG();
196 }
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
198 
199 /**
200  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
201  *	@ap: port containing status register to be polled
202  *	@tmout_pat: impatience timeout in msecs
203  *	@tmout: overall timeout in msecs
204  *
205  *	Sleep until ATA Status register bit BSY clears,
206  *	or a timeout occurs.
207  *
208  *	LOCKING:
209  *	Kernel thread context (may sleep).
210  *
211  *	RETURNS:
212  *	0 on success, -errno otherwise.
213  */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)214 int ata_sff_busy_sleep(struct ata_port *ap,
215 		       unsigned long tmout_pat, unsigned long tmout)
216 {
217 	unsigned long timer_start, timeout;
218 	u8 status;
219 
220 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
221 	timer_start = jiffies;
222 	timeout = ata_deadline(timer_start, tmout_pat);
223 	while (status != 0xff && (status & ATA_BUSY) &&
224 	       time_before(jiffies, timeout)) {
225 		ata_msleep(ap, 50);
226 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
227 	}
228 
229 	if (status != 0xff && (status & ATA_BUSY))
230 		ata_port_printk(ap, KERN_WARNING,
231 				"port is slow to respond, please be patient "
232 				"(Status 0x%x)\n", status);
233 
234 	timeout = ata_deadline(timer_start, tmout);
235 	while (status != 0xff && (status & ATA_BUSY) &&
236 	       time_before(jiffies, timeout)) {
237 		ata_msleep(ap, 50);
238 		status = ap->ops->sff_check_status(ap);
239 	}
240 
241 	if (status == 0xff)
242 		return -ENODEV;
243 
244 	if (status & ATA_BUSY) {
245 		ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 				"(%lu secs, Status 0x%x)\n",
247 				DIV_ROUND_UP(tmout, 1000), status);
248 		return -EBUSY;
249 	}
250 
251 	return 0;
252 }
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
254 
ata_sff_check_ready(struct ata_link * link)255 static int ata_sff_check_ready(struct ata_link *link)
256 {
257 	u8 status = link->ap->ops->sff_check_status(link->ap);
258 
259 	return ata_check_ready(status);
260 }
261 
262 /**
263  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
264  *	@link: SFF link to wait ready status for
265  *	@deadline: deadline jiffies for the operation
266  *
267  *	Sleep until ATA Status register bit BSY clears, or timeout
268  *	occurs.
269  *
270  *	LOCKING:
271  *	Kernel thread context (may sleep).
272  *
273  *	RETURNS:
274  *	0 on success, -errno otherwise.
275  */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)276 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
277 {
278 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
279 }
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
281 
282 /**
283  *	ata_sff_set_devctl - Write device control reg
284  *	@ap: port where the device is
285  *	@ctl: value to write
286  *
287  *	Writes ATA taskfile device control register.
288  *
289  *	Note: may NOT be used as the sff_set_devctl() entry in
290  *	ata_port_operations.
291  *
292  *	LOCKING:
293  *	Inherited from caller.
294  */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)295 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296 {
297 	if (ap->ops->sff_set_devctl)
298 		ap->ops->sff_set_devctl(ap, ctl);
299 	else
300 		iowrite8(ctl, ap->ioaddr.ctl_addr);
301 }
302 
303 /**
304  *	ata_sff_dev_select - Select device 0/1 on ATA bus
305  *	@ap: ATA channel to manipulate
306  *	@device: ATA device (numbered from zero) to select
307  *
308  *	Use the method defined in the ATA specification to
309  *	make either device 0, or device 1, active on the
310  *	ATA channel.  Works with both PIO and MMIO.
311  *
312  *	May be used as the dev_select() entry in ata_port_operations.
313  *
314  *	LOCKING:
315  *	caller.
316  */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)317 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
318 {
319 	u8 tmp;
320 
321 	if (device == 0)
322 		tmp = ATA_DEVICE_OBS;
323 	else
324 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
325 
326 	iowrite8(tmp, ap->ioaddr.device_addr);
327 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
328 }
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
330 
331 /**
332  *	ata_dev_select - Select device 0/1 on ATA bus
333  *	@ap: ATA channel to manipulate
334  *	@device: ATA device (numbered from zero) to select
335  *	@wait: non-zero to wait for Status register BSY bit to clear
336  *	@can_sleep: non-zero if context allows sleeping
337  *
338  *	Use the method defined in the ATA specification to
339  *	make either device 0, or device 1, active on the
340  *	ATA channel.
341  *
342  *	This is a high-level version of ata_sff_dev_select(), which
343  *	additionally provides the services of inserting the proper
344  *	pauses and status polling, where needed.
345  *
346  *	LOCKING:
347  *	caller.
348  */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)349 static void ata_dev_select(struct ata_port *ap, unsigned int device,
350 			   unsigned int wait, unsigned int can_sleep)
351 {
352 	if (ata_msg_probe(ap))
353 		ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 				"device %u, wait %u\n", device, wait);
355 
356 	if (wait)
357 		ata_wait_idle(ap);
358 
359 	ap->ops->sff_dev_select(ap, device);
360 
361 	if (wait) {
362 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 			ata_msleep(ap, 150);
364 		ata_wait_idle(ap);
365 	}
366 }
367 
368 /**
369  *	ata_sff_irq_on - Enable interrupts on a port.
370  *	@ap: Port on which interrupts are enabled.
371  *
372  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
373  *	wait for idle, clear any pending interrupts.
374  *
375  *	Note: may NOT be used as the sff_irq_on() entry in
376  *	ata_port_operations.
377  *
378  *	LOCKING:
379  *	Inherited from caller.
380  */
ata_sff_irq_on(struct ata_port * ap)381 void ata_sff_irq_on(struct ata_port *ap)
382 {
383 	struct ata_ioports *ioaddr = &ap->ioaddr;
384 
385 	if (ap->ops->sff_irq_on) {
386 		ap->ops->sff_irq_on(ap);
387 		return;
388 	}
389 
390 	ap->ctl &= ~ATA_NIEN;
391 	ap->last_ctl = ap->ctl;
392 
393 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 		ata_sff_set_devctl(ap, ap->ctl);
395 	ata_wait_idle(ap);
396 
397 	if (ap->ops->sff_irq_clear)
398 		ap->ops->sff_irq_clear(ap);
399 }
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
401 
402 /**
403  *	ata_sff_tf_load - send taskfile registers to host controller
404  *	@ap: Port to which output is sent
405  *	@tf: ATA taskfile register set
406  *
407  *	Outputs ATA taskfile to standard ATA host controller.
408  *
409  *	LOCKING:
410  *	Inherited from caller.
411  */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)412 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
413 {
414 	struct ata_ioports *ioaddr = &ap->ioaddr;
415 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416 
417 	if (tf->ctl != ap->last_ctl) {
418 		if (ioaddr->ctl_addr)
419 			iowrite8(tf->ctl, ioaddr->ctl_addr);
420 		ap->last_ctl = tf->ctl;
421 		ata_wait_idle(ap);
422 	}
423 
424 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
425 		WARN_ON_ONCE(!ioaddr->ctl_addr);
426 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
427 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
428 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
429 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
430 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
431 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
432 			tf->hob_feature,
433 			tf->hob_nsect,
434 			tf->hob_lbal,
435 			tf->hob_lbam,
436 			tf->hob_lbah);
437 	}
438 
439 	if (is_addr) {
440 		iowrite8(tf->feature, ioaddr->feature_addr);
441 		iowrite8(tf->nsect, ioaddr->nsect_addr);
442 		iowrite8(tf->lbal, ioaddr->lbal_addr);
443 		iowrite8(tf->lbam, ioaddr->lbam_addr);
444 		iowrite8(tf->lbah, ioaddr->lbah_addr);
445 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
446 			tf->feature,
447 			tf->nsect,
448 			tf->lbal,
449 			tf->lbam,
450 			tf->lbah);
451 	}
452 
453 	if (tf->flags & ATA_TFLAG_DEVICE) {
454 		iowrite8(tf->device, ioaddr->device_addr);
455 		VPRINTK("device 0x%X\n", tf->device);
456 	}
457 
458 	ata_wait_idle(ap);
459 }
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
461 
462 /**
463  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
464  *	@ap: Port from which input is read
465  *	@tf: ATA taskfile register set for storing input
466  *
467  *	Reads ATA taskfile registers for currently-selected device
468  *	into @tf. Assumes the device has a fully SFF compliant task file
469  *	layout and behaviour. If you device does not (eg has a different
470  *	status method) then you will need to provide a replacement tf_read
471  *
472  *	LOCKING:
473  *	Inherited from caller.
474  */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)475 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
476 {
477 	struct ata_ioports *ioaddr = &ap->ioaddr;
478 
479 	tf->command = ata_sff_check_status(ap);
480 	tf->feature = ioread8(ioaddr->error_addr);
481 	tf->nsect = ioread8(ioaddr->nsect_addr);
482 	tf->lbal = ioread8(ioaddr->lbal_addr);
483 	tf->lbam = ioread8(ioaddr->lbam_addr);
484 	tf->lbah = ioread8(ioaddr->lbah_addr);
485 	tf->device = ioread8(ioaddr->device_addr);
486 
487 	if (tf->flags & ATA_TFLAG_LBA48) {
488 		if (likely(ioaddr->ctl_addr)) {
489 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
490 			tf->hob_feature = ioread8(ioaddr->error_addr);
491 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
492 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
493 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
494 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
495 			iowrite8(tf->ctl, ioaddr->ctl_addr);
496 			ap->last_ctl = tf->ctl;
497 		} else
498 			WARN_ON_ONCE(1);
499 	}
500 }
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
502 
503 /**
504  *	ata_sff_exec_command - issue ATA command to host controller
505  *	@ap: port to which command is being issued
506  *	@tf: ATA taskfile register set
507  *
508  *	Issues ATA command, with proper synchronization with interrupt
509  *	handler / other threads.
510  *
511  *	LOCKING:
512  *	spin_lock_irqsave(host lock)
513  */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)514 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
515 {
516 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
517 
518 	iowrite8(tf->command, ap->ioaddr.command_addr);
519 	ata_sff_pause(ap);
520 }
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
522 
523 /**
524  *	ata_tf_to_host - issue ATA taskfile to host controller
525  *	@ap: port to which command is being issued
526  *	@tf: ATA taskfile register set
527  *
528  *	Issues ATA taskfile register set to ATA host controller,
529  *	with proper synchronization with interrupt handler and
530  *	other threads.
531  *
532  *	LOCKING:
533  *	spin_lock_irqsave(host lock)
534  */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)535 static inline void ata_tf_to_host(struct ata_port *ap,
536 				  const struct ata_taskfile *tf)
537 {
538 	ap->ops->sff_tf_load(ap, tf);
539 	ap->ops->sff_exec_command(ap, tf);
540 }
541 
542 /**
543  *	ata_sff_data_xfer - Transfer data by PIO
544  *	@dev: device to target
545  *	@buf: data buffer
546  *	@buflen: buffer length
547  *	@rw: read/write
548  *
549  *	Transfer data from/to the device data register by PIO.
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  *
554  *	RETURNS:
555  *	Bytes consumed.
556  */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)557 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
558 			       unsigned int buflen, int rw)
559 {
560 	struct ata_port *ap = dev->link->ap;
561 	void __iomem *data_addr = ap->ioaddr.data_addr;
562 	unsigned int words = buflen >> 1;
563 
564 	/* Transfer multiple of 2 bytes */
565 	if (rw == READ)
566 		ioread16_rep(data_addr, buf, words);
567 	else
568 		iowrite16_rep(data_addr, buf, words);
569 
570 	/* Transfer trailing byte, if any. */
571 	if (unlikely(buflen & 0x01)) {
572 		unsigned char pad[2];
573 
574 		/* Point buf to the tail of buffer */
575 		buf += buflen - 1;
576 
577 		/*
578 		 * Use io*16_rep() accessors here as well to avoid pointlessly
579 		 * swapping bytes to and from on the big endian machines...
580 		 */
581 		if (rw == READ) {
582 			ioread16_rep(data_addr, pad, 1);
583 			*buf = pad[0];
584 		} else {
585 			pad[0] = *buf;
586 			iowrite16_rep(data_addr, pad, 1);
587 		}
588 		words++;
589 	}
590 
591 	return words << 1;
592 }
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
594 
595 /**
596  *	ata_sff_data_xfer32 - Transfer data by PIO
597  *	@dev: device to target
598  *	@buf: data buffer
599  *	@buflen: buffer length
600  *	@rw: read/write
601  *
602  *	Transfer data from/to the device data register by PIO using 32bit
603  *	I/O operations.
604  *
605  *	LOCKING:
606  *	Inherited from caller.
607  *
608  *	RETURNS:
609  *	Bytes consumed.
610  */
611 
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)612 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
613 			       unsigned int buflen, int rw)
614 {
615 	struct ata_port *ap = dev->link->ap;
616 	void __iomem *data_addr = ap->ioaddr.data_addr;
617 	unsigned int words = buflen >> 2;
618 	int slop = buflen & 3;
619 
620 	if (!(ap->pflags & ATA_PFLAG_PIO32))
621 		return ata_sff_data_xfer(dev, buf, buflen, rw);
622 
623 	/* Transfer multiple of 4 bytes */
624 	if (rw == READ)
625 		ioread32_rep(data_addr, buf, words);
626 	else
627 		iowrite32_rep(data_addr, buf, words);
628 
629 	/* Transfer trailing bytes, if any */
630 	if (unlikely(slop)) {
631 		unsigned char pad[4];
632 
633 		/* Point buf to the tail of buffer */
634 		buf += buflen - slop;
635 
636 		/*
637 		 * Use io*_rep() accessors here as well to avoid pointlessly
638 		 * swapping bytes to and from on the big endian machines...
639 		 */
640 		if (rw == READ) {
641 			if (slop < 3)
642 				ioread16_rep(data_addr, pad, 1);
643 			else
644 				ioread32_rep(data_addr, pad, 1);
645 			memcpy(buf, pad, slop);
646 		} else {
647 			memcpy(pad, buf, slop);
648 			if (slop < 3)
649 				iowrite16_rep(data_addr, pad, 1);
650 			else
651 				iowrite32_rep(data_addr, pad, 1);
652 		}
653 	}
654 	return (buflen + 1) & ~1;
655 }
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
657 
658 /**
659  *	ata_sff_data_xfer_noirq - Transfer data by PIO
660  *	@dev: device to target
661  *	@buf: data buffer
662  *	@buflen: buffer length
663  *	@rw: read/write
664  *
665  *	Transfer data from/to the device data register by PIO. Do the
666  *	transfer with interrupts disabled.
667  *
668  *	LOCKING:
669  *	Inherited from caller.
670  *
671  *	RETURNS:
672  *	Bytes consumed.
673  */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)674 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
675 				     unsigned int buflen, int rw)
676 {
677 	unsigned long flags;
678 	unsigned int consumed;
679 
680 	local_irq_save(flags);
681 	consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
682 	local_irq_restore(flags);
683 
684 	return consumed;
685 }
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
687 
688 /**
689  *	ata_pio_sector - Transfer a sector of data.
690  *	@qc: Command on going
691  *
692  *	Transfer qc->sect_size bytes of data from/to the ATA device.
693  *
694  *	LOCKING:
695  *	Inherited from caller.
696  */
ata_pio_sector(struct ata_queued_cmd * qc)697 static void ata_pio_sector(struct ata_queued_cmd *qc)
698 {
699 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
700 	struct ata_port *ap = qc->ap;
701 	struct page *page;
702 	unsigned int offset;
703 	unsigned char *buf;
704 
705 	if (qc->curbytes == qc->nbytes - qc->sect_size)
706 		ap->hsm_task_state = HSM_ST_LAST;
707 
708 	page = sg_page(qc->cursg);
709 	offset = qc->cursg->offset + qc->cursg_ofs;
710 
711 	/* get the current page and offset */
712 	page = nth_page(page, (offset >> PAGE_SHIFT));
713 	offset %= PAGE_SIZE;
714 
715 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
716 
717 	if (PageHighMem(page)) {
718 		unsigned long flags;
719 
720 		/* FIXME: use a bounce buffer */
721 		local_irq_save(flags);
722 		buf = kmap_atomic(page, KM_IRQ0);
723 
724 		/* do the actual data transfer */
725 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
726 				       do_write);
727 
728 		kunmap_atomic(buf, KM_IRQ0);
729 		local_irq_restore(flags);
730 	} else {
731 		buf = page_address(page);
732 		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
733 				       do_write);
734 	}
735 
736 	if (!do_write && !PageSlab(page))
737 		flush_dcache_page(page);
738 
739 	qc->curbytes += qc->sect_size;
740 	qc->cursg_ofs += qc->sect_size;
741 
742 	if (qc->cursg_ofs == qc->cursg->length) {
743 		qc->cursg = sg_next(qc->cursg);
744 		qc->cursg_ofs = 0;
745 	}
746 }
747 
748 /**
749  *	ata_pio_sectors - Transfer one or many sectors.
750  *	@qc: Command on going
751  *
752  *	Transfer one or many sectors of data from/to the
753  *	ATA device for the DRQ request.
754  *
755  *	LOCKING:
756  *	Inherited from caller.
757  */
ata_pio_sectors(struct ata_queued_cmd * qc)758 static void ata_pio_sectors(struct ata_queued_cmd *qc)
759 {
760 	if (is_multi_taskfile(&qc->tf)) {
761 		/* READ/WRITE MULTIPLE */
762 		unsigned int nsect;
763 
764 		WARN_ON_ONCE(qc->dev->multi_count == 0);
765 
766 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
767 			    qc->dev->multi_count);
768 		while (nsect--)
769 			ata_pio_sector(qc);
770 	} else
771 		ata_pio_sector(qc);
772 
773 	ata_sff_sync(qc->ap); /* flush */
774 }
775 
776 /**
777  *	atapi_send_cdb - Write CDB bytes to hardware
778  *	@ap: Port to which ATAPI device is attached.
779  *	@qc: Taskfile currently active
780  *
781  *	When device has indicated its readiness to accept
782  *	a CDB, this function is called.  Send the CDB.
783  *
784  *	LOCKING:
785  *	caller.
786  */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)787 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
788 {
789 	/* send SCSI cdb */
790 	DPRINTK("send cdb\n");
791 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
792 
793 	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
794 	ata_sff_sync(ap);
795 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
796 	   or is bmdma_start guaranteed to do it ? */
797 	switch (qc->tf.protocol) {
798 	case ATAPI_PROT_PIO:
799 		ap->hsm_task_state = HSM_ST;
800 		break;
801 	case ATAPI_PROT_NODATA:
802 		ap->hsm_task_state = HSM_ST_LAST;
803 		break;
804 #ifdef CONFIG_ATA_BMDMA
805 	case ATAPI_PROT_DMA:
806 		ap->hsm_task_state = HSM_ST_LAST;
807 		/* initiate bmdma */
808 		ap->ops->bmdma_start(qc);
809 		break;
810 #endif /* CONFIG_ATA_BMDMA */
811 	default:
812 		BUG();
813 	}
814 }
815 
816 /**
817  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
818  *	@qc: Command on going
819  *	@bytes: number of bytes
820  *
821  *	Transfer Transfer data from/to the ATAPI device.
822  *
823  *	LOCKING:
824  *	Inherited from caller.
825  *
826  */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)827 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
828 {
829 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
830 	struct ata_port *ap = qc->ap;
831 	struct ata_device *dev = qc->dev;
832 	struct ata_eh_info *ehi = &dev->link->eh_info;
833 	struct scatterlist *sg;
834 	struct page *page;
835 	unsigned char *buf;
836 	unsigned int offset, count, consumed;
837 
838 next_sg:
839 	sg = qc->cursg;
840 	if (unlikely(!sg)) {
841 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
842 				  "buf=%u cur=%u bytes=%u",
843 				  qc->nbytes, qc->curbytes, bytes);
844 		return -1;
845 	}
846 
847 	page = sg_page(sg);
848 	offset = sg->offset + qc->cursg_ofs;
849 
850 	/* get the current page and offset */
851 	page = nth_page(page, (offset >> PAGE_SHIFT));
852 	offset %= PAGE_SIZE;
853 
854 	/* don't overrun current sg */
855 	count = min(sg->length - qc->cursg_ofs, bytes);
856 
857 	/* don't cross page boundaries */
858 	count = min(count, (unsigned int)PAGE_SIZE - offset);
859 
860 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
861 
862 	if (PageHighMem(page)) {
863 		unsigned long flags;
864 
865 		/* FIXME: use bounce buffer */
866 		local_irq_save(flags);
867 		buf = kmap_atomic(page, KM_IRQ0);
868 
869 		/* do the actual data transfer */
870 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
871 								count, rw);
872 
873 		kunmap_atomic(buf, KM_IRQ0);
874 		local_irq_restore(flags);
875 	} else {
876 		buf = page_address(page);
877 		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
878 								count, rw);
879 	}
880 
881 	bytes -= min(bytes, consumed);
882 	qc->curbytes += count;
883 	qc->cursg_ofs += count;
884 
885 	if (qc->cursg_ofs == sg->length) {
886 		qc->cursg = sg_next(qc->cursg);
887 		qc->cursg_ofs = 0;
888 	}
889 
890 	/*
891 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
892 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 	 * check correctly as it doesn't know if it is the last request being
894 	 * made. Somebody should implement a proper sanity check.
895 	 */
896 	if (bytes)
897 		goto next_sg;
898 	return 0;
899 }
900 
901 /**
902  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
903  *	@qc: Command on going
904  *
905  *	Transfer Transfer data from/to the ATAPI device.
906  *
907  *	LOCKING:
908  *	Inherited from caller.
909  */
atapi_pio_bytes(struct ata_queued_cmd * qc)910 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
911 {
912 	struct ata_port *ap = qc->ap;
913 	struct ata_device *dev = qc->dev;
914 	struct ata_eh_info *ehi = &dev->link->eh_info;
915 	unsigned int ireason, bc_lo, bc_hi, bytes;
916 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
917 
918 	/* Abuse qc->result_tf for temp storage of intermediate TF
919 	 * here to save some kernel stack usage.
920 	 * For normal completion, qc->result_tf is not relevant. For
921 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 	 * So, the correctness of qc->result_tf is not affected.
923 	 */
924 	ap->ops->sff_tf_read(ap, &qc->result_tf);
925 	ireason = qc->result_tf.nsect;
926 	bc_lo = qc->result_tf.lbam;
927 	bc_hi = qc->result_tf.lbah;
928 	bytes = (bc_hi << 8) | bc_lo;
929 
930 	/* shall be cleared to zero, indicating xfer of data */
931 	if (unlikely(ireason & (1 << 0)))
932 		goto atapi_check;
933 
934 	/* make sure transfer direction matches expected */
935 	i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
936 	if (unlikely(do_write != i_write))
937 		goto atapi_check;
938 
939 	if (unlikely(!bytes))
940 		goto atapi_check;
941 
942 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
943 
944 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
945 		goto err_out;
946 	ata_sff_sync(ap); /* flush */
947 
948 	return;
949 
950  atapi_check:
951 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
952 			  ireason, bytes);
953  err_out:
954 	qc->err_mask |= AC_ERR_HSM;
955 	ap->hsm_task_state = HSM_ST_ERR;
956 }
957 
958 /**
959  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960  *	@ap: the target ata_port
961  *	@qc: qc on going
962  *
963  *	RETURNS:
964  *	1 if ok in workqueue, 0 otherwise.
965  */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)966 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
967 						struct ata_queued_cmd *qc)
968 {
969 	if (qc->tf.flags & ATA_TFLAG_POLLING)
970 		return 1;
971 
972 	if (ap->hsm_task_state == HSM_ST_FIRST) {
973 		if (qc->tf.protocol == ATA_PROT_PIO &&
974 		   (qc->tf.flags & ATA_TFLAG_WRITE))
975 		    return 1;
976 
977 		if (ata_is_atapi(qc->tf.protocol) &&
978 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
979 			return 1;
980 	}
981 
982 	return 0;
983 }
984 
985 /**
986  *	ata_hsm_qc_complete - finish a qc running on standard HSM
987  *	@qc: Command to complete
988  *	@in_wq: 1 if called from workqueue, 0 otherwise
989  *
990  *	Finish @qc which is running on standard HSM.
991  *
992  *	LOCKING:
993  *	If @in_wq is zero, spin_lock_irqsave(host lock).
994  *	Otherwise, none on entry and grabs host lock.
995  */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)996 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
997 {
998 	struct ata_port *ap = qc->ap;
999 	unsigned long flags;
1000 
1001 	if (ap->ops->error_handler) {
1002 		if (in_wq) {
1003 			spin_lock_irqsave(ap->lock, flags);
1004 
1005 			/* EH might have kicked in while host lock is
1006 			 * released.
1007 			 */
1008 			qc = ata_qc_from_tag(ap, qc->tag);
1009 			if (qc) {
1010 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1011 					ata_sff_irq_on(ap);
1012 					ata_qc_complete(qc);
1013 				} else
1014 					ata_port_freeze(ap);
1015 			}
1016 
1017 			spin_unlock_irqrestore(ap->lock, flags);
1018 		} else {
1019 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1020 				ata_qc_complete(qc);
1021 			else
1022 				ata_port_freeze(ap);
1023 		}
1024 	} else {
1025 		if (in_wq) {
1026 			spin_lock_irqsave(ap->lock, flags);
1027 			ata_sff_irq_on(ap);
1028 			ata_qc_complete(qc);
1029 			spin_unlock_irqrestore(ap->lock, flags);
1030 		} else
1031 			ata_qc_complete(qc);
1032 	}
1033 }
1034 
1035 /**
1036  *	ata_sff_hsm_move - move the HSM to the next state.
1037  *	@ap: the target ata_port
1038  *	@qc: qc on going
1039  *	@status: current device status
1040  *	@in_wq: 1 if called from workqueue, 0 otherwise
1041  *
1042  *	RETURNS:
1043  *	1 when poll next status needed, 0 otherwise.
1044  */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1045 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1046 		     u8 status, int in_wq)
1047 {
1048 	struct ata_link *link = qc->dev->link;
1049 	struct ata_eh_info *ehi = &link->eh_info;
1050 	unsigned long flags = 0;
1051 	int poll_next;
1052 
1053 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1054 
1055 	/* Make sure ata_sff_qc_issue() does not throw things
1056 	 * like DMA polling into the workqueue. Notice that
1057 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1058 	 */
1059 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1060 
1061 fsm_start:
1062 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1064 
1065 	switch (ap->hsm_task_state) {
1066 	case HSM_ST_FIRST:
1067 		/* Send first data block or PACKET CDB */
1068 
1069 		/* If polling, we will stay in the work queue after
1070 		 * sending the data. Otherwise, interrupt handler
1071 		 * takes over after sending the data.
1072 		 */
1073 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1074 
1075 		/* check device status */
1076 		if (unlikely((status & ATA_DRQ) == 0)) {
1077 			/* handle BSY=0, DRQ=0 as error */
1078 			if (likely(status & (ATA_ERR | ATA_DF)))
1079 				/* device stops HSM for abort/error */
1080 				qc->err_mask |= AC_ERR_DEV;
1081 			else {
1082 				/* HSM violation. Let EH handle this */
1083 				ata_ehi_push_desc(ehi,
1084 					"ST_FIRST: !(DRQ|ERR|DF)");
1085 				qc->err_mask |= AC_ERR_HSM;
1086 			}
1087 
1088 			ap->hsm_task_state = HSM_ST_ERR;
1089 			goto fsm_start;
1090 		}
1091 
1092 		/* Device should not ask for data transfer (DRQ=1)
1093 		 * when it finds something wrong.
1094 		 * We ignore DRQ here and stop the HSM by
1095 		 * changing hsm_task_state to HSM_ST_ERR and
1096 		 * let the EH abort the command or reset the device.
1097 		 */
1098 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1099 			/* Some ATAPI tape drives forget to clear the ERR bit
1100 			 * when doing the next command (mostly request sense).
1101 			 * We ignore ERR here to workaround and proceed sending
1102 			 * the CDB.
1103 			 */
1104 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1105 				ata_ehi_push_desc(ehi, "ST_FIRST: "
1106 					"DRQ=1 with device error, "
1107 					"dev_stat 0x%X", status);
1108 				qc->err_mask |= AC_ERR_HSM;
1109 				ap->hsm_task_state = HSM_ST_ERR;
1110 				goto fsm_start;
1111 			}
1112 		}
1113 
1114 		/* Send the CDB (atapi) or the first data block (ata pio out).
1115 		 * During the state transition, interrupt handler shouldn't
1116 		 * be invoked before the data transfer is complete and
1117 		 * hsm_task_state is changed. Hence, the following locking.
1118 		 */
1119 		if (in_wq)
1120 			spin_lock_irqsave(ap->lock, flags);
1121 
1122 		if (qc->tf.protocol == ATA_PROT_PIO) {
1123 			/* PIO data out protocol.
1124 			 * send first data block.
1125 			 */
1126 
1127 			/* ata_pio_sectors() might change the state
1128 			 * to HSM_ST_LAST. so, the state is changed here
1129 			 * before ata_pio_sectors().
1130 			 */
1131 			ap->hsm_task_state = HSM_ST;
1132 			ata_pio_sectors(qc);
1133 		} else
1134 			/* send CDB */
1135 			atapi_send_cdb(ap, qc);
1136 
1137 		if (in_wq)
1138 			spin_unlock_irqrestore(ap->lock, flags);
1139 
1140 		/* if polling, ata_sff_pio_task() handles the rest.
1141 		 * otherwise, interrupt handler takes over from here.
1142 		 */
1143 		break;
1144 
1145 	case HSM_ST:
1146 		/* complete command or read/write the data register */
1147 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1148 			/* ATAPI PIO protocol */
1149 			if ((status & ATA_DRQ) == 0) {
1150 				/* No more data to transfer or device error.
1151 				 * Device error will be tagged in HSM_ST_LAST.
1152 				 */
1153 				ap->hsm_task_state = HSM_ST_LAST;
1154 				goto fsm_start;
1155 			}
1156 
1157 			/* Device should not ask for data transfer (DRQ=1)
1158 			 * when it finds something wrong.
1159 			 * We ignore DRQ here and stop the HSM by
1160 			 * changing hsm_task_state to HSM_ST_ERR and
1161 			 * let the EH abort the command or reset the device.
1162 			 */
1163 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1164 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1165 					"DRQ=1 with device error, "
1166 					"dev_stat 0x%X", status);
1167 				qc->err_mask |= AC_ERR_HSM;
1168 				ap->hsm_task_state = HSM_ST_ERR;
1169 				goto fsm_start;
1170 			}
1171 
1172 			atapi_pio_bytes(qc);
1173 
1174 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1175 				/* bad ireason reported by device */
1176 				goto fsm_start;
1177 
1178 		} else {
1179 			/* ATA PIO protocol */
1180 			if (unlikely((status & ATA_DRQ) == 0)) {
1181 				/* handle BSY=0, DRQ=0 as error */
1182 				if (likely(status & (ATA_ERR | ATA_DF))) {
1183 					/* device stops HSM for abort/error */
1184 					qc->err_mask |= AC_ERR_DEV;
1185 
1186 					/* If diagnostic failed and this is
1187 					 * IDENTIFY, it's likely a phantom
1188 					 * device.  Mark hint.
1189 					 */
1190 					if (qc->dev->horkage &
1191 					    ATA_HORKAGE_DIAGNOSTIC)
1192 						qc->err_mask |=
1193 							AC_ERR_NODEV_HINT;
1194 				} else {
1195 					/* HSM violation. Let EH handle this.
1196 					 * Phantom devices also trigger this
1197 					 * condition.  Mark hint.
1198 					 */
1199 					ata_ehi_push_desc(ehi, "ST-ATA: "
1200 						"DRQ=0 without device error, "
1201 						"dev_stat 0x%X", status);
1202 					qc->err_mask |= AC_ERR_HSM |
1203 							AC_ERR_NODEV_HINT;
1204 				}
1205 
1206 				ap->hsm_task_state = HSM_ST_ERR;
1207 				goto fsm_start;
1208 			}
1209 
1210 			/* For PIO reads, some devices may ask for
1211 			 * data transfer (DRQ=1) alone with ERR=1.
1212 			 * We respect DRQ here and transfer one
1213 			 * block of junk data before changing the
1214 			 * hsm_task_state to HSM_ST_ERR.
1215 			 *
1216 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 			 * sense since the data block has been
1218 			 * transferred to the device.
1219 			 */
1220 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1221 				/* data might be corrputed */
1222 				qc->err_mask |= AC_ERR_DEV;
1223 
1224 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1225 					ata_pio_sectors(qc);
1226 					status = ata_wait_idle(ap);
1227 				}
1228 
1229 				if (status & (ATA_BUSY | ATA_DRQ)) {
1230 					ata_ehi_push_desc(ehi, "ST-ATA: "
1231 						"BUSY|DRQ persists on ERR|DF, "
1232 						"dev_stat 0x%X", status);
1233 					qc->err_mask |= AC_ERR_HSM;
1234 				}
1235 
1236 				/* There are oddball controllers with
1237 				 * status register stuck at 0x7f and
1238 				 * lbal/m/h at zero which makes it
1239 				 * pass all other presence detection
1240 				 * mechanisms we have.  Set NODEV_HINT
1241 				 * for it.  Kernel bz#7241.
1242 				 */
1243 				if (status == 0x7f)
1244 					qc->err_mask |= AC_ERR_NODEV_HINT;
1245 
1246 				/* ata_pio_sectors() might change the
1247 				 * state to HSM_ST_LAST. so, the state
1248 				 * is changed after ata_pio_sectors().
1249 				 */
1250 				ap->hsm_task_state = HSM_ST_ERR;
1251 				goto fsm_start;
1252 			}
1253 
1254 			ata_pio_sectors(qc);
1255 
1256 			if (ap->hsm_task_state == HSM_ST_LAST &&
1257 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1258 				/* all data read */
1259 				status = ata_wait_idle(ap);
1260 				goto fsm_start;
1261 			}
1262 		}
1263 
1264 		poll_next = 1;
1265 		break;
1266 
1267 	case HSM_ST_LAST:
1268 		if (unlikely(!ata_ok(status))) {
1269 			qc->err_mask |= __ac_err_mask(status);
1270 			ap->hsm_task_state = HSM_ST_ERR;
1271 			goto fsm_start;
1272 		}
1273 
1274 		/* no more data to transfer */
1275 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 			ap->print_id, qc->dev->devno, status);
1277 
1278 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1279 
1280 		ap->hsm_task_state = HSM_ST_IDLE;
1281 
1282 		/* complete taskfile transaction */
1283 		ata_hsm_qc_complete(qc, in_wq);
1284 
1285 		poll_next = 0;
1286 		break;
1287 
1288 	case HSM_ST_ERR:
1289 		ap->hsm_task_state = HSM_ST_IDLE;
1290 
1291 		/* complete taskfile transaction */
1292 		ata_hsm_qc_complete(qc, in_wq);
1293 
1294 		poll_next = 0;
1295 		break;
1296 	default:
1297 		poll_next = 0;
1298 		BUG();
1299 	}
1300 
1301 	return poll_next;
1302 }
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1304 
ata_sff_queue_work(struct work_struct * work)1305 void ata_sff_queue_work(struct work_struct *work)
1306 {
1307 	queue_work(ata_sff_wq, work);
1308 }
1309 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1310 
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1311 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1312 {
1313 	queue_delayed_work(ata_sff_wq, dwork, delay);
1314 }
1315 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1316 
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1317 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1318 {
1319 	struct ata_port *ap = link->ap;
1320 
1321 	WARN_ON((ap->sff_pio_task_link != NULL) &&
1322 		(ap->sff_pio_task_link != link));
1323 	ap->sff_pio_task_link = link;
1324 
1325 	/* may fail if ata_sff_flush_pio_task() in progress */
1326 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1327 }
1328 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1329 
ata_sff_flush_pio_task(struct ata_port * ap)1330 void ata_sff_flush_pio_task(struct ata_port *ap)
1331 {
1332 	DPRINTK("ENTER\n");
1333 
1334 	cancel_delayed_work_sync(&ap->sff_pio_task);
1335 	ap->hsm_task_state = HSM_ST_IDLE;
1336 
1337 	if (ata_msg_ctl(ap))
1338 		ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1339 }
1340 
ata_sff_pio_task(struct work_struct * work)1341 static void ata_sff_pio_task(struct work_struct *work)
1342 {
1343 	struct ata_port *ap =
1344 		container_of(work, struct ata_port, sff_pio_task.work);
1345 	struct ata_link *link = ap->sff_pio_task_link;
1346 	struct ata_queued_cmd *qc;
1347 	u8 status;
1348 	int poll_next;
1349 
1350 	BUG_ON(ap->sff_pio_task_link == NULL);
1351 	/* qc can be NULL if timeout occurred */
1352 	qc = ata_qc_from_tag(ap, link->active_tag);
1353 	if (!qc) {
1354 		ap->sff_pio_task_link = NULL;
1355 		return;
1356 	}
1357 
1358 fsm_start:
1359 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360 
1361 	/*
1362 	 * This is purely heuristic.  This is a fast path.
1363 	 * Sometimes when we enter, BSY will be cleared in
1364 	 * a chk-status or two.  If not, the drive is probably seeking
1365 	 * or something.  Snooze for a couple msecs, then
1366 	 * chk-status again.  If still busy, queue delayed work.
1367 	 */
1368 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369 	if (status & ATA_BUSY) {
1370 		ata_msleep(ap, 2);
1371 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1372 		if (status & ATA_BUSY) {
1373 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1374 			return;
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * hsm_move() may trigger another command to be processed.
1380 	 * clean the link beforehand.
1381 	 */
1382 	ap->sff_pio_task_link = NULL;
1383 	/* move the HSM */
1384 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1385 
1386 	/* another command or interrupt handler
1387 	 * may be running at this point.
1388 	 */
1389 	if (poll_next)
1390 		goto fsm_start;
1391 }
1392 
1393 /**
1394  *	ata_sff_qc_issue - issue taskfile to a SFF controller
1395  *	@qc: command to issue to device
1396  *
1397  *	This function issues a PIO or NODATA command to a SFF
1398  *	controller.
1399  *
1400  *	LOCKING:
1401  *	spin_lock_irqsave(host lock)
1402  *
1403  *	RETURNS:
1404  *	Zero on success, AC_ERR_* mask on failure
1405  */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1406 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1407 {
1408 	struct ata_port *ap = qc->ap;
1409 	struct ata_link *link = qc->dev->link;
1410 
1411 	/* Use polling pio if the LLD doesn't handle
1412 	 * interrupt driven pio and atapi CDB interrupt.
1413 	 */
1414 	if (ap->flags & ATA_FLAG_PIO_POLLING)
1415 		qc->tf.flags |= ATA_TFLAG_POLLING;
1416 
1417 	/* select the device */
1418 	ata_dev_select(ap, qc->dev->devno, 1, 0);
1419 
1420 	/* start the command */
1421 	switch (qc->tf.protocol) {
1422 	case ATA_PROT_NODATA:
1423 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1424 			ata_qc_set_polling(qc);
1425 
1426 		ata_tf_to_host(ap, &qc->tf);
1427 		ap->hsm_task_state = HSM_ST_LAST;
1428 
1429 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 			ata_sff_queue_pio_task(link, 0);
1431 
1432 		break;
1433 
1434 	case ATA_PROT_PIO:
1435 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1436 			ata_qc_set_polling(qc);
1437 
1438 		ata_tf_to_host(ap, &qc->tf);
1439 
1440 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1441 			/* PIO data out protocol */
1442 			ap->hsm_task_state = HSM_ST_FIRST;
1443 			ata_sff_queue_pio_task(link, 0);
1444 
1445 			/* always send first data block using the
1446 			 * ata_sff_pio_task() codepath.
1447 			 */
1448 		} else {
1449 			/* PIO data in protocol */
1450 			ap->hsm_task_state = HSM_ST;
1451 
1452 			if (qc->tf.flags & ATA_TFLAG_POLLING)
1453 				ata_sff_queue_pio_task(link, 0);
1454 
1455 			/* if polling, ata_sff_pio_task() handles the
1456 			 * rest.  otherwise, interrupt handler takes
1457 			 * over from here.
1458 			 */
1459 		}
1460 
1461 		break;
1462 
1463 	case ATAPI_PROT_PIO:
1464 	case ATAPI_PROT_NODATA:
1465 		if (qc->tf.flags & ATA_TFLAG_POLLING)
1466 			ata_qc_set_polling(qc);
1467 
1468 		ata_tf_to_host(ap, &qc->tf);
1469 
1470 		ap->hsm_task_state = HSM_ST_FIRST;
1471 
1472 		/* send cdb by polling if no cdb interrupt */
1473 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1474 		    (qc->tf.flags & ATA_TFLAG_POLLING))
1475 			ata_sff_queue_pio_task(link, 0);
1476 		break;
1477 
1478 	default:
1479 		WARN_ON_ONCE(1);
1480 		return AC_ERR_SYSTEM;
1481 	}
1482 
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1486 
1487 /**
1488  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1489  *	@qc: qc to fill result TF for
1490  *
1491  *	@qc is finished and result TF needs to be filled.  Fill it
1492  *	using ->sff_tf_read.
1493  *
1494  *	LOCKING:
1495  *	spin_lock_irqsave(host lock)
1496  *
1497  *	RETURNS:
1498  *	true indicating that result TF is successfully filled.
1499  */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1500 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1501 {
1502 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1503 	return true;
1504 }
1505 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1506 
ata_sff_idle_irq(struct ata_port * ap)1507 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1508 {
1509 	ap->stats.idle_irq++;
1510 
1511 #ifdef ATA_IRQ_TRAP
1512 	if ((ap->stats.idle_irq % 1000) == 0) {
1513 		ap->ops->sff_check_status(ap);
1514 		if (ap->ops->sff_irq_clear)
1515 			ap->ops->sff_irq_clear(ap);
1516 		ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1517 		return 1;
1518 	}
1519 #endif
1520 	return 0;	/* irq not handled */
1521 }
1522 
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1523 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1524 					struct ata_queued_cmd *qc,
1525 					bool hsmv_on_idle)
1526 {
1527 	u8 status;
1528 
1529 	VPRINTK("ata%u: protocol %d task_state %d\n",
1530 		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1531 
1532 	/* Check whether we are expecting interrupt in this state */
1533 	switch (ap->hsm_task_state) {
1534 	case HSM_ST_FIRST:
1535 		/* Some pre-ATAPI-4 devices assert INTRQ
1536 		 * at this state when ready to receive CDB.
1537 		 */
1538 
1539 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1540 		 * The flag was turned on only for atapi devices.  No
1541 		 * need to check ata_is_atapi(qc->tf.protocol) again.
1542 		 */
1543 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1544 			return ata_sff_idle_irq(ap);
1545 		break;
1546 	case HSM_ST_IDLE:
1547 		return ata_sff_idle_irq(ap);
1548 	default:
1549 		break;
1550 	}
1551 
1552 	/* check main status, clearing INTRQ if needed */
1553 	status = ata_sff_irq_status(ap);
1554 	if (status & ATA_BUSY) {
1555 		if (hsmv_on_idle) {
1556 			/* BMDMA engine is already stopped, we're screwed */
1557 			qc->err_mask |= AC_ERR_HSM;
1558 			ap->hsm_task_state = HSM_ST_ERR;
1559 		} else
1560 			return ata_sff_idle_irq(ap);
1561 	}
1562 
1563 	/* clear irq events */
1564 	if (ap->ops->sff_irq_clear)
1565 		ap->ops->sff_irq_clear(ap);
1566 
1567 	ata_sff_hsm_move(ap, qc, status, 0);
1568 
1569 	return 1;	/* irq handled */
1570 }
1571 
1572 /**
1573  *	ata_sff_port_intr - Handle SFF port interrupt
1574  *	@ap: Port on which interrupt arrived (possibly...)
1575  *	@qc: Taskfile currently active in engine
1576  *
1577  *	Handle port interrupt for given queued command.
1578  *
1579  *	LOCKING:
1580  *	spin_lock_irqsave(host lock)
1581  *
1582  *	RETURNS:
1583  *	One if interrupt was handled, zero if not (shared irq).
1584  */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1585 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1586 {
1587 	return __ata_sff_port_intr(ap, qc, false);
1588 }
1589 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1590 
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1591 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1592 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1593 {
1594 	struct ata_host *host = dev_instance;
1595 	bool retried = false;
1596 	unsigned int i;
1597 	unsigned int handled, idle, polling;
1598 	unsigned long flags;
1599 
1600 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1601 	spin_lock_irqsave(&host->lock, flags);
1602 
1603 retry:
1604 	handled = idle = polling = 0;
1605 	for (i = 0; i < host->n_ports; i++) {
1606 		struct ata_port *ap = host->ports[i];
1607 		struct ata_queued_cmd *qc;
1608 
1609 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1610 		if (qc) {
1611 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1612 				handled |= port_intr(ap, qc);
1613 			else
1614 				polling |= 1 << i;
1615 		} else
1616 			idle |= 1 << i;
1617 	}
1618 
1619 	/*
1620 	 * If no port was expecting IRQ but the controller is actually
1621 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1622 	 * pending status if available and clear spurious IRQ.
1623 	 */
1624 	if (!handled && !retried) {
1625 		bool retry = false;
1626 
1627 		for (i = 0; i < host->n_ports; i++) {
1628 			struct ata_port *ap = host->ports[i];
1629 
1630 			if (polling & (1 << i))
1631 				continue;
1632 
1633 			if (!ap->ops->sff_irq_check ||
1634 			    !ap->ops->sff_irq_check(ap))
1635 				continue;
1636 
1637 			if (idle & (1 << i)) {
1638 				ap->ops->sff_check_status(ap);
1639 				if (ap->ops->sff_irq_clear)
1640 					ap->ops->sff_irq_clear(ap);
1641 			} else {
1642 				/* clear INTRQ and check if BUSY cleared */
1643 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1644 					retry |= true;
1645 				/*
1646 				 * With command in flight, we can't do
1647 				 * sff_irq_clear() w/o racing with completion.
1648 				 */
1649 			}
1650 		}
1651 
1652 		if (retry) {
1653 			retried = true;
1654 			goto retry;
1655 		}
1656 	}
1657 
1658 	spin_unlock_irqrestore(&host->lock, flags);
1659 
1660 	return IRQ_RETVAL(handled);
1661 }
1662 
1663 /**
1664  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1665  *	@irq: irq line (unused)
1666  *	@dev_instance: pointer to our ata_host information structure
1667  *
1668  *	Default interrupt handler for PCI IDE devices.  Calls
1669  *	ata_sff_port_intr() for each port that is not disabled.
1670  *
1671  *	LOCKING:
1672  *	Obtains host lock during operation.
1673  *
1674  *	RETURNS:
1675  *	IRQ_NONE or IRQ_HANDLED.
1676  */
ata_sff_interrupt(int irq,void * dev_instance)1677 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1678 {
1679 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1680 }
1681 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1682 
1683 /**
1684  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1685  *	@ap: port that appears to have timed out
1686  *
1687  *	Called from the libata error handlers when the core code suspects
1688  *	an interrupt has been lost. If it has complete anything we can and
1689  *	then return. Interface must support altstatus for this faster
1690  *	recovery to occur.
1691  *
1692  *	Locking:
1693  *	Caller holds host lock
1694  */
1695 
ata_sff_lost_interrupt(struct ata_port * ap)1696 void ata_sff_lost_interrupt(struct ata_port *ap)
1697 {
1698 	u8 status;
1699 	struct ata_queued_cmd *qc;
1700 
1701 	/* Only one outstanding command per SFF channel */
1702 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1703 	/* We cannot lose an interrupt on a non-existent or polled command */
1704 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1705 		return;
1706 	/* See if the controller thinks it is still busy - if so the command
1707 	   isn't a lost IRQ but is still in progress */
1708 	status = ata_sff_altstatus(ap);
1709 	if (status & ATA_BUSY)
1710 		return;
1711 
1712 	/* There was a command running, we are no longer busy and we have
1713 	   no interrupt. */
1714 	ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1715 								status);
1716 	/* Run the host interrupt logic as if the interrupt had not been
1717 	   lost */
1718 	ata_sff_port_intr(ap, qc);
1719 }
1720 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1721 
1722 /**
1723  *	ata_sff_freeze - Freeze SFF controller port
1724  *	@ap: port to freeze
1725  *
1726  *	Freeze SFF controller port.
1727  *
1728  *	LOCKING:
1729  *	Inherited from caller.
1730  */
ata_sff_freeze(struct ata_port * ap)1731 void ata_sff_freeze(struct ata_port *ap)
1732 {
1733 	ap->ctl |= ATA_NIEN;
1734 	ap->last_ctl = ap->ctl;
1735 
1736 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1737 		ata_sff_set_devctl(ap, ap->ctl);
1738 
1739 	/* Under certain circumstances, some controllers raise IRQ on
1740 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1741 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1742 	 */
1743 	ap->ops->sff_check_status(ap);
1744 
1745 	if (ap->ops->sff_irq_clear)
1746 		ap->ops->sff_irq_clear(ap);
1747 }
1748 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1749 
1750 /**
1751  *	ata_sff_thaw - Thaw SFF controller port
1752  *	@ap: port to thaw
1753  *
1754  *	Thaw SFF controller port.
1755  *
1756  *	LOCKING:
1757  *	Inherited from caller.
1758  */
ata_sff_thaw(struct ata_port * ap)1759 void ata_sff_thaw(struct ata_port *ap)
1760 {
1761 	/* clear & re-enable interrupts */
1762 	ap->ops->sff_check_status(ap);
1763 	if (ap->ops->sff_irq_clear)
1764 		ap->ops->sff_irq_clear(ap);
1765 	ata_sff_irq_on(ap);
1766 }
1767 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1768 
1769 /**
1770  *	ata_sff_prereset - prepare SFF link for reset
1771  *	@link: SFF link to be reset
1772  *	@deadline: deadline jiffies for the operation
1773  *
1774  *	SFF link @link is about to be reset.  Initialize it.  It first
1775  *	calls ata_std_prereset() and wait for !BSY if the port is
1776  *	being softreset.
1777  *
1778  *	LOCKING:
1779  *	Kernel thread context (may sleep)
1780  *
1781  *	RETURNS:
1782  *	0 on success, -errno otherwise.
1783  */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1784 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1785 {
1786 	struct ata_eh_context *ehc = &link->eh_context;
1787 	int rc;
1788 
1789 	rc = ata_std_prereset(link, deadline);
1790 	if (rc)
1791 		return rc;
1792 
1793 	/* if we're about to do hardreset, nothing more to do */
1794 	if (ehc->i.action & ATA_EH_HARDRESET)
1795 		return 0;
1796 
1797 	/* wait for !BSY if we don't know that no device is attached */
1798 	if (!ata_link_offline(link)) {
1799 		rc = ata_sff_wait_ready(link, deadline);
1800 		if (rc && rc != -ENODEV) {
1801 			ata_link_printk(link, KERN_WARNING, "device not ready "
1802 					"(errno=%d), forcing hardreset\n", rc);
1803 			ehc->i.action |= ATA_EH_HARDRESET;
1804 		}
1805 	}
1806 
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1810 
1811 /**
1812  *	ata_devchk - PATA device presence detection
1813  *	@ap: ATA channel to examine
1814  *	@device: Device to examine (starting at zero)
1815  *
1816  *	This technique was originally described in
1817  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1818  *	later found its way into the ATA/ATAPI spec.
1819  *
1820  *	Write a pattern to the ATA shadow registers,
1821  *	and if a device is present, it will respond by
1822  *	correctly storing and echoing back the
1823  *	ATA shadow register contents.
1824  *
1825  *	LOCKING:
1826  *	caller.
1827  */
ata_devchk(struct ata_port * ap,unsigned int device)1828 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1829 {
1830 	struct ata_ioports *ioaddr = &ap->ioaddr;
1831 	u8 nsect, lbal;
1832 
1833 	ap->ops->sff_dev_select(ap, device);
1834 
1835 	iowrite8(0x55, ioaddr->nsect_addr);
1836 	iowrite8(0xaa, ioaddr->lbal_addr);
1837 
1838 	iowrite8(0xaa, ioaddr->nsect_addr);
1839 	iowrite8(0x55, ioaddr->lbal_addr);
1840 
1841 	iowrite8(0x55, ioaddr->nsect_addr);
1842 	iowrite8(0xaa, ioaddr->lbal_addr);
1843 
1844 	nsect = ioread8(ioaddr->nsect_addr);
1845 	lbal = ioread8(ioaddr->lbal_addr);
1846 
1847 	if ((nsect == 0x55) && (lbal == 0xaa))
1848 		return 1;	/* we found a device */
1849 
1850 	return 0;		/* nothing found */
1851 }
1852 
1853 /**
1854  *	ata_sff_dev_classify - Parse returned ATA device signature
1855  *	@dev: ATA device to classify (starting at zero)
1856  *	@present: device seems present
1857  *	@r_err: Value of error register on completion
1858  *
1859  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1860  *	an ATA/ATAPI-defined set of values is placed in the ATA
1861  *	shadow registers, indicating the results of device detection
1862  *	and diagnostics.
1863  *
1864  *	Select the ATA device, and read the values from the ATA shadow
1865  *	registers.  Then parse according to the Error register value,
1866  *	and the spec-defined values examined by ata_dev_classify().
1867  *
1868  *	LOCKING:
1869  *	caller.
1870  *
1871  *	RETURNS:
1872  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1873  */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1874 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1875 				  u8 *r_err)
1876 {
1877 	struct ata_port *ap = dev->link->ap;
1878 	struct ata_taskfile tf;
1879 	unsigned int class;
1880 	u8 err;
1881 
1882 	ap->ops->sff_dev_select(ap, dev->devno);
1883 
1884 	memset(&tf, 0, sizeof(tf));
1885 
1886 	ap->ops->sff_tf_read(ap, &tf);
1887 	err = tf.feature;
1888 	if (r_err)
1889 		*r_err = err;
1890 
1891 	/* see if device passed diags: continue and warn later */
1892 	if (err == 0)
1893 		/* diagnostic fail : do nothing _YET_ */
1894 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1895 	else if (err == 1)
1896 		/* do nothing */ ;
1897 	else if ((dev->devno == 0) && (err == 0x81))
1898 		/* do nothing */ ;
1899 	else
1900 		return ATA_DEV_NONE;
1901 
1902 	/* determine if device is ATA or ATAPI */
1903 	class = ata_dev_classify(&tf);
1904 
1905 	if (class == ATA_DEV_UNKNOWN) {
1906 		/* If the device failed diagnostic, it's likely to
1907 		 * have reported incorrect device signature too.
1908 		 * Assume ATA device if the device seems present but
1909 		 * device signature is invalid with diagnostic
1910 		 * failure.
1911 		 */
1912 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1913 			class = ATA_DEV_ATA;
1914 		else
1915 			class = ATA_DEV_NONE;
1916 	} else if ((class == ATA_DEV_ATA) &&
1917 		   (ap->ops->sff_check_status(ap) == 0))
1918 		class = ATA_DEV_NONE;
1919 
1920 	return class;
1921 }
1922 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1923 
1924 /**
1925  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1926  *	@link: SFF link which is just reset
1927  *	@devmask: mask of present devices
1928  *	@deadline: deadline jiffies for the operation
1929  *
1930  *	Wait devices attached to SFF @link to become ready after
1931  *	reset.  It contains preceding 150ms wait to avoid accessing TF
1932  *	status register too early.
1933  *
1934  *	LOCKING:
1935  *	Kernel thread context (may sleep).
1936  *
1937  *	RETURNS:
1938  *	0 on success, -ENODEV if some or all of devices in @devmask
1939  *	don't seem to exist.  -errno on other errors.
1940  */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1941 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1942 			     unsigned long deadline)
1943 {
1944 	struct ata_port *ap = link->ap;
1945 	struct ata_ioports *ioaddr = &ap->ioaddr;
1946 	unsigned int dev0 = devmask & (1 << 0);
1947 	unsigned int dev1 = devmask & (1 << 1);
1948 	int rc, ret = 0;
1949 
1950 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1951 
1952 	/* always check readiness of the master device */
1953 	rc = ata_sff_wait_ready(link, deadline);
1954 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1955 	 * and TF status is 0xff, bail out on it too.
1956 	 */
1957 	if (rc)
1958 		return rc;
1959 
1960 	/* if device 1 was found in ata_devchk, wait for register
1961 	 * access briefly, then wait for BSY to clear.
1962 	 */
1963 	if (dev1) {
1964 		int i;
1965 
1966 		ap->ops->sff_dev_select(ap, 1);
1967 
1968 		/* Wait for register access.  Some ATAPI devices fail
1969 		 * to set nsect/lbal after reset, so don't waste too
1970 		 * much time on it.  We're gonna wait for !BSY anyway.
1971 		 */
1972 		for (i = 0; i < 2; i++) {
1973 			u8 nsect, lbal;
1974 
1975 			nsect = ioread8(ioaddr->nsect_addr);
1976 			lbal = ioread8(ioaddr->lbal_addr);
1977 			if ((nsect == 1) && (lbal == 1))
1978 				break;
1979 			ata_msleep(ap, 50);	/* give drive a breather */
1980 		}
1981 
1982 		rc = ata_sff_wait_ready(link, deadline);
1983 		if (rc) {
1984 			if (rc != -ENODEV)
1985 				return rc;
1986 			ret = rc;
1987 		}
1988 	}
1989 
1990 	/* is all this really necessary? */
1991 	ap->ops->sff_dev_select(ap, 0);
1992 	if (dev1)
1993 		ap->ops->sff_dev_select(ap, 1);
1994 	if (dev0)
1995 		ap->ops->sff_dev_select(ap, 0);
1996 
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2000 
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2001 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2002 			     unsigned long deadline)
2003 {
2004 	struct ata_ioports *ioaddr = &ap->ioaddr;
2005 
2006 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2007 
2008 	/* software reset.  causes dev0 to be selected */
2009 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2010 	udelay(20);	/* FIXME: flush */
2011 	iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2012 	udelay(20);	/* FIXME: flush */
2013 	iowrite8(ap->ctl, ioaddr->ctl_addr);
2014 	ap->last_ctl = ap->ctl;
2015 
2016 	/* wait the port to become ready */
2017 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2018 }
2019 
2020 /**
2021  *	ata_sff_softreset - reset host port via ATA SRST
2022  *	@link: ATA link to reset
2023  *	@classes: resulting classes of attached devices
2024  *	@deadline: deadline jiffies for the operation
2025  *
2026  *	Reset host port using ATA SRST.
2027  *
2028  *	LOCKING:
2029  *	Kernel thread context (may sleep)
2030  *
2031  *	RETURNS:
2032  *	0 on success, -errno otherwise.
2033  */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2034 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2035 		      unsigned long deadline)
2036 {
2037 	struct ata_port *ap = link->ap;
2038 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2039 	unsigned int devmask = 0;
2040 	int rc;
2041 	u8 err;
2042 
2043 	DPRINTK("ENTER\n");
2044 
2045 	/* determine if device 0/1 are present */
2046 	if (ata_devchk(ap, 0))
2047 		devmask |= (1 << 0);
2048 	if (slave_possible && ata_devchk(ap, 1))
2049 		devmask |= (1 << 1);
2050 
2051 	/* select device 0 again */
2052 	ap->ops->sff_dev_select(ap, 0);
2053 
2054 	/* issue bus reset */
2055 	DPRINTK("about to softreset, devmask=%x\n", devmask);
2056 	rc = ata_bus_softreset(ap, devmask, deadline);
2057 	/* if link is occupied, -ENODEV too is an error */
2058 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2059 		ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2060 		return rc;
2061 	}
2062 
2063 	/* determine by signature whether we have ATA or ATAPI devices */
2064 	classes[0] = ata_sff_dev_classify(&link->device[0],
2065 					  devmask & (1 << 0), &err);
2066 	if (slave_possible && err != 0x81)
2067 		classes[1] = ata_sff_dev_classify(&link->device[1],
2068 						  devmask & (1 << 1), &err);
2069 
2070 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2074 
2075 /**
2076  *	sata_sff_hardreset - reset host port via SATA phy reset
2077  *	@link: link to reset
2078  *	@class: resulting class of attached device
2079  *	@deadline: deadline jiffies for the operation
2080  *
2081  *	SATA phy-reset host port using DET bits of SControl register,
2082  *	wait for !BSY and classify the attached device.
2083  *
2084  *	LOCKING:
2085  *	Kernel thread context (may sleep)
2086  *
2087  *	RETURNS:
2088  *	0 on success, -errno otherwise.
2089  */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2090 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2091 		       unsigned long deadline)
2092 {
2093 	struct ata_eh_context *ehc = &link->eh_context;
2094 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2095 	bool online;
2096 	int rc;
2097 
2098 	rc = sata_link_hardreset(link, timing, deadline, &online,
2099 				 ata_sff_check_ready);
2100 	if (online)
2101 		*class = ata_sff_dev_classify(link->device, 1, NULL);
2102 
2103 	DPRINTK("EXIT, class=%u\n", *class);
2104 	return rc;
2105 }
2106 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2107 
2108 /**
2109  *	ata_sff_postreset - SFF postreset callback
2110  *	@link: the target SFF ata_link
2111  *	@classes: classes of attached devices
2112  *
2113  *	This function is invoked after a successful reset.  It first
2114  *	calls ata_std_postreset() and performs SFF specific postreset
2115  *	processing.
2116  *
2117  *	LOCKING:
2118  *	Kernel thread context (may sleep)
2119  */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2120 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2121 {
2122 	struct ata_port *ap = link->ap;
2123 
2124 	ata_std_postreset(link, classes);
2125 
2126 	/* is double-select really necessary? */
2127 	if (classes[0] != ATA_DEV_NONE)
2128 		ap->ops->sff_dev_select(ap, 1);
2129 	if (classes[1] != ATA_DEV_NONE)
2130 		ap->ops->sff_dev_select(ap, 0);
2131 
2132 	/* bail out if no device is present */
2133 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2134 		DPRINTK("EXIT, no device\n");
2135 		return;
2136 	}
2137 
2138 	/* set up device control */
2139 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2140 		ata_sff_set_devctl(ap, ap->ctl);
2141 		ap->last_ctl = ap->ctl;
2142 	}
2143 }
2144 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2145 
2146 /**
2147  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2148  *	@qc: command
2149  *
2150  *	Drain the FIFO and device of any stuck data following a command
2151  *	failing to complete. In some cases this is necessary before a
2152  *	reset will recover the device.
2153  *
2154  */
2155 
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2156 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2157 {
2158 	int count;
2159 	struct ata_port *ap;
2160 
2161 	/* We only need to flush incoming data when a command was running */
2162 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2163 		return;
2164 
2165 	ap = qc->ap;
2166 	/* Drain up to 64K of data before we give up this recovery method */
2167 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2168 						&& count < 65536; count += 2)
2169 		ioread16(ap->ioaddr.data_addr);
2170 
2171 	/* Can become DEBUG later */
2172 	if (count)
2173 		ata_port_printk(ap, KERN_DEBUG,
2174 			"drained %d bytes to clear DRQ.\n", count);
2175 
2176 }
2177 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2178 
2179 /**
2180  *	ata_sff_error_handler - Stock error handler for SFF controller
2181  *	@ap: port to handle error for
2182  *
2183  *	Stock error handler for SFF controller.  It can handle both
2184  *	PATA and SATA controllers.  Many controllers should be able to
2185  *	use this EH as-is or with some added handling before and
2186  *	after.
2187  *
2188  *	LOCKING:
2189  *	Kernel thread context (may sleep)
2190  */
ata_sff_error_handler(struct ata_port * ap)2191 void ata_sff_error_handler(struct ata_port *ap)
2192 {
2193 	ata_reset_fn_t softreset = ap->ops->softreset;
2194 	ata_reset_fn_t hardreset = ap->ops->hardreset;
2195 	struct ata_queued_cmd *qc;
2196 	unsigned long flags;
2197 
2198 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2199 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2200 		qc = NULL;
2201 
2202 	spin_lock_irqsave(ap->lock, flags);
2203 
2204 	/*
2205 	 * We *MUST* do FIFO draining before we issue a reset as
2206 	 * several devices helpfully clear their internal state and
2207 	 * will lock solid if we touch the data port post reset. Pass
2208 	 * qc in case anyone wants to do different PIO/DMA recovery or
2209 	 * has per command fixups
2210 	 */
2211 	if (ap->ops->sff_drain_fifo)
2212 		ap->ops->sff_drain_fifo(qc);
2213 
2214 	spin_unlock_irqrestore(ap->lock, flags);
2215 
2216 	/* ignore ata_sff_softreset if ctl isn't accessible */
2217 	if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2218 		softreset = NULL;
2219 
2220 	/* ignore built-in hardresets if SCR access is not available */
2221 	if ((hardreset == sata_std_hardreset ||
2222 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2223 		hardreset = NULL;
2224 
2225 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2226 		  ap->ops->postreset);
2227 }
2228 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2229 
2230 /**
2231  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2232  *	@ioaddr: IO address structure to be initialized
2233  *
2234  *	Utility function which initializes data_addr, error_addr,
2235  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2236  *	device_addr, status_addr, and command_addr to standard offsets
2237  *	relative to cmd_addr.
2238  *
2239  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2240  */
ata_sff_std_ports(struct ata_ioports * ioaddr)2241 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2242 {
2243 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2244 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2245 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2246 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2247 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2248 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2249 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2250 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2251 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2252 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2253 }
2254 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2255 
2256 #ifdef CONFIG_PCI
2257 
ata_resources_present(struct pci_dev * pdev,int port)2258 static int ata_resources_present(struct pci_dev *pdev, int port)
2259 {
2260 	int i;
2261 
2262 	/* Check the PCI resources for this channel are enabled */
2263 	port = port * 2;
2264 	for (i = 0; i < 2; i++) {
2265 		if (pci_resource_start(pdev, port + i) == 0 ||
2266 		    pci_resource_len(pdev, port + i) == 0)
2267 			return 0;
2268 	}
2269 	return 1;
2270 }
2271 
2272 /**
2273  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2274  *	@host: target ATA host
2275  *
2276  *	Acquire native PCI ATA resources for @host and initialize the
2277  *	first two ports of @host accordingly.  Ports marked dummy are
2278  *	skipped and allocation failure makes the port dummy.
2279  *
2280  *	Note that native PCI resources are valid even for legacy hosts
2281  *	as we fix up pdev resources array early in boot, so this
2282  *	function can be used for both native and legacy SFF hosts.
2283  *
2284  *	LOCKING:
2285  *	Inherited from calling layer (may sleep).
2286  *
2287  *	RETURNS:
2288  *	0 if at least one port is initialized, -ENODEV if no port is
2289  *	available.
2290  */
ata_pci_sff_init_host(struct ata_host * host)2291 int ata_pci_sff_init_host(struct ata_host *host)
2292 {
2293 	struct device *gdev = host->dev;
2294 	struct pci_dev *pdev = to_pci_dev(gdev);
2295 	unsigned int mask = 0;
2296 	int i, rc;
2297 
2298 	/* request, iomap BARs and init port addresses accordingly */
2299 	for (i = 0; i < 2; i++) {
2300 		struct ata_port *ap = host->ports[i];
2301 		int base = i * 2;
2302 		void __iomem * const *iomap;
2303 
2304 		if (ata_port_is_dummy(ap))
2305 			continue;
2306 
2307 		/* Discard disabled ports.  Some controllers show
2308 		 * their unused channels this way.  Disabled ports are
2309 		 * made dummy.
2310 		 */
2311 		if (!ata_resources_present(pdev, i)) {
2312 			ap->ops = &ata_dummy_port_ops;
2313 			continue;
2314 		}
2315 
2316 		rc = pcim_iomap_regions(pdev, 0x3 << base,
2317 					dev_driver_string(gdev));
2318 		if (rc) {
2319 			dev_printk(KERN_WARNING, gdev,
2320 				   "failed to request/iomap BARs for port %d "
2321 				   "(errno=%d)\n", i, rc);
2322 			if (rc == -EBUSY)
2323 				pcim_pin_device(pdev);
2324 			ap->ops = &ata_dummy_port_ops;
2325 			continue;
2326 		}
2327 		host->iomap = iomap = pcim_iomap_table(pdev);
2328 
2329 		ap->ioaddr.cmd_addr = iomap[base];
2330 		ap->ioaddr.altstatus_addr =
2331 		ap->ioaddr.ctl_addr = (void __iomem *)
2332 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2333 		ata_sff_std_ports(&ap->ioaddr);
2334 
2335 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2336 			(unsigned long long)pci_resource_start(pdev, base),
2337 			(unsigned long long)pci_resource_start(pdev, base + 1));
2338 
2339 		mask |= 1 << i;
2340 	}
2341 
2342 	if (!mask) {
2343 		dev_printk(KERN_ERR, gdev, "no available native port\n");
2344 		return -ENODEV;
2345 	}
2346 
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2350 
2351 /**
2352  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2353  *	@pdev: target PCI device
2354  *	@ppi: array of port_info, must be enough for two ports
2355  *	@r_host: out argument for the initialized ATA host
2356  *
2357  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2358  *	all PCI resources and initialize it accordingly in one go.
2359  *
2360  *	LOCKING:
2361  *	Inherited from calling layer (may sleep).
2362  *
2363  *	RETURNS:
2364  *	0 on success, -errno otherwise.
2365  */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2366 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2367 			     const struct ata_port_info * const *ppi,
2368 			     struct ata_host **r_host)
2369 {
2370 	struct ata_host *host;
2371 	int rc;
2372 
2373 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2374 		return -ENOMEM;
2375 
2376 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2377 	if (!host) {
2378 		dev_printk(KERN_ERR, &pdev->dev,
2379 			   "failed to allocate ATA host\n");
2380 		rc = -ENOMEM;
2381 		goto err_out;
2382 	}
2383 
2384 	rc = ata_pci_sff_init_host(host);
2385 	if (rc)
2386 		goto err_out;
2387 
2388 	devres_remove_group(&pdev->dev, NULL);
2389 	*r_host = host;
2390 	return 0;
2391 
2392 err_out:
2393 	devres_release_group(&pdev->dev, NULL);
2394 	return rc;
2395 }
2396 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2397 
2398 /**
2399  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2400  *	@host: target SFF ATA host
2401  *	@irq_handler: irq_handler used when requesting IRQ(s)
2402  *	@sht: scsi_host_template to use when registering the host
2403  *
2404  *	This is the counterpart of ata_host_activate() for SFF ATA
2405  *	hosts.  This separate helper is necessary because SFF hosts
2406  *	use two separate interrupts in legacy mode.
2407  *
2408  *	LOCKING:
2409  *	Inherited from calling layer (may sleep).
2410  *
2411  *	RETURNS:
2412  *	0 on success, -errno otherwise.
2413  */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2414 int ata_pci_sff_activate_host(struct ata_host *host,
2415 			      irq_handler_t irq_handler,
2416 			      struct scsi_host_template *sht)
2417 {
2418 	struct device *dev = host->dev;
2419 	struct pci_dev *pdev = to_pci_dev(dev);
2420 	const char *drv_name = dev_driver_string(host->dev);
2421 	int legacy_mode = 0, rc;
2422 
2423 	rc = ata_host_start(host);
2424 	if (rc)
2425 		return rc;
2426 
2427 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2428 		u8 tmp8, mask;
2429 
2430 		/* TODO: What if one channel is in native mode ... */
2431 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2432 		mask = (1 << 2) | (1 << 0);
2433 		if ((tmp8 & mask) != mask)
2434 			legacy_mode = 1;
2435 #if defined(CONFIG_NO_ATA_LEGACY)
2436 		/* Some platforms with PCI limits cannot address compat
2437 		   port space. In that case we punt if their firmware has
2438 		   left a device in compatibility mode */
2439 		if (legacy_mode) {
2440 			printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2441 			return -EOPNOTSUPP;
2442 		}
2443 #endif
2444 	}
2445 
2446 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2447 		return -ENOMEM;
2448 
2449 	if (!legacy_mode && pdev->irq) {
2450 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2451 				      IRQF_SHARED, drv_name, host);
2452 		if (rc)
2453 			goto out;
2454 
2455 		ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2456 		ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2457 	} else if (legacy_mode) {
2458 		if (!ata_port_is_dummy(host->ports[0])) {
2459 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2460 					      irq_handler, IRQF_SHARED,
2461 					      drv_name, host);
2462 			if (rc)
2463 				goto out;
2464 
2465 			ata_port_desc(host->ports[0], "irq %d",
2466 				      ATA_PRIMARY_IRQ(pdev));
2467 		}
2468 
2469 		if (!ata_port_is_dummy(host->ports[1])) {
2470 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2471 					      irq_handler, IRQF_SHARED,
2472 					      drv_name, host);
2473 			if (rc)
2474 				goto out;
2475 
2476 			ata_port_desc(host->ports[1], "irq %d",
2477 				      ATA_SECONDARY_IRQ(pdev));
2478 		}
2479 	}
2480 
2481 	rc = ata_host_register(host, sht);
2482 out:
2483 	if (rc == 0)
2484 		devres_remove_group(dev, NULL);
2485 	else
2486 		devres_release_group(dev, NULL);
2487 
2488 	return rc;
2489 }
2490 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2491 
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2492 static const struct ata_port_info *ata_sff_find_valid_pi(
2493 					const struct ata_port_info * const *ppi)
2494 {
2495 	int i;
2496 
2497 	/* look up the first valid port_info */
2498 	for (i = 0; i < 2 && ppi[i]; i++)
2499 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2500 			return ppi[i];
2501 
2502 	return NULL;
2503 }
2504 
2505 /**
2506  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2507  *	@pdev: Controller to be initialized
2508  *	@ppi: array of port_info, must be enough for two ports
2509  *	@sht: scsi_host_template to use when registering the host
2510  *	@host_priv: host private_data
2511  *	@hflag: host flags
2512  *
2513  *	This is a helper function which can be called from a driver's
2514  *	xxx_init_one() probe function if the hardware uses traditional
2515  *	IDE taskfile registers and is PIO only.
2516  *
2517  *	ASSUMPTION:
2518  *	Nobody makes a single channel controller that appears solely as
2519  *	the secondary legacy port on PCI.
2520  *
2521  *	LOCKING:
2522  *	Inherited from PCI layer (may sleep).
2523  *
2524  *	RETURNS:
2525  *	Zero on success, negative on errno-based value on error.
2526  */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2527 int ata_pci_sff_init_one(struct pci_dev *pdev,
2528 		 const struct ata_port_info * const *ppi,
2529 		 struct scsi_host_template *sht, void *host_priv, int hflag)
2530 {
2531 	struct device *dev = &pdev->dev;
2532 	const struct ata_port_info *pi;
2533 	struct ata_host *host = NULL;
2534 	int rc;
2535 
2536 	DPRINTK("ENTER\n");
2537 
2538 	pi = ata_sff_find_valid_pi(ppi);
2539 	if (!pi) {
2540 		dev_printk(KERN_ERR, &pdev->dev,
2541 			   "no valid port_info specified\n");
2542 		return -EINVAL;
2543 	}
2544 
2545 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2546 		return -ENOMEM;
2547 
2548 	rc = pcim_enable_device(pdev);
2549 	if (rc)
2550 		goto out;
2551 
2552 	/* prepare and activate SFF host */
2553 	rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2554 	if (rc)
2555 		goto out;
2556 	host->private_data = host_priv;
2557 	host->flags |= hflag;
2558 
2559 	rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2560 out:
2561 	if (rc == 0)
2562 		devres_remove_group(&pdev->dev, NULL);
2563 	else
2564 		devres_release_group(&pdev->dev, NULL);
2565 
2566 	return rc;
2567 }
2568 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2569 
2570 #endif /* CONFIG_PCI */
2571 
2572 /*
2573  *	BMDMA support
2574  */
2575 
2576 #ifdef CONFIG_ATA_BMDMA
2577 
2578 const struct ata_port_operations ata_bmdma_port_ops = {
2579 	.inherits		= &ata_sff_port_ops,
2580 
2581 	.error_handler		= ata_bmdma_error_handler,
2582 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2583 
2584 	.qc_prep		= ata_bmdma_qc_prep,
2585 	.qc_issue		= ata_bmdma_qc_issue,
2586 
2587 	.sff_irq_clear		= ata_bmdma_irq_clear,
2588 	.bmdma_setup		= ata_bmdma_setup,
2589 	.bmdma_start		= ata_bmdma_start,
2590 	.bmdma_stop		= ata_bmdma_stop,
2591 	.bmdma_status		= ata_bmdma_status,
2592 
2593 	.port_start		= ata_bmdma_port_start,
2594 };
2595 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2596 
2597 const struct ata_port_operations ata_bmdma32_port_ops = {
2598 	.inherits		= &ata_bmdma_port_ops,
2599 
2600 	.sff_data_xfer		= ata_sff_data_xfer32,
2601 	.port_start		= ata_bmdma_port_start32,
2602 };
2603 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2604 
2605 /**
2606  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2607  *	@qc: Metadata associated with taskfile to be transferred
2608  *
2609  *	Fill PCI IDE PRD (scatter-gather) table with segments
2610  *	associated with the current disk command.
2611  *
2612  *	LOCKING:
2613  *	spin_lock_irqsave(host lock)
2614  *
2615  */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2616 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2617 {
2618 	struct ata_port *ap = qc->ap;
2619 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2620 	struct scatterlist *sg;
2621 	unsigned int si, pi;
2622 
2623 	pi = 0;
2624 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2625 		u32 addr, offset;
2626 		u32 sg_len, len;
2627 
2628 		/* determine if physical DMA addr spans 64K boundary.
2629 		 * Note h/w doesn't support 64-bit, so we unconditionally
2630 		 * truncate dma_addr_t to u32.
2631 		 */
2632 		addr = (u32) sg_dma_address(sg);
2633 		sg_len = sg_dma_len(sg);
2634 
2635 		while (sg_len) {
2636 			offset = addr & 0xffff;
2637 			len = sg_len;
2638 			if ((offset + sg_len) > 0x10000)
2639 				len = 0x10000 - offset;
2640 
2641 			prd[pi].addr = cpu_to_le32(addr);
2642 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2643 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2644 
2645 			pi++;
2646 			sg_len -= len;
2647 			addr += len;
2648 		}
2649 	}
2650 
2651 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2652 }
2653 
2654 /**
2655  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2656  *	@qc: Metadata associated with taskfile to be transferred
2657  *
2658  *	Fill PCI IDE PRD (scatter-gather) table with segments
2659  *	associated with the current disk command. Perform the fill
2660  *	so that we avoid writing any length 64K records for
2661  *	controllers that don't follow the spec.
2662  *
2663  *	LOCKING:
2664  *	spin_lock_irqsave(host lock)
2665  *
2666  */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2667 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2668 {
2669 	struct ata_port *ap = qc->ap;
2670 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2671 	struct scatterlist *sg;
2672 	unsigned int si, pi;
2673 
2674 	pi = 0;
2675 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2676 		u32 addr, offset;
2677 		u32 sg_len, len, blen;
2678 
2679 		/* determine if physical DMA addr spans 64K boundary.
2680 		 * Note h/w doesn't support 64-bit, so we unconditionally
2681 		 * truncate dma_addr_t to u32.
2682 		 */
2683 		addr = (u32) sg_dma_address(sg);
2684 		sg_len = sg_dma_len(sg);
2685 
2686 		while (sg_len) {
2687 			offset = addr & 0xffff;
2688 			len = sg_len;
2689 			if ((offset + sg_len) > 0x10000)
2690 				len = 0x10000 - offset;
2691 
2692 			blen = len & 0xffff;
2693 			prd[pi].addr = cpu_to_le32(addr);
2694 			if (blen == 0) {
2695 				/* Some PATA chipsets like the CS5530 can't
2696 				   cope with 0x0000 meaning 64K as the spec
2697 				   says */
2698 				prd[pi].flags_len = cpu_to_le32(0x8000);
2699 				blen = 0x8000;
2700 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2701 			}
2702 			prd[pi].flags_len = cpu_to_le32(blen);
2703 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2704 
2705 			pi++;
2706 			sg_len -= len;
2707 			addr += len;
2708 		}
2709 	}
2710 
2711 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2712 }
2713 
2714 /**
2715  *	ata_bmdma_qc_prep - Prepare taskfile for submission
2716  *	@qc: Metadata associated with taskfile to be prepared
2717  *
2718  *	Prepare ATA taskfile for submission.
2719  *
2720  *	LOCKING:
2721  *	spin_lock_irqsave(host lock)
2722  */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2723 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2724 {
2725 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2726 		return;
2727 
2728 	ata_bmdma_fill_sg(qc);
2729 }
2730 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2731 
2732 /**
2733  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2734  *	@qc: Metadata associated with taskfile to be prepared
2735  *
2736  *	Prepare ATA taskfile for submission.
2737  *
2738  *	LOCKING:
2739  *	spin_lock_irqsave(host lock)
2740  */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2741 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2742 {
2743 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2744 		return;
2745 
2746 	ata_bmdma_fill_sg_dumb(qc);
2747 }
2748 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2749 
2750 /**
2751  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2752  *	@qc: command to issue to device
2753  *
2754  *	This function issues a PIO, NODATA or DMA command to a
2755  *	SFF/BMDMA controller.  PIO and NODATA are handled by
2756  *	ata_sff_qc_issue().
2757  *
2758  *	LOCKING:
2759  *	spin_lock_irqsave(host lock)
2760  *
2761  *	RETURNS:
2762  *	Zero on success, AC_ERR_* mask on failure
2763  */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2764 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2765 {
2766 	struct ata_port *ap = qc->ap;
2767 	struct ata_link *link = qc->dev->link;
2768 
2769 	/* defer PIO handling to sff_qc_issue */
2770 	if (!ata_is_dma(qc->tf.protocol))
2771 		return ata_sff_qc_issue(qc);
2772 
2773 	/* select the device */
2774 	ata_dev_select(ap, qc->dev->devno, 1, 0);
2775 
2776 	/* start the command */
2777 	switch (qc->tf.protocol) {
2778 	case ATA_PROT_DMA:
2779 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2780 
2781 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2782 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2783 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2784 		ap->hsm_task_state = HSM_ST_LAST;
2785 		break;
2786 
2787 	case ATAPI_PROT_DMA:
2788 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2789 
2790 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2791 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2792 		ap->hsm_task_state = HSM_ST_FIRST;
2793 
2794 		/* send cdb by polling if no cdb interrupt */
2795 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2796 			ata_sff_queue_pio_task(link, 0);
2797 		break;
2798 
2799 	default:
2800 		WARN_ON(1);
2801 		return AC_ERR_SYSTEM;
2802 	}
2803 
2804 	return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2807 
2808 /**
2809  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2810  *	@ap: Port on which interrupt arrived (possibly...)
2811  *	@qc: Taskfile currently active in engine
2812  *
2813  *	Handle port interrupt for given queued command.
2814  *
2815  *	LOCKING:
2816  *	spin_lock_irqsave(host lock)
2817  *
2818  *	RETURNS:
2819  *	One if interrupt was handled, zero if not (shared irq).
2820  */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2821 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2822 {
2823 	struct ata_eh_info *ehi = &ap->link.eh_info;
2824 	u8 host_stat = 0;
2825 	bool bmdma_stopped = false;
2826 	unsigned int handled;
2827 
2828 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2829 		/* check status of DMA engine */
2830 		host_stat = ap->ops->bmdma_status(ap);
2831 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2832 
2833 		/* if it's not our irq... */
2834 		if (!(host_stat & ATA_DMA_INTR))
2835 			return ata_sff_idle_irq(ap);
2836 
2837 		/* before we do anything else, clear DMA-Start bit */
2838 		ap->ops->bmdma_stop(qc);
2839 		bmdma_stopped = true;
2840 
2841 		if (unlikely(host_stat & ATA_DMA_ERR)) {
2842 			/* error when transferring data to/from memory */
2843 			qc->err_mask |= AC_ERR_HOST_BUS;
2844 			ap->hsm_task_state = HSM_ST_ERR;
2845 		}
2846 	}
2847 
2848 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2849 
2850 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2851 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2852 
2853 	return handled;
2854 }
2855 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2856 
2857 /**
2858  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2859  *	@irq: irq line (unused)
2860  *	@dev_instance: pointer to our ata_host information structure
2861  *
2862  *	Default interrupt handler for PCI IDE devices.  Calls
2863  *	ata_bmdma_port_intr() for each port that is not disabled.
2864  *
2865  *	LOCKING:
2866  *	Obtains host lock during operation.
2867  *
2868  *	RETURNS:
2869  *	IRQ_NONE or IRQ_HANDLED.
2870  */
ata_bmdma_interrupt(int irq,void * dev_instance)2871 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2872 {
2873 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2874 }
2875 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2876 
2877 /**
2878  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2879  *	@ap: port to handle error for
2880  *
2881  *	Stock error handler for BMDMA controller.  It can handle both
2882  *	PATA and SATA controllers.  Most BMDMA controllers should be
2883  *	able to use this EH as-is or with some added handling before
2884  *	and after.
2885  *
2886  *	LOCKING:
2887  *	Kernel thread context (may sleep)
2888  */
ata_bmdma_error_handler(struct ata_port * ap)2889 void ata_bmdma_error_handler(struct ata_port *ap)
2890 {
2891 	struct ata_queued_cmd *qc;
2892 	unsigned long flags;
2893 	bool thaw = false;
2894 
2895 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2896 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2897 		qc = NULL;
2898 
2899 	/* reset PIO HSM and stop DMA engine */
2900 	spin_lock_irqsave(ap->lock, flags);
2901 
2902 	if (qc && ata_is_dma(qc->tf.protocol)) {
2903 		u8 host_stat;
2904 
2905 		host_stat = ap->ops->bmdma_status(ap);
2906 
2907 		/* BMDMA controllers indicate host bus error by
2908 		 * setting DMA_ERR bit and timing out.  As it wasn't
2909 		 * really a timeout event, adjust error mask and
2910 		 * cancel frozen state.
2911 		 */
2912 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2913 			qc->err_mask = AC_ERR_HOST_BUS;
2914 			thaw = true;
2915 		}
2916 
2917 		ap->ops->bmdma_stop(qc);
2918 
2919 		/* if we're gonna thaw, make sure IRQ is clear */
2920 		if (thaw) {
2921 			ap->ops->sff_check_status(ap);
2922 			if (ap->ops->sff_irq_clear)
2923 				ap->ops->sff_irq_clear(ap);
2924 		}
2925 	}
2926 
2927 	spin_unlock_irqrestore(ap->lock, flags);
2928 
2929 	if (thaw)
2930 		ata_eh_thaw_port(ap);
2931 
2932 	ata_sff_error_handler(ap);
2933 }
2934 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2935 
2936 /**
2937  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2938  *	@qc: internal command to clean up
2939  *
2940  *	LOCKING:
2941  *	Kernel thread context (may sleep)
2942  */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2943 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2944 {
2945 	struct ata_port *ap = qc->ap;
2946 	unsigned long flags;
2947 
2948 	if (ata_is_dma(qc->tf.protocol)) {
2949 		spin_lock_irqsave(ap->lock, flags);
2950 		ap->ops->bmdma_stop(qc);
2951 		spin_unlock_irqrestore(ap->lock, flags);
2952 	}
2953 }
2954 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2955 
2956 /**
2957  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2958  *	@ap: Port associated with this ATA transaction.
2959  *
2960  *	Clear interrupt and error flags in DMA status register.
2961  *
2962  *	May be used as the irq_clear() entry in ata_port_operations.
2963  *
2964  *	LOCKING:
2965  *	spin_lock_irqsave(host lock)
2966  */
ata_bmdma_irq_clear(struct ata_port * ap)2967 void ata_bmdma_irq_clear(struct ata_port *ap)
2968 {
2969 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2970 
2971 	if (!mmio)
2972 		return;
2973 
2974 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2975 }
2976 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2977 
2978 /**
2979  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2980  *	@qc: Info associated with this ATA transaction.
2981  *
2982  *	LOCKING:
2983  *	spin_lock_irqsave(host lock)
2984  */
ata_bmdma_setup(struct ata_queued_cmd * qc)2985 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2986 {
2987 	struct ata_port *ap = qc->ap;
2988 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2989 	u8 dmactl;
2990 
2991 	/* load PRD table addr. */
2992 	mb();	/* make sure PRD table writes are visible to controller */
2993 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2994 
2995 	/* specify data direction, triple-check start bit is clear */
2996 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2997 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2998 	if (!rw)
2999 		dmactl |= ATA_DMA_WR;
3000 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3001 
3002 	/* issue r/w command */
3003 	ap->ops->sff_exec_command(ap, &qc->tf);
3004 }
3005 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3006 
3007 /**
3008  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3009  *	@qc: Info associated with this ATA transaction.
3010  *
3011  *	LOCKING:
3012  *	spin_lock_irqsave(host lock)
3013  */
ata_bmdma_start(struct ata_queued_cmd * qc)3014 void ata_bmdma_start(struct ata_queued_cmd *qc)
3015 {
3016 	struct ata_port *ap = qc->ap;
3017 	u8 dmactl;
3018 
3019 	/* start host DMA transaction */
3020 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3021 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3022 
3023 	/* Strictly, one may wish to issue an ioread8() here, to
3024 	 * flush the mmio write.  However, control also passes
3025 	 * to the hardware at this point, and it will interrupt
3026 	 * us when we are to resume control.  So, in effect,
3027 	 * we don't care when the mmio write flushes.
3028 	 * Further, a read of the DMA status register _immediately_
3029 	 * following the write may not be what certain flaky hardware
3030 	 * is expected, so I think it is best to not add a readb()
3031 	 * without first all the MMIO ATA cards/mobos.
3032 	 * Or maybe I'm just being paranoid.
3033 	 *
3034 	 * FIXME: The posting of this write means I/O starts are
3035 	 * unnecessarily delayed for MMIO
3036 	 */
3037 }
3038 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3039 
3040 /**
3041  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3042  *	@qc: Command we are ending DMA for
3043  *
3044  *	Clears the ATA_DMA_START flag in the dma control register
3045  *
3046  *	May be used as the bmdma_stop() entry in ata_port_operations.
3047  *
3048  *	LOCKING:
3049  *	spin_lock_irqsave(host lock)
3050  */
ata_bmdma_stop(struct ata_queued_cmd * qc)3051 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3052 {
3053 	struct ata_port *ap = qc->ap;
3054 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3055 
3056 	/* clear start/stop bit */
3057 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3058 		 mmio + ATA_DMA_CMD);
3059 
3060 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3061 	ata_sff_dma_pause(ap);
3062 }
3063 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3064 
3065 /**
3066  *	ata_bmdma_status - Read PCI IDE BMDMA status
3067  *	@ap: Port associated with this ATA transaction.
3068  *
3069  *	Read and return BMDMA status register.
3070  *
3071  *	May be used as the bmdma_status() entry in ata_port_operations.
3072  *
3073  *	LOCKING:
3074  *	spin_lock_irqsave(host lock)
3075  */
ata_bmdma_status(struct ata_port * ap)3076 u8 ata_bmdma_status(struct ata_port *ap)
3077 {
3078 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3079 }
3080 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3081 
3082 
3083 /**
3084  *	ata_bmdma_port_start - Set port up for bmdma.
3085  *	@ap: Port to initialize
3086  *
3087  *	Called just after data structures for each port are
3088  *	initialized.  Allocates space for PRD table.
3089  *
3090  *	May be used as the port_start() entry in ata_port_operations.
3091  *
3092  *	LOCKING:
3093  *	Inherited from caller.
3094  */
ata_bmdma_port_start(struct ata_port * ap)3095 int ata_bmdma_port_start(struct ata_port *ap)
3096 {
3097 	if (ap->mwdma_mask || ap->udma_mask) {
3098 		ap->bmdma_prd =
3099 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3100 					    &ap->bmdma_prd_dma, GFP_KERNEL);
3101 		if (!ap->bmdma_prd)
3102 			return -ENOMEM;
3103 	}
3104 
3105 	return 0;
3106 }
3107 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3108 
3109 /**
3110  *	ata_bmdma_port_start32 - Set port up for dma.
3111  *	@ap: Port to initialize
3112  *
3113  *	Called just after data structures for each port are
3114  *	initialized.  Enables 32bit PIO and allocates space for PRD
3115  *	table.
3116  *
3117  *	May be used as the port_start() entry in ata_port_operations for
3118  *	devices that are capable of 32bit PIO.
3119  *
3120  *	LOCKING:
3121  *	Inherited from caller.
3122  */
ata_bmdma_port_start32(struct ata_port * ap)3123 int ata_bmdma_port_start32(struct ata_port *ap)
3124 {
3125 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3126 	return ata_bmdma_port_start(ap);
3127 }
3128 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3129 
3130 #ifdef CONFIG_PCI
3131 
3132 /**
3133  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3134  *	@pdev: PCI device
3135  *
3136  *	Some PCI ATA devices report simplex mode but in fact can be told to
3137  *	enter non simplex mode. This implements the necessary logic to
3138  *	perform the task on such devices. Calling it on other devices will
3139  *	have -undefined- behaviour.
3140  */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3141 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3142 {
3143 	unsigned long bmdma = pci_resource_start(pdev, 4);
3144 	u8 simplex;
3145 
3146 	if (bmdma == 0)
3147 		return -ENOENT;
3148 
3149 	simplex = inb(bmdma + 0x02);
3150 	outb(simplex & 0x60, bmdma + 0x02);
3151 	simplex = inb(bmdma + 0x02);
3152 	if (simplex & 0x80)
3153 		return -EOPNOTSUPP;
3154 	return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3157 
ata_bmdma_nodma(struct ata_host * host,const char * reason)3158 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3159 {
3160 	int i;
3161 
3162 	dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3163 		   reason);
3164 
3165 	for (i = 0; i < 2; i++) {
3166 		host->ports[i]->mwdma_mask = 0;
3167 		host->ports[i]->udma_mask = 0;
3168 	}
3169 }
3170 
3171 /**
3172  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3173  *	@host: target ATA host
3174  *
3175  *	Acquire PCI BMDMA resources and initialize @host accordingly.
3176  *
3177  *	LOCKING:
3178  *	Inherited from calling layer (may sleep).
3179  */
ata_pci_bmdma_init(struct ata_host * host)3180 void ata_pci_bmdma_init(struct ata_host *host)
3181 {
3182 	struct device *gdev = host->dev;
3183 	struct pci_dev *pdev = to_pci_dev(gdev);
3184 	int i, rc;
3185 
3186 	/* No BAR4 allocation: No DMA */
3187 	if (pci_resource_start(pdev, 4) == 0) {
3188 		ata_bmdma_nodma(host, "BAR4 is zero");
3189 		return;
3190 	}
3191 
3192 	/*
3193 	 * Some controllers require BMDMA region to be initialized
3194 	 * even if DMA is not in use to clear IRQ status via
3195 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3196 	 * regardless of dma masks.
3197 	 */
3198 	rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3199 	if (rc)
3200 		ata_bmdma_nodma(host, "failed to set dma mask");
3201 	if (!rc) {
3202 		rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3203 		if (rc)
3204 			ata_bmdma_nodma(host,
3205 					"failed to set consistent dma mask");
3206 	}
3207 
3208 	/* request and iomap DMA region */
3209 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3210 	if (rc) {
3211 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3212 		return;
3213 	}
3214 	host->iomap = pcim_iomap_table(pdev);
3215 
3216 	for (i = 0; i < 2; i++) {
3217 		struct ata_port *ap = host->ports[i];
3218 		void __iomem *bmdma = host->iomap[4] + 8 * i;
3219 
3220 		if (ata_port_is_dummy(ap))
3221 			continue;
3222 
3223 		ap->ioaddr.bmdma_addr = bmdma;
3224 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3225 		    (ioread8(bmdma + 2) & 0x80))
3226 			host->flags |= ATA_HOST_SIMPLEX;
3227 
3228 		ata_port_desc(ap, "bmdma 0x%llx",
3229 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3230 	}
3231 }
3232 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3233 
3234 /**
3235  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3236  *	@pdev: target PCI device
3237  *	@ppi: array of port_info, must be enough for two ports
3238  *	@r_host: out argument for the initialized ATA host
3239  *
3240  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3241  *	resources and initialize it accordingly in one go.
3242  *
3243  *	LOCKING:
3244  *	Inherited from calling layer (may sleep).
3245  *
3246  *	RETURNS:
3247  *	0 on success, -errno otherwise.
3248  */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3249 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3250 			       const struct ata_port_info * const * ppi,
3251 			       struct ata_host **r_host)
3252 {
3253 	int rc;
3254 
3255 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3256 	if (rc)
3257 		return rc;
3258 
3259 	ata_pci_bmdma_init(*r_host);
3260 	return 0;
3261 }
3262 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3263 
3264 /**
3265  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3266  *	@pdev: Controller to be initialized
3267  *	@ppi: array of port_info, must be enough for two ports
3268  *	@sht: scsi_host_template to use when registering the host
3269  *	@host_priv: host private_data
3270  *	@hflags: host flags
3271  *
3272  *	This function is similar to ata_pci_sff_init_one() but also
3273  *	takes care of BMDMA initialization.
3274  *
3275  *	LOCKING:
3276  *	Inherited from PCI layer (may sleep).
3277  *
3278  *	RETURNS:
3279  *	Zero on success, negative on errno-based value on error.
3280  */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3281 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3282 			   const struct ata_port_info * const * ppi,
3283 			   struct scsi_host_template *sht, void *host_priv,
3284 			   int hflags)
3285 {
3286 	struct device *dev = &pdev->dev;
3287 	const struct ata_port_info *pi;
3288 	struct ata_host *host = NULL;
3289 	int rc;
3290 
3291 	DPRINTK("ENTER\n");
3292 
3293 	pi = ata_sff_find_valid_pi(ppi);
3294 	if (!pi) {
3295 		dev_printk(KERN_ERR, &pdev->dev,
3296 			   "no valid port_info specified\n");
3297 		return -EINVAL;
3298 	}
3299 
3300 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
3301 		return -ENOMEM;
3302 
3303 	rc = pcim_enable_device(pdev);
3304 	if (rc)
3305 		goto out;
3306 
3307 	/* prepare and activate BMDMA host */
3308 	rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3309 	if (rc)
3310 		goto out;
3311 	host->private_data = host_priv;
3312 	host->flags |= hflags;
3313 
3314 	pci_set_master(pdev);
3315 	rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3316  out:
3317 	if (rc == 0)
3318 		devres_remove_group(&pdev->dev, NULL);
3319 	else
3320 		devres_release_group(&pdev->dev, NULL);
3321 
3322 	return rc;
3323 }
3324 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3325 
3326 #endif /* CONFIG_PCI */
3327 #endif /* CONFIG_ATA_BMDMA */
3328 
3329 /**
3330  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3331  *	@ap: Port to initialize
3332  *
3333  *	Called on port allocation to initialize SFF/BMDMA specific
3334  *	fields.
3335  *
3336  *	LOCKING:
3337  *	None.
3338  */
ata_sff_port_init(struct ata_port * ap)3339 void ata_sff_port_init(struct ata_port *ap)
3340 {
3341 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3342 	ap->ctl = ATA_DEVCTL_OBS;
3343 	ap->last_ctl = 0xFF;
3344 }
3345 
ata_sff_init(void)3346 int __init ata_sff_init(void)
3347 {
3348 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3349 	if (!ata_sff_wq)
3350 		return -ENOMEM;
3351 
3352 	return 0;
3353 }
3354 
ata_sff_exit(void)3355 void ata_sff_exit(void)
3356 {
3357 	destroy_workqueue(ata_sff_wq);
3358 }
3359