1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70
71 #include "libata.h"
72 #include "libata-transport.h"
73
74 /* debounce timing parameters in msecs { interval, duration, timeout } */
75 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
76 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
77 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78
79 const struct ata_port_operations ata_base_port_ops = {
80 .prereset = ata_std_prereset,
81 .postreset = ata_std_postreset,
82 .error_handler = ata_std_error_handler,
83 };
84
85 const struct ata_port_operations sata_port_ops = {
86 .inherits = &ata_base_port_ops,
87
88 .qc_defer = ata_std_qc_defer,
89 .hardreset = sata_std_hardreset,
90 };
91
92 static unsigned int ata_dev_init_params(struct ata_device *dev,
93 u16 heads, u16 sectors);
94 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
95 static void ata_dev_xfermask(struct ata_device *dev);
96 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97
98 atomic_t ata_print_id = ATOMIC_INIT(0);
99
100 struct ata_force_param {
101 const char *name;
102 unsigned int cbl;
103 int spd_limit;
104 unsigned long xfer_mask;
105 unsigned int horkage_on;
106 unsigned int horkage_off;
107 unsigned int lflags;
108 };
109
110 struct ata_force_ent {
111 int port;
112 int device;
113 struct ata_force_param param;
114 };
115
116 static struct ata_force_ent *ata_force_tbl;
117 static int ata_force_tbl_size;
118
119 static char ata_force_param_buf[PAGE_SIZE] __initdata;
120 /* param_buf is thrown away after initialization, disallow read */
121 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
122 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
123
124 static int atapi_enabled = 1;
125 module_param(atapi_enabled, int, 0444);
126 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
127
128 static int atapi_dmadir = 0;
129 module_param(atapi_dmadir, int, 0444);
130 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
131
132 int atapi_passthru16 = 1;
133 module_param(atapi_passthru16, int, 0444);
134 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
135
136 int libata_fua = 0;
137 module_param_named(fua, libata_fua, int, 0444);
138 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
139
140 static int ata_ignore_hpa;
141 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
142 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
143
144 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
145 module_param_named(dma, libata_dma_mask, int, 0444);
146 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
147
148 static int ata_probe_timeout;
149 module_param(ata_probe_timeout, int, 0444);
150 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
151
152 int libata_noacpi = 0;
153 module_param_named(noacpi, libata_noacpi, int, 0444);
154 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
155
156 int libata_allow_tpm = 0;
157 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
158 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
159
160 static int atapi_an;
161 module_param(atapi_an, int, 0444);
162 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
163
164 MODULE_AUTHOR("Jeff Garzik");
165 MODULE_DESCRIPTION("Library module for ATA devices");
166 MODULE_LICENSE("GPL");
167 MODULE_VERSION(DRV_VERSION);
168
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 /* fall through */
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 /* fall through */
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 /* fall through */
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233
234 /**
235 * ata_dev_next - device iteration helper
236 * @dev: the previous device, NULL to start
237 * @link: ATA link containing devices to iterate
238 * @mode: iteration mode, one of ATA_DITER_*
239 *
240 * LOCKING:
241 * Host lock or EH context.
242 *
243 * RETURNS:
244 * Pointer to the next device.
245 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)246 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
247 enum ata_dev_iter_mode mode)
248 {
249 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
250 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
251
252 /* NULL dev indicates start of iteration */
253 if (!dev)
254 switch (mode) {
255 case ATA_DITER_ENABLED:
256 case ATA_DITER_ALL:
257 dev = link->device;
258 goto check;
259 case ATA_DITER_ENABLED_REVERSE:
260 case ATA_DITER_ALL_REVERSE:
261 dev = link->device + ata_link_max_devices(link) - 1;
262 goto check;
263 }
264
265 next:
266 /* move to the next one */
267 switch (mode) {
268 case ATA_DITER_ENABLED:
269 case ATA_DITER_ALL:
270 if (++dev < link->device + ata_link_max_devices(link))
271 goto check;
272 return NULL;
273 case ATA_DITER_ENABLED_REVERSE:
274 case ATA_DITER_ALL_REVERSE:
275 if (--dev >= link->device)
276 goto check;
277 return NULL;
278 }
279
280 check:
281 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
282 !ata_dev_enabled(dev))
283 goto next;
284 return dev;
285 }
286
287 /**
288 * ata_dev_phys_link - find physical link for a device
289 * @dev: ATA device to look up physical link for
290 *
291 * Look up physical link which @dev is attached to. Note that
292 * this is different from @dev->link only when @dev is on slave
293 * link. For all other cases, it's the same as @dev->link.
294 *
295 * LOCKING:
296 * Don't care.
297 *
298 * RETURNS:
299 * Pointer to the found physical link.
300 */
ata_dev_phys_link(struct ata_device * dev)301 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
302 {
303 struct ata_port *ap = dev->link->ap;
304
305 if (!ap->slave_link)
306 return dev->link;
307 if (!dev->devno)
308 return &ap->link;
309 return ap->slave_link;
310 }
311
312 /**
313 * ata_force_cbl - force cable type according to libata.force
314 * @ap: ATA port of interest
315 *
316 * Force cable type according to libata.force and whine about it.
317 * The last entry which has matching port number is used, so it
318 * can be specified as part of device force parameters. For
319 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
320 * same effect.
321 *
322 * LOCKING:
323 * EH context.
324 */
ata_force_cbl(struct ata_port * ap)325 void ata_force_cbl(struct ata_port *ap)
326 {
327 int i;
328
329 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
330 const struct ata_force_ent *fe = &ata_force_tbl[i];
331
332 if (fe->port != -1 && fe->port != ap->print_id)
333 continue;
334
335 if (fe->param.cbl == ATA_CBL_NONE)
336 continue;
337
338 ap->cbl = fe->param.cbl;
339 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342 }
343
344 /**
345 * ata_force_link_limits - force link limits according to libata.force
346 * @link: ATA link of interest
347 *
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
356 *
357 * LOCKING:
358 * EH context.
359 */
ata_force_link_limits(struct ata_link * link)360 static void ata_force_link_limits(struct ata_link *link)
361 {
362 bool did_spd = false;
363 int linkno = link->pmp;
364 int i;
365
366 if (ata_is_host_link(link))
367 linkno += 15;
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
385
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_notice(link,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
393 }
394 }
395
396 /**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
ata_force_xfermask(struct ata_device * dev)407 static void ata_force_xfermask(struct ata_device *dev)
408 {
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
445 fe->param.name);
446 return;
447 }
448 }
449
450 /**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
ata_force_horkage(struct ata_device * dev)461 static void ata_force_horkage(struct ata_device *dev)
462 {
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
489 fe->param.name);
490 }
491 }
492
493 /**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
atapi_cmd_type(u8 opcode)505 int atapi_cmd_type(u8 opcode)
506 {
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
528 }
529 }
530
531 /**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 {
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573 }
574
575 /**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 {
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602 }
603
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
619 0,
620 0,
621 0,
622 0,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
632 };
633
634 /**
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
638 *
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
641 *
642 * LOCKING:
643 * caller.
644 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
646 {
647 u8 cmd;
648
649 int index, fua, lba48, write;
650
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
665 }
666
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
673 }
674
675 /**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
ata_tf_read_block(struct ata_taskfile * tf,struct ata_device * dev)690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691 {
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 if (!sect) {
713 ata_dev_warn(dev,
714 "device reported invalid CHS sector 0\n");
715 sect = 1; /* oh well */
716 }
717
718 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
719 }
720
721 return block;
722 }
723
724 /**
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
731 * @tag: tag
732 *
733 * LOCKING:
734 * None.
735 *
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
738 *
739 * RETURNS:
740 *
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
743 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag)744 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
745 u64 block, u32 n_block, unsigned int tf_flags,
746 unsigned int tag)
747 {
748 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
749 tf->flags |= tf_flags;
750
751 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
752 /* yay, NCQ */
753 if (!lba_48_ok(block, n_block))
754 return -ERANGE;
755
756 tf->protocol = ATA_PROT_NCQ;
757 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
758
759 if (tf->flags & ATA_TFLAG_WRITE)
760 tf->command = ATA_CMD_FPDMA_WRITE;
761 else
762 tf->command = ATA_CMD_FPDMA_READ;
763
764 tf->nsect = tag << 3;
765 tf->hob_feature = (n_block >> 8) & 0xff;
766 tf->feature = n_block & 0xff;
767
768 tf->hob_lbah = (block >> 40) & 0xff;
769 tf->hob_lbam = (block >> 32) & 0xff;
770 tf->hob_lbal = (block >> 24) & 0xff;
771 tf->lbah = (block >> 16) & 0xff;
772 tf->lbam = (block >> 8) & 0xff;
773 tf->lbal = block & 0xff;
774
775 tf->device = 1 << 6;
776 if (tf->flags & ATA_TFLAG_FUA)
777 tf->device |= 1 << 7;
778 } else if (dev->flags & ATA_DFLAG_LBA) {
779 tf->flags |= ATA_TFLAG_LBA;
780
781 if (lba_28_ok(block, n_block)) {
782 /* use LBA28 */
783 tf->device |= (block >> 24) & 0xf;
784 } else if (lba_48_ok(block, n_block)) {
785 if (!(dev->flags & ATA_DFLAG_LBA48))
786 return -ERANGE;
787
788 /* use LBA48 */
789 tf->flags |= ATA_TFLAG_LBA48;
790
791 tf->hob_nsect = (n_block >> 8) & 0xff;
792
793 tf->hob_lbah = (block >> 40) & 0xff;
794 tf->hob_lbam = (block >> 32) & 0xff;
795 tf->hob_lbal = (block >> 24) & 0xff;
796 } else
797 /* request too large even for LBA48 */
798 return -ERANGE;
799
800 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
801 return -EINVAL;
802
803 tf->nsect = n_block & 0xff;
804
805 tf->lbah = (block >> 16) & 0xff;
806 tf->lbam = (block >> 8) & 0xff;
807 tf->lbal = block & 0xff;
808
809 tf->device |= ATA_LBA;
810 } else {
811 /* CHS */
812 u32 sect, head, cyl, track;
813
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block, n_block))
816 return -ERANGE;
817
818 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
819 return -EINVAL;
820
821 /* Convert LBA to CHS */
822 track = (u32)block / dev->sectors;
823 cyl = track / dev->heads;
824 head = track % dev->heads;
825 sect = (u32)block % dev->sectors + 1;
826
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32)block, track, cyl, head, sect);
829
830 /* Check whether the converted CHS can fit.
831 Cylinder: 0-65535
832 Head: 0-15
833 Sector: 1-255*/
834 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
835 return -ERANGE;
836
837 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
838 tf->lbal = sect;
839 tf->lbam = cyl;
840 tf->lbah = cyl >> 8;
841 tf->device |= head;
842 }
843
844 return 0;
845 }
846
847 /**
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
852 *
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
855 *
856 * LOCKING:
857 * None.
858 *
859 * RETURNS:
860 * Packed xfer_mask.
861 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)862 unsigned long ata_pack_xfermask(unsigned long pio_mask,
863 unsigned long mwdma_mask,
864 unsigned long udma_mask)
865 {
866 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
867 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
868 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
869 }
870
871 /**
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
877 *
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
880 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)881 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
882 unsigned long *mwdma_mask, unsigned long *udma_mask)
883 {
884 if (pio_mask)
885 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
886 if (mwdma_mask)
887 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
888 if (udma_mask)
889 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
890 }
891
892 static const struct ata_xfer_ent {
893 int shift, bits;
894 u8 base;
895 } ata_xfer_tbl[] = {
896 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
897 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
898 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
899 { -1, },
900 };
901
902 /**
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
905 *
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
908 *
909 * LOCKING:
910 * None.
911 *
912 * RETURNS:
913 * Matching XFER_* value, 0xff if no match found.
914 */
ata_xfer_mask2mode(unsigned long xfer_mask)915 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
916 {
917 int highbit = fls(xfer_mask) - 1;
918 const struct ata_xfer_ent *ent;
919
920 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
921 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
922 return ent->base + highbit - ent->shift;
923 return 0xff;
924 }
925
926 /**
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
929 *
930 * Return matching xfer_mask for @xfer_mode.
931 *
932 * LOCKING:
933 * None.
934 *
935 * RETURNS:
936 * Matching xfer_mask, 0 if no match found.
937 */
ata_xfer_mode2mask(u8 xfer_mode)938 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
939 {
940 const struct ata_xfer_ent *ent;
941
942 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
943 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
944 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
945 & ~((1 << ent->shift) - 1);
946 return 0;
947 }
948
949 /**
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
952 *
953 * Return matching xfer_shift for @xfer_mode.
954 *
955 * LOCKING:
956 * None.
957 *
958 * RETURNS:
959 * Matching xfer_shift, -1 if no match found.
960 */
ata_xfer_mode2shift(unsigned long xfer_mode)961 int ata_xfer_mode2shift(unsigned long xfer_mode)
962 {
963 const struct ata_xfer_ent *ent;
964
965 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
966 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
967 return ent->shift;
968 return -1;
969 }
970
971 /**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
ata_mode_string(unsigned long xfer_mask)985 const char *ata_mode_string(unsigned long xfer_mask)
986 {
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015 }
1016
sata_spd_string(unsigned int spd)1017 const char *sata_spd_string(unsigned int spd)
1018 {
1019 static const char * const spd_str[] = {
1020 "1.5 Gbps",
1021 "3.0 Gbps",
1022 "6.0 Gbps",
1023 };
1024
1025 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1026 return "<unknown>";
1027 return spd_str[spd - 1];
1028 }
1029
1030 /**
1031 * ata_dev_classify - determine device type based on ATA-spec signature
1032 * @tf: ATA taskfile register set for device to be identified
1033 *
1034 * Determine from taskfile register contents whether a device is
1035 * ATA or ATAPI, as per "Signature and persistence" section
1036 * of ATA/PI spec (volume 1, sect 5.14).
1037 *
1038 * LOCKING:
1039 * None.
1040 *
1041 * RETURNS:
1042 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1043 * %ATA_DEV_UNKNOWN the event of failure.
1044 */
ata_dev_classify(const struct ata_taskfile * tf)1045 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1046 {
1047 /* Apple's open source Darwin code hints that some devices only
1048 * put a proper signature into the LBA mid/high registers,
1049 * So, we only check those. It's sufficient for uniqueness.
1050 *
1051 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1052 * signatures for ATA and ATAPI devices attached on SerialATA,
1053 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1054 * spec has never mentioned about using different signatures
1055 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1056 * Multiplier specification began to use 0x69/0x96 to identify
1057 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1058 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1059 * 0x69/0x96 shortly and described them as reserved for
1060 * SerialATA.
1061 *
1062 * We follow the current spec and consider that 0x69/0x96
1063 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1064 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1065 * SEMB signature. This is worked around in
1066 * ata_dev_read_id().
1067 */
1068 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1069 DPRINTK("found ATA device by sig\n");
1070 return ATA_DEV_ATA;
1071 }
1072
1073 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1074 DPRINTK("found ATAPI device by sig\n");
1075 return ATA_DEV_ATAPI;
1076 }
1077
1078 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1079 DPRINTK("found PMP device by sig\n");
1080 return ATA_DEV_PMP;
1081 }
1082
1083 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1084 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1085 return ATA_DEV_SEMB;
1086 }
1087
1088 DPRINTK("unknown device\n");
1089 return ATA_DEV_UNKNOWN;
1090 }
1091
1092 /**
1093 * ata_id_string - Convert IDENTIFY DEVICE page into string
1094 * @id: IDENTIFY DEVICE results we will examine
1095 * @s: string into which data is output
1096 * @ofs: offset into identify device page
1097 * @len: length of string to return. must be an even number.
1098 *
1099 * The strings in the IDENTIFY DEVICE page are broken up into
1100 * 16-bit chunks. Run through the string, and output each
1101 * 8-bit chunk linearly, regardless of platform.
1102 *
1103 * LOCKING:
1104 * caller.
1105 */
1106
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1107 void ata_id_string(const u16 *id, unsigned char *s,
1108 unsigned int ofs, unsigned int len)
1109 {
1110 unsigned int c;
1111
1112 BUG_ON(len & 1);
1113
1114 while (len > 0) {
1115 c = id[ofs] >> 8;
1116 *s = c;
1117 s++;
1118
1119 c = id[ofs] & 0xff;
1120 *s = c;
1121 s++;
1122
1123 ofs++;
1124 len -= 2;
1125 }
1126 }
1127
1128 /**
1129 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1130 * @id: IDENTIFY DEVICE results we will examine
1131 * @s: string into which data is output
1132 * @ofs: offset into identify device page
1133 * @len: length of string to return. must be an odd number.
1134 *
1135 * This function is identical to ata_id_string except that it
1136 * trims trailing spaces and terminates the resulting string with
1137 * null. @len must be actual maximum length (even number) + 1.
1138 *
1139 * LOCKING:
1140 * caller.
1141 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1142 void ata_id_c_string(const u16 *id, unsigned char *s,
1143 unsigned int ofs, unsigned int len)
1144 {
1145 unsigned char *p;
1146
1147 ata_id_string(id, s, ofs, len - 1);
1148
1149 p = s + strnlen(s, len - 1);
1150 while (p > s && p[-1] == ' ')
1151 p--;
1152 *p = '\0';
1153 }
1154
ata_id_n_sectors(const u16 * id)1155 static u64 ata_id_n_sectors(const u16 *id)
1156 {
1157 if (ata_id_has_lba(id)) {
1158 if (ata_id_has_lba48(id))
1159 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1160 else
1161 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1162 } else {
1163 if (ata_id_current_chs_valid(id))
1164 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1165 id[ATA_ID_CUR_SECTORS];
1166 else
1167 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1168 id[ATA_ID_SECTORS];
1169 }
1170 }
1171
ata_tf_to_lba48(const struct ata_taskfile * tf)1172 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1173 {
1174 u64 sectors = 0;
1175
1176 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1177 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1178 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1179 sectors |= (tf->lbah & 0xff) << 16;
1180 sectors |= (tf->lbam & 0xff) << 8;
1181 sectors |= (tf->lbal & 0xff);
1182
1183 return sectors;
1184 }
1185
ata_tf_to_lba(const struct ata_taskfile * tf)1186 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1187 {
1188 u64 sectors = 0;
1189
1190 sectors |= (tf->device & 0x0f) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
1195 return sectors;
1196 }
1197
1198 /**
1199 * ata_read_native_max_address - Read native max address
1200 * @dev: target device
1201 * @max_sectors: out parameter for the result native max address
1202 *
1203 * Perform an LBA48 or LBA28 native size query upon the device in
1204 * question.
1205 *
1206 * RETURNS:
1207 * 0 on success, -EACCES if command is aborted by the drive.
1208 * -EIO on other errors.
1209 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1210 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1211 {
1212 unsigned int err_mask;
1213 struct ata_taskfile tf;
1214 int lba48 = ata_id_has_lba48(dev->id);
1215
1216 ata_tf_init(dev, &tf);
1217
1218 /* always clear all address registers */
1219 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1220
1221 if (lba48) {
1222 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1223 tf.flags |= ATA_TFLAG_LBA48;
1224 } else
1225 tf.command = ATA_CMD_READ_NATIVE_MAX;
1226
1227 tf.protocol |= ATA_PROT_NODATA;
1228 tf.device |= ATA_LBA;
1229
1230 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1231 if (err_mask) {
1232 ata_dev_warn(dev,
1233 "failed to read native max address (err_mask=0x%x)\n",
1234 err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1238 }
1239
1240 if (lba48)
1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1242 else
1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1245 (*max_sectors)--;
1246 return 0;
1247 }
1248
1249 /**
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
1252 * @new_sectors: new max sectors value to set for the device
1253 *
1254 * Set max sectors of @dev to @new_sectors.
1255 *
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1260 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1261 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1262 {
1263 unsigned int err_mask;
1264 struct ata_taskfile tf;
1265 int lba48 = ata_id_has_lba48(dev->id);
1266
1267 new_sectors--;
1268
1269 ata_tf_init(dev, &tf);
1270
1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1272
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1276
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1280 } else {
1281 tf.command = ATA_CMD_SET_MAX;
1282
1283 tf.device |= (new_sectors >> 24) & 0xf;
1284 }
1285
1286 tf.protocol |= ATA_PROT_NODATA;
1287 tf.device |= ATA_LBA;
1288
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1292
1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1294 if (err_mask) {
1295 ata_dev_warn(dev,
1296 "failed to set max address (err_mask=0x%x)\n",
1297 err_mask);
1298 if (err_mask == AC_ERR_DEV &&
1299 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1300 return -EACCES;
1301 return -EIO;
1302 }
1303
1304 return 0;
1305 }
1306
1307 /**
1308 * ata_hpa_resize - Resize a device with an HPA set
1309 * @dev: Device to resize
1310 *
1311 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1312 * it if required to the full size of the media. The caller must check
1313 * the drive has the HPA feature set enabled.
1314 *
1315 * RETURNS:
1316 * 0 on success, -errno on failure.
1317 */
ata_hpa_resize(struct ata_device * dev)1318 static int ata_hpa_resize(struct ata_device *dev)
1319 {
1320 struct ata_eh_context *ehc = &dev->link->eh_context;
1321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1322 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1323 u64 sectors = ata_id_n_sectors(dev->id);
1324 u64 native_sectors;
1325 int rc;
1326
1327 /* do we need to do it? */
1328 if (dev->class != ATA_DEV_ATA ||
1329 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1330 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1331 return 0;
1332
1333 /* read native max address */
1334 rc = ata_read_native_max_address(dev, &native_sectors);
1335 if (rc) {
1336 /* If device aborted the command or HPA isn't going to
1337 * be unlocked, skip HPA resizing.
1338 */
1339 if (rc == -EACCES || !unlock_hpa) {
1340 ata_dev_warn(dev,
1341 "HPA support seems broken, skipping HPA handling\n");
1342 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1343
1344 /* we can continue if device aborted the command */
1345 if (rc == -EACCES)
1346 rc = 0;
1347 }
1348
1349 return rc;
1350 }
1351 dev->n_native_sectors = native_sectors;
1352
1353 /* nothing to do? */
1354 if (native_sectors <= sectors || !unlock_hpa) {
1355 if (!print_info || native_sectors == sectors)
1356 return 0;
1357
1358 if (native_sectors > sectors)
1359 ata_dev_info(dev,
1360 "HPA detected: current %llu, native %llu\n",
1361 (unsigned long long)sectors,
1362 (unsigned long long)native_sectors);
1363 else if (native_sectors < sectors)
1364 ata_dev_warn(dev,
1365 "native sectors (%llu) is smaller than sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1369 }
1370
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_warn(dev,
1376 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1383
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_err(dev,
1388 "failed to re-read IDENTIFY data after HPA resizing\n");
1389 return rc;
1390 }
1391
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_info(dev,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1399 }
1400
1401 return 0;
1402 }
1403
1404 /**
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
1406 * @id: IDENTIFY DEVICE page to dump
1407 *
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1410 *
1411 * LOCKING:
1412 * caller.
1413 */
1414
ata_dump_id(const u16 * id)1415 static inline void ata_dump_id(const u16 *id)
1416 {
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
1439 id[88],
1440 id[93]);
1441 }
1442
1443 /**
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1446 *
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1449 *
1450 * FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 * LOCKING:
1453 * None.
1454 *
1455 * RETURNS:
1456 * Computed xfermask
1457 */
ata_id_xfermask(const u16 * id)1458 unsigned long ata_id_xfermask(const u16 *id)
1459 {
1460 unsigned long pio_mask, mwdma_mask, udma_mask;
1461
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1471 */
1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1473 if (mode < 5) /* Valid PIO range */
1474 pio_mask = (2 << mode) - 1;
1475 else
1476 pio_mask = 1;
1477
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1483 */
1484 }
1485
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1487
1488 if (ata_id_is_cfa(id)) {
1489 /*
1490 * Process compact flash extended modes
1491 */
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1494
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1503 }
1504
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1508
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510 }
1511
ata_qc_complete_internal(struct ata_queued_cmd * qc)1512 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1513 {
1514 struct completion *waiting = qc->private_data;
1515
1516 complete(waiting);
1517 }
1518
1519 /**
1520 * ata_exec_internal_sg - execute libata internal command
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
1523 * @cdb: CDB for packet command
1524 * @dma_dir: Data tranfer direction of the command
1525 * @sgl: sg list for the data buffer of the command
1526 * @n_elem: Number of sg entries
1527 * @timeout: Timeout in msecs (0 for default)
1528 *
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1534 *
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1540 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1541 unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
1543 int dma_dir, struct scatterlist *sgl,
1544 unsigned int n_elem, unsigned long timeout)
1545 {
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
1548 u8 command = tf->command;
1549 int auto_timeout = 0;
1550 struct ata_queued_cmd *qc;
1551 unsigned int tag, preempted_tag;
1552 u32 preempted_sactive, preempted_qc_active;
1553 int preempted_nr_active_links;
1554 DECLARE_COMPLETION_ONSTACK(wait);
1555 unsigned long flags;
1556 unsigned int err_mask;
1557 int rc;
1558
1559 spin_lock_irqsave(ap->lock, flags);
1560
1561 /* no internal command while frozen */
1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1565 }
1566
1567 /* initialize internal qc */
1568
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1573 */
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1578
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
1581 qc = __ata_qc_from_tag(ap, tag);
1582
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1588
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
1591 preempted_qc_active = ap->qc_active;
1592 preempted_nr_active_links = ap->nr_active_links;
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
1595 ap->qc_active = 0;
1596 ap->nr_active_links = 0;
1597
1598 /* prepare & issue qc */
1599 qc->tf = *tf;
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1602
1603 /* some SATA bridges need us to indicate data xfer direction */
1604 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1605 dma_dir == DMA_FROM_DEVICE)
1606 qc->tf.feature |= ATAPI_DMADIR;
1607
1608 qc->flags |= ATA_QCFLAG_RESULT_TF;
1609 qc->dma_dir = dma_dir;
1610 if (dma_dir != DMA_NONE) {
1611 unsigned int i, buflen = 0;
1612 struct scatterlist *sg;
1613
1614 for_each_sg(sgl, sg, n_elem, i)
1615 buflen += sg->length;
1616
1617 ata_sg_init(qc, sgl, n_elem);
1618 qc->nbytes = buflen;
1619 }
1620
1621 qc->private_data = &wait;
1622 qc->complete_fn = ata_qc_complete_internal;
1623
1624 ata_qc_issue(qc);
1625
1626 spin_unlock_irqrestore(ap->lock, flags);
1627
1628 if (!timeout) {
1629 if (ata_probe_timeout)
1630 timeout = ata_probe_timeout * 1000;
1631 else {
1632 timeout = ata_internal_cmd_timeout(dev, command);
1633 auto_timeout = 1;
1634 }
1635 }
1636
1637 if (ap->ops->error_handler)
1638 ata_eh_release(ap);
1639
1640 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1641
1642 if (ap->ops->error_handler)
1643 ata_eh_acquire(ap);
1644
1645 ata_sff_flush_pio_task(ap);
1646
1647 if (!rc) {
1648 spin_lock_irqsave(ap->lock, flags);
1649
1650 /* We're racing with irq here. If we lose, the
1651 * following test prevents us from completing the qc
1652 * twice. If we win, the port is frozen and will be
1653 * cleaned up by ->post_internal_cmd().
1654 */
1655 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1656 qc->err_mask |= AC_ERR_TIMEOUT;
1657
1658 if (ap->ops->error_handler)
1659 ata_port_freeze(ap);
1660 else
1661 ata_qc_complete(qc);
1662
1663 if (ata_msg_warn(ap))
1664 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1665 command);
1666 }
1667
1668 spin_unlock_irqrestore(ap->lock, flags);
1669 }
1670
1671 /* do post_internal_cmd */
1672 if (ap->ops->post_internal_cmd)
1673 ap->ops->post_internal_cmd(qc);
1674
1675 /* perform minimal error analysis */
1676 if (qc->flags & ATA_QCFLAG_FAILED) {
1677 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1678 qc->err_mask |= AC_ERR_DEV;
1679
1680 if (!qc->err_mask)
1681 qc->err_mask |= AC_ERR_OTHER;
1682
1683 if (qc->err_mask & ~AC_ERR_OTHER)
1684 qc->err_mask &= ~AC_ERR_OTHER;
1685 }
1686
1687 /* finish up */
1688 spin_lock_irqsave(ap->lock, flags);
1689
1690 *tf = qc->result_tf;
1691 err_mask = qc->err_mask;
1692
1693 ata_qc_free(qc);
1694 link->active_tag = preempted_tag;
1695 link->sactive = preempted_sactive;
1696 ap->qc_active = preempted_qc_active;
1697 ap->nr_active_links = preempted_nr_active_links;
1698
1699 spin_unlock_irqrestore(ap->lock, flags);
1700
1701 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1702 ata_internal_cmd_timed_out(dev, command);
1703
1704 return err_mask;
1705 }
1706
1707 /**
1708 * ata_exec_internal - execute libata internal command
1709 * @dev: Device to which the command is sent
1710 * @tf: Taskfile registers for the command and the result
1711 * @cdb: CDB for packet command
1712 * @dma_dir: Data tranfer direction of the command
1713 * @buf: Data buffer of the command
1714 * @buflen: Length of data buffer
1715 * @timeout: Timeout in msecs (0 for default)
1716 *
1717 * Wrapper around ata_exec_internal_sg() which takes simple
1718 * buffer instead of sg list.
1719 *
1720 * LOCKING:
1721 * None. Should be called with kernel context, might sleep.
1722 *
1723 * RETURNS:
1724 * Zero on success, AC_ERR_* mask on failure
1725 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1726 unsigned ata_exec_internal(struct ata_device *dev,
1727 struct ata_taskfile *tf, const u8 *cdb,
1728 int dma_dir, void *buf, unsigned int buflen,
1729 unsigned long timeout)
1730 {
1731 struct scatterlist *psg = NULL, sg;
1732 unsigned int n_elem = 0;
1733
1734 if (dma_dir != DMA_NONE) {
1735 WARN_ON(!buf);
1736 sg_init_one(&sg, buf, buflen);
1737 psg = &sg;
1738 n_elem++;
1739 }
1740
1741 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1742 timeout);
1743 }
1744
1745 /**
1746 * ata_do_simple_cmd - execute simple internal command
1747 * @dev: Device to which the command is sent
1748 * @cmd: Opcode to execute
1749 *
1750 * Execute a 'simple' command, that only consists of the opcode
1751 * 'cmd' itself, without filling any other registers
1752 *
1753 * LOCKING:
1754 * Kernel thread context (may sleep).
1755 *
1756 * RETURNS:
1757 * Zero on success, AC_ERR_* mask on failure
1758 */
ata_do_simple_cmd(struct ata_device * dev,u8 cmd)1759 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1760 {
1761 struct ata_taskfile tf;
1762
1763 ata_tf_init(dev, &tf);
1764
1765 tf.command = cmd;
1766 tf.flags |= ATA_TFLAG_DEVICE;
1767 tf.protocol = ATA_PROT_NODATA;
1768
1769 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1770 }
1771
1772 /**
1773 * ata_pio_need_iordy - check if iordy needed
1774 * @adev: ATA device
1775 *
1776 * Check if the current speed of the device requires IORDY. Used
1777 * by various controllers for chip configuration.
1778 */
ata_pio_need_iordy(const struct ata_device * adev)1779 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1780 {
1781 /* Don't set IORDY if we're preparing for reset. IORDY may
1782 * lead to controller lock up on certain controllers if the
1783 * port is not occupied. See bko#11703 for details.
1784 */
1785 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1786 return 0;
1787 /* Controller doesn't support IORDY. Probably a pointless
1788 * check as the caller should know this.
1789 */
1790 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1791 return 0;
1792 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1793 if (ata_id_is_cfa(adev->id)
1794 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1795 return 0;
1796 /* PIO3 and higher it is mandatory */
1797 if (adev->pio_mode > XFER_PIO_2)
1798 return 1;
1799 /* We turn it on when possible */
1800 if (ata_id_has_iordy(adev->id))
1801 return 1;
1802 return 0;
1803 }
1804
1805 /**
1806 * ata_pio_mask_no_iordy - Return the non IORDY mask
1807 * @adev: ATA device
1808 *
1809 * Compute the highest mode possible if we are not using iordy. Return
1810 * -1 if no iordy mode is available.
1811 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1812 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1813 {
1814 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1815 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1816 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1817 /* Is the speed faster than the drive allows non IORDY ? */
1818 if (pio) {
1819 /* This is cycle times not frequency - watch the logic! */
1820 if (pio > 240) /* PIO2 is 240nS per cycle */
1821 return 3 << ATA_SHIFT_PIO;
1822 return 7 << ATA_SHIFT_PIO;
1823 }
1824 }
1825 return 3 << ATA_SHIFT_PIO;
1826 }
1827
1828 /**
1829 * ata_do_dev_read_id - default ID read method
1830 * @dev: device
1831 * @tf: proposed taskfile
1832 * @id: data buffer
1833 *
1834 * Issue the identify taskfile and hand back the buffer containing
1835 * identify data. For some RAID controllers and for pre ATA devices
1836 * this function is wrapped or replaced by the driver
1837 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1838 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1839 struct ata_taskfile *tf, u16 *id)
1840 {
1841 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1842 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1843 }
1844
1845 /**
1846 * ata_dev_read_id - Read ID data from the specified device
1847 * @dev: target device
1848 * @p_class: pointer to class of the target device (may be changed)
1849 * @flags: ATA_READID_* flags
1850 * @id: buffer to read IDENTIFY data into
1851 *
1852 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1853 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1854 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1855 * for pre-ATA4 drives.
1856 *
1857 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1858 * now we abort if we hit that case.
1859 *
1860 * LOCKING:
1861 * Kernel thread context (may sleep)
1862 *
1863 * RETURNS:
1864 * 0 on success, -errno otherwise.
1865 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1866 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1867 unsigned int flags, u16 *id)
1868 {
1869 struct ata_port *ap = dev->link->ap;
1870 unsigned int class = *p_class;
1871 struct ata_taskfile tf;
1872 unsigned int err_mask = 0;
1873 const char *reason;
1874 bool is_semb = class == ATA_DEV_SEMB;
1875 int may_fallback = 1, tried_spinup = 0;
1876 int rc;
1877
1878 if (ata_msg_ctl(ap))
1879 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1880
1881 retry:
1882 ata_tf_init(dev, &tf);
1883
1884 switch (class) {
1885 case ATA_DEV_SEMB:
1886 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1887 case ATA_DEV_ATA:
1888 tf.command = ATA_CMD_ID_ATA;
1889 break;
1890 case ATA_DEV_ATAPI:
1891 tf.command = ATA_CMD_ID_ATAPI;
1892 break;
1893 default:
1894 rc = -ENODEV;
1895 reason = "unsupported class";
1896 goto err_out;
1897 }
1898
1899 tf.protocol = ATA_PROT_PIO;
1900
1901 /* Some devices choke if TF registers contain garbage. Make
1902 * sure those are properly initialized.
1903 */
1904 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1905
1906 /* Device presence detection is unreliable on some
1907 * controllers. Always poll IDENTIFY if available.
1908 */
1909 tf.flags |= ATA_TFLAG_POLLING;
1910
1911 if (ap->ops->read_id)
1912 err_mask = ap->ops->read_id(dev, &tf, id);
1913 else
1914 err_mask = ata_do_dev_read_id(dev, &tf, id);
1915
1916 if (err_mask) {
1917 if (err_mask & AC_ERR_NODEV_HINT) {
1918 ata_dev_dbg(dev, "NODEV after polling detection\n");
1919 return -ENOENT;
1920 }
1921
1922 if (is_semb) {
1923 ata_dev_info(dev,
1924 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1925 /* SEMB is not supported yet */
1926 *p_class = ATA_DEV_SEMB_UNSUP;
1927 return 0;
1928 }
1929
1930 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1931 /* Device or controller might have reported
1932 * the wrong device class. Give a shot at the
1933 * other IDENTIFY if the current one is
1934 * aborted by the device.
1935 */
1936 if (may_fallback) {
1937 may_fallback = 0;
1938
1939 if (class == ATA_DEV_ATA)
1940 class = ATA_DEV_ATAPI;
1941 else
1942 class = ATA_DEV_ATA;
1943 goto retry;
1944 }
1945
1946 /* Control reaches here iff the device aborted
1947 * both flavors of IDENTIFYs which happens
1948 * sometimes with phantom devices.
1949 */
1950 ata_dev_dbg(dev,
1951 "both IDENTIFYs aborted, assuming NODEV\n");
1952 return -ENOENT;
1953 }
1954
1955 rc = -EIO;
1956 reason = "I/O error";
1957 goto err_out;
1958 }
1959
1960 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1961 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1962 "class=%d may_fallback=%d tried_spinup=%d\n",
1963 class, may_fallback, tried_spinup);
1964 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1965 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1966 }
1967
1968 /* Falling back doesn't make sense if ID data was read
1969 * successfully at least once.
1970 */
1971 may_fallback = 0;
1972
1973 swap_buf_le16(id, ATA_ID_WORDS);
1974
1975 /* sanity check */
1976 rc = -EINVAL;
1977 reason = "device reports invalid type";
1978
1979 if (class == ATA_DEV_ATA) {
1980 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1981 goto err_out;
1982 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1983 ata_id_is_ata(id)) {
1984 ata_dev_dbg(dev,
1985 "host indicates ignore ATA devices, ignored\n");
1986 return -ENOENT;
1987 }
1988 } else {
1989 if (ata_id_is_ata(id))
1990 goto err_out;
1991 }
1992
1993 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1994 tried_spinup = 1;
1995 /*
1996 * Drive powered-up in standby mode, and requires a specific
1997 * SET_FEATURES spin-up subcommand before it will accept
1998 * anything other than the original IDENTIFY command.
1999 */
2000 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2001 if (err_mask && id[2] != 0x738c) {
2002 rc = -EIO;
2003 reason = "SPINUP failed";
2004 goto err_out;
2005 }
2006 /*
2007 * If the drive initially returned incomplete IDENTIFY info,
2008 * we now must reissue the IDENTIFY command.
2009 */
2010 if (id[2] == 0x37c8)
2011 goto retry;
2012 }
2013
2014 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2015 /*
2016 * The exact sequence expected by certain pre-ATA4 drives is:
2017 * SRST RESET
2018 * IDENTIFY (optional in early ATA)
2019 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2020 * anything else..
2021 * Some drives were very specific about that exact sequence.
2022 *
2023 * Note that ATA4 says lba is mandatory so the second check
2024 * should never trigger.
2025 */
2026 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2027 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2028 if (err_mask) {
2029 rc = -EIO;
2030 reason = "INIT_DEV_PARAMS failed";
2031 goto err_out;
2032 }
2033
2034 /* current CHS translation info (id[53-58]) might be
2035 * changed. reread the identify device info.
2036 */
2037 flags &= ~ATA_READID_POSTRESET;
2038 goto retry;
2039 }
2040 }
2041
2042 *p_class = class;
2043
2044 return 0;
2045
2046 err_out:
2047 if (ata_msg_warn(ap))
2048 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2049 reason, err_mask);
2050 return rc;
2051 }
2052
ata_do_link_spd_horkage(struct ata_device * dev)2053 static int ata_do_link_spd_horkage(struct ata_device *dev)
2054 {
2055 struct ata_link *plink = ata_dev_phys_link(dev);
2056 u32 target, target_limit;
2057
2058 if (!sata_scr_valid(plink))
2059 return 0;
2060
2061 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2062 target = 1;
2063 else
2064 return 0;
2065
2066 target_limit = (1 << target) - 1;
2067
2068 /* if already on stricter limit, no need to push further */
2069 if (plink->sata_spd_limit <= target_limit)
2070 return 0;
2071
2072 plink->sata_spd_limit = target_limit;
2073
2074 /* Request another EH round by returning -EAGAIN if link is
2075 * going faster than the target speed. Forward progress is
2076 * guaranteed by setting sata_spd_limit to target_limit above.
2077 */
2078 if (plink->sata_spd > target) {
2079 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2080 sata_spd_string(target));
2081 return -EAGAIN;
2082 }
2083 return 0;
2084 }
2085
ata_dev_knobble(struct ata_device * dev)2086 static inline u8 ata_dev_knobble(struct ata_device *dev)
2087 {
2088 struct ata_port *ap = dev->link->ap;
2089
2090 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2091 return 0;
2092
2093 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2094 }
2095
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2096 static int ata_dev_config_ncq(struct ata_device *dev,
2097 char *desc, size_t desc_sz)
2098 {
2099 struct ata_port *ap = dev->link->ap;
2100 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2101 unsigned int err_mask;
2102 char *aa_desc = "";
2103
2104 if (!ata_id_has_ncq(dev->id)) {
2105 desc[0] = '\0';
2106 return 0;
2107 }
2108 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2109 snprintf(desc, desc_sz, "NCQ (not used)");
2110 return 0;
2111 }
2112 if (ap->flags & ATA_FLAG_NCQ) {
2113 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2114 dev->flags |= ATA_DFLAG_NCQ;
2115 }
2116
2117 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2118 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2119 ata_id_has_fpdma_aa(dev->id)) {
2120 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2121 SATA_FPDMA_AA);
2122 if (err_mask) {
2123 ata_dev_err(dev,
2124 "failed to enable AA (error_mask=0x%x)\n",
2125 err_mask);
2126 if (err_mask != AC_ERR_DEV) {
2127 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2128 return -EIO;
2129 }
2130 } else
2131 aa_desc = ", AA";
2132 }
2133
2134 if (hdepth >= ddepth)
2135 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2136 else
2137 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2138 ddepth, aa_desc);
2139 return 0;
2140 }
2141
2142 /**
2143 * ata_dev_configure - Configure the specified ATA/ATAPI device
2144 * @dev: Target device to configure
2145 *
2146 * Configure @dev according to @dev->id. Generic and low-level
2147 * driver specific fixups are also applied.
2148 *
2149 * LOCKING:
2150 * Kernel thread context (may sleep)
2151 *
2152 * RETURNS:
2153 * 0 on success, -errno otherwise
2154 */
ata_dev_configure(struct ata_device * dev)2155 int ata_dev_configure(struct ata_device *dev)
2156 {
2157 struct ata_port *ap = dev->link->ap;
2158 struct ata_eh_context *ehc = &dev->link->eh_context;
2159 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2160 const u16 *id = dev->id;
2161 unsigned long xfer_mask;
2162 char revbuf[7]; /* XYZ-99\0 */
2163 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2164 char modelbuf[ATA_ID_PROD_LEN+1];
2165 int rc;
2166
2167 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2168 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2169 return 0;
2170 }
2171
2172 if (ata_msg_probe(ap))
2173 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2174
2175 /* set horkage */
2176 dev->horkage |= ata_dev_blacklisted(dev);
2177 ata_force_horkage(dev);
2178
2179 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2180 ata_dev_info(dev, "unsupported device, disabling\n");
2181 ata_dev_disable(dev);
2182 return 0;
2183 }
2184
2185 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2186 dev->class == ATA_DEV_ATAPI) {
2187 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2188 atapi_enabled ? "not supported with this driver"
2189 : "disabled");
2190 ata_dev_disable(dev);
2191 return 0;
2192 }
2193
2194 rc = ata_do_link_spd_horkage(dev);
2195 if (rc)
2196 return rc;
2197
2198 /* let ACPI work its magic */
2199 rc = ata_acpi_on_devcfg(dev);
2200 if (rc)
2201 return rc;
2202
2203 /* massage HPA, do it early as it might change IDENTIFY data */
2204 rc = ata_hpa_resize(dev);
2205 if (rc)
2206 return rc;
2207
2208 /* print device capabilities */
2209 if (ata_msg_probe(ap))
2210 ata_dev_dbg(dev,
2211 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2212 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2213 __func__,
2214 id[49], id[82], id[83], id[84],
2215 id[85], id[86], id[87], id[88]);
2216
2217 /* initialize to-be-configured parameters */
2218 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2219 dev->max_sectors = 0;
2220 dev->cdb_len = 0;
2221 dev->n_sectors = 0;
2222 dev->cylinders = 0;
2223 dev->heads = 0;
2224 dev->sectors = 0;
2225 dev->multi_count = 0;
2226
2227 /*
2228 * common ATA, ATAPI feature tests
2229 */
2230
2231 /* find max transfer mode; for printk only */
2232 xfer_mask = ata_id_xfermask(id);
2233
2234 if (ata_msg_probe(ap))
2235 ata_dump_id(id);
2236
2237 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2238 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2239 sizeof(fwrevbuf));
2240
2241 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2242 sizeof(modelbuf));
2243
2244 /* ATA-specific feature tests */
2245 if (dev->class == ATA_DEV_ATA) {
2246 if (ata_id_is_cfa(id)) {
2247 /* CPRM may make this media unusable */
2248 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2249 ata_dev_warn(dev,
2250 "supports DRM functions and may not be fully accessible\n");
2251 snprintf(revbuf, 7, "CFA");
2252 } else {
2253 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2254 /* Warn the user if the device has TPM extensions */
2255 if (ata_id_has_tpm(id))
2256 ata_dev_warn(dev,
2257 "supports DRM functions and may not be fully accessible\n");
2258 }
2259
2260 dev->n_sectors = ata_id_n_sectors(id);
2261
2262 /* get current R/W Multiple count setting */
2263 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2264 unsigned int max = dev->id[47] & 0xff;
2265 unsigned int cnt = dev->id[59] & 0xff;
2266 /* only recognize/allow powers of two here */
2267 if (is_power_of_2(max) && is_power_of_2(cnt))
2268 if (cnt <= max)
2269 dev->multi_count = cnt;
2270 }
2271
2272 if (ata_id_has_lba(id)) {
2273 const char *lba_desc;
2274 char ncq_desc[24];
2275
2276 lba_desc = "LBA";
2277 dev->flags |= ATA_DFLAG_LBA;
2278 if (ata_id_has_lba48(id)) {
2279 dev->flags |= ATA_DFLAG_LBA48;
2280 lba_desc = "LBA48";
2281
2282 if (dev->n_sectors >= (1UL << 28) &&
2283 ata_id_has_flush_ext(id))
2284 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2285 }
2286
2287 /* config NCQ */
2288 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2289 if (rc)
2290 return rc;
2291
2292 /* print device info to dmesg */
2293 if (ata_msg_drv(ap) && print_info) {
2294 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2295 revbuf, modelbuf, fwrevbuf,
2296 ata_mode_string(xfer_mask));
2297 ata_dev_info(dev,
2298 "%llu sectors, multi %u: %s %s\n",
2299 (unsigned long long)dev->n_sectors,
2300 dev->multi_count, lba_desc, ncq_desc);
2301 }
2302 } else {
2303 /* CHS */
2304
2305 /* Default translation */
2306 dev->cylinders = id[1];
2307 dev->heads = id[3];
2308 dev->sectors = id[6];
2309
2310 if (ata_id_current_chs_valid(id)) {
2311 /* Current CHS translation is valid. */
2312 dev->cylinders = id[54];
2313 dev->heads = id[55];
2314 dev->sectors = id[56];
2315 }
2316
2317 /* print device info to dmesg */
2318 if (ata_msg_drv(ap) && print_info) {
2319 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2320 revbuf, modelbuf, fwrevbuf,
2321 ata_mode_string(xfer_mask));
2322 ata_dev_info(dev,
2323 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2324 (unsigned long long)dev->n_sectors,
2325 dev->multi_count, dev->cylinders,
2326 dev->heads, dev->sectors);
2327 }
2328 }
2329
2330 dev->cdb_len = 16;
2331 }
2332
2333 /* ATAPI-specific feature tests */
2334 else if (dev->class == ATA_DEV_ATAPI) {
2335 const char *cdb_intr_string = "";
2336 const char *atapi_an_string = "";
2337 const char *dma_dir_string = "";
2338 u32 sntf;
2339
2340 rc = atapi_cdb_len(id);
2341 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2342 if (ata_msg_warn(ap))
2343 ata_dev_warn(dev, "unsupported CDB len\n");
2344 rc = -EINVAL;
2345 goto err_out_nosup;
2346 }
2347 dev->cdb_len = (unsigned int) rc;
2348
2349 /* Enable ATAPI AN if both the host and device have
2350 * the support. If PMP is attached, SNTF is required
2351 * to enable ATAPI AN to discern between PHY status
2352 * changed notifications and ATAPI ANs.
2353 */
2354 if (atapi_an &&
2355 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2356 (!sata_pmp_attached(ap) ||
2357 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2358 unsigned int err_mask;
2359
2360 /* issue SET feature command to turn this on */
2361 err_mask = ata_dev_set_feature(dev,
2362 SETFEATURES_SATA_ENABLE, SATA_AN);
2363 if (err_mask)
2364 ata_dev_err(dev,
2365 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2366 err_mask);
2367 else {
2368 dev->flags |= ATA_DFLAG_AN;
2369 atapi_an_string = ", ATAPI AN";
2370 }
2371 }
2372
2373 if (ata_id_cdb_intr(dev->id)) {
2374 dev->flags |= ATA_DFLAG_CDB_INTR;
2375 cdb_intr_string = ", CDB intr";
2376 }
2377
2378 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2379 dev->flags |= ATA_DFLAG_DMADIR;
2380 dma_dir_string = ", DMADIR";
2381 }
2382
2383 /* print device info to dmesg */
2384 if (ata_msg_drv(ap) && print_info)
2385 ata_dev_info(dev,
2386 "ATAPI: %s, %s, max %s%s%s%s\n",
2387 modelbuf, fwrevbuf,
2388 ata_mode_string(xfer_mask),
2389 cdb_intr_string, atapi_an_string,
2390 dma_dir_string);
2391 }
2392
2393 /* determine max_sectors */
2394 dev->max_sectors = ATA_MAX_SECTORS;
2395 if (dev->flags & ATA_DFLAG_LBA48)
2396 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2397
2398 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2399 200 sectors */
2400 if (ata_dev_knobble(dev)) {
2401 if (ata_msg_drv(ap) && print_info)
2402 ata_dev_info(dev, "applying bridge limits\n");
2403 dev->udma_mask &= ATA_UDMA5;
2404 dev->max_sectors = ATA_MAX_SECTORS;
2405 }
2406
2407 if ((dev->class == ATA_DEV_ATAPI) &&
2408 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2409 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2410 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2411 }
2412
2413 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2414 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2415 dev->max_sectors);
2416
2417 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2418 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2419
2420 if (ap->ops->dev_config)
2421 ap->ops->dev_config(dev);
2422
2423 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2424 /* Let the user know. We don't want to disallow opens for
2425 rescue purposes, or in case the vendor is just a blithering
2426 idiot. Do this after the dev_config call as some controllers
2427 with buggy firmware may want to avoid reporting false device
2428 bugs */
2429
2430 if (print_info) {
2431 ata_dev_warn(dev,
2432 "Drive reports diagnostics failure. This may indicate a drive\n");
2433 ata_dev_warn(dev,
2434 "fault or invalid emulation. Contact drive vendor for information.\n");
2435 }
2436 }
2437
2438 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2439 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2440 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2441 }
2442
2443 return 0;
2444
2445 err_out_nosup:
2446 if (ata_msg_probe(ap))
2447 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2448 return rc;
2449 }
2450
2451 /**
2452 * ata_cable_40wire - return 40 wire cable type
2453 * @ap: port
2454 *
2455 * Helper method for drivers which want to hardwire 40 wire cable
2456 * detection.
2457 */
2458
ata_cable_40wire(struct ata_port * ap)2459 int ata_cable_40wire(struct ata_port *ap)
2460 {
2461 return ATA_CBL_PATA40;
2462 }
2463
2464 /**
2465 * ata_cable_80wire - return 80 wire cable type
2466 * @ap: port
2467 *
2468 * Helper method for drivers which want to hardwire 80 wire cable
2469 * detection.
2470 */
2471
ata_cable_80wire(struct ata_port * ap)2472 int ata_cable_80wire(struct ata_port *ap)
2473 {
2474 return ATA_CBL_PATA80;
2475 }
2476
2477 /**
2478 * ata_cable_unknown - return unknown PATA cable.
2479 * @ap: port
2480 *
2481 * Helper method for drivers which have no PATA cable detection.
2482 */
2483
ata_cable_unknown(struct ata_port * ap)2484 int ata_cable_unknown(struct ata_port *ap)
2485 {
2486 return ATA_CBL_PATA_UNK;
2487 }
2488
2489 /**
2490 * ata_cable_ignore - return ignored PATA cable.
2491 * @ap: port
2492 *
2493 * Helper method for drivers which don't use cable type to limit
2494 * transfer mode.
2495 */
ata_cable_ignore(struct ata_port * ap)2496 int ata_cable_ignore(struct ata_port *ap)
2497 {
2498 return ATA_CBL_PATA_IGN;
2499 }
2500
2501 /**
2502 * ata_cable_sata - return SATA cable type
2503 * @ap: port
2504 *
2505 * Helper method for drivers which have SATA cables
2506 */
2507
ata_cable_sata(struct ata_port * ap)2508 int ata_cable_sata(struct ata_port *ap)
2509 {
2510 return ATA_CBL_SATA;
2511 }
2512
2513 /**
2514 * ata_bus_probe - Reset and probe ATA bus
2515 * @ap: Bus to probe
2516 *
2517 * Master ATA bus probing function. Initiates a hardware-dependent
2518 * bus reset, then attempts to identify any devices found on
2519 * the bus.
2520 *
2521 * LOCKING:
2522 * PCI/etc. bus probe sem.
2523 *
2524 * RETURNS:
2525 * Zero on success, negative errno otherwise.
2526 */
2527
ata_bus_probe(struct ata_port * ap)2528 int ata_bus_probe(struct ata_port *ap)
2529 {
2530 unsigned int classes[ATA_MAX_DEVICES];
2531 int tries[ATA_MAX_DEVICES];
2532 int rc;
2533 struct ata_device *dev;
2534
2535 ata_for_each_dev(dev, &ap->link, ALL)
2536 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2537
2538 retry:
2539 ata_for_each_dev(dev, &ap->link, ALL) {
2540 /* If we issue an SRST then an ATA drive (not ATAPI)
2541 * may change configuration and be in PIO0 timing. If
2542 * we do a hard reset (or are coming from power on)
2543 * this is true for ATA or ATAPI. Until we've set a
2544 * suitable controller mode we should not touch the
2545 * bus as we may be talking too fast.
2546 */
2547 dev->pio_mode = XFER_PIO_0;
2548 dev->dma_mode = 0xff;
2549
2550 /* If the controller has a pio mode setup function
2551 * then use it to set the chipset to rights. Don't
2552 * touch the DMA setup as that will be dealt with when
2553 * configuring devices.
2554 */
2555 if (ap->ops->set_piomode)
2556 ap->ops->set_piomode(ap, dev);
2557 }
2558
2559 /* reset and determine device classes */
2560 ap->ops->phy_reset(ap);
2561
2562 ata_for_each_dev(dev, &ap->link, ALL) {
2563 if (dev->class != ATA_DEV_UNKNOWN)
2564 classes[dev->devno] = dev->class;
2565 else
2566 classes[dev->devno] = ATA_DEV_NONE;
2567
2568 dev->class = ATA_DEV_UNKNOWN;
2569 }
2570
2571 /* read IDENTIFY page and configure devices. We have to do the identify
2572 specific sequence bass-ackwards so that PDIAG- is released by
2573 the slave device */
2574
2575 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2576 if (tries[dev->devno])
2577 dev->class = classes[dev->devno];
2578
2579 if (!ata_dev_enabled(dev))
2580 continue;
2581
2582 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2583 dev->id);
2584 if (rc)
2585 goto fail;
2586 }
2587
2588 /* Now ask for the cable type as PDIAG- should have been released */
2589 if (ap->ops->cable_detect)
2590 ap->cbl = ap->ops->cable_detect(ap);
2591
2592 /* We may have SATA bridge glue hiding here irrespective of
2593 * the reported cable types and sensed types. When SATA
2594 * drives indicate we have a bridge, we don't know which end
2595 * of the link the bridge is which is a problem.
2596 */
2597 ata_for_each_dev(dev, &ap->link, ENABLED)
2598 if (ata_id_is_sata(dev->id))
2599 ap->cbl = ATA_CBL_SATA;
2600
2601 /* After the identify sequence we can now set up the devices. We do
2602 this in the normal order so that the user doesn't get confused */
2603
2604 ata_for_each_dev(dev, &ap->link, ENABLED) {
2605 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2606 rc = ata_dev_configure(dev);
2607 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2608 if (rc)
2609 goto fail;
2610 }
2611
2612 /* configure transfer mode */
2613 rc = ata_set_mode(&ap->link, &dev);
2614 if (rc)
2615 goto fail;
2616
2617 ata_for_each_dev(dev, &ap->link, ENABLED)
2618 return 0;
2619
2620 return -ENODEV;
2621
2622 fail:
2623 tries[dev->devno]--;
2624
2625 switch (rc) {
2626 case -EINVAL:
2627 /* eeek, something went very wrong, give up */
2628 tries[dev->devno] = 0;
2629 break;
2630
2631 case -ENODEV:
2632 /* give it just one more chance */
2633 tries[dev->devno] = min(tries[dev->devno], 1);
2634 case -EIO:
2635 if (tries[dev->devno] == 1) {
2636 /* This is the last chance, better to slow
2637 * down than lose it.
2638 */
2639 sata_down_spd_limit(&ap->link, 0);
2640 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2641 }
2642 }
2643
2644 if (!tries[dev->devno])
2645 ata_dev_disable(dev);
2646
2647 goto retry;
2648 }
2649
2650 /**
2651 * sata_print_link_status - Print SATA link status
2652 * @link: SATA link to printk link status about
2653 *
2654 * This function prints link speed and status of a SATA link.
2655 *
2656 * LOCKING:
2657 * None.
2658 */
sata_print_link_status(struct ata_link * link)2659 static void sata_print_link_status(struct ata_link *link)
2660 {
2661 u32 sstatus, scontrol, tmp;
2662
2663 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2664 return;
2665 sata_scr_read(link, SCR_CONTROL, &scontrol);
2666
2667 if (ata_phys_link_online(link)) {
2668 tmp = (sstatus >> 4) & 0xf;
2669 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2670 sata_spd_string(tmp), sstatus, scontrol);
2671 } else {
2672 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2673 sstatus, scontrol);
2674 }
2675 }
2676
2677 /**
2678 * ata_dev_pair - return other device on cable
2679 * @adev: device
2680 *
2681 * Obtain the other device on the same cable, or if none is
2682 * present NULL is returned
2683 */
2684
ata_dev_pair(struct ata_device * adev)2685 struct ata_device *ata_dev_pair(struct ata_device *adev)
2686 {
2687 struct ata_link *link = adev->link;
2688 struct ata_device *pair = &link->device[1 - adev->devno];
2689 if (!ata_dev_enabled(pair))
2690 return NULL;
2691 return pair;
2692 }
2693
2694 /**
2695 * sata_down_spd_limit - adjust SATA spd limit downward
2696 * @link: Link to adjust SATA spd limit for
2697 * @spd_limit: Additional limit
2698 *
2699 * Adjust SATA spd limit of @link downward. Note that this
2700 * function only adjusts the limit. The change must be applied
2701 * using sata_set_spd().
2702 *
2703 * If @spd_limit is non-zero, the speed is limited to equal to or
2704 * lower than @spd_limit if such speed is supported. If
2705 * @spd_limit is slower than any supported speed, only the lowest
2706 * supported speed is allowed.
2707 *
2708 * LOCKING:
2709 * Inherited from caller.
2710 *
2711 * RETURNS:
2712 * 0 on success, negative errno on failure
2713 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)2714 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2715 {
2716 u32 sstatus, spd, mask;
2717 int rc, bit;
2718
2719 if (!sata_scr_valid(link))
2720 return -EOPNOTSUPP;
2721
2722 /* If SCR can be read, use it to determine the current SPD.
2723 * If not, use cached value in link->sata_spd.
2724 */
2725 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2726 if (rc == 0 && ata_sstatus_online(sstatus))
2727 spd = (sstatus >> 4) & 0xf;
2728 else
2729 spd = link->sata_spd;
2730
2731 mask = link->sata_spd_limit;
2732 if (mask <= 1)
2733 return -EINVAL;
2734
2735 /* unconditionally mask off the highest bit */
2736 bit = fls(mask) - 1;
2737 mask &= ~(1 << bit);
2738
2739 /* Mask off all speeds higher than or equal to the current
2740 * one. Force 1.5Gbps if current SPD is not available.
2741 */
2742 if (spd > 1)
2743 mask &= (1 << (spd - 1)) - 1;
2744 else
2745 mask &= 1;
2746
2747 /* were we already at the bottom? */
2748 if (!mask)
2749 return -EINVAL;
2750
2751 if (spd_limit) {
2752 if (mask & ((1 << spd_limit) - 1))
2753 mask &= (1 << spd_limit) - 1;
2754 else {
2755 bit = ffs(mask) - 1;
2756 mask = 1 << bit;
2757 }
2758 }
2759
2760 link->sata_spd_limit = mask;
2761
2762 ata_link_warn(link, "limiting SATA link speed to %s\n",
2763 sata_spd_string(fls(mask)));
2764
2765 return 0;
2766 }
2767
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)2768 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2769 {
2770 struct ata_link *host_link = &link->ap->link;
2771 u32 limit, target, spd;
2772
2773 limit = link->sata_spd_limit;
2774
2775 /* Don't configure downstream link faster than upstream link.
2776 * It doesn't speed up anything and some PMPs choke on such
2777 * configuration.
2778 */
2779 if (!ata_is_host_link(link) && host_link->sata_spd)
2780 limit &= (1 << host_link->sata_spd) - 1;
2781
2782 if (limit == UINT_MAX)
2783 target = 0;
2784 else
2785 target = fls(limit);
2786
2787 spd = (*scontrol >> 4) & 0xf;
2788 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2789
2790 return spd != target;
2791 }
2792
2793 /**
2794 * sata_set_spd_needed - is SATA spd configuration needed
2795 * @link: Link in question
2796 *
2797 * Test whether the spd limit in SControl matches
2798 * @link->sata_spd_limit. This function is used to determine
2799 * whether hardreset is necessary to apply SATA spd
2800 * configuration.
2801 *
2802 * LOCKING:
2803 * Inherited from caller.
2804 *
2805 * RETURNS:
2806 * 1 if SATA spd configuration is needed, 0 otherwise.
2807 */
sata_set_spd_needed(struct ata_link * link)2808 static int sata_set_spd_needed(struct ata_link *link)
2809 {
2810 u32 scontrol;
2811
2812 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2813 return 1;
2814
2815 return __sata_set_spd_needed(link, &scontrol);
2816 }
2817
2818 /**
2819 * sata_set_spd - set SATA spd according to spd limit
2820 * @link: Link to set SATA spd for
2821 *
2822 * Set SATA spd of @link according to sata_spd_limit.
2823 *
2824 * LOCKING:
2825 * Inherited from caller.
2826 *
2827 * RETURNS:
2828 * 0 if spd doesn't need to be changed, 1 if spd has been
2829 * changed. Negative errno if SCR registers are inaccessible.
2830 */
sata_set_spd(struct ata_link * link)2831 int sata_set_spd(struct ata_link *link)
2832 {
2833 u32 scontrol;
2834 int rc;
2835
2836 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2837 return rc;
2838
2839 if (!__sata_set_spd_needed(link, &scontrol))
2840 return 0;
2841
2842 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2843 return rc;
2844
2845 return 1;
2846 }
2847
2848 /*
2849 * This mode timing computation functionality is ported over from
2850 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2851 */
2852 /*
2853 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2854 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2855 * for UDMA6, which is currently supported only by Maxtor drives.
2856 *
2857 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2858 */
2859
2860 static const struct ata_timing ata_timing[] = {
2861 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2862 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2863 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2864 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2865 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2866 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2867 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2868 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2869
2870 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2871 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2872 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2873
2874 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2875 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2876 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2877 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2878 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2879
2880 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2881 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2882 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2883 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2884 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2885 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2886 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2887 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2888
2889 { 0xFF }
2890 };
2891
2892 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2893 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2894
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)2895 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2896 {
2897 q->setup = EZ(t->setup * 1000, T);
2898 q->act8b = EZ(t->act8b * 1000, T);
2899 q->rec8b = EZ(t->rec8b * 1000, T);
2900 q->cyc8b = EZ(t->cyc8b * 1000, T);
2901 q->active = EZ(t->active * 1000, T);
2902 q->recover = EZ(t->recover * 1000, T);
2903 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2904 q->cycle = EZ(t->cycle * 1000, T);
2905 q->udma = EZ(t->udma * 1000, UT);
2906 }
2907
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)2908 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2909 struct ata_timing *m, unsigned int what)
2910 {
2911 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2912 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2913 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2914 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2915 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2916 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2917 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2918 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2919 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2920 }
2921
ata_timing_find_mode(u8 xfer_mode)2922 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2923 {
2924 const struct ata_timing *t = ata_timing;
2925
2926 while (xfer_mode > t->mode)
2927 t++;
2928
2929 if (xfer_mode == t->mode)
2930 return t;
2931 return NULL;
2932 }
2933
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)2934 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2935 struct ata_timing *t, int T, int UT)
2936 {
2937 const u16 *id = adev->id;
2938 const struct ata_timing *s;
2939 struct ata_timing p;
2940
2941 /*
2942 * Find the mode.
2943 */
2944
2945 if (!(s = ata_timing_find_mode(speed)))
2946 return -EINVAL;
2947
2948 memcpy(t, s, sizeof(*s));
2949
2950 /*
2951 * If the drive is an EIDE drive, it can tell us it needs extended
2952 * PIO/MW_DMA cycle timing.
2953 */
2954
2955 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2956 memset(&p, 0, sizeof(p));
2957
2958 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
2959 if (speed <= XFER_PIO_2)
2960 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2961 else if ((speed <= XFER_PIO_4) ||
2962 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2963 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2964 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2965 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2966
2967 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2968 }
2969
2970 /*
2971 * Convert the timing to bus clock counts.
2972 */
2973
2974 ata_timing_quantize(t, t, T, UT);
2975
2976 /*
2977 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2978 * S.M.A.R.T * and some other commands. We have to ensure that the
2979 * DMA cycle timing is slower/equal than the fastest PIO timing.
2980 */
2981
2982 if (speed > XFER_PIO_6) {
2983 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2984 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2985 }
2986
2987 /*
2988 * Lengthen active & recovery time so that cycle time is correct.
2989 */
2990
2991 if (t->act8b + t->rec8b < t->cyc8b) {
2992 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2993 t->rec8b = t->cyc8b - t->act8b;
2994 }
2995
2996 if (t->active + t->recover < t->cycle) {
2997 t->active += (t->cycle - (t->active + t->recover)) / 2;
2998 t->recover = t->cycle - t->active;
2999 }
3000
3001 /* In a few cases quantisation may produce enough errors to
3002 leave t->cycle too low for the sum of active and recovery
3003 if so we must correct this */
3004 if (t->active + t->recover > t->cycle)
3005 t->cycle = t->active + t->recover;
3006
3007 return 0;
3008 }
3009
3010 /**
3011 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3012 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3013 * @cycle: cycle duration in ns
3014 *
3015 * Return matching xfer mode for @cycle. The returned mode is of
3016 * the transfer type specified by @xfer_shift. If @cycle is too
3017 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3018 * than the fastest known mode, the fasted mode is returned.
3019 *
3020 * LOCKING:
3021 * None.
3022 *
3023 * RETURNS:
3024 * Matching xfer_mode, 0xff if no match found.
3025 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3026 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3027 {
3028 u8 base_mode = 0xff, last_mode = 0xff;
3029 const struct ata_xfer_ent *ent;
3030 const struct ata_timing *t;
3031
3032 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3033 if (ent->shift == xfer_shift)
3034 base_mode = ent->base;
3035
3036 for (t = ata_timing_find_mode(base_mode);
3037 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3038 unsigned short this_cycle;
3039
3040 switch (xfer_shift) {
3041 case ATA_SHIFT_PIO:
3042 case ATA_SHIFT_MWDMA:
3043 this_cycle = t->cycle;
3044 break;
3045 case ATA_SHIFT_UDMA:
3046 this_cycle = t->udma;
3047 break;
3048 default:
3049 return 0xff;
3050 }
3051
3052 if (cycle > this_cycle)
3053 break;
3054
3055 last_mode = t->mode;
3056 }
3057
3058 return last_mode;
3059 }
3060
3061 /**
3062 * ata_down_xfermask_limit - adjust dev xfer masks downward
3063 * @dev: Device to adjust xfer masks
3064 * @sel: ATA_DNXFER_* selector
3065 *
3066 * Adjust xfer masks of @dev downward. Note that this function
3067 * does not apply the change. Invoking ata_set_mode() afterwards
3068 * will apply the limit.
3069 *
3070 * LOCKING:
3071 * Inherited from caller.
3072 *
3073 * RETURNS:
3074 * 0 on success, negative errno on failure
3075 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3076 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3077 {
3078 char buf[32];
3079 unsigned long orig_mask, xfer_mask;
3080 unsigned long pio_mask, mwdma_mask, udma_mask;
3081 int quiet, highbit;
3082
3083 quiet = !!(sel & ATA_DNXFER_QUIET);
3084 sel &= ~ATA_DNXFER_QUIET;
3085
3086 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3087 dev->mwdma_mask,
3088 dev->udma_mask);
3089 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3090
3091 switch (sel) {
3092 case ATA_DNXFER_PIO:
3093 highbit = fls(pio_mask) - 1;
3094 pio_mask &= ~(1 << highbit);
3095 break;
3096
3097 case ATA_DNXFER_DMA:
3098 if (udma_mask) {
3099 highbit = fls(udma_mask) - 1;
3100 udma_mask &= ~(1 << highbit);
3101 if (!udma_mask)
3102 return -ENOENT;
3103 } else if (mwdma_mask) {
3104 highbit = fls(mwdma_mask) - 1;
3105 mwdma_mask &= ~(1 << highbit);
3106 if (!mwdma_mask)
3107 return -ENOENT;
3108 }
3109 break;
3110
3111 case ATA_DNXFER_40C:
3112 udma_mask &= ATA_UDMA_MASK_40C;
3113 break;
3114
3115 case ATA_DNXFER_FORCE_PIO0:
3116 pio_mask &= 1;
3117 case ATA_DNXFER_FORCE_PIO:
3118 mwdma_mask = 0;
3119 udma_mask = 0;
3120 break;
3121
3122 default:
3123 BUG();
3124 }
3125
3126 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3127
3128 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3129 return -ENOENT;
3130
3131 if (!quiet) {
3132 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3133 snprintf(buf, sizeof(buf), "%s:%s",
3134 ata_mode_string(xfer_mask),
3135 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3136 else
3137 snprintf(buf, sizeof(buf), "%s",
3138 ata_mode_string(xfer_mask));
3139
3140 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3141 }
3142
3143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3144 &dev->udma_mask);
3145
3146 return 0;
3147 }
3148
ata_dev_set_mode(struct ata_device * dev)3149 static int ata_dev_set_mode(struct ata_device *dev)
3150 {
3151 struct ata_port *ap = dev->link->ap;
3152 struct ata_eh_context *ehc = &dev->link->eh_context;
3153 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3154 const char *dev_err_whine = "";
3155 int ign_dev_err = 0;
3156 unsigned int err_mask = 0;
3157 int rc;
3158
3159 dev->flags &= ~ATA_DFLAG_PIO;
3160 if (dev->xfer_shift == ATA_SHIFT_PIO)
3161 dev->flags |= ATA_DFLAG_PIO;
3162
3163 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3164 dev_err_whine = " (SET_XFERMODE skipped)";
3165 else {
3166 if (nosetxfer)
3167 ata_dev_warn(dev,
3168 "NOSETXFER but PATA detected - can't "
3169 "skip SETXFER, might malfunction\n");
3170 err_mask = ata_dev_set_xfermode(dev);
3171 }
3172
3173 if (err_mask & ~AC_ERR_DEV)
3174 goto fail;
3175
3176 /* revalidate */
3177 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3178 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3179 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3180 if (rc)
3181 return rc;
3182
3183 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3184 /* Old CFA may refuse this command, which is just fine */
3185 if (ata_id_is_cfa(dev->id))
3186 ign_dev_err = 1;
3187 /* Catch several broken garbage emulations plus some pre
3188 ATA devices */
3189 if (ata_id_major_version(dev->id) == 0 &&
3190 dev->pio_mode <= XFER_PIO_2)
3191 ign_dev_err = 1;
3192 /* Some very old devices and some bad newer ones fail
3193 any kind of SET_XFERMODE request but support PIO0-2
3194 timings and no IORDY */
3195 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3196 ign_dev_err = 1;
3197 }
3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3200 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3201 dev->dma_mode == XFER_MW_DMA_0 &&
3202 (dev->id[63] >> 8) & 1)
3203 ign_dev_err = 1;
3204
3205 /* if the device is actually configured correctly, ignore dev err */
3206 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3207 ign_dev_err = 1;
3208
3209 if (err_mask & AC_ERR_DEV) {
3210 if (!ign_dev_err)
3211 goto fail;
3212 else
3213 dev_err_whine = " (device error ignored)";
3214 }
3215
3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217 dev->xfer_shift, (int)dev->xfer_mode);
3218
3219 ata_dev_info(dev, "configured for %s%s\n",
3220 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3221 dev_err_whine);
3222
3223 return 0;
3224
3225 fail:
3226 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3227 return -EIO;
3228 }
3229
3230 /**
3231 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3232 * @link: link on which timings will be programmed
3233 * @r_failed_dev: out parameter for failed device
3234 *
3235 * Standard implementation of the function used to tune and set
3236 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3237 * ata_dev_set_mode() fails, pointer to the failing device is
3238 * returned in @r_failed_dev.
3239 *
3240 * LOCKING:
3241 * PCI/etc. bus probe sem.
3242 *
3243 * RETURNS:
3244 * 0 on success, negative errno otherwise
3245 */
3246
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3247 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3248 {
3249 struct ata_port *ap = link->ap;
3250 struct ata_device *dev;
3251 int rc = 0, used_dma = 0, found = 0;
3252
3253 /* step 1: calculate xfer_mask */
3254 ata_for_each_dev(dev, link, ENABLED) {
3255 unsigned long pio_mask, dma_mask;
3256 unsigned int mode_mask;
3257
3258 mode_mask = ATA_DMA_MASK_ATA;
3259 if (dev->class == ATA_DEV_ATAPI)
3260 mode_mask = ATA_DMA_MASK_ATAPI;
3261 else if (ata_id_is_cfa(dev->id))
3262 mode_mask = ATA_DMA_MASK_CFA;
3263
3264 ata_dev_xfermask(dev);
3265 ata_force_xfermask(dev);
3266
3267 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3268
3269 if (libata_dma_mask & mode_mask)
3270 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3271 dev->udma_mask);
3272 else
3273 dma_mask = 0;
3274
3275 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3276 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3277
3278 found = 1;
3279 if (ata_dma_enabled(dev))
3280 used_dma = 1;
3281 }
3282 if (!found)
3283 goto out;
3284
3285 /* step 2: always set host PIO timings */
3286 ata_for_each_dev(dev, link, ENABLED) {
3287 if (dev->pio_mode == 0xff) {
3288 ata_dev_warn(dev, "no PIO support\n");
3289 rc = -EINVAL;
3290 goto out;
3291 }
3292
3293 dev->xfer_mode = dev->pio_mode;
3294 dev->xfer_shift = ATA_SHIFT_PIO;
3295 if (ap->ops->set_piomode)
3296 ap->ops->set_piomode(ap, dev);
3297 }
3298
3299 /* step 3: set host DMA timings */
3300 ata_for_each_dev(dev, link, ENABLED) {
3301 if (!ata_dma_enabled(dev))
3302 continue;
3303
3304 dev->xfer_mode = dev->dma_mode;
3305 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3306 if (ap->ops->set_dmamode)
3307 ap->ops->set_dmamode(ap, dev);
3308 }
3309
3310 /* step 4: update devices' xfer mode */
3311 ata_for_each_dev(dev, link, ENABLED) {
3312 rc = ata_dev_set_mode(dev);
3313 if (rc)
3314 goto out;
3315 }
3316
3317 /* Record simplex status. If we selected DMA then the other
3318 * host channels are not permitted to do so.
3319 */
3320 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3321 ap->host->simplex_claimed = ap;
3322
3323 out:
3324 if (rc)
3325 *r_failed_dev = dev;
3326 return rc;
3327 }
3328
3329 /**
3330 * ata_wait_ready - wait for link to become ready
3331 * @link: link to be waited on
3332 * @deadline: deadline jiffies for the operation
3333 * @check_ready: callback to check link readiness
3334 *
3335 * Wait for @link to become ready. @check_ready should return
3336 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3337 * link doesn't seem to be occupied, other errno for other error
3338 * conditions.
3339 *
3340 * Transient -ENODEV conditions are allowed for
3341 * ATA_TMOUT_FF_WAIT.
3342 *
3343 * LOCKING:
3344 * EH context.
3345 *
3346 * RETURNS:
3347 * 0 if @linke is ready before @deadline; otherwise, -errno.
3348 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3349 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3350 int (*check_ready)(struct ata_link *link))
3351 {
3352 unsigned long start = jiffies;
3353 unsigned long nodev_deadline;
3354 int warned = 0;
3355
3356 /* choose which 0xff timeout to use, read comment in libata.h */
3357 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3358 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3359 else
3360 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3361
3362 /* Slave readiness can't be tested separately from master. On
3363 * M/S emulation configuration, this function should be called
3364 * only on the master and it will handle both master and slave.
3365 */
3366 WARN_ON(link == link->ap->slave_link);
3367
3368 if (time_after(nodev_deadline, deadline))
3369 nodev_deadline = deadline;
3370
3371 while (1) {
3372 unsigned long now = jiffies;
3373 int ready, tmp;
3374
3375 ready = tmp = check_ready(link);
3376 if (ready > 0)
3377 return 0;
3378
3379 /*
3380 * -ENODEV could be transient. Ignore -ENODEV if link
3381 * is online. Also, some SATA devices take a long
3382 * time to clear 0xff after reset. Wait for
3383 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3384 * offline.
3385 *
3386 * Note that some PATA controllers (pata_ali) explode
3387 * if status register is read more than once when
3388 * there's no device attached.
3389 */
3390 if (ready == -ENODEV) {
3391 if (ata_link_online(link))
3392 ready = 0;
3393 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3394 !ata_link_offline(link) &&
3395 time_before(now, nodev_deadline))
3396 ready = 0;
3397 }
3398
3399 if (ready)
3400 return ready;
3401 if (time_after(now, deadline))
3402 return -EBUSY;
3403
3404 if (!warned && time_after(now, start + 5 * HZ) &&
3405 (deadline - now > 3 * HZ)) {
3406 ata_link_warn(link,
3407 "link is slow to respond, please be patient "
3408 "(ready=%d)\n", tmp);
3409 warned = 1;
3410 }
3411
3412 ata_msleep(link->ap, 50);
3413 }
3414 }
3415
3416 /**
3417 * ata_wait_after_reset - wait for link to become ready after reset
3418 * @link: link to be waited on
3419 * @deadline: deadline jiffies for the operation
3420 * @check_ready: callback to check link readiness
3421 *
3422 * Wait for @link to become ready after reset.
3423 *
3424 * LOCKING:
3425 * EH context.
3426 *
3427 * RETURNS:
3428 * 0 if @linke is ready before @deadline; otherwise, -errno.
3429 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3430 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3431 int (*check_ready)(struct ata_link *link))
3432 {
3433 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3434
3435 return ata_wait_ready(link, deadline, check_ready);
3436 }
3437
3438 /**
3439 * sata_link_debounce - debounce SATA phy status
3440 * @link: ATA link to debounce SATA phy status for
3441 * @params: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3443 *
3444 * Make sure SStatus of @link reaches stable state, determined by
3445 * holding the same value where DET is not 1 for @duration polled
3446 * every @interval, before @timeout. Timeout constraints the
3447 * beginning of the stable state. Because DET gets stuck at 1 on
3448 * some controllers after hot unplugging, this functions waits
3449 * until timeout then returns 0 if DET is stable at 1.
3450 *
3451 * @timeout is further limited by @deadline. The sooner of the
3452 * two is used.
3453 *
3454 * LOCKING:
3455 * Kernel thread context (may sleep)
3456 *
3457 * RETURNS:
3458 * 0 on success, -errno on failure.
3459 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3460 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3461 unsigned long deadline)
3462 {
3463 unsigned long interval = params[0];
3464 unsigned long duration = params[1];
3465 unsigned long last_jiffies, t;
3466 u32 last, cur;
3467 int rc;
3468
3469 t = ata_deadline(jiffies, params[2]);
3470 if (time_before(t, deadline))
3471 deadline = t;
3472
3473 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3474 return rc;
3475 cur &= 0xf;
3476
3477 last = cur;
3478 last_jiffies = jiffies;
3479
3480 while (1) {
3481 ata_msleep(link->ap, interval);
3482 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3483 return rc;
3484 cur &= 0xf;
3485
3486 /* DET stable? */
3487 if (cur == last) {
3488 if (cur == 1 && time_before(jiffies, deadline))
3489 continue;
3490 if (time_after(jiffies,
3491 ata_deadline(last_jiffies, duration)))
3492 return 0;
3493 continue;
3494 }
3495
3496 /* unstable, start over */
3497 last = cur;
3498 last_jiffies = jiffies;
3499
3500 /* Check deadline. If debouncing failed, return
3501 * -EPIPE to tell upper layer to lower link speed.
3502 */
3503 if (time_after(jiffies, deadline))
3504 return -EPIPE;
3505 }
3506 }
3507
3508 /**
3509 * sata_link_resume - resume SATA link
3510 * @link: ATA link to resume SATA
3511 * @params: timing parameters { interval, duratinon, timeout } in msec
3512 * @deadline: deadline jiffies for the operation
3513 *
3514 * Resume SATA phy @link and debounce it.
3515 *
3516 * LOCKING:
3517 * Kernel thread context (may sleep)
3518 *
3519 * RETURNS:
3520 * 0 on success, -errno on failure.
3521 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3522 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3523 unsigned long deadline)
3524 {
3525 int tries = ATA_LINK_RESUME_TRIES;
3526 u32 scontrol, serror;
3527 int rc;
3528
3529 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3530 return rc;
3531
3532 /*
3533 * Writes to SControl sometimes get ignored under certain
3534 * controllers (ata_piix SIDPR). Make sure DET actually is
3535 * cleared.
3536 */
3537 do {
3538 scontrol = (scontrol & 0x0f0) | 0x300;
3539 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3540 return rc;
3541 /*
3542 * Some PHYs react badly if SStatus is pounded
3543 * immediately after resuming. Delay 200ms before
3544 * debouncing.
3545 */
3546 ata_msleep(link->ap, 200);
3547
3548 /* is SControl restored correctly? */
3549 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3550 return rc;
3551 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3552
3553 if ((scontrol & 0xf0f) != 0x300) {
3554 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3555 scontrol);
3556 return 0;
3557 }
3558
3559 if (tries < ATA_LINK_RESUME_TRIES)
3560 ata_link_warn(link, "link resume succeeded after %d retries\n",
3561 ATA_LINK_RESUME_TRIES - tries);
3562
3563 if ((rc = sata_link_debounce(link, params, deadline)))
3564 return rc;
3565
3566 /* clear SError, some PHYs require this even for SRST to work */
3567 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3568 rc = sata_scr_write(link, SCR_ERROR, serror);
3569
3570 return rc != -EINVAL ? rc : 0;
3571 }
3572
3573 /**
3574 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3575 * @link: ATA link to manipulate SControl for
3576 * @policy: LPM policy to configure
3577 * @spm_wakeup: initiate LPM transition to active state
3578 *
3579 * Manipulate the IPM field of the SControl register of @link
3580 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3581 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3582 * the link. This function also clears PHYRDY_CHG before
3583 * returning.
3584 *
3585 * LOCKING:
3586 * EH context.
3587 *
3588 * RETURNS:
3589 * 0 on succes, -errno otherwise.
3590 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3591 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3592 bool spm_wakeup)
3593 {
3594 struct ata_eh_context *ehc = &link->eh_context;
3595 bool woken_up = false;
3596 u32 scontrol;
3597 int rc;
3598
3599 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3600 if (rc)
3601 return rc;
3602
3603 switch (policy) {
3604 case ATA_LPM_MAX_POWER:
3605 /* disable all LPM transitions */
3606 scontrol |= (0x3 << 8);
3607 /* initiate transition to active state */
3608 if (spm_wakeup) {
3609 scontrol |= (0x4 << 12);
3610 woken_up = true;
3611 }
3612 break;
3613 case ATA_LPM_MED_POWER:
3614 /* allow LPM to PARTIAL */
3615 scontrol &= ~(0x1 << 8);
3616 scontrol |= (0x2 << 8);
3617 break;
3618 case ATA_LPM_MIN_POWER:
3619 if (ata_link_nr_enabled(link) > 0)
3620 /* no restrictions on LPM transitions */
3621 scontrol &= ~(0x3 << 8);
3622 else {
3623 /* empty port, power off */
3624 scontrol &= ~0xf;
3625 scontrol |= (0x1 << 2);
3626 }
3627 break;
3628 default:
3629 WARN_ON(1);
3630 }
3631
3632 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3633 if (rc)
3634 return rc;
3635
3636 /* give the link time to transit out of LPM state */
3637 if (woken_up)
3638 msleep(10);
3639
3640 /* clear PHYRDY_CHG from SError */
3641 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3642 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3643 }
3644
3645 /**
3646 * ata_std_prereset - prepare for reset
3647 * @link: ATA link to be reset
3648 * @deadline: deadline jiffies for the operation
3649 *
3650 * @link is about to be reset. Initialize it. Failure from
3651 * prereset makes libata abort whole reset sequence and give up
3652 * that port, so prereset should be best-effort. It does its
3653 * best to prepare for reset sequence but if things go wrong, it
3654 * should just whine, not fail.
3655 *
3656 * LOCKING:
3657 * Kernel thread context (may sleep)
3658 *
3659 * RETURNS:
3660 * 0 on success, -errno otherwise.
3661 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3662 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3663 {
3664 struct ata_port *ap = link->ap;
3665 struct ata_eh_context *ehc = &link->eh_context;
3666 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3667 int rc;
3668
3669 /* if we're about to do hardreset, nothing more to do */
3670 if (ehc->i.action & ATA_EH_HARDRESET)
3671 return 0;
3672
3673 /* if SATA, resume link */
3674 if (ap->flags & ATA_FLAG_SATA) {
3675 rc = sata_link_resume(link, timing, deadline);
3676 /* whine about phy resume failure but proceed */
3677 if (rc && rc != -EOPNOTSUPP)
3678 ata_link_warn(link,
3679 "failed to resume link for reset (errno=%d)\n",
3680 rc);
3681 }
3682
3683 /* no point in trying softreset on offline link */
3684 if (ata_phys_link_offline(link))
3685 ehc->i.action &= ~ATA_EH_SOFTRESET;
3686
3687 return 0;
3688 }
3689
3690 /**
3691 * sata_link_hardreset - reset link via SATA phy reset
3692 * @link: link to reset
3693 * @timing: timing parameters { interval, duratinon, timeout } in msec
3694 * @deadline: deadline jiffies for the operation
3695 * @online: optional out parameter indicating link onlineness
3696 * @check_ready: optional callback to check link readiness
3697 *
3698 * SATA phy-reset @link using DET bits of SControl register.
3699 * After hardreset, link readiness is waited upon using
3700 * ata_wait_ready() if @check_ready is specified. LLDs are
3701 * allowed to not specify @check_ready and wait itself after this
3702 * function returns. Device classification is LLD's
3703 * responsibility.
3704 *
3705 * *@online is set to one iff reset succeeded and @link is online
3706 * after reset.
3707 *
3708 * LOCKING:
3709 * Kernel thread context (may sleep)
3710 *
3711 * RETURNS:
3712 * 0 on success, -errno otherwise.
3713 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))3714 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3715 unsigned long deadline,
3716 bool *online, int (*check_ready)(struct ata_link *))
3717 {
3718 u32 scontrol;
3719 int rc;
3720
3721 DPRINTK("ENTER\n");
3722
3723 if (online)
3724 *online = false;
3725
3726 if (sata_set_spd_needed(link)) {
3727 /* SATA spec says nothing about how to reconfigure
3728 * spd. To be on the safe side, turn off phy during
3729 * reconfiguration. This works for at least ICH7 AHCI
3730 * and Sil3124.
3731 */
3732 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3733 goto out;
3734
3735 scontrol = (scontrol & 0x0f0) | 0x304;
3736
3737 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3738 goto out;
3739
3740 sata_set_spd(link);
3741 }
3742
3743 /* issue phy wake/reset */
3744 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3745 goto out;
3746
3747 scontrol = (scontrol & 0x0f0) | 0x301;
3748
3749 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3750 goto out;
3751
3752 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3753 * 10.4.2 says at least 1 ms.
3754 */
3755 ata_msleep(link->ap, 1);
3756
3757 /* bring link back */
3758 rc = sata_link_resume(link, timing, deadline);
3759 if (rc)
3760 goto out;
3761 /* if link is offline nothing more to do */
3762 if (ata_phys_link_offline(link))
3763 goto out;
3764
3765 /* Link is online. From this point, -ENODEV too is an error. */
3766 if (online)
3767 *online = true;
3768
3769 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3770 /* If PMP is supported, we have to do follow-up SRST.
3771 * Some PMPs don't send D2H Reg FIS after hardreset if
3772 * the first port is empty. Wait only for
3773 * ATA_TMOUT_PMP_SRST_WAIT.
3774 */
3775 if (check_ready) {
3776 unsigned long pmp_deadline;
3777
3778 pmp_deadline = ata_deadline(jiffies,
3779 ATA_TMOUT_PMP_SRST_WAIT);
3780 if (time_after(pmp_deadline, deadline))
3781 pmp_deadline = deadline;
3782 ata_wait_ready(link, pmp_deadline, check_ready);
3783 }
3784 rc = -EAGAIN;
3785 goto out;
3786 }
3787
3788 rc = 0;
3789 if (check_ready)
3790 rc = ata_wait_ready(link, deadline, check_ready);
3791 out:
3792 if (rc && rc != -EAGAIN) {
3793 /* online is set iff link is online && reset succeeded */
3794 if (online)
3795 *online = false;
3796 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3797 }
3798 DPRINTK("EXIT, rc=%d\n", rc);
3799 return rc;
3800 }
3801
3802 /**
3803 * sata_std_hardreset - COMRESET w/o waiting or classification
3804 * @link: link to reset
3805 * @class: resulting class of attached device
3806 * @deadline: deadline jiffies for the operation
3807 *
3808 * Standard SATA COMRESET w/o waiting or classification.
3809 *
3810 * LOCKING:
3811 * Kernel thread context (may sleep)
3812 *
3813 * RETURNS:
3814 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3815 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3816 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3817 unsigned long deadline)
3818 {
3819 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3820 bool online;
3821 int rc;
3822
3823 /* do hardreset */
3824 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3825 return online ? -EAGAIN : rc;
3826 }
3827
3828 /**
3829 * ata_std_postreset - standard postreset callback
3830 * @link: the target ata_link
3831 * @classes: classes of attached devices
3832 *
3833 * This function is invoked after a successful reset. Note that
3834 * the device might have been reset more than once using
3835 * different reset methods before postreset is invoked.
3836 *
3837 * LOCKING:
3838 * Kernel thread context (may sleep)
3839 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3840 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3841 {
3842 u32 serror;
3843
3844 DPRINTK("ENTER\n");
3845
3846 /* reset complete, clear SError */
3847 if (!sata_scr_read(link, SCR_ERROR, &serror))
3848 sata_scr_write(link, SCR_ERROR, serror);
3849
3850 /* print link status */
3851 sata_print_link_status(link);
3852
3853 DPRINTK("EXIT\n");
3854 }
3855
3856 /**
3857 * ata_dev_same_device - Determine whether new ID matches configured device
3858 * @dev: device to compare against
3859 * @new_class: class of the new device
3860 * @new_id: IDENTIFY page of the new device
3861 *
3862 * Compare @new_class and @new_id against @dev and determine
3863 * whether @dev is the device indicated by @new_class and
3864 * @new_id.
3865 *
3866 * LOCKING:
3867 * None.
3868 *
3869 * RETURNS:
3870 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3871 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3872 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3873 const u16 *new_id)
3874 {
3875 const u16 *old_id = dev->id;
3876 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3877 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3878
3879 if (dev->class != new_class) {
3880 ata_dev_info(dev, "class mismatch %d != %d\n",
3881 dev->class, new_class);
3882 return 0;
3883 }
3884
3885 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3886 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3887 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3888 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3889
3890 if (strcmp(model[0], model[1])) {
3891 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3892 model[0], model[1]);
3893 return 0;
3894 }
3895
3896 if (strcmp(serial[0], serial[1])) {
3897 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3898 serial[0], serial[1]);
3899 return 0;
3900 }
3901
3902 return 1;
3903 }
3904
3905 /**
3906 * ata_dev_reread_id - Re-read IDENTIFY data
3907 * @dev: target ATA device
3908 * @readid_flags: read ID flags
3909 *
3910 * Re-read IDENTIFY page and make sure @dev is still attached to
3911 * the port.
3912 *
3913 * LOCKING:
3914 * Kernel thread context (may sleep)
3915 *
3916 * RETURNS:
3917 * 0 on success, negative errno otherwise
3918 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3919 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3920 {
3921 unsigned int class = dev->class;
3922 u16 *id = (void *)dev->link->ap->sector_buf;
3923 int rc;
3924
3925 /* read ID data */
3926 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3927 if (rc)
3928 return rc;
3929
3930 /* is the device still there? */
3931 if (!ata_dev_same_device(dev, class, id))
3932 return -ENODEV;
3933
3934 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3935 return 0;
3936 }
3937
3938 /**
3939 * ata_dev_revalidate - Revalidate ATA device
3940 * @dev: device to revalidate
3941 * @new_class: new class code
3942 * @readid_flags: read ID flags
3943 *
3944 * Re-read IDENTIFY page, make sure @dev is still attached to the
3945 * port and reconfigure it according to the new IDENTIFY page.
3946 *
3947 * LOCKING:
3948 * Kernel thread context (may sleep)
3949 *
3950 * RETURNS:
3951 * 0 on success, negative errno otherwise
3952 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3953 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3954 unsigned int readid_flags)
3955 {
3956 u64 n_sectors = dev->n_sectors;
3957 u64 n_native_sectors = dev->n_native_sectors;
3958 int rc;
3959
3960 if (!ata_dev_enabled(dev))
3961 return -ENODEV;
3962
3963 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3964 if (ata_class_enabled(new_class) &&
3965 new_class != ATA_DEV_ATA &&
3966 new_class != ATA_DEV_ATAPI &&
3967 new_class != ATA_DEV_SEMB) {
3968 ata_dev_info(dev, "class mismatch %u != %u\n",
3969 dev->class, new_class);
3970 rc = -ENODEV;
3971 goto fail;
3972 }
3973
3974 /* re-read ID */
3975 rc = ata_dev_reread_id(dev, readid_flags);
3976 if (rc)
3977 goto fail;
3978
3979 /* configure device according to the new ID */
3980 rc = ata_dev_configure(dev);
3981 if (rc)
3982 goto fail;
3983
3984 /* verify n_sectors hasn't changed */
3985 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3986 dev->n_sectors == n_sectors)
3987 return 0;
3988
3989 /* n_sectors has changed */
3990 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3991 (unsigned long long)n_sectors,
3992 (unsigned long long)dev->n_sectors);
3993
3994 /*
3995 * Something could have caused HPA to be unlocked
3996 * involuntarily. If n_native_sectors hasn't changed and the
3997 * new size matches it, keep the device.
3998 */
3999 if (dev->n_native_sectors == n_native_sectors &&
4000 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4001 ata_dev_warn(dev,
4002 "new n_sectors matches native, probably "
4003 "late HPA unlock, n_sectors updated\n");
4004 /* use the larger n_sectors */
4005 return 0;
4006 }
4007
4008 /*
4009 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4010 * unlocking HPA in those cases.
4011 *
4012 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4013 */
4014 if (dev->n_native_sectors == n_native_sectors &&
4015 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4016 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4017 ata_dev_warn(dev,
4018 "old n_sectors matches native, probably "
4019 "late HPA lock, will try to unlock HPA\n");
4020 /* try unlocking HPA */
4021 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4022 rc = -EIO;
4023 } else
4024 rc = -ENODEV;
4025
4026 /* restore original n_[native_]sectors and fail */
4027 dev->n_native_sectors = n_native_sectors;
4028 dev->n_sectors = n_sectors;
4029 fail:
4030 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4031 return rc;
4032 }
4033
4034 struct ata_blacklist_entry {
4035 const char *model_num;
4036 const char *model_rev;
4037 unsigned long horkage;
4038 };
4039
4040 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4041 /* Devices with DMA related problems under Linux */
4042 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4043 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4044 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4045 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4046 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4047 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4048 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4049 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4050 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4051 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4052 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4053 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4054 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4055 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4056 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4057 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4058 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4059 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4060 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4061 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4062 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4063 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4064 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4065 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4066 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4067 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4068 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4069 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4070 /* Odd clown on sil3726/4726 PMPs */
4071 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4072
4073 /* Weird ATAPI devices */
4074 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4075 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4076 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4077 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4078
4079 /* Devices we expect to fail diagnostics */
4080
4081 /* Devices where NCQ should be avoided */
4082 /* NCQ is slow */
4083 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4084 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4085 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4086 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4087 /* NCQ is broken */
4088 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4089 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4090 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4091 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4092 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4093
4094 /* Seagate NCQ + FLUSH CACHE firmware bug */
4095 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4096 ATA_HORKAGE_FIRMWARE_WARN },
4097
4098 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4099 ATA_HORKAGE_FIRMWARE_WARN },
4100
4101 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4102 ATA_HORKAGE_FIRMWARE_WARN },
4103
4104 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4105 ATA_HORKAGE_FIRMWARE_WARN },
4106
4107 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4108 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4109 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4110
4111 /* Blacklist entries taken from Silicon Image 3124/3132
4112 Windows driver .inf file - also several Linux problem reports */
4113 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4114 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4115 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4116
4117 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4118 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4119
4120 /* devices which puke on READ_NATIVE_MAX */
4121 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4122 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4123 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4124 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4125
4126 /* this one allows HPA unlocking but fails IOs on the area */
4127 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4128
4129 /* Devices which report 1 sector over size HPA */
4130 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4131 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4132 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4133
4134 /* Devices which get the IVB wrong */
4135 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4136 /* Maybe we should just blacklist TSSTcorp... */
4137 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4138
4139 /* Devices that do not need bridging limits applied */
4140 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4141
4142 /* Devices which aren't very happy with higher link speeds */
4143 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4144 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4145
4146 /*
4147 * Devices which choke on SETXFER. Applies only if both the
4148 * device and controller are SATA.
4149 */
4150 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4151 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4152 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4153 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4154 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4155
4156 /* End Marker */
4157 { }
4158 };
4159
4160 /**
4161 * glob_match - match a text string against a glob-style pattern
4162 * @text: the string to be examined
4163 * @pattern: the glob-style pattern to be matched against
4164 *
4165 * Either/both of text and pattern can be empty strings.
4166 *
4167 * Match text against a glob-style pattern, with wildcards and simple sets:
4168 *
4169 * ? matches any single character.
4170 * * matches any run of characters.
4171 * [xyz] matches a single character from the set: x, y, or z.
4172 * [a-d] matches a single character from the range: a, b, c, or d.
4173 * [a-d0-9] matches a single character from either range.
4174 *
4175 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4176 * Behaviour with malformed patterns is undefined, though generally reasonable.
4177 *
4178 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4179 *
4180 * This function uses one level of recursion per '*' in pattern.
4181 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4182 * this will not cause stack problems for any reasonable use here.
4183 *
4184 * RETURNS:
4185 * 0 on match, 1 otherwise.
4186 */
glob_match(const char * text,const char * pattern)4187 static int glob_match (const char *text, const char *pattern)
4188 {
4189 do {
4190 /* Match single character or a '?' wildcard */
4191 if (*text == *pattern || *pattern == '?') {
4192 if (!*pattern++)
4193 return 0; /* End of both strings: match */
4194 } else {
4195 /* Match single char against a '[' bracketed ']' pattern set */
4196 if (!*text || *pattern != '[')
4197 break; /* Not a pattern set */
4198 while (*++pattern && *pattern != ']' && *text != *pattern) {
4199 if (*pattern == '-' && *(pattern - 1) != '[')
4200 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4201 ++pattern;
4202 break;
4203 }
4204 }
4205 if (!*pattern || *pattern == ']')
4206 return 1; /* No match */
4207 while (*pattern && *pattern++ != ']');
4208 }
4209 } while (*++text && *pattern);
4210
4211 /* Match any run of chars against a '*' wildcard */
4212 if (*pattern == '*') {
4213 if (!*++pattern)
4214 return 0; /* Match: avoid recursion at end of pattern */
4215 /* Loop to handle additional pattern chars after the wildcard */
4216 while (*text) {
4217 if (glob_match(text, pattern) == 0)
4218 return 0; /* Remainder matched */
4219 ++text; /* Absorb (match) this char and try again */
4220 }
4221 }
4222 if (!*text && !*pattern)
4223 return 0; /* End of both strings: match */
4224 return 1; /* No match */
4225 }
4226
ata_dev_blacklisted(const struct ata_device * dev)4227 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4228 {
4229 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4230 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4231 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4232
4233 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4234 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4235
4236 while (ad->model_num) {
4237 if (!glob_match(model_num, ad->model_num)) {
4238 if (ad->model_rev == NULL)
4239 return ad->horkage;
4240 if (!glob_match(model_rev, ad->model_rev))
4241 return ad->horkage;
4242 }
4243 ad++;
4244 }
4245 return 0;
4246 }
4247
ata_dma_blacklisted(const struct ata_device * dev)4248 static int ata_dma_blacklisted(const struct ata_device *dev)
4249 {
4250 /* We don't support polling DMA.
4251 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4252 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4253 */
4254 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4255 (dev->flags & ATA_DFLAG_CDB_INTR))
4256 return 1;
4257 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4258 }
4259
4260 /**
4261 * ata_is_40wire - check drive side detection
4262 * @dev: device
4263 *
4264 * Perform drive side detection decoding, allowing for device vendors
4265 * who can't follow the documentation.
4266 */
4267
ata_is_40wire(struct ata_device * dev)4268 static int ata_is_40wire(struct ata_device *dev)
4269 {
4270 if (dev->horkage & ATA_HORKAGE_IVB)
4271 return ata_drive_40wire_relaxed(dev->id);
4272 return ata_drive_40wire(dev->id);
4273 }
4274
4275 /**
4276 * cable_is_40wire - 40/80/SATA decider
4277 * @ap: port to consider
4278 *
4279 * This function encapsulates the policy for speed management
4280 * in one place. At the moment we don't cache the result but
4281 * there is a good case for setting ap->cbl to the result when
4282 * we are called with unknown cables (and figuring out if it
4283 * impacts hotplug at all).
4284 *
4285 * Return 1 if the cable appears to be 40 wire.
4286 */
4287
cable_is_40wire(struct ata_port * ap)4288 static int cable_is_40wire(struct ata_port *ap)
4289 {
4290 struct ata_link *link;
4291 struct ata_device *dev;
4292
4293 /* If the controller thinks we are 40 wire, we are. */
4294 if (ap->cbl == ATA_CBL_PATA40)
4295 return 1;
4296
4297 /* If the controller thinks we are 80 wire, we are. */
4298 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4299 return 0;
4300
4301 /* If the system is known to be 40 wire short cable (eg
4302 * laptop), then we allow 80 wire modes even if the drive
4303 * isn't sure.
4304 */
4305 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4306 return 0;
4307
4308 /* If the controller doesn't know, we scan.
4309 *
4310 * Note: We look for all 40 wire detects at this point. Any
4311 * 80 wire detect is taken to be 80 wire cable because
4312 * - in many setups only the one drive (slave if present) will
4313 * give a valid detect
4314 * - if you have a non detect capable drive you don't want it
4315 * to colour the choice
4316 */
4317 ata_for_each_link(link, ap, EDGE) {
4318 ata_for_each_dev(dev, link, ENABLED) {
4319 if (!ata_is_40wire(dev))
4320 return 0;
4321 }
4322 }
4323 return 1;
4324 }
4325
4326 /**
4327 * ata_dev_xfermask - Compute supported xfermask of the given device
4328 * @dev: Device to compute xfermask for
4329 *
4330 * Compute supported xfermask of @dev and store it in
4331 * dev->*_mask. This function is responsible for applying all
4332 * known limits including host controller limits, device
4333 * blacklist, etc...
4334 *
4335 * LOCKING:
4336 * None.
4337 */
ata_dev_xfermask(struct ata_device * dev)4338 static void ata_dev_xfermask(struct ata_device *dev)
4339 {
4340 struct ata_link *link = dev->link;
4341 struct ata_port *ap = link->ap;
4342 struct ata_host *host = ap->host;
4343 unsigned long xfer_mask;
4344
4345 /* controller modes available */
4346 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4347 ap->mwdma_mask, ap->udma_mask);
4348
4349 /* drive modes available */
4350 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4351 dev->mwdma_mask, dev->udma_mask);
4352 xfer_mask &= ata_id_xfermask(dev->id);
4353
4354 /*
4355 * CFA Advanced TrueIDE timings are not allowed on a shared
4356 * cable
4357 */
4358 if (ata_dev_pair(dev)) {
4359 /* No PIO5 or PIO6 */
4360 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4361 /* No MWDMA3 or MWDMA 4 */
4362 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4363 }
4364
4365 if (ata_dma_blacklisted(dev)) {
4366 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4367 ata_dev_warn(dev,
4368 "device is on DMA blacklist, disabling DMA\n");
4369 }
4370
4371 if ((host->flags & ATA_HOST_SIMPLEX) &&
4372 host->simplex_claimed && host->simplex_claimed != ap) {
4373 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4374 ata_dev_warn(dev,
4375 "simplex DMA is claimed by other device, disabling DMA\n");
4376 }
4377
4378 if (ap->flags & ATA_FLAG_NO_IORDY)
4379 xfer_mask &= ata_pio_mask_no_iordy(dev);
4380
4381 if (ap->ops->mode_filter)
4382 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4383
4384 /* Apply cable rule here. Don't apply it early because when
4385 * we handle hot plug the cable type can itself change.
4386 * Check this last so that we know if the transfer rate was
4387 * solely limited by the cable.
4388 * Unknown or 80 wire cables reported host side are checked
4389 * drive side as well. Cases where we know a 40wire cable
4390 * is used safely for 80 are not checked here.
4391 */
4392 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4393 /* UDMA/44 or higher would be available */
4394 if (cable_is_40wire(ap)) {
4395 ata_dev_warn(dev,
4396 "limited to UDMA/33 due to 40-wire cable\n");
4397 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4398 }
4399
4400 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4401 &dev->mwdma_mask, &dev->udma_mask);
4402 }
4403
4404 /**
4405 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4406 * @dev: Device to which command will be sent
4407 *
4408 * Issue SET FEATURES - XFER MODE command to device @dev
4409 * on port @ap.
4410 *
4411 * LOCKING:
4412 * PCI/etc. bus probe sem.
4413 *
4414 * RETURNS:
4415 * 0 on success, AC_ERR_* mask otherwise.
4416 */
4417
ata_dev_set_xfermode(struct ata_device * dev)4418 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4419 {
4420 struct ata_taskfile tf;
4421 unsigned int err_mask;
4422
4423 /* set up set-features taskfile */
4424 DPRINTK("set features - xfer mode\n");
4425
4426 /* Some controllers and ATAPI devices show flaky interrupt
4427 * behavior after setting xfer mode. Use polling instead.
4428 */
4429 ata_tf_init(dev, &tf);
4430 tf.command = ATA_CMD_SET_FEATURES;
4431 tf.feature = SETFEATURES_XFER;
4432 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4433 tf.protocol = ATA_PROT_NODATA;
4434 /* If we are using IORDY we must send the mode setting command */
4435 if (ata_pio_need_iordy(dev))
4436 tf.nsect = dev->xfer_mode;
4437 /* If the device has IORDY and the controller does not - turn it off */
4438 else if (ata_id_has_iordy(dev->id))
4439 tf.nsect = 0x01;
4440 else /* In the ancient relic department - skip all of this */
4441 return 0;
4442
4443 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4444
4445 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4446 return err_mask;
4447 }
4448
4449 /**
4450 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4451 * @dev: Device to which command will be sent
4452 * @enable: Whether to enable or disable the feature
4453 * @feature: The sector count represents the feature to set
4454 *
4455 * Issue SET FEATURES - SATA FEATURES command to device @dev
4456 * on port @ap with sector count
4457 *
4458 * LOCKING:
4459 * PCI/etc. bus probe sem.
4460 *
4461 * RETURNS:
4462 * 0 on success, AC_ERR_* mask otherwise.
4463 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4464 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4465 {
4466 struct ata_taskfile tf;
4467 unsigned int err_mask;
4468
4469 /* set up set-features taskfile */
4470 DPRINTK("set features - SATA features\n");
4471
4472 ata_tf_init(dev, &tf);
4473 tf.command = ATA_CMD_SET_FEATURES;
4474 tf.feature = enable;
4475 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4476 tf.protocol = ATA_PROT_NODATA;
4477 tf.nsect = feature;
4478
4479 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4480
4481 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4482 return err_mask;
4483 }
4484
4485 /**
4486 * ata_dev_init_params - Issue INIT DEV PARAMS command
4487 * @dev: Device to which command will be sent
4488 * @heads: Number of heads (taskfile parameter)
4489 * @sectors: Number of sectors (taskfile parameter)
4490 *
4491 * LOCKING:
4492 * Kernel thread context (may sleep)
4493 *
4494 * RETURNS:
4495 * 0 on success, AC_ERR_* mask otherwise.
4496 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4497 static unsigned int ata_dev_init_params(struct ata_device *dev,
4498 u16 heads, u16 sectors)
4499 {
4500 struct ata_taskfile tf;
4501 unsigned int err_mask;
4502
4503 /* Number of sectors per track 1-255. Number of heads 1-16 */
4504 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4505 return AC_ERR_INVALID;
4506
4507 /* set up init dev params taskfile */
4508 DPRINTK("init dev params \n");
4509
4510 ata_tf_init(dev, &tf);
4511 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4512 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4513 tf.protocol = ATA_PROT_NODATA;
4514 tf.nsect = sectors;
4515 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4516
4517 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4518 /* A clean abort indicates an original or just out of spec drive
4519 and we should continue as we issue the setup based on the
4520 drive reported working geometry */
4521 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4522 err_mask = 0;
4523
4524 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4525 return err_mask;
4526 }
4527
4528 /**
4529 * ata_sg_clean - Unmap DMA memory associated with command
4530 * @qc: Command containing DMA memory to be released
4531 *
4532 * Unmap all mapped DMA memory associated with this command.
4533 *
4534 * LOCKING:
4535 * spin_lock_irqsave(host lock)
4536 */
ata_sg_clean(struct ata_queued_cmd * qc)4537 void ata_sg_clean(struct ata_queued_cmd *qc)
4538 {
4539 struct ata_port *ap = qc->ap;
4540 struct scatterlist *sg = qc->sg;
4541 int dir = qc->dma_dir;
4542
4543 WARN_ON_ONCE(sg == NULL);
4544
4545 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4546
4547 if (qc->n_elem)
4548 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4549
4550 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4551 qc->sg = NULL;
4552 }
4553
4554 /**
4555 * atapi_check_dma - Check whether ATAPI DMA can be supported
4556 * @qc: Metadata associated with taskfile to check
4557 *
4558 * Allow low-level driver to filter ATA PACKET commands, returning
4559 * a status indicating whether or not it is OK to use DMA for the
4560 * supplied PACKET command.
4561 *
4562 * LOCKING:
4563 * spin_lock_irqsave(host lock)
4564 *
4565 * RETURNS: 0 when ATAPI DMA can be used
4566 * nonzero otherwise
4567 */
atapi_check_dma(struct ata_queued_cmd * qc)4568 int atapi_check_dma(struct ata_queued_cmd *qc)
4569 {
4570 struct ata_port *ap = qc->ap;
4571
4572 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4573 * few ATAPI devices choke on such DMA requests.
4574 */
4575 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4576 unlikely(qc->nbytes & 15))
4577 return 1;
4578
4579 if (ap->ops->check_atapi_dma)
4580 return ap->ops->check_atapi_dma(qc);
4581
4582 return 0;
4583 }
4584
4585 /**
4586 * ata_std_qc_defer - Check whether a qc needs to be deferred
4587 * @qc: ATA command in question
4588 *
4589 * Non-NCQ commands cannot run with any other command, NCQ or
4590 * not. As upper layer only knows the queue depth, we are
4591 * responsible for maintaining exclusion. This function checks
4592 * whether a new command @qc can be issued.
4593 *
4594 * LOCKING:
4595 * spin_lock_irqsave(host lock)
4596 *
4597 * RETURNS:
4598 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4599 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4600 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4601 {
4602 struct ata_link *link = qc->dev->link;
4603
4604 if (qc->tf.protocol == ATA_PROT_NCQ) {
4605 if (!ata_tag_valid(link->active_tag))
4606 return 0;
4607 } else {
4608 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4609 return 0;
4610 }
4611
4612 return ATA_DEFER_LINK;
4613 }
4614
ata_noop_qc_prep(struct ata_queued_cmd * qc)4615 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4616
4617 /**
4618 * ata_sg_init - Associate command with scatter-gather table.
4619 * @qc: Command to be associated
4620 * @sg: Scatter-gather table.
4621 * @n_elem: Number of elements in s/g table.
4622 *
4623 * Initialize the data-related elements of queued_cmd @qc
4624 * to point to a scatter-gather table @sg, containing @n_elem
4625 * elements.
4626 *
4627 * LOCKING:
4628 * spin_lock_irqsave(host lock)
4629 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4630 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4631 unsigned int n_elem)
4632 {
4633 qc->sg = sg;
4634 qc->n_elem = n_elem;
4635 qc->cursg = qc->sg;
4636 }
4637
4638 /**
4639 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4640 * @qc: Command with scatter-gather table to be mapped.
4641 *
4642 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4643 *
4644 * LOCKING:
4645 * spin_lock_irqsave(host lock)
4646 *
4647 * RETURNS:
4648 * Zero on success, negative on error.
4649 *
4650 */
ata_sg_setup(struct ata_queued_cmd * qc)4651 static int ata_sg_setup(struct ata_queued_cmd *qc)
4652 {
4653 struct ata_port *ap = qc->ap;
4654 unsigned int n_elem;
4655
4656 VPRINTK("ENTER, ata%u\n", ap->print_id);
4657
4658 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4659 if (n_elem < 1)
4660 return -1;
4661
4662 DPRINTK("%d sg elements mapped\n", n_elem);
4663 qc->orig_n_elem = qc->n_elem;
4664 qc->n_elem = n_elem;
4665 qc->flags |= ATA_QCFLAG_DMAMAP;
4666
4667 return 0;
4668 }
4669
4670 /**
4671 * swap_buf_le16 - swap halves of 16-bit words in place
4672 * @buf: Buffer to swap
4673 * @buf_words: Number of 16-bit words in buffer.
4674 *
4675 * Swap halves of 16-bit words if needed to convert from
4676 * little-endian byte order to native cpu byte order, or
4677 * vice-versa.
4678 *
4679 * LOCKING:
4680 * Inherited from caller.
4681 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4682 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4683 {
4684 #ifdef __BIG_ENDIAN
4685 unsigned int i;
4686
4687 for (i = 0; i < buf_words; i++)
4688 buf[i] = le16_to_cpu(buf[i]);
4689 #endif /* __BIG_ENDIAN */
4690 }
4691
4692 /**
4693 * ata_qc_new - Request an available ATA command, for queueing
4694 * @ap: target port
4695 *
4696 * LOCKING:
4697 * None.
4698 */
4699
ata_qc_new(struct ata_port * ap)4700 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4701 {
4702 struct ata_queued_cmd *qc = NULL;
4703 unsigned int i, tag;
4704
4705 /* no command while frozen */
4706 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4707 return NULL;
4708
4709 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4710 tag = (i + ap->last_tag + 1) % ATA_MAX_QUEUE;
4711
4712 /* the last tag is reserved for internal command. */
4713 if (tag == ATA_TAG_INTERNAL)
4714 continue;
4715
4716 if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4717 qc = __ata_qc_from_tag(ap, tag);
4718 qc->tag = tag;
4719 ap->last_tag = tag;
4720 break;
4721 }
4722 }
4723
4724 return qc;
4725 }
4726
4727 /**
4728 * ata_qc_new_init - Request an available ATA command, and initialize it
4729 * @dev: Device from whom we request an available command structure
4730 *
4731 * LOCKING:
4732 * None.
4733 */
4734
ata_qc_new_init(struct ata_device * dev)4735 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4736 {
4737 struct ata_port *ap = dev->link->ap;
4738 struct ata_queued_cmd *qc;
4739
4740 qc = ata_qc_new(ap);
4741 if (qc) {
4742 qc->scsicmd = NULL;
4743 qc->ap = ap;
4744 qc->dev = dev;
4745
4746 ata_qc_reinit(qc);
4747 }
4748
4749 return qc;
4750 }
4751
4752 /**
4753 * ata_qc_free - free unused ata_queued_cmd
4754 * @qc: Command to complete
4755 *
4756 * Designed to free unused ata_queued_cmd object
4757 * in case something prevents using it.
4758 *
4759 * LOCKING:
4760 * spin_lock_irqsave(host lock)
4761 */
ata_qc_free(struct ata_queued_cmd * qc)4762 void ata_qc_free(struct ata_queued_cmd *qc)
4763 {
4764 struct ata_port *ap;
4765 unsigned int tag;
4766
4767 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4768 ap = qc->ap;
4769
4770 qc->flags = 0;
4771 tag = qc->tag;
4772 if (likely(ata_tag_valid(tag))) {
4773 qc->tag = ATA_TAG_POISON;
4774 clear_bit(tag, &ap->qc_allocated);
4775 }
4776 }
4777
__ata_qc_complete(struct ata_queued_cmd * qc)4778 void __ata_qc_complete(struct ata_queued_cmd *qc)
4779 {
4780 struct ata_port *ap;
4781 struct ata_link *link;
4782
4783 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4784 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4785 ap = qc->ap;
4786 link = qc->dev->link;
4787
4788 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4789 ata_sg_clean(qc);
4790
4791 /* command should be marked inactive atomically with qc completion */
4792 if (qc->tf.protocol == ATA_PROT_NCQ) {
4793 link->sactive &= ~(1 << qc->tag);
4794 if (!link->sactive)
4795 ap->nr_active_links--;
4796 } else {
4797 link->active_tag = ATA_TAG_POISON;
4798 ap->nr_active_links--;
4799 }
4800
4801 /* clear exclusive status */
4802 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4803 ap->excl_link == link))
4804 ap->excl_link = NULL;
4805
4806 /* atapi: mark qc as inactive to prevent the interrupt handler
4807 * from completing the command twice later, before the error handler
4808 * is called. (when rc != 0 and atapi request sense is needed)
4809 */
4810 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4811 ap->qc_active &= ~(1 << qc->tag);
4812
4813 /* call completion callback */
4814 qc->complete_fn(qc);
4815 }
4816
fill_result_tf(struct ata_queued_cmd * qc)4817 static void fill_result_tf(struct ata_queued_cmd *qc)
4818 {
4819 struct ata_port *ap = qc->ap;
4820
4821 qc->result_tf.flags = qc->tf.flags;
4822 ap->ops->qc_fill_rtf(qc);
4823 }
4824
ata_verify_xfer(struct ata_queued_cmd * qc)4825 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4826 {
4827 struct ata_device *dev = qc->dev;
4828
4829 if (ata_is_nodata(qc->tf.protocol))
4830 return;
4831
4832 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4833 return;
4834
4835 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4836 }
4837
4838 /**
4839 * ata_qc_complete - Complete an active ATA command
4840 * @qc: Command to complete
4841 *
4842 * Indicate to the mid and upper layers that an ATA command has
4843 * completed, with either an ok or not-ok status.
4844 *
4845 * Refrain from calling this function multiple times when
4846 * successfully completing multiple NCQ commands.
4847 * ata_qc_complete_multiple() should be used instead, which will
4848 * properly update IRQ expect state.
4849 *
4850 * LOCKING:
4851 * spin_lock_irqsave(host lock)
4852 */
ata_qc_complete(struct ata_queued_cmd * qc)4853 void ata_qc_complete(struct ata_queued_cmd *qc)
4854 {
4855 struct ata_port *ap = qc->ap;
4856
4857 /* XXX: New EH and old EH use different mechanisms to
4858 * synchronize EH with regular execution path.
4859 *
4860 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4861 * Normal execution path is responsible for not accessing a
4862 * failed qc. libata core enforces the rule by returning NULL
4863 * from ata_qc_from_tag() for failed qcs.
4864 *
4865 * Old EH depends on ata_qc_complete() nullifying completion
4866 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4867 * not synchronize with interrupt handler. Only PIO task is
4868 * taken care of.
4869 */
4870 if (ap->ops->error_handler) {
4871 struct ata_device *dev = qc->dev;
4872 struct ata_eh_info *ehi = &dev->link->eh_info;
4873
4874 if (unlikely(qc->err_mask))
4875 qc->flags |= ATA_QCFLAG_FAILED;
4876
4877 /*
4878 * Finish internal commands without any further processing
4879 * and always with the result TF filled.
4880 */
4881 if (unlikely(ata_tag_internal(qc->tag))) {
4882 fill_result_tf(qc);
4883 __ata_qc_complete(qc);
4884 return;
4885 }
4886
4887 /*
4888 * Non-internal qc has failed. Fill the result TF and
4889 * summon EH.
4890 */
4891 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4892 fill_result_tf(qc);
4893 ata_qc_schedule_eh(qc);
4894 return;
4895 }
4896
4897 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4898
4899 /* read result TF if requested */
4900 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4901 fill_result_tf(qc);
4902
4903 /* Some commands need post-processing after successful
4904 * completion.
4905 */
4906 switch (qc->tf.command) {
4907 case ATA_CMD_SET_FEATURES:
4908 if (qc->tf.feature != SETFEATURES_WC_ON &&
4909 qc->tf.feature != SETFEATURES_WC_OFF)
4910 break;
4911 /* fall through */
4912 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4913 case ATA_CMD_SET_MULTI: /* multi_count changed */
4914 /* revalidate device */
4915 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4916 ata_port_schedule_eh(ap);
4917 break;
4918
4919 case ATA_CMD_SLEEP:
4920 dev->flags |= ATA_DFLAG_SLEEPING;
4921 break;
4922 }
4923
4924 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4925 ata_verify_xfer(qc);
4926
4927 __ata_qc_complete(qc);
4928 } else {
4929 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4930 return;
4931
4932 /* read result TF if failed or requested */
4933 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4934 fill_result_tf(qc);
4935
4936 __ata_qc_complete(qc);
4937 }
4938 }
4939
4940 /**
4941 * ata_qc_complete_multiple - Complete multiple qcs successfully
4942 * @ap: port in question
4943 * @qc_active: new qc_active mask
4944 *
4945 * Complete in-flight commands. This functions is meant to be
4946 * called from low-level driver's interrupt routine to complete
4947 * requests normally. ap->qc_active and @qc_active is compared
4948 * and commands are completed accordingly.
4949 *
4950 * Always use this function when completing multiple NCQ commands
4951 * from IRQ handlers instead of calling ata_qc_complete()
4952 * multiple times to keep IRQ expect status properly in sync.
4953 *
4954 * LOCKING:
4955 * spin_lock_irqsave(host lock)
4956 *
4957 * RETURNS:
4958 * Number of completed commands on success, -errno otherwise.
4959 */
ata_qc_complete_multiple(struct ata_port * ap,u32 qc_active)4960 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4961 {
4962 int nr_done = 0;
4963 u32 done_mask;
4964
4965 done_mask = ap->qc_active ^ qc_active;
4966
4967 if (unlikely(done_mask & qc_active)) {
4968 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4969 ap->qc_active, qc_active);
4970 return -EINVAL;
4971 }
4972
4973 while (done_mask) {
4974 struct ata_queued_cmd *qc;
4975 unsigned int tag = __ffs(done_mask);
4976
4977 qc = ata_qc_from_tag(ap, tag);
4978 if (qc) {
4979 ata_qc_complete(qc);
4980 nr_done++;
4981 }
4982 done_mask &= ~(1 << tag);
4983 }
4984
4985 return nr_done;
4986 }
4987
4988 /**
4989 * ata_qc_issue - issue taskfile to device
4990 * @qc: command to issue to device
4991 *
4992 * Prepare an ATA command to submission to device.
4993 * This includes mapping the data into a DMA-able
4994 * area, filling in the S/G table, and finally
4995 * writing the taskfile to hardware, starting the command.
4996 *
4997 * LOCKING:
4998 * spin_lock_irqsave(host lock)
4999 */
ata_qc_issue(struct ata_queued_cmd * qc)5000 void ata_qc_issue(struct ata_queued_cmd *qc)
5001 {
5002 struct ata_port *ap = qc->ap;
5003 struct ata_link *link = qc->dev->link;
5004 u8 prot = qc->tf.protocol;
5005
5006 /* Make sure only one non-NCQ command is outstanding. The
5007 * check is skipped for old EH because it reuses active qc to
5008 * request ATAPI sense.
5009 */
5010 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5011
5012 if (ata_is_ncq(prot)) {
5013 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5014
5015 if (!link->sactive)
5016 ap->nr_active_links++;
5017 link->sactive |= 1 << qc->tag;
5018 } else {
5019 WARN_ON_ONCE(link->sactive);
5020
5021 ap->nr_active_links++;
5022 link->active_tag = qc->tag;
5023 }
5024
5025 qc->flags |= ATA_QCFLAG_ACTIVE;
5026 ap->qc_active |= 1 << qc->tag;
5027
5028 /*
5029 * We guarantee to LLDs that they will have at least one
5030 * non-zero sg if the command is a data command.
5031 */
5032 if (WARN_ON_ONCE(ata_is_data(prot) &&
5033 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5034 goto sys_err;
5035
5036 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5037 (ap->flags & ATA_FLAG_PIO_DMA)))
5038 if (ata_sg_setup(qc))
5039 goto sys_err;
5040
5041 /* if device is sleeping, schedule reset and abort the link */
5042 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5043 link->eh_info.action |= ATA_EH_RESET;
5044 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5045 ata_link_abort(link);
5046 return;
5047 }
5048
5049 ap->ops->qc_prep(qc);
5050
5051 qc->err_mask |= ap->ops->qc_issue(qc);
5052 if (unlikely(qc->err_mask))
5053 goto err;
5054 return;
5055
5056 sys_err:
5057 qc->err_mask |= AC_ERR_SYSTEM;
5058 err:
5059 ata_qc_complete(qc);
5060 }
5061
5062 /**
5063 * sata_scr_valid - test whether SCRs are accessible
5064 * @link: ATA link to test SCR accessibility for
5065 *
5066 * Test whether SCRs are accessible for @link.
5067 *
5068 * LOCKING:
5069 * None.
5070 *
5071 * RETURNS:
5072 * 1 if SCRs are accessible, 0 otherwise.
5073 */
sata_scr_valid(struct ata_link * link)5074 int sata_scr_valid(struct ata_link *link)
5075 {
5076 struct ata_port *ap = link->ap;
5077
5078 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5079 }
5080
5081 /**
5082 * sata_scr_read - read SCR register of the specified port
5083 * @link: ATA link to read SCR for
5084 * @reg: SCR to read
5085 * @val: Place to store read value
5086 *
5087 * Read SCR register @reg of @link into *@val. This function is
5088 * guaranteed to succeed if @link is ap->link, the cable type of
5089 * the port is SATA and the port implements ->scr_read.
5090 *
5091 * LOCKING:
5092 * None if @link is ap->link. Kernel thread context otherwise.
5093 *
5094 * RETURNS:
5095 * 0 on success, negative errno on failure.
5096 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5097 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5098 {
5099 if (ata_is_host_link(link)) {
5100 if (sata_scr_valid(link))
5101 return link->ap->ops->scr_read(link, reg, val);
5102 return -EOPNOTSUPP;
5103 }
5104
5105 return sata_pmp_scr_read(link, reg, val);
5106 }
5107
5108 /**
5109 * sata_scr_write - write SCR register of the specified port
5110 * @link: ATA link to write SCR for
5111 * @reg: SCR to write
5112 * @val: value to write
5113 *
5114 * Write @val to SCR register @reg of @link. This function is
5115 * guaranteed to succeed if @link is ap->link, the cable type of
5116 * the port is SATA and the port implements ->scr_read.
5117 *
5118 * LOCKING:
5119 * None if @link is ap->link. Kernel thread context otherwise.
5120 *
5121 * RETURNS:
5122 * 0 on success, negative errno on failure.
5123 */
sata_scr_write(struct ata_link * link,int reg,u32 val)5124 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5125 {
5126 if (ata_is_host_link(link)) {
5127 if (sata_scr_valid(link))
5128 return link->ap->ops->scr_write(link, reg, val);
5129 return -EOPNOTSUPP;
5130 }
5131
5132 return sata_pmp_scr_write(link, reg, val);
5133 }
5134
5135 /**
5136 * sata_scr_write_flush - write SCR register of the specified port and flush
5137 * @link: ATA link to write SCR for
5138 * @reg: SCR to write
5139 * @val: value to write
5140 *
5141 * This function is identical to sata_scr_write() except that this
5142 * function performs flush after writing to the register.
5143 *
5144 * LOCKING:
5145 * None if @link is ap->link. Kernel thread context otherwise.
5146 *
5147 * RETURNS:
5148 * 0 on success, negative errno on failure.
5149 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5150 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5151 {
5152 if (ata_is_host_link(link)) {
5153 int rc;
5154
5155 if (sata_scr_valid(link)) {
5156 rc = link->ap->ops->scr_write(link, reg, val);
5157 if (rc == 0)
5158 rc = link->ap->ops->scr_read(link, reg, &val);
5159 return rc;
5160 }
5161 return -EOPNOTSUPP;
5162 }
5163
5164 return sata_pmp_scr_write(link, reg, val);
5165 }
5166
5167 /**
5168 * ata_phys_link_online - test whether the given link is online
5169 * @link: ATA link to test
5170 *
5171 * Test whether @link is online. Note that this function returns
5172 * 0 if online status of @link cannot be obtained, so
5173 * ata_link_online(link) != !ata_link_offline(link).
5174 *
5175 * LOCKING:
5176 * None.
5177 *
5178 * RETURNS:
5179 * True if the port online status is available and online.
5180 */
ata_phys_link_online(struct ata_link * link)5181 bool ata_phys_link_online(struct ata_link *link)
5182 {
5183 u32 sstatus;
5184
5185 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5186 ata_sstatus_online(sstatus))
5187 return true;
5188 return false;
5189 }
5190
5191 /**
5192 * ata_phys_link_offline - test whether the given link is offline
5193 * @link: ATA link to test
5194 *
5195 * Test whether @link is offline. Note that this function
5196 * returns 0 if offline status of @link cannot be obtained, so
5197 * ata_link_online(link) != !ata_link_offline(link).
5198 *
5199 * LOCKING:
5200 * None.
5201 *
5202 * RETURNS:
5203 * True if the port offline status is available and offline.
5204 */
ata_phys_link_offline(struct ata_link * link)5205 bool ata_phys_link_offline(struct ata_link *link)
5206 {
5207 u32 sstatus;
5208
5209 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5210 !ata_sstatus_online(sstatus))
5211 return true;
5212 return false;
5213 }
5214
5215 /**
5216 * ata_link_online - test whether the given link is online
5217 * @link: ATA link to test
5218 *
5219 * Test whether @link is online. This is identical to
5220 * ata_phys_link_online() when there's no slave link. When
5221 * there's a slave link, this function should only be called on
5222 * the master link and will return true if any of M/S links is
5223 * online.
5224 *
5225 * LOCKING:
5226 * None.
5227 *
5228 * RETURNS:
5229 * True if the port online status is available and online.
5230 */
ata_link_online(struct ata_link * link)5231 bool ata_link_online(struct ata_link *link)
5232 {
5233 struct ata_link *slave = link->ap->slave_link;
5234
5235 WARN_ON(link == slave); /* shouldn't be called on slave link */
5236
5237 return ata_phys_link_online(link) ||
5238 (slave && ata_phys_link_online(slave));
5239 }
5240
5241 /**
5242 * ata_link_offline - test whether the given link is offline
5243 * @link: ATA link to test
5244 *
5245 * Test whether @link is offline. This is identical to
5246 * ata_phys_link_offline() when there's no slave link. When
5247 * there's a slave link, this function should only be called on
5248 * the master link and will return true if both M/S links are
5249 * offline.
5250 *
5251 * LOCKING:
5252 * None.
5253 *
5254 * RETURNS:
5255 * True if the port offline status is available and offline.
5256 */
ata_link_offline(struct ata_link * link)5257 bool ata_link_offline(struct ata_link *link)
5258 {
5259 struct ata_link *slave = link->ap->slave_link;
5260
5261 WARN_ON(link == slave); /* shouldn't be called on slave link */
5262
5263 return ata_phys_link_offline(link) &&
5264 (!slave || ata_phys_link_offline(slave));
5265 }
5266
5267 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,int wait)5268 static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5269 unsigned int action, unsigned int ehi_flags,
5270 int wait)
5271 {
5272 struct ata_link *link;
5273 unsigned long flags;
5274 int rc;
5275
5276 /* Previous resume operation might still be in
5277 * progress. Wait for PM_PENDING to clear.
5278 */
5279 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5280 ata_port_wait_eh(ap);
5281 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5282 }
5283
5284 /* request PM ops to EH */
5285 spin_lock_irqsave(ap->lock, flags);
5286
5287 ap->pm_mesg = mesg;
5288 if (wait) {
5289 rc = 0;
5290 ap->pm_result = &rc;
5291 }
5292
5293 ap->pflags |= ATA_PFLAG_PM_PENDING;
5294 ata_for_each_link(link, ap, HOST_FIRST) {
5295 link->eh_info.action |= action;
5296 link->eh_info.flags |= ehi_flags;
5297 }
5298
5299 ata_port_schedule_eh(ap);
5300
5301 spin_unlock_irqrestore(ap->lock, flags);
5302
5303 /* wait and check result */
5304 if (wait) {
5305 ata_port_wait_eh(ap);
5306 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5307 }
5308
5309 return rc;
5310 }
5311
5312 #define to_ata_port(d) container_of(d, struct ata_port, tdev)
5313
ata_port_suspend_common(struct device * dev,pm_message_t mesg)5314 static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5315 {
5316 struct ata_port *ap = to_ata_port(dev);
5317 unsigned int ehi_flags = ATA_EHI_QUIET;
5318 int rc;
5319
5320 /*
5321 * On some hardware, device fails to respond after spun down
5322 * for suspend. As the device won't be used before being
5323 * resumed, we don't need to touch the device. Ask EH to skip
5324 * the usual stuff and proceed directly to suspend.
5325 *
5326 * http://thread.gmane.org/gmane.linux.ide/46764
5327 */
5328 if (mesg.event == PM_EVENT_SUSPEND)
5329 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5330
5331 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, 1);
5332 return rc;
5333 }
5334
ata_port_suspend(struct device * dev)5335 static int ata_port_suspend(struct device *dev)
5336 {
5337 if (pm_runtime_suspended(dev))
5338 return 0;
5339
5340 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5341 }
5342
ata_port_do_freeze(struct device * dev)5343 static int ata_port_do_freeze(struct device *dev)
5344 {
5345 if (pm_runtime_suspended(dev))
5346 pm_runtime_resume(dev);
5347
5348 return ata_port_suspend_common(dev, PMSG_FREEZE);
5349 }
5350
ata_port_poweroff(struct device * dev)5351 static int ata_port_poweroff(struct device *dev)
5352 {
5353 if (pm_runtime_suspended(dev))
5354 return 0;
5355
5356 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5357 }
5358
ata_port_resume_common(struct device * dev)5359 static int ata_port_resume_common(struct device *dev)
5360 {
5361 struct ata_port *ap = to_ata_port(dev);
5362 int rc;
5363
5364 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
5365 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 1);
5366 return rc;
5367 }
5368
ata_port_resume(struct device * dev)5369 static int ata_port_resume(struct device *dev)
5370 {
5371 int rc;
5372
5373 rc = ata_port_resume_common(dev);
5374 if (!rc) {
5375 pm_runtime_disable(dev);
5376 pm_runtime_set_active(dev);
5377 pm_runtime_enable(dev);
5378 }
5379
5380 return rc;
5381 }
5382
ata_port_runtime_idle(struct device * dev)5383 static int ata_port_runtime_idle(struct device *dev)
5384 {
5385 return pm_runtime_suspend(dev);
5386 }
5387
5388 static const struct dev_pm_ops ata_port_pm_ops = {
5389 .suspend = ata_port_suspend,
5390 .resume = ata_port_resume,
5391 .freeze = ata_port_do_freeze,
5392 .thaw = ata_port_resume,
5393 .poweroff = ata_port_poweroff,
5394 .restore = ata_port_resume,
5395
5396 .runtime_suspend = ata_port_suspend,
5397 .runtime_resume = ata_port_resume_common,
5398 .runtime_idle = ata_port_runtime_idle,
5399 };
5400
5401 /**
5402 * ata_host_suspend - suspend host
5403 * @host: host to suspend
5404 * @mesg: PM message
5405 *
5406 * Suspend @host. Actual operation is performed by port suspend.
5407 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5408 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5409 {
5410 host->dev->power.power_state = mesg;
5411 return 0;
5412 }
5413
5414 /**
5415 * ata_host_resume - resume host
5416 * @host: host to resume
5417 *
5418 * Resume @host. Actual operation is performed by port resume.
5419 */
ata_host_resume(struct ata_host * host)5420 void ata_host_resume(struct ata_host *host)
5421 {
5422 host->dev->power.power_state = PMSG_ON;
5423 }
5424 #endif
5425
5426 struct device_type ata_port_type = {
5427 .name = "ata_port",
5428 #ifdef CONFIG_PM
5429 .pm = &ata_port_pm_ops,
5430 #endif
5431 };
5432
5433 /**
5434 * ata_dev_init - Initialize an ata_device structure
5435 * @dev: Device structure to initialize
5436 *
5437 * Initialize @dev in preparation for probing.
5438 *
5439 * LOCKING:
5440 * Inherited from caller.
5441 */
ata_dev_init(struct ata_device * dev)5442 void ata_dev_init(struct ata_device *dev)
5443 {
5444 struct ata_link *link = ata_dev_phys_link(dev);
5445 struct ata_port *ap = link->ap;
5446 unsigned long flags;
5447
5448 /* SATA spd limit is bound to the attached device, reset together */
5449 link->sata_spd_limit = link->hw_sata_spd_limit;
5450 link->sata_spd = 0;
5451
5452 /* High bits of dev->flags are used to record warm plug
5453 * requests which occur asynchronously. Synchronize using
5454 * host lock.
5455 */
5456 spin_lock_irqsave(ap->lock, flags);
5457 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5458 dev->horkage = 0;
5459 spin_unlock_irqrestore(ap->lock, flags);
5460
5461 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5462 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5463 dev->pio_mask = UINT_MAX;
5464 dev->mwdma_mask = UINT_MAX;
5465 dev->udma_mask = UINT_MAX;
5466 }
5467
5468 /**
5469 * ata_link_init - Initialize an ata_link structure
5470 * @ap: ATA port link is attached to
5471 * @link: Link structure to initialize
5472 * @pmp: Port multiplier port number
5473 *
5474 * Initialize @link.
5475 *
5476 * LOCKING:
5477 * Kernel thread context (may sleep)
5478 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5479 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5480 {
5481 int i;
5482
5483 /* clear everything except for devices */
5484 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5485 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5486
5487 link->ap = ap;
5488 link->pmp = pmp;
5489 link->active_tag = ATA_TAG_POISON;
5490 link->hw_sata_spd_limit = UINT_MAX;
5491
5492 /* can't use iterator, ap isn't initialized yet */
5493 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5494 struct ata_device *dev = &link->device[i];
5495
5496 dev->link = link;
5497 dev->devno = dev - link->device;
5498 #ifdef CONFIG_ATA_ACPI
5499 dev->gtf_filter = ata_acpi_gtf_filter;
5500 #endif
5501 ata_dev_init(dev);
5502 }
5503 }
5504
5505 /**
5506 * sata_link_init_spd - Initialize link->sata_spd_limit
5507 * @link: Link to configure sata_spd_limit for
5508 *
5509 * Initialize @link->[hw_]sata_spd_limit to the currently
5510 * configured value.
5511 *
5512 * LOCKING:
5513 * Kernel thread context (may sleep).
5514 *
5515 * RETURNS:
5516 * 0 on success, -errno on failure.
5517 */
sata_link_init_spd(struct ata_link * link)5518 int sata_link_init_spd(struct ata_link *link)
5519 {
5520 u8 spd;
5521 int rc;
5522
5523 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5524 if (rc)
5525 return rc;
5526
5527 spd = (link->saved_scontrol >> 4) & 0xf;
5528 if (spd)
5529 link->hw_sata_spd_limit &= (1 << spd) - 1;
5530
5531 ata_force_link_limits(link);
5532
5533 link->sata_spd_limit = link->hw_sata_spd_limit;
5534
5535 return 0;
5536 }
5537
5538 /**
5539 * ata_port_alloc - allocate and initialize basic ATA port resources
5540 * @host: ATA host this allocated port belongs to
5541 *
5542 * Allocate and initialize basic ATA port resources.
5543 *
5544 * RETURNS:
5545 * Allocate ATA port on success, NULL on failure.
5546 *
5547 * LOCKING:
5548 * Inherited from calling layer (may sleep).
5549 */
ata_port_alloc(struct ata_host * host)5550 struct ata_port *ata_port_alloc(struct ata_host *host)
5551 {
5552 struct ata_port *ap;
5553
5554 DPRINTK("ENTER\n");
5555
5556 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5557 if (!ap)
5558 return NULL;
5559
5560 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5561 ap->lock = &host->lock;
5562 ap->print_id = -1;
5563 ap->host = host;
5564 ap->dev = host->dev;
5565
5566 #if defined(ATA_VERBOSE_DEBUG)
5567 /* turn on all debugging levels */
5568 ap->msg_enable = 0x00FF;
5569 #elif defined(ATA_DEBUG)
5570 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5571 #else
5572 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5573 #endif
5574
5575 mutex_init(&ap->scsi_scan_mutex);
5576 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5577 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5578 INIT_LIST_HEAD(&ap->eh_done_q);
5579 init_waitqueue_head(&ap->eh_wait_q);
5580 init_completion(&ap->park_req_pending);
5581 init_timer_deferrable(&ap->fastdrain_timer);
5582 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5583 ap->fastdrain_timer.data = (unsigned long)ap;
5584
5585 ap->cbl = ATA_CBL_NONE;
5586
5587 ata_link_init(ap, &ap->link, 0);
5588
5589 #ifdef ATA_IRQ_TRAP
5590 ap->stats.unhandled_irq = 1;
5591 ap->stats.idle_irq = 1;
5592 #endif
5593 ata_sff_port_init(ap);
5594
5595 return ap;
5596 }
5597
ata_host_release(struct device * gendev,void * res)5598 static void ata_host_release(struct device *gendev, void *res)
5599 {
5600 struct ata_host *host = dev_get_drvdata(gendev);
5601 int i;
5602
5603 for (i = 0; i < host->n_ports; i++) {
5604 struct ata_port *ap = host->ports[i];
5605
5606 if (!ap)
5607 continue;
5608
5609 if (ap->scsi_host)
5610 scsi_host_put(ap->scsi_host);
5611
5612 kfree(ap->pmp_link);
5613 kfree(ap->slave_link);
5614 kfree(ap);
5615 host->ports[i] = NULL;
5616 }
5617
5618 dev_set_drvdata(gendev, NULL);
5619 }
5620
5621 /**
5622 * ata_host_alloc - allocate and init basic ATA host resources
5623 * @dev: generic device this host is associated with
5624 * @max_ports: maximum number of ATA ports associated with this host
5625 *
5626 * Allocate and initialize basic ATA host resources. LLD calls
5627 * this function to allocate a host, initializes it fully and
5628 * attaches it using ata_host_register().
5629 *
5630 * @max_ports ports are allocated and host->n_ports is
5631 * initialized to @max_ports. The caller is allowed to decrease
5632 * host->n_ports before calling ata_host_register(). The unused
5633 * ports will be automatically freed on registration.
5634 *
5635 * RETURNS:
5636 * Allocate ATA host on success, NULL on failure.
5637 *
5638 * LOCKING:
5639 * Inherited from calling layer (may sleep).
5640 */
ata_host_alloc(struct device * dev,int max_ports)5641 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5642 {
5643 struct ata_host *host;
5644 size_t sz;
5645 int i;
5646
5647 DPRINTK("ENTER\n");
5648
5649 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5650 return NULL;
5651
5652 /* alloc a container for our list of ATA ports (buses) */
5653 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5654 /* alloc a container for our list of ATA ports (buses) */
5655 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5656 if (!host)
5657 goto err_out;
5658
5659 devres_add(dev, host);
5660 dev_set_drvdata(dev, host);
5661
5662 spin_lock_init(&host->lock);
5663 mutex_init(&host->eh_mutex);
5664 host->dev = dev;
5665 host->n_ports = max_ports;
5666
5667 /* allocate ports bound to this host */
5668 for (i = 0; i < max_ports; i++) {
5669 struct ata_port *ap;
5670
5671 ap = ata_port_alloc(host);
5672 if (!ap)
5673 goto err_out;
5674
5675 ap->port_no = i;
5676 host->ports[i] = ap;
5677 }
5678
5679 devres_remove_group(dev, NULL);
5680 return host;
5681
5682 err_out:
5683 devres_release_group(dev, NULL);
5684 return NULL;
5685 }
5686
5687 /**
5688 * ata_host_alloc_pinfo - alloc host and init with port_info array
5689 * @dev: generic device this host is associated with
5690 * @ppi: array of ATA port_info to initialize host with
5691 * @n_ports: number of ATA ports attached to this host
5692 *
5693 * Allocate ATA host and initialize with info from @ppi. If NULL
5694 * terminated, @ppi may contain fewer entries than @n_ports. The
5695 * last entry will be used for the remaining ports.
5696 *
5697 * RETURNS:
5698 * Allocate ATA host on success, NULL on failure.
5699 *
5700 * LOCKING:
5701 * Inherited from calling layer (may sleep).
5702 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5703 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5704 const struct ata_port_info * const * ppi,
5705 int n_ports)
5706 {
5707 const struct ata_port_info *pi;
5708 struct ata_host *host;
5709 int i, j;
5710
5711 host = ata_host_alloc(dev, n_ports);
5712 if (!host)
5713 return NULL;
5714
5715 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5716 struct ata_port *ap = host->ports[i];
5717
5718 if (ppi[j])
5719 pi = ppi[j++];
5720
5721 ap->pio_mask = pi->pio_mask;
5722 ap->mwdma_mask = pi->mwdma_mask;
5723 ap->udma_mask = pi->udma_mask;
5724 ap->flags |= pi->flags;
5725 ap->link.flags |= pi->link_flags;
5726 ap->ops = pi->port_ops;
5727
5728 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5729 host->ops = pi->port_ops;
5730 }
5731
5732 return host;
5733 }
5734
5735 /**
5736 * ata_slave_link_init - initialize slave link
5737 * @ap: port to initialize slave link for
5738 *
5739 * Create and initialize slave link for @ap. This enables slave
5740 * link handling on the port.
5741 *
5742 * In libata, a port contains links and a link contains devices.
5743 * There is single host link but if a PMP is attached to it,
5744 * there can be multiple fan-out links. On SATA, there's usually
5745 * a single device connected to a link but PATA and SATA
5746 * controllers emulating TF based interface can have two - master
5747 * and slave.
5748 *
5749 * However, there are a few controllers which don't fit into this
5750 * abstraction too well - SATA controllers which emulate TF
5751 * interface with both master and slave devices but also have
5752 * separate SCR register sets for each device. These controllers
5753 * need separate links for physical link handling
5754 * (e.g. onlineness, link speed) but should be treated like a
5755 * traditional M/S controller for everything else (e.g. command
5756 * issue, softreset).
5757 *
5758 * slave_link is libata's way of handling this class of
5759 * controllers without impacting core layer too much. For
5760 * anything other than physical link handling, the default host
5761 * link is used for both master and slave. For physical link
5762 * handling, separate @ap->slave_link is used. All dirty details
5763 * are implemented inside libata core layer. From LLD's POV, the
5764 * only difference is that prereset, hardreset and postreset are
5765 * called once more for the slave link, so the reset sequence
5766 * looks like the following.
5767 *
5768 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5769 * softreset(M) -> postreset(M) -> postreset(S)
5770 *
5771 * Note that softreset is called only for the master. Softreset
5772 * resets both M/S by definition, so SRST on master should handle
5773 * both (the standard method will work just fine).
5774 *
5775 * LOCKING:
5776 * Should be called before host is registered.
5777 *
5778 * RETURNS:
5779 * 0 on success, -errno on failure.
5780 */
ata_slave_link_init(struct ata_port * ap)5781 int ata_slave_link_init(struct ata_port *ap)
5782 {
5783 struct ata_link *link;
5784
5785 WARN_ON(ap->slave_link);
5786 WARN_ON(ap->flags & ATA_FLAG_PMP);
5787
5788 link = kzalloc(sizeof(*link), GFP_KERNEL);
5789 if (!link)
5790 return -ENOMEM;
5791
5792 ata_link_init(ap, link, 1);
5793 ap->slave_link = link;
5794 return 0;
5795 }
5796
ata_host_stop(struct device * gendev,void * res)5797 static void ata_host_stop(struct device *gendev, void *res)
5798 {
5799 struct ata_host *host = dev_get_drvdata(gendev);
5800 int i;
5801
5802 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5803
5804 for (i = 0; i < host->n_ports; i++) {
5805 struct ata_port *ap = host->ports[i];
5806
5807 if (ap->ops->port_stop)
5808 ap->ops->port_stop(ap);
5809 }
5810
5811 if (host->ops->host_stop)
5812 host->ops->host_stop(host);
5813 }
5814
5815 /**
5816 * ata_finalize_port_ops - finalize ata_port_operations
5817 * @ops: ata_port_operations to finalize
5818 *
5819 * An ata_port_operations can inherit from another ops and that
5820 * ops can again inherit from another. This can go on as many
5821 * times as necessary as long as there is no loop in the
5822 * inheritance chain.
5823 *
5824 * Ops tables are finalized when the host is started. NULL or
5825 * unspecified entries are inherited from the closet ancestor
5826 * which has the method and the entry is populated with it.
5827 * After finalization, the ops table directly points to all the
5828 * methods and ->inherits is no longer necessary and cleared.
5829 *
5830 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5831 *
5832 * LOCKING:
5833 * None.
5834 */
ata_finalize_port_ops(struct ata_port_operations * ops)5835 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5836 {
5837 static DEFINE_SPINLOCK(lock);
5838 const struct ata_port_operations *cur;
5839 void **begin = (void **)ops;
5840 void **end = (void **)&ops->inherits;
5841 void **pp;
5842
5843 if (!ops || !ops->inherits)
5844 return;
5845
5846 spin_lock(&lock);
5847
5848 for (cur = ops->inherits; cur; cur = cur->inherits) {
5849 void **inherit = (void **)cur;
5850
5851 for (pp = begin; pp < end; pp++, inherit++)
5852 if (!*pp)
5853 *pp = *inherit;
5854 }
5855
5856 for (pp = begin; pp < end; pp++)
5857 if (IS_ERR(*pp))
5858 *pp = NULL;
5859
5860 ops->inherits = NULL;
5861
5862 spin_unlock(&lock);
5863 }
5864
5865 /**
5866 * ata_host_start - start and freeze ports of an ATA host
5867 * @host: ATA host to start ports for
5868 *
5869 * Start and then freeze ports of @host. Started status is
5870 * recorded in host->flags, so this function can be called
5871 * multiple times. Ports are guaranteed to get started only
5872 * once. If host->ops isn't initialized yet, its set to the
5873 * first non-dummy port ops.
5874 *
5875 * LOCKING:
5876 * Inherited from calling layer (may sleep).
5877 *
5878 * RETURNS:
5879 * 0 if all ports are started successfully, -errno otherwise.
5880 */
ata_host_start(struct ata_host * host)5881 int ata_host_start(struct ata_host *host)
5882 {
5883 int have_stop = 0;
5884 void *start_dr = NULL;
5885 int i, rc;
5886
5887 if (host->flags & ATA_HOST_STARTED)
5888 return 0;
5889
5890 ata_finalize_port_ops(host->ops);
5891
5892 for (i = 0; i < host->n_ports; i++) {
5893 struct ata_port *ap = host->ports[i];
5894
5895 ata_finalize_port_ops(ap->ops);
5896
5897 if (!host->ops && !ata_port_is_dummy(ap))
5898 host->ops = ap->ops;
5899
5900 if (ap->ops->port_stop)
5901 have_stop = 1;
5902 }
5903
5904 if (host->ops->host_stop)
5905 have_stop = 1;
5906
5907 if (have_stop) {
5908 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5909 if (!start_dr)
5910 return -ENOMEM;
5911 }
5912
5913 for (i = 0; i < host->n_ports; i++) {
5914 struct ata_port *ap = host->ports[i];
5915
5916 if (ap->ops->port_start) {
5917 rc = ap->ops->port_start(ap);
5918 if (rc) {
5919 if (rc != -ENODEV)
5920 dev_err(host->dev,
5921 "failed to start port %d (errno=%d)\n",
5922 i, rc);
5923 goto err_out;
5924 }
5925 }
5926 ata_eh_freeze_port(ap);
5927 }
5928
5929 if (start_dr)
5930 devres_add(host->dev, start_dr);
5931 host->flags |= ATA_HOST_STARTED;
5932 return 0;
5933
5934 err_out:
5935 while (--i >= 0) {
5936 struct ata_port *ap = host->ports[i];
5937
5938 if (ap->ops->port_stop)
5939 ap->ops->port_stop(ap);
5940 }
5941 devres_free(start_dr);
5942 return rc;
5943 }
5944
5945 /**
5946 * ata_sas_host_init - Initialize a host struct
5947 * @host: host to initialize
5948 * @dev: device host is attached to
5949 * @flags: host flags
5950 * @ops: port_ops
5951 *
5952 * LOCKING:
5953 * PCI/etc. bus probe sem.
5954 *
5955 */
5956 /* KILLME - the only user left is ipr */
ata_host_init(struct ata_host * host,struct device * dev,unsigned long flags,struct ata_port_operations * ops)5957 void ata_host_init(struct ata_host *host, struct device *dev,
5958 unsigned long flags, struct ata_port_operations *ops)
5959 {
5960 spin_lock_init(&host->lock);
5961 mutex_init(&host->eh_mutex);
5962 host->dev = dev;
5963 host->flags = flags;
5964 host->ops = ops;
5965 }
5966
__ata_port_probe(struct ata_port * ap)5967 void __ata_port_probe(struct ata_port *ap)
5968 {
5969 struct ata_eh_info *ehi = &ap->link.eh_info;
5970 unsigned long flags;
5971
5972 /* kick EH for boot probing */
5973 spin_lock_irqsave(ap->lock, flags);
5974
5975 ehi->probe_mask |= ATA_ALL_DEVICES;
5976 ehi->action |= ATA_EH_RESET;
5977 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5978
5979 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5980 ap->pflags |= ATA_PFLAG_LOADING;
5981 ata_port_schedule_eh(ap);
5982
5983 spin_unlock_irqrestore(ap->lock, flags);
5984 }
5985
ata_port_probe(struct ata_port * ap)5986 int ata_port_probe(struct ata_port *ap)
5987 {
5988 int rc = 0;
5989
5990 if (ap->ops->error_handler) {
5991 __ata_port_probe(ap);
5992 ata_port_wait_eh(ap);
5993 } else {
5994 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5995 rc = ata_bus_probe(ap);
5996 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5997 }
5998 return rc;
5999 }
6000
6001
async_port_probe(void * data,async_cookie_t cookie)6002 static void async_port_probe(void *data, async_cookie_t cookie)
6003 {
6004 struct ata_port *ap = data;
6005
6006 /*
6007 * If we're not allowed to scan this host in parallel,
6008 * we need to wait until all previous scans have completed
6009 * before going further.
6010 * Jeff Garzik says this is only within a controller, so we
6011 * don't need to wait for port 0, only for later ports.
6012 */
6013 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6014 async_synchronize_cookie(cookie);
6015
6016 (void)ata_port_probe(ap);
6017
6018 /* in order to keep device order, we need to synchronize at this point */
6019 async_synchronize_cookie(cookie);
6020
6021 ata_scsi_scan_host(ap, 1);
6022 }
6023
6024 /**
6025 * ata_host_register - register initialized ATA host
6026 * @host: ATA host to register
6027 * @sht: template for SCSI host
6028 *
6029 * Register initialized ATA host. @host is allocated using
6030 * ata_host_alloc() and fully initialized by LLD. This function
6031 * starts ports, registers @host with ATA and SCSI layers and
6032 * probe registered devices.
6033 *
6034 * LOCKING:
6035 * Inherited from calling layer (may sleep).
6036 *
6037 * RETURNS:
6038 * 0 on success, -errno otherwise.
6039 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6040 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6041 {
6042 int i, rc;
6043
6044 /* host must have been started */
6045 if (!(host->flags & ATA_HOST_STARTED)) {
6046 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6047 WARN_ON(1);
6048 return -EINVAL;
6049 }
6050
6051 /* Blow away unused ports. This happens when LLD can't
6052 * determine the exact number of ports to allocate at
6053 * allocation time.
6054 */
6055 for (i = host->n_ports; host->ports[i]; i++)
6056 kfree(host->ports[i]);
6057
6058 /* give ports names and add SCSI hosts */
6059 for (i = 0; i < host->n_ports; i++)
6060 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6061
6062
6063 /* Create associated sysfs transport objects */
6064 for (i = 0; i < host->n_ports; i++) {
6065 rc = ata_tport_add(host->dev,host->ports[i]);
6066 if (rc) {
6067 goto err_tadd;
6068 }
6069 }
6070
6071 rc = ata_scsi_add_hosts(host, sht);
6072 if (rc)
6073 goto err_tadd;
6074
6075 /* associate with ACPI nodes */
6076 ata_acpi_associate(host);
6077
6078 /* set cable, sata_spd_limit and report */
6079 for (i = 0; i < host->n_ports; i++) {
6080 struct ata_port *ap = host->ports[i];
6081 unsigned long xfer_mask;
6082
6083 /* set SATA cable type if still unset */
6084 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6085 ap->cbl = ATA_CBL_SATA;
6086
6087 /* init sata_spd_limit to the current value */
6088 sata_link_init_spd(&ap->link);
6089 if (ap->slave_link)
6090 sata_link_init_spd(ap->slave_link);
6091
6092 /* print per-port info to dmesg */
6093 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6094 ap->udma_mask);
6095
6096 if (!ata_port_is_dummy(ap)) {
6097 ata_port_info(ap, "%cATA max %s %s\n",
6098 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6099 ata_mode_string(xfer_mask),
6100 ap->link.eh_info.desc);
6101 ata_ehi_clear_desc(&ap->link.eh_info);
6102 } else
6103 ata_port_info(ap, "DUMMY\n");
6104 }
6105
6106 /* perform each probe asynchronously */
6107 for (i = 0; i < host->n_ports; i++) {
6108 struct ata_port *ap = host->ports[i];
6109 async_schedule(async_port_probe, ap);
6110 }
6111
6112 return 0;
6113
6114 err_tadd:
6115 while (--i >= 0) {
6116 ata_tport_delete(host->ports[i]);
6117 }
6118 return rc;
6119
6120 }
6121
6122 /**
6123 * ata_host_activate - start host, request IRQ and register it
6124 * @host: target ATA host
6125 * @irq: IRQ to request
6126 * @irq_handler: irq_handler used when requesting IRQ
6127 * @irq_flags: irq_flags used when requesting IRQ
6128 * @sht: scsi_host_template to use when registering the host
6129 *
6130 * After allocating an ATA host and initializing it, most libata
6131 * LLDs perform three steps to activate the host - start host,
6132 * request IRQ and register it. This helper takes necessasry
6133 * arguments and performs the three steps in one go.
6134 *
6135 * An invalid IRQ skips the IRQ registration and expects the host to
6136 * have set polling mode on the port. In this case, @irq_handler
6137 * should be NULL.
6138 *
6139 * LOCKING:
6140 * Inherited from calling layer (may sleep).
6141 *
6142 * RETURNS:
6143 * 0 on success, -errno otherwise.
6144 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6145 int ata_host_activate(struct ata_host *host, int irq,
6146 irq_handler_t irq_handler, unsigned long irq_flags,
6147 struct scsi_host_template *sht)
6148 {
6149 int i, rc;
6150
6151 rc = ata_host_start(host);
6152 if (rc)
6153 return rc;
6154
6155 /* Special case for polling mode */
6156 if (!irq) {
6157 WARN_ON(irq_handler);
6158 return ata_host_register(host, sht);
6159 }
6160
6161 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6162 dev_driver_string(host->dev), host);
6163 if (rc)
6164 return rc;
6165
6166 for (i = 0; i < host->n_ports; i++)
6167 ata_port_desc(host->ports[i], "irq %d", irq);
6168
6169 rc = ata_host_register(host, sht);
6170 /* if failed, just free the IRQ and leave ports alone */
6171 if (rc)
6172 devm_free_irq(host->dev, irq, host);
6173
6174 return rc;
6175 }
6176
6177 /**
6178 * ata_port_detach - Detach ATA port in prepration of device removal
6179 * @ap: ATA port to be detached
6180 *
6181 * Detach all ATA devices and the associated SCSI devices of @ap;
6182 * then, remove the associated SCSI host. @ap is guaranteed to
6183 * be quiescent on return from this function.
6184 *
6185 * LOCKING:
6186 * Kernel thread context (may sleep).
6187 */
ata_port_detach(struct ata_port * ap)6188 static void ata_port_detach(struct ata_port *ap)
6189 {
6190 unsigned long flags;
6191
6192 if (!ap->ops->error_handler)
6193 goto skip_eh;
6194
6195 /* tell EH we're leaving & flush EH */
6196 spin_lock_irqsave(ap->lock, flags);
6197 ap->pflags |= ATA_PFLAG_UNLOADING;
6198 ata_port_schedule_eh(ap);
6199 spin_unlock_irqrestore(ap->lock, flags);
6200
6201 /* wait till EH commits suicide */
6202 ata_port_wait_eh(ap);
6203
6204 /* it better be dead now */
6205 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6206
6207 cancel_delayed_work_sync(&ap->hotplug_task);
6208
6209 skip_eh:
6210 if (ap->pmp_link) {
6211 int i;
6212 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6213 ata_tlink_delete(&ap->pmp_link[i]);
6214 }
6215 ata_tport_delete(ap);
6216
6217 /* remove the associated SCSI host */
6218 scsi_remove_host(ap->scsi_host);
6219 }
6220
6221 /**
6222 * ata_host_detach - Detach all ports of an ATA host
6223 * @host: Host to detach
6224 *
6225 * Detach all ports of @host.
6226 *
6227 * LOCKING:
6228 * Kernel thread context (may sleep).
6229 */
ata_host_detach(struct ata_host * host)6230 void ata_host_detach(struct ata_host *host)
6231 {
6232 int i;
6233
6234 for (i = 0; i < host->n_ports; i++)
6235 ata_port_detach(host->ports[i]);
6236
6237 /* the host is dead now, dissociate ACPI */
6238 ata_acpi_dissociate(host);
6239 }
6240
6241 #ifdef CONFIG_PCI
6242
6243 /**
6244 * ata_pci_remove_one - PCI layer callback for device removal
6245 * @pdev: PCI device that was removed
6246 *
6247 * PCI layer indicates to libata via this hook that hot-unplug or
6248 * module unload event has occurred. Detach all ports. Resource
6249 * release is handled via devres.
6250 *
6251 * LOCKING:
6252 * Inherited from PCI layer (may sleep).
6253 */
ata_pci_remove_one(struct pci_dev * pdev)6254 void ata_pci_remove_one(struct pci_dev *pdev)
6255 {
6256 struct device *dev = &pdev->dev;
6257 struct ata_host *host = dev_get_drvdata(dev);
6258
6259 ata_host_detach(host);
6260 }
6261
6262 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6263 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6264 {
6265 unsigned long tmp = 0;
6266
6267 switch (bits->width) {
6268 case 1: {
6269 u8 tmp8 = 0;
6270 pci_read_config_byte(pdev, bits->reg, &tmp8);
6271 tmp = tmp8;
6272 break;
6273 }
6274 case 2: {
6275 u16 tmp16 = 0;
6276 pci_read_config_word(pdev, bits->reg, &tmp16);
6277 tmp = tmp16;
6278 break;
6279 }
6280 case 4: {
6281 u32 tmp32 = 0;
6282 pci_read_config_dword(pdev, bits->reg, &tmp32);
6283 tmp = tmp32;
6284 break;
6285 }
6286
6287 default:
6288 return -EINVAL;
6289 }
6290
6291 tmp &= bits->mask;
6292
6293 return (tmp == bits->val) ? 1 : 0;
6294 }
6295
6296 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6297 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6298 {
6299 pci_save_state(pdev);
6300 pci_disable_device(pdev);
6301
6302 if (mesg.event & PM_EVENT_SLEEP)
6303 pci_set_power_state(pdev, PCI_D3hot);
6304 }
6305
ata_pci_device_do_resume(struct pci_dev * pdev)6306 int ata_pci_device_do_resume(struct pci_dev *pdev)
6307 {
6308 int rc;
6309
6310 pci_set_power_state(pdev, PCI_D0);
6311 pci_restore_state(pdev);
6312
6313 rc = pcim_enable_device(pdev);
6314 if (rc) {
6315 dev_err(&pdev->dev,
6316 "failed to enable device after resume (%d)\n", rc);
6317 return rc;
6318 }
6319
6320 pci_set_master(pdev);
6321 return 0;
6322 }
6323
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6324 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6325 {
6326 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6327 int rc = 0;
6328
6329 rc = ata_host_suspend(host, mesg);
6330 if (rc)
6331 return rc;
6332
6333 ata_pci_device_do_suspend(pdev, mesg);
6334
6335 return 0;
6336 }
6337
ata_pci_device_resume(struct pci_dev * pdev)6338 int ata_pci_device_resume(struct pci_dev *pdev)
6339 {
6340 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6341 int rc;
6342
6343 rc = ata_pci_device_do_resume(pdev);
6344 if (rc == 0)
6345 ata_host_resume(host);
6346 return rc;
6347 }
6348 #endif /* CONFIG_PM */
6349
6350 #endif /* CONFIG_PCI */
6351
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6352 static int __init ata_parse_force_one(char **cur,
6353 struct ata_force_ent *force_ent,
6354 const char **reason)
6355 {
6356 /* FIXME: Currently, there's no way to tag init const data and
6357 * using __initdata causes build failure on some versions of
6358 * gcc. Once __initdataconst is implemented, add const to the
6359 * following structure.
6360 */
6361 static struct ata_force_param force_tbl[] __initdata = {
6362 { "40c", .cbl = ATA_CBL_PATA40 },
6363 { "80c", .cbl = ATA_CBL_PATA80 },
6364 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6365 { "unk", .cbl = ATA_CBL_PATA_UNK },
6366 { "ign", .cbl = ATA_CBL_PATA_IGN },
6367 { "sata", .cbl = ATA_CBL_SATA },
6368 { "1.5Gbps", .spd_limit = 1 },
6369 { "3.0Gbps", .spd_limit = 2 },
6370 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6371 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6372 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6373 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6374 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6375 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6376 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6377 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6378 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6379 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6380 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6381 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6382 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6383 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6384 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6385 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6386 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6387 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6388 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6389 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6390 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6391 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6392 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6393 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6394 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6395 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6396 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6397 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6398 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6399 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6400 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6401 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6402 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6403 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6404 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6405 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6406 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6407 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6408 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6409 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6410 };
6411 char *start = *cur, *p = *cur;
6412 char *id, *val, *endp;
6413 const struct ata_force_param *match_fp = NULL;
6414 int nr_matches = 0, i;
6415
6416 /* find where this param ends and update *cur */
6417 while (*p != '\0' && *p != ',')
6418 p++;
6419
6420 if (*p == '\0')
6421 *cur = p;
6422 else
6423 *cur = p + 1;
6424
6425 *p = '\0';
6426
6427 /* parse */
6428 p = strchr(start, ':');
6429 if (!p) {
6430 val = strstrip(start);
6431 goto parse_val;
6432 }
6433 *p = '\0';
6434
6435 id = strstrip(start);
6436 val = strstrip(p + 1);
6437
6438 /* parse id */
6439 p = strchr(id, '.');
6440 if (p) {
6441 *p++ = '\0';
6442 force_ent->device = simple_strtoul(p, &endp, 10);
6443 if (p == endp || *endp != '\0') {
6444 *reason = "invalid device";
6445 return -EINVAL;
6446 }
6447 }
6448
6449 force_ent->port = simple_strtoul(id, &endp, 10);
6450 if (p == endp || *endp != '\0') {
6451 *reason = "invalid port/link";
6452 return -EINVAL;
6453 }
6454
6455 parse_val:
6456 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6457 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6458 const struct ata_force_param *fp = &force_tbl[i];
6459
6460 if (strncasecmp(val, fp->name, strlen(val)))
6461 continue;
6462
6463 nr_matches++;
6464 match_fp = fp;
6465
6466 if (strcasecmp(val, fp->name) == 0) {
6467 nr_matches = 1;
6468 break;
6469 }
6470 }
6471
6472 if (!nr_matches) {
6473 *reason = "unknown value";
6474 return -EINVAL;
6475 }
6476 if (nr_matches > 1) {
6477 *reason = "ambigious value";
6478 return -EINVAL;
6479 }
6480
6481 force_ent->param = *match_fp;
6482
6483 return 0;
6484 }
6485
ata_parse_force_param(void)6486 static void __init ata_parse_force_param(void)
6487 {
6488 int idx = 0, size = 1;
6489 int last_port = -1, last_device = -1;
6490 char *p, *cur, *next;
6491
6492 /* calculate maximum number of params and allocate force_tbl */
6493 for (p = ata_force_param_buf; *p; p++)
6494 if (*p == ',')
6495 size++;
6496
6497 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6498 if (!ata_force_tbl) {
6499 printk(KERN_WARNING "ata: failed to extend force table, "
6500 "libata.force ignored\n");
6501 return;
6502 }
6503
6504 /* parse and populate the table */
6505 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6506 const char *reason = "";
6507 struct ata_force_ent te = { .port = -1, .device = -1 };
6508
6509 next = cur;
6510 if (ata_parse_force_one(&next, &te, &reason)) {
6511 printk(KERN_WARNING "ata: failed to parse force "
6512 "parameter \"%s\" (%s)\n",
6513 cur, reason);
6514 continue;
6515 }
6516
6517 if (te.port == -1) {
6518 te.port = last_port;
6519 te.device = last_device;
6520 }
6521
6522 ata_force_tbl[idx++] = te;
6523
6524 last_port = te.port;
6525 last_device = te.device;
6526 }
6527
6528 ata_force_tbl_size = idx;
6529 }
6530
ata_init(void)6531 static int __init ata_init(void)
6532 {
6533 int rc;
6534
6535 ata_parse_force_param();
6536
6537 rc = ata_sff_init();
6538 if (rc) {
6539 kfree(ata_force_tbl);
6540 return rc;
6541 }
6542
6543 libata_transport_init();
6544 ata_scsi_transport_template = ata_attach_transport();
6545 if (!ata_scsi_transport_template) {
6546 ata_sff_exit();
6547 rc = -ENOMEM;
6548 goto err_out;
6549 }
6550
6551 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6552 return 0;
6553
6554 err_out:
6555 return rc;
6556 }
6557
ata_exit(void)6558 static void __exit ata_exit(void)
6559 {
6560 ata_release_transport(ata_scsi_transport_template);
6561 libata_transport_exit();
6562 ata_sff_exit();
6563 kfree(ata_force_tbl);
6564 }
6565
6566 subsys_initcall(ata_init);
6567 module_exit(ata_exit);
6568
6569 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6570
ata_ratelimit(void)6571 int ata_ratelimit(void)
6572 {
6573 return __ratelimit(&ratelimit);
6574 }
6575
6576 /**
6577 * ata_msleep - ATA EH owner aware msleep
6578 * @ap: ATA port to attribute the sleep to
6579 * @msecs: duration to sleep in milliseconds
6580 *
6581 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6582 * ownership is released before going to sleep and reacquired
6583 * after the sleep is complete. IOW, other ports sharing the
6584 * @ap->host will be allowed to own the EH while this task is
6585 * sleeping.
6586 *
6587 * LOCKING:
6588 * Might sleep.
6589 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6590 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6591 {
6592 bool owns_eh = ap && ap->host->eh_owner == current;
6593
6594 if (owns_eh)
6595 ata_eh_release(ap);
6596
6597 msleep(msecs);
6598
6599 if (owns_eh)
6600 ata_eh_acquire(ap);
6601 }
6602
6603 /**
6604 * ata_wait_register - wait until register value changes
6605 * @ap: ATA port to wait register for, can be NULL
6606 * @reg: IO-mapped register
6607 * @mask: Mask to apply to read register value
6608 * @val: Wait condition
6609 * @interval: polling interval in milliseconds
6610 * @timeout: timeout in milliseconds
6611 *
6612 * Waiting for some bits of register to change is a common
6613 * operation for ATA controllers. This function reads 32bit LE
6614 * IO-mapped register @reg and tests for the following condition.
6615 *
6616 * (*@reg & mask) != val
6617 *
6618 * If the condition is met, it returns; otherwise, the process is
6619 * repeated after @interval_msec until timeout.
6620 *
6621 * LOCKING:
6622 * Kernel thread context (may sleep)
6623 *
6624 * RETURNS:
6625 * The final register value.
6626 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6627 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6628 unsigned long interval, unsigned long timeout)
6629 {
6630 unsigned long deadline;
6631 u32 tmp;
6632
6633 tmp = ioread32(reg);
6634
6635 /* Calculate timeout _after_ the first read to make sure
6636 * preceding writes reach the controller before starting to
6637 * eat away the timeout.
6638 */
6639 deadline = ata_deadline(jiffies, timeout);
6640
6641 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6642 ata_msleep(ap, interval);
6643 tmp = ioread32(reg);
6644 }
6645
6646 return tmp;
6647 }
6648
6649 /*
6650 * Dummy port_ops
6651 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6652 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6653 {
6654 return AC_ERR_SYSTEM;
6655 }
6656
ata_dummy_error_handler(struct ata_port * ap)6657 static void ata_dummy_error_handler(struct ata_port *ap)
6658 {
6659 /* truly dummy */
6660 }
6661
6662 struct ata_port_operations ata_dummy_port_ops = {
6663 .qc_prep = ata_noop_qc_prep,
6664 .qc_issue = ata_dummy_qc_issue,
6665 .error_handler = ata_dummy_error_handler,
6666 };
6667
6668 const struct ata_port_info ata_dummy_port_info = {
6669 .port_ops = &ata_dummy_port_ops,
6670 };
6671
6672 /*
6673 * Utility print functions
6674 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)6675 int ata_port_printk(const struct ata_port *ap, const char *level,
6676 const char *fmt, ...)
6677 {
6678 struct va_format vaf;
6679 va_list args;
6680 int r;
6681
6682 va_start(args, fmt);
6683
6684 vaf.fmt = fmt;
6685 vaf.va = &args;
6686
6687 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6688
6689 va_end(args);
6690
6691 return r;
6692 }
6693 EXPORT_SYMBOL(ata_port_printk);
6694
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)6695 int ata_link_printk(const struct ata_link *link, const char *level,
6696 const char *fmt, ...)
6697 {
6698 struct va_format vaf;
6699 va_list args;
6700 int r;
6701
6702 va_start(args, fmt);
6703
6704 vaf.fmt = fmt;
6705 vaf.va = &args;
6706
6707 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6708 r = printk("%sata%u.%02u: %pV",
6709 level, link->ap->print_id, link->pmp, &vaf);
6710 else
6711 r = printk("%sata%u: %pV",
6712 level, link->ap->print_id, &vaf);
6713
6714 va_end(args);
6715
6716 return r;
6717 }
6718 EXPORT_SYMBOL(ata_link_printk);
6719
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)6720 int ata_dev_printk(const struct ata_device *dev, const char *level,
6721 const char *fmt, ...)
6722 {
6723 struct va_format vaf;
6724 va_list args;
6725 int r;
6726
6727 va_start(args, fmt);
6728
6729 vaf.fmt = fmt;
6730 vaf.va = &args;
6731
6732 r = printk("%sata%u.%02u: %pV",
6733 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6734 &vaf);
6735
6736 va_end(args);
6737
6738 return r;
6739 }
6740 EXPORT_SYMBOL(ata_dev_printk);
6741
ata_print_version(const struct device * dev,const char * version)6742 void ata_print_version(const struct device *dev, const char *version)
6743 {
6744 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6745 }
6746 EXPORT_SYMBOL(ata_print_version);
6747
6748 /*
6749 * libata is essentially a library of internal helper functions for
6750 * low-level ATA host controller drivers. As such, the API/ABI is
6751 * likely to change as new drivers are added and updated.
6752 * Do not depend on ABI/API stability.
6753 */
6754 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6755 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6756 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6757 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6758 EXPORT_SYMBOL_GPL(sata_port_ops);
6759 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6760 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6761 EXPORT_SYMBOL_GPL(ata_link_next);
6762 EXPORT_SYMBOL_GPL(ata_dev_next);
6763 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6764 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6765 EXPORT_SYMBOL_GPL(ata_host_init);
6766 EXPORT_SYMBOL_GPL(ata_host_alloc);
6767 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6768 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6769 EXPORT_SYMBOL_GPL(ata_host_start);
6770 EXPORT_SYMBOL_GPL(ata_host_register);
6771 EXPORT_SYMBOL_GPL(ata_host_activate);
6772 EXPORT_SYMBOL_GPL(ata_host_detach);
6773 EXPORT_SYMBOL_GPL(ata_sg_init);
6774 EXPORT_SYMBOL_GPL(ata_qc_complete);
6775 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6776 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6777 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6778 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6779 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6780 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6781 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6782 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6783 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6784 EXPORT_SYMBOL_GPL(ata_mode_string);
6785 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6786 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6787 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6788 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6789 EXPORT_SYMBOL_GPL(ata_dev_disable);
6790 EXPORT_SYMBOL_GPL(sata_set_spd);
6791 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6792 EXPORT_SYMBOL_GPL(sata_link_debounce);
6793 EXPORT_SYMBOL_GPL(sata_link_resume);
6794 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6795 EXPORT_SYMBOL_GPL(ata_std_prereset);
6796 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6797 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6798 EXPORT_SYMBOL_GPL(ata_std_postreset);
6799 EXPORT_SYMBOL_GPL(ata_dev_classify);
6800 EXPORT_SYMBOL_GPL(ata_dev_pair);
6801 EXPORT_SYMBOL_GPL(ata_ratelimit);
6802 EXPORT_SYMBOL_GPL(ata_msleep);
6803 EXPORT_SYMBOL_GPL(ata_wait_register);
6804 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6805 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6806 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6807 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6808 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6809 EXPORT_SYMBOL_GPL(sata_scr_valid);
6810 EXPORT_SYMBOL_GPL(sata_scr_read);
6811 EXPORT_SYMBOL_GPL(sata_scr_write);
6812 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6813 EXPORT_SYMBOL_GPL(ata_link_online);
6814 EXPORT_SYMBOL_GPL(ata_link_offline);
6815 #ifdef CONFIG_PM
6816 EXPORT_SYMBOL_GPL(ata_host_suspend);
6817 EXPORT_SYMBOL_GPL(ata_host_resume);
6818 #endif /* CONFIG_PM */
6819 EXPORT_SYMBOL_GPL(ata_id_string);
6820 EXPORT_SYMBOL_GPL(ata_id_c_string);
6821 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6822 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6823
6824 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6825 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6826 EXPORT_SYMBOL_GPL(ata_timing_compute);
6827 EXPORT_SYMBOL_GPL(ata_timing_merge);
6828 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6829
6830 #ifdef CONFIG_PCI
6831 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6832 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6833 #ifdef CONFIG_PM
6834 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6835 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6836 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6837 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6838 #endif /* CONFIG_PM */
6839 #endif /* CONFIG_PCI */
6840
6841 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6842 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6843 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6844 EXPORT_SYMBOL_GPL(ata_port_desc);
6845 #ifdef CONFIG_PCI
6846 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6847 #endif /* CONFIG_PCI */
6848 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6849 EXPORT_SYMBOL_GPL(ata_link_abort);
6850 EXPORT_SYMBOL_GPL(ata_port_abort);
6851 EXPORT_SYMBOL_GPL(ata_port_freeze);
6852 EXPORT_SYMBOL_GPL(sata_async_notification);
6853 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6854 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6855 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6856 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6857 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6858 EXPORT_SYMBOL_GPL(ata_do_eh);
6859 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6860
6861 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6862 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6863 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6864 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6865 EXPORT_SYMBOL_GPL(ata_cable_sata);
6866