1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <asm/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 const struct ata_port_operations sata_port_ops = {
76 .inherits = &ata_base_port_ops,
77
78 .qc_defer = ata_std_qc_defer,
79 .hardreset = sata_std_hardreset,
80 };
81 EXPORT_SYMBOL_GPL(sata_port_ops);
82
83 static unsigned int ata_dev_init_params(struct ata_device *dev,
84 u16 heads, u16 sectors);
85 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
86 static void ata_dev_xfermask(struct ata_device *dev);
87 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
88
89 atomic_t ata_print_id = ATOMIC_INIT(0);
90
91 #ifdef CONFIG_ATA_FORCE
92 struct ata_force_param {
93 const char *name;
94 u8 cbl;
95 u8 spd_limit;
96 unsigned int xfer_mask;
97 unsigned int horkage_on;
98 unsigned int horkage_off;
99 u16 lflags_on;
100 u16 lflags_off;
101 };
102
103 struct ata_force_ent {
104 int port;
105 int device;
106 struct ata_force_param param;
107 };
108
109 static struct ata_force_ent *ata_force_tbl;
110 static int ata_force_tbl_size;
111
112 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
113 /* param_buf is thrown away after initialization, disallow read */
114 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
115 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
116 #endif
117
118 static int atapi_enabled = 1;
119 module_param(atapi_enabled, int, 0444);
120 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
121
122 static int atapi_dmadir = 0;
123 module_param(atapi_dmadir, int, 0444);
124 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
125
126 int atapi_passthru16 = 1;
127 module_param(atapi_passthru16, int, 0444);
128 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
129
130 int libata_fua = 0;
131 module_param_named(fua, libata_fua, int, 0444);
132 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
133
134 static int ata_ignore_hpa;
135 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
136 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
137
138 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
139 module_param_named(dma, libata_dma_mask, int, 0444);
140 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
141
142 static int ata_probe_timeout;
143 module_param(ata_probe_timeout, int, 0444);
144 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
145
146 int libata_noacpi = 0;
147 module_param_named(noacpi, libata_noacpi, int, 0444);
148 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
149
150 int libata_allow_tpm = 0;
151 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
152 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
153
154 static int atapi_an;
155 module_param(atapi_an, int, 0444);
156 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
157
158 MODULE_AUTHOR("Jeff Garzik");
159 MODULE_DESCRIPTION("Library module for ATA devices");
160 MODULE_LICENSE("GPL");
161 MODULE_VERSION(DRV_VERSION);
162
ata_dev_print_info(struct ata_device * dev)163 static inline bool ata_dev_print_info(struct ata_device *dev)
164 {
165 struct ata_eh_context *ehc = &dev->link->eh_context;
166
167 return ehc->i.flags & ATA_EHI_PRINTINFO;
168 }
169
ata_sstatus_online(u32 sstatus)170 static bool ata_sstatus_online(u32 sstatus)
171 {
172 return (sstatus & 0xf) == 0x3;
173 }
174
175 /**
176 * ata_link_next - link iteration helper
177 * @link: the previous link, NULL to start
178 * @ap: ATA port containing links to iterate
179 * @mode: iteration mode, one of ATA_LITER_*
180 *
181 * LOCKING:
182 * Host lock or EH context.
183 *
184 * RETURNS:
185 * Pointer to the next link.
186 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)187 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
188 enum ata_link_iter_mode mode)
189 {
190 BUG_ON(mode != ATA_LITER_EDGE &&
191 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
192
193 /* NULL link indicates start of iteration */
194 if (!link)
195 switch (mode) {
196 case ATA_LITER_EDGE:
197 case ATA_LITER_PMP_FIRST:
198 if (sata_pmp_attached(ap))
199 return ap->pmp_link;
200 fallthrough;
201 case ATA_LITER_HOST_FIRST:
202 return &ap->link;
203 }
204
205 /* we just iterated over the host link, what's next? */
206 if (link == &ap->link)
207 switch (mode) {
208 case ATA_LITER_HOST_FIRST:
209 if (sata_pmp_attached(ap))
210 return ap->pmp_link;
211 fallthrough;
212 case ATA_LITER_PMP_FIRST:
213 if (unlikely(ap->slave_link))
214 return ap->slave_link;
215 fallthrough;
216 case ATA_LITER_EDGE:
217 return NULL;
218 }
219
220 /* slave_link excludes PMP */
221 if (unlikely(link == ap->slave_link))
222 return NULL;
223
224 /* we were over a PMP link */
225 if (++link < ap->pmp_link + ap->nr_pmp_links)
226 return link;
227
228 if (mode == ATA_LITER_PMP_FIRST)
229 return &ap->link;
230
231 return NULL;
232 }
233 EXPORT_SYMBOL_GPL(ata_link_next);
234
235 /**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)247 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249 {
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286 }
287 EXPORT_SYMBOL_GPL(ata_dev_next);
288
289 /**
290 * ata_dev_phys_link - find physical link for a device
291 * @dev: ATA device to look up physical link for
292 *
293 * Look up physical link which @dev is attached to. Note that
294 * this is different from @dev->link only when @dev is on slave
295 * link. For all other cases, it's the same as @dev->link.
296 *
297 * LOCKING:
298 * Don't care.
299 *
300 * RETURNS:
301 * Pointer to the found physical link.
302 */
ata_dev_phys_link(struct ata_device * dev)303 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
304 {
305 struct ata_port *ap = dev->link->ap;
306
307 if (!ap->slave_link)
308 return dev->link;
309 if (!dev->devno)
310 return &ap->link;
311 return ap->slave_link;
312 }
313
314 #ifdef CONFIG_ATA_FORCE
315 /**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
ata_force_cbl(struct ata_port * ap)328 void ata_force_cbl(struct ata_port *ap)
329 {
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
344 }
345 }
346
347 /**
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
350 *
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
359 *
360 * LOCKING:
361 * EH context.
362 */
ata_force_link_limits(struct ata_link * link)363 static void ata_force_link_limits(struct ata_link *link)
364 {
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
368
369 if (ata_is_host_link(link))
370 linkno += 15;
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
388
389 /* let lflags stack */
390 if (fe->param.lflags_on) {
391 link->flags |= fe->param.lflags_on;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags_on, link->flags);
395 }
396 if (fe->param.lflags_off) {
397 link->flags &= ~fe->param.lflags_off;
398 ata_link_notice(link,
399 "FORCE: link flag 0x%x cleared -> 0x%x\n",
400 fe->param.lflags_off, link->flags);
401 }
402 }
403 }
404
405 /**
406 * ata_force_xfermask - force xfermask according to libata.force
407 * @dev: ATA device of interest
408 *
409 * Force xfer_mask according to libata.force and whine about it.
410 * For consistency with link selection, device number 15 selects
411 * the first device connected to the host link.
412 *
413 * LOCKING:
414 * EH context.
415 */
ata_force_xfermask(struct ata_device * dev)416 static void ata_force_xfermask(struct ata_device *dev)
417 {
418 int devno = dev->link->pmp + dev->devno;
419 int alt_devno = devno;
420 int i;
421
422 /* allow n.15/16 for devices attached to host port */
423 if (ata_is_host_link(dev->link))
424 alt_devno += 15;
425
426 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
427 const struct ata_force_ent *fe = &ata_force_tbl[i];
428 unsigned int pio_mask, mwdma_mask, udma_mask;
429
430 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
431 continue;
432
433 if (fe->device != -1 && fe->device != devno &&
434 fe->device != alt_devno)
435 continue;
436
437 if (!fe->param.xfer_mask)
438 continue;
439
440 ata_unpack_xfermask(fe->param.xfer_mask,
441 &pio_mask, &mwdma_mask, &udma_mask);
442 if (udma_mask)
443 dev->udma_mask = udma_mask;
444 else if (mwdma_mask) {
445 dev->udma_mask = 0;
446 dev->mwdma_mask = mwdma_mask;
447 } else {
448 dev->udma_mask = 0;
449 dev->mwdma_mask = 0;
450 dev->pio_mask = pio_mask;
451 }
452
453 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
454 fe->param.name);
455 return;
456 }
457 }
458
459 /**
460 * ata_force_horkage - force horkage according to libata.force
461 * @dev: ATA device of interest
462 *
463 * Force horkage according to libata.force and whine about it.
464 * For consistency with link selection, device number 15 selects
465 * the first device connected to the host link.
466 *
467 * LOCKING:
468 * EH context.
469 */
ata_force_horkage(struct ata_device * dev)470 static void ata_force_horkage(struct ata_device *dev)
471 {
472 int devno = dev->link->pmp + dev->devno;
473 int alt_devno = devno;
474 int i;
475
476 /* allow n.15/16 for devices attached to host port */
477 if (ata_is_host_link(dev->link))
478 alt_devno += 15;
479
480 for (i = 0; i < ata_force_tbl_size; i++) {
481 const struct ata_force_ent *fe = &ata_force_tbl[i];
482
483 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
484 continue;
485
486 if (fe->device != -1 && fe->device != devno &&
487 fe->device != alt_devno)
488 continue;
489
490 if (!(~dev->horkage & fe->param.horkage_on) &&
491 !(dev->horkage & fe->param.horkage_off))
492 continue;
493
494 dev->horkage |= fe->param.horkage_on;
495 dev->horkage &= ~fe->param.horkage_off;
496
497 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
498 fe->param.name);
499 }
500 }
501 #else
ata_force_link_limits(struct ata_link * link)502 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)503 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_horkage(struct ata_device * dev)504 static inline void ata_force_horkage(struct ata_device *dev) { }
505 #endif
506
507 /**
508 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
509 * @opcode: SCSI opcode
510 *
511 * Determine ATAPI command type from @opcode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
518 */
atapi_cmd_type(u8 opcode)519 int atapi_cmd_type(u8 opcode)
520 {
521 switch (opcode) {
522 case GPCMD_READ_10:
523 case GPCMD_READ_12:
524 return ATAPI_READ;
525
526 case GPCMD_WRITE_10:
527 case GPCMD_WRITE_12:
528 case GPCMD_WRITE_AND_VERIFY_10:
529 return ATAPI_WRITE;
530
531 case GPCMD_READ_CD:
532 case GPCMD_READ_CD_MSF:
533 return ATAPI_READ_CD;
534
535 case ATA_16:
536 case ATA_12:
537 if (atapi_passthru16)
538 return ATAPI_PASS_THRU;
539 fallthrough;
540 default:
541 return ATAPI_MISC;
542 }
543 }
544 EXPORT_SYMBOL_GPL(atapi_cmd_type);
545
546 static const u8 ata_rw_cmds[] = {
547 /* pio multi */
548 ATA_CMD_READ_MULTI,
549 ATA_CMD_WRITE_MULTI,
550 ATA_CMD_READ_MULTI_EXT,
551 ATA_CMD_WRITE_MULTI_EXT,
552 0,
553 0,
554 0,
555 ATA_CMD_WRITE_MULTI_FUA_EXT,
556 /* pio */
557 ATA_CMD_PIO_READ,
558 ATA_CMD_PIO_WRITE,
559 ATA_CMD_PIO_READ_EXT,
560 ATA_CMD_PIO_WRITE_EXT,
561 0,
562 0,
563 0,
564 0,
565 /* dma */
566 ATA_CMD_READ,
567 ATA_CMD_WRITE,
568 ATA_CMD_READ_EXT,
569 ATA_CMD_WRITE_EXT,
570 0,
571 0,
572 0,
573 ATA_CMD_WRITE_FUA_EXT
574 };
575
576 /**
577 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
578 * @tf: command to examine and configure
579 * @dev: device tf belongs to
580 *
581 * Examine the device configuration and tf->flags to calculate
582 * the proper read/write commands and protocol to use.
583 *
584 * LOCKING:
585 * caller.
586 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)587 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
588 {
589 u8 cmd;
590
591 int index, fua, lba48, write;
592
593 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
594 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
595 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
596
597 if (dev->flags & ATA_DFLAG_PIO) {
598 tf->protocol = ATA_PROT_PIO;
599 index = dev->multi_count ? 0 : 8;
600 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
601 /* Unable to use DMA due to host limitation */
602 tf->protocol = ATA_PROT_PIO;
603 index = dev->multi_count ? 0 : 8;
604 } else {
605 tf->protocol = ATA_PROT_DMA;
606 index = 16;
607 }
608
609 cmd = ata_rw_cmds[index + fua + lba48 + write];
610 if (cmd) {
611 tf->command = cmd;
612 return 0;
613 }
614 return -1;
615 }
616
617 /**
618 * ata_tf_read_block - Read block address from ATA taskfile
619 * @tf: ATA taskfile of interest
620 * @dev: ATA device @tf belongs to
621 *
622 * LOCKING:
623 * None.
624 *
625 * Read block address from @tf. This function can handle all
626 * three address formats - LBA, LBA48 and CHS. tf->protocol and
627 * flags select the address format to use.
628 *
629 * RETURNS:
630 * Block address read from @tf.
631 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)632 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
633 {
634 u64 block = 0;
635
636 if (tf->flags & ATA_TFLAG_LBA) {
637 if (tf->flags & ATA_TFLAG_LBA48) {
638 block |= (u64)tf->hob_lbah << 40;
639 block |= (u64)tf->hob_lbam << 32;
640 block |= (u64)tf->hob_lbal << 24;
641 } else
642 block |= (tf->device & 0xf) << 24;
643
644 block |= tf->lbah << 16;
645 block |= tf->lbam << 8;
646 block |= tf->lbal;
647 } else {
648 u32 cyl, head, sect;
649
650 cyl = tf->lbam | (tf->lbah << 8);
651 head = tf->device & 0xf;
652 sect = tf->lbal;
653
654 if (!sect) {
655 ata_dev_warn(dev,
656 "device reported invalid CHS sector 0\n");
657 return U64_MAX;
658 }
659
660 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
661 }
662
663 return block;
664 }
665
666 /**
667 * ata_build_rw_tf - Build ATA taskfile for given read/write request
668 * @qc: Metadata associated with the taskfile to build
669 * @block: Block address
670 * @n_block: Number of blocks
671 * @tf_flags: RW/FUA etc...
672 * @class: IO priority class
673 *
674 * LOCKING:
675 * None.
676 *
677 * Build ATA taskfile for the command @qc for read/write request described
678 * by @block, @n_block, @tf_flags and @class.
679 *
680 * RETURNS:
681 *
682 * 0 on success, -ERANGE if the request is too large for @dev,
683 * -EINVAL if the request is invalid.
684 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int class)685 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
686 unsigned int tf_flags, int class)
687 {
688 struct ata_taskfile *tf = &qc->tf;
689 struct ata_device *dev = qc->dev;
690
691 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
692 tf->flags |= tf_flags;
693
694 if (ata_ncq_enabled(dev)) {
695 /* yay, NCQ */
696 if (!lba_48_ok(block, n_block))
697 return -ERANGE;
698
699 tf->protocol = ATA_PROT_NCQ;
700 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
701
702 if (tf->flags & ATA_TFLAG_WRITE)
703 tf->command = ATA_CMD_FPDMA_WRITE;
704 else
705 tf->command = ATA_CMD_FPDMA_READ;
706
707 tf->nsect = qc->hw_tag << 3;
708 tf->hob_feature = (n_block >> 8) & 0xff;
709 tf->feature = n_block & 0xff;
710
711 tf->hob_lbah = (block >> 40) & 0xff;
712 tf->hob_lbam = (block >> 32) & 0xff;
713 tf->hob_lbal = (block >> 24) & 0xff;
714 tf->lbah = (block >> 16) & 0xff;
715 tf->lbam = (block >> 8) & 0xff;
716 tf->lbal = block & 0xff;
717
718 tf->device = ATA_LBA;
719 if (tf->flags & ATA_TFLAG_FUA)
720 tf->device |= 1 << 7;
721
722 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
723 class == IOPRIO_CLASS_RT)
724 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
725 } else if (dev->flags & ATA_DFLAG_LBA) {
726 tf->flags |= ATA_TFLAG_LBA;
727
728 if (lba_28_ok(block, n_block)) {
729 /* use LBA28 */
730 tf->device |= (block >> 24) & 0xf;
731 } else if (lba_48_ok(block, n_block)) {
732 if (!(dev->flags & ATA_DFLAG_LBA48))
733 return -ERANGE;
734
735 /* use LBA48 */
736 tf->flags |= ATA_TFLAG_LBA48;
737
738 tf->hob_nsect = (n_block >> 8) & 0xff;
739
740 tf->hob_lbah = (block >> 40) & 0xff;
741 tf->hob_lbam = (block >> 32) & 0xff;
742 tf->hob_lbal = (block >> 24) & 0xff;
743 } else
744 /* request too large even for LBA48 */
745 return -ERANGE;
746
747 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
748 return -EINVAL;
749
750 tf->nsect = n_block & 0xff;
751
752 tf->lbah = (block >> 16) & 0xff;
753 tf->lbam = (block >> 8) & 0xff;
754 tf->lbal = block & 0xff;
755
756 tf->device |= ATA_LBA;
757 } else {
758 /* CHS */
759 u32 sect, head, cyl, track;
760
761 /* The request -may- be too large for CHS addressing. */
762 if (!lba_28_ok(block, n_block))
763 return -ERANGE;
764
765 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
766 return -EINVAL;
767
768 /* Convert LBA to CHS */
769 track = (u32)block / dev->sectors;
770 cyl = track / dev->heads;
771 head = track % dev->heads;
772 sect = (u32)block % dev->sectors + 1;
773
774 /* Check whether the converted CHS can fit.
775 Cylinder: 0-65535
776 Head: 0-15
777 Sector: 1-255*/
778 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
779 return -ERANGE;
780
781 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
782 tf->lbal = sect;
783 tf->lbam = cyl;
784 tf->lbah = cyl >> 8;
785 tf->device |= head;
786 }
787
788 return 0;
789 }
790
791 /**
792 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
793 * @pio_mask: pio_mask
794 * @mwdma_mask: mwdma_mask
795 * @udma_mask: udma_mask
796 *
797 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
798 * unsigned int xfer_mask.
799 *
800 * LOCKING:
801 * None.
802 *
803 * RETURNS:
804 * Packed xfer_mask.
805 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)806 unsigned int ata_pack_xfermask(unsigned int pio_mask,
807 unsigned int mwdma_mask,
808 unsigned int udma_mask)
809 {
810 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
811 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
812 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
813 }
814 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
815
816 /**
817 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
818 * @xfer_mask: xfer_mask to unpack
819 * @pio_mask: resulting pio_mask
820 * @mwdma_mask: resulting mwdma_mask
821 * @udma_mask: resulting udma_mask
822 *
823 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
824 * Any NULL destination masks will be ignored.
825 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)826 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
827 unsigned int *mwdma_mask, unsigned int *udma_mask)
828 {
829 if (pio_mask)
830 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
831 if (mwdma_mask)
832 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
833 if (udma_mask)
834 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
835 }
836
837 static const struct ata_xfer_ent {
838 int shift, bits;
839 u8 base;
840 } ata_xfer_tbl[] = {
841 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
842 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
843 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
844 { -1, },
845 };
846
847 /**
848 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
849 * @xfer_mask: xfer_mask of interest
850 *
851 * Return matching XFER_* value for @xfer_mask. Only the highest
852 * bit of @xfer_mask is considered.
853 *
854 * LOCKING:
855 * None.
856 *
857 * RETURNS:
858 * Matching XFER_* value, 0xff if no match found.
859 */
ata_xfer_mask2mode(unsigned int xfer_mask)860 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
861 {
862 int highbit = fls(xfer_mask) - 1;
863 const struct ata_xfer_ent *ent;
864
865 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
866 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
867 return ent->base + highbit - ent->shift;
868 return 0xff;
869 }
870 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
871
872 /**
873 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
874 * @xfer_mode: XFER_* of interest
875 *
876 * Return matching xfer_mask for @xfer_mode.
877 *
878 * LOCKING:
879 * None.
880 *
881 * RETURNS:
882 * Matching xfer_mask, 0 if no match found.
883 */
ata_xfer_mode2mask(u8 xfer_mode)884 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
885 {
886 const struct ata_xfer_ent *ent;
887
888 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
889 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
890 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
891 & ~((1 << ent->shift) - 1);
892 return 0;
893 }
894 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
895
896 /**
897 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
898 * @xfer_mode: XFER_* of interest
899 *
900 * Return matching xfer_shift for @xfer_mode.
901 *
902 * LOCKING:
903 * None.
904 *
905 * RETURNS:
906 * Matching xfer_shift, -1 if no match found.
907 */
ata_xfer_mode2shift(u8 xfer_mode)908 int ata_xfer_mode2shift(u8 xfer_mode)
909 {
910 const struct ata_xfer_ent *ent;
911
912 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
913 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
914 return ent->shift;
915 return -1;
916 }
917 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
918
919 /**
920 * ata_mode_string - convert xfer_mask to string
921 * @xfer_mask: mask of bits supported; only highest bit counts.
922 *
923 * Determine string which represents the highest speed
924 * (highest bit in @modemask).
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Constant C string representing highest speed listed in
931 * @mode_mask, or the constant C string "<n/a>".
932 */
ata_mode_string(unsigned int xfer_mask)933 const char *ata_mode_string(unsigned int xfer_mask)
934 {
935 static const char * const xfer_mode_str[] = {
936 "PIO0",
937 "PIO1",
938 "PIO2",
939 "PIO3",
940 "PIO4",
941 "PIO5",
942 "PIO6",
943 "MWDMA0",
944 "MWDMA1",
945 "MWDMA2",
946 "MWDMA3",
947 "MWDMA4",
948 "UDMA/16",
949 "UDMA/25",
950 "UDMA/33",
951 "UDMA/44",
952 "UDMA/66",
953 "UDMA/100",
954 "UDMA/133",
955 "UDMA7",
956 };
957 int highbit;
958
959 highbit = fls(xfer_mask) - 1;
960 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
961 return xfer_mode_str[highbit];
962 return "<n/a>";
963 }
964 EXPORT_SYMBOL_GPL(ata_mode_string);
965
sata_spd_string(unsigned int spd)966 const char *sata_spd_string(unsigned int spd)
967 {
968 static const char * const spd_str[] = {
969 "1.5 Gbps",
970 "3.0 Gbps",
971 "6.0 Gbps",
972 };
973
974 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
975 return "<unknown>";
976 return spd_str[spd - 1];
977 }
978
979 /**
980 * ata_dev_classify - determine device type based on ATA-spec signature
981 * @tf: ATA taskfile register set for device to be identified
982 *
983 * Determine from taskfile register contents whether a device is
984 * ATA or ATAPI, as per "Signature and persistence" section
985 * of ATA/PI spec (volume 1, sect 5.14).
986 *
987 * LOCKING:
988 * None.
989 *
990 * RETURNS:
991 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
992 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
993 */
ata_dev_classify(const struct ata_taskfile * tf)994 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
995 {
996 /* Apple's open source Darwin code hints that some devices only
997 * put a proper signature into the LBA mid/high registers,
998 * So, we only check those. It's sufficient for uniqueness.
999 *
1000 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1001 * signatures for ATA and ATAPI devices attached on SerialATA,
1002 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1003 * spec has never mentioned about using different signatures
1004 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1005 * Multiplier specification began to use 0x69/0x96 to identify
1006 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1007 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1008 * 0x69/0x96 shortly and described them as reserved for
1009 * SerialATA.
1010 *
1011 * We follow the current spec and consider that 0x69/0x96
1012 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1013 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1014 * SEMB signature. This is worked around in
1015 * ata_dev_read_id().
1016 */
1017 if (tf->lbam == 0 && tf->lbah == 0)
1018 return ATA_DEV_ATA;
1019
1020 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1021 return ATA_DEV_ATAPI;
1022
1023 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1024 return ATA_DEV_PMP;
1025
1026 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1027 return ATA_DEV_SEMB;
1028
1029 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1030 return ATA_DEV_ZAC;
1031
1032 return ATA_DEV_UNKNOWN;
1033 }
1034 EXPORT_SYMBOL_GPL(ata_dev_classify);
1035
1036 /**
1037 * ata_id_string - Convert IDENTIFY DEVICE page into string
1038 * @id: IDENTIFY DEVICE results we will examine
1039 * @s: string into which data is output
1040 * @ofs: offset into identify device page
1041 * @len: length of string to return. must be an even number.
1042 *
1043 * The strings in the IDENTIFY DEVICE page are broken up into
1044 * 16-bit chunks. Run through the string, and output each
1045 * 8-bit chunk linearly, regardless of platform.
1046 *
1047 * LOCKING:
1048 * caller.
1049 */
1050
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1051 void ata_id_string(const u16 *id, unsigned char *s,
1052 unsigned int ofs, unsigned int len)
1053 {
1054 unsigned int c;
1055
1056 BUG_ON(len & 1);
1057
1058 while (len > 0) {
1059 c = id[ofs] >> 8;
1060 *s = c;
1061 s++;
1062
1063 c = id[ofs] & 0xff;
1064 *s = c;
1065 s++;
1066
1067 ofs++;
1068 len -= 2;
1069 }
1070 }
1071 EXPORT_SYMBOL_GPL(ata_id_string);
1072
1073 /**
1074 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1075 * @id: IDENTIFY DEVICE results we will examine
1076 * @s: string into which data is output
1077 * @ofs: offset into identify device page
1078 * @len: length of string to return. must be an odd number.
1079 *
1080 * This function is identical to ata_id_string except that it
1081 * trims trailing spaces and terminates the resulting string with
1082 * null. @len must be actual maximum length (even number) + 1.
1083 *
1084 * LOCKING:
1085 * caller.
1086 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1087 void ata_id_c_string(const u16 *id, unsigned char *s,
1088 unsigned int ofs, unsigned int len)
1089 {
1090 unsigned char *p;
1091
1092 ata_id_string(id, s, ofs, len - 1);
1093
1094 p = s + strnlen(s, len - 1);
1095 while (p > s && p[-1] == ' ')
1096 p--;
1097 *p = '\0';
1098 }
1099 EXPORT_SYMBOL_GPL(ata_id_c_string);
1100
ata_id_n_sectors(const u16 * id)1101 static u64 ata_id_n_sectors(const u16 *id)
1102 {
1103 if (ata_id_has_lba(id)) {
1104 if (ata_id_has_lba48(id))
1105 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1106
1107 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1108 }
1109
1110 if (ata_id_current_chs_valid(id))
1111 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1112 (u32)id[ATA_ID_CUR_SECTORS];
1113
1114 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1115 (u32)id[ATA_ID_SECTORS];
1116 }
1117
ata_tf_to_lba48(const struct ata_taskfile * tf)1118 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1119 {
1120 u64 sectors = 0;
1121
1122 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1123 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1124 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1125 sectors |= (tf->lbah & 0xff) << 16;
1126 sectors |= (tf->lbam & 0xff) << 8;
1127 sectors |= (tf->lbal & 0xff);
1128
1129 return sectors;
1130 }
1131
ata_tf_to_lba(const struct ata_taskfile * tf)1132 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1133 {
1134 u64 sectors = 0;
1135
1136 sectors |= (tf->device & 0x0f) << 24;
1137 sectors |= (tf->lbah & 0xff) << 16;
1138 sectors |= (tf->lbam & 0xff) << 8;
1139 sectors |= (tf->lbal & 0xff);
1140
1141 return sectors;
1142 }
1143
1144 /**
1145 * ata_read_native_max_address - Read native max address
1146 * @dev: target device
1147 * @max_sectors: out parameter for the result native max address
1148 *
1149 * Perform an LBA48 or LBA28 native size query upon the device in
1150 * question.
1151 *
1152 * RETURNS:
1153 * 0 on success, -EACCES if command is aborted by the drive.
1154 * -EIO on other errors.
1155 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1156 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1157 {
1158 unsigned int err_mask;
1159 struct ata_taskfile tf;
1160 int lba48 = ata_id_has_lba48(dev->id);
1161
1162 ata_tf_init(dev, &tf);
1163
1164 /* always clear all address registers */
1165 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1166
1167 if (lba48) {
1168 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1169 tf.flags |= ATA_TFLAG_LBA48;
1170 } else
1171 tf.command = ATA_CMD_READ_NATIVE_MAX;
1172
1173 tf.protocol = ATA_PROT_NODATA;
1174 tf.device |= ATA_LBA;
1175
1176 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1177 if (err_mask) {
1178 ata_dev_warn(dev,
1179 "failed to read native max address (err_mask=0x%x)\n",
1180 err_mask);
1181 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1182 return -EACCES;
1183 return -EIO;
1184 }
1185
1186 if (lba48)
1187 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1188 else
1189 *max_sectors = ata_tf_to_lba(&tf) + 1;
1190 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1191 (*max_sectors)--;
1192 return 0;
1193 }
1194
1195 /**
1196 * ata_set_max_sectors - Set max sectors
1197 * @dev: target device
1198 * @new_sectors: new max sectors value to set for the device
1199 *
1200 * Set max sectors of @dev to @new_sectors.
1201 *
1202 * RETURNS:
1203 * 0 on success, -EACCES if command is aborted or denied (due to
1204 * previous non-volatile SET_MAX) by the drive. -EIO on other
1205 * errors.
1206 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1207 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1208 {
1209 unsigned int err_mask;
1210 struct ata_taskfile tf;
1211 int lba48 = ata_id_has_lba48(dev->id);
1212
1213 new_sectors--;
1214
1215 ata_tf_init(dev, &tf);
1216
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_SET_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222
1223 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1224 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1225 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1226 } else {
1227 tf.command = ATA_CMD_SET_MAX;
1228
1229 tf.device |= (new_sectors >> 24) & 0xf;
1230 }
1231
1232 tf.protocol = ATA_PROT_NODATA;
1233 tf.device |= ATA_LBA;
1234
1235 tf.lbal = (new_sectors >> 0) & 0xff;
1236 tf.lbam = (new_sectors >> 8) & 0xff;
1237 tf.lbah = (new_sectors >> 16) & 0xff;
1238
1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 if (err_mask) {
1241 ata_dev_warn(dev,
1242 "failed to set max address (err_mask=0x%x)\n",
1243 err_mask);
1244 if (err_mask == AC_ERR_DEV &&
1245 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1246 return -EACCES;
1247 return -EIO;
1248 }
1249
1250 return 0;
1251 }
1252
1253 /**
1254 * ata_hpa_resize - Resize a device with an HPA set
1255 * @dev: Device to resize
1256 *
1257 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1258 * it if required to the full size of the media. The caller must check
1259 * the drive has the HPA feature set enabled.
1260 *
1261 * RETURNS:
1262 * 0 on success, -errno on failure.
1263 */
ata_hpa_resize(struct ata_device * dev)1264 static int ata_hpa_resize(struct ata_device *dev)
1265 {
1266 bool print_info = ata_dev_print_info(dev);
1267 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1268 u64 sectors = ata_id_n_sectors(dev->id);
1269 u64 native_sectors;
1270 int rc;
1271
1272 /* do we need to do it? */
1273 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1274 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1275 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1276 return 0;
1277
1278 /* read native max address */
1279 rc = ata_read_native_max_address(dev, &native_sectors);
1280 if (rc) {
1281 /* If device aborted the command or HPA isn't going to
1282 * be unlocked, skip HPA resizing.
1283 */
1284 if (rc == -EACCES || !unlock_hpa) {
1285 ata_dev_warn(dev,
1286 "HPA support seems broken, skipping HPA handling\n");
1287 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1288
1289 /* we can continue if device aborted the command */
1290 if (rc == -EACCES)
1291 rc = 0;
1292 }
1293
1294 return rc;
1295 }
1296 dev->n_native_sectors = native_sectors;
1297
1298 /* nothing to do? */
1299 if (native_sectors <= sectors || !unlock_hpa) {
1300 if (!print_info || native_sectors == sectors)
1301 return 0;
1302
1303 if (native_sectors > sectors)
1304 ata_dev_info(dev,
1305 "HPA detected: current %llu, native %llu\n",
1306 (unsigned long long)sectors,
1307 (unsigned long long)native_sectors);
1308 else if (native_sectors < sectors)
1309 ata_dev_warn(dev,
1310 "native sectors (%llu) is smaller than sectors (%llu)\n",
1311 (unsigned long long)native_sectors,
1312 (unsigned long long)sectors);
1313 return 0;
1314 }
1315
1316 /* let's unlock HPA */
1317 rc = ata_set_max_sectors(dev, native_sectors);
1318 if (rc == -EACCES) {
1319 /* if device aborted the command, skip HPA resizing */
1320 ata_dev_warn(dev,
1321 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1322 (unsigned long long)sectors,
1323 (unsigned long long)native_sectors);
1324 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1325 return 0;
1326 } else if (rc)
1327 return rc;
1328
1329 /* re-read IDENTIFY data */
1330 rc = ata_dev_reread_id(dev, 0);
1331 if (rc) {
1332 ata_dev_err(dev,
1333 "failed to re-read IDENTIFY data after HPA resizing\n");
1334 return rc;
1335 }
1336
1337 if (print_info) {
1338 u64 new_sectors = ata_id_n_sectors(dev->id);
1339 ata_dev_info(dev,
1340 "HPA unlocked: %llu -> %llu, native %llu\n",
1341 (unsigned long long)sectors,
1342 (unsigned long long)new_sectors,
1343 (unsigned long long)native_sectors);
1344 }
1345
1346 return 0;
1347 }
1348
1349 /**
1350 * ata_dump_id - IDENTIFY DEVICE info debugging output
1351 * @dev: device from which the information is fetched
1352 * @id: IDENTIFY DEVICE page to dump
1353 *
1354 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1355 * page.
1356 *
1357 * LOCKING:
1358 * caller.
1359 */
1360
ata_dump_id(struct ata_device * dev,const u16 * id)1361 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1362 {
1363 ata_dev_dbg(dev,
1364 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1365 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1366 "88==0x%04x 93==0x%04x\n",
1367 id[49], id[53], id[63], id[64], id[75], id[80],
1368 id[81], id[82], id[83], id[84], id[88], id[93]);
1369 }
1370
1371 /**
1372 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1373 * @id: IDENTIFY data to compute xfer mask from
1374 *
1375 * Compute the xfermask for this device. This is not as trivial
1376 * as it seems if we must consider early devices correctly.
1377 *
1378 * FIXME: pre IDE drive timing (do we care ?).
1379 *
1380 * LOCKING:
1381 * None.
1382 *
1383 * RETURNS:
1384 * Computed xfermask
1385 */
ata_id_xfermask(const u16 * id)1386 unsigned int ata_id_xfermask(const u16 *id)
1387 {
1388 unsigned int pio_mask, mwdma_mask, udma_mask;
1389
1390 /* Usual case. Word 53 indicates word 64 is valid */
1391 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1392 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1393 pio_mask <<= 3;
1394 pio_mask |= 0x7;
1395 } else {
1396 /* If word 64 isn't valid then Word 51 high byte holds
1397 * the PIO timing number for the maximum. Turn it into
1398 * a mask.
1399 */
1400 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1401 if (mode < 5) /* Valid PIO range */
1402 pio_mask = (2 << mode) - 1;
1403 else
1404 pio_mask = 1;
1405
1406 /* But wait.. there's more. Design your standards by
1407 * committee and you too can get a free iordy field to
1408 * process. However it is the speeds not the modes that
1409 * are supported... Note drivers using the timing API
1410 * will get this right anyway
1411 */
1412 }
1413
1414 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1415
1416 if (ata_id_is_cfa(id)) {
1417 /*
1418 * Process compact flash extended modes
1419 */
1420 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1421 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1422
1423 if (pio)
1424 pio_mask |= (1 << 5);
1425 if (pio > 1)
1426 pio_mask |= (1 << 6);
1427 if (dma)
1428 mwdma_mask |= (1 << 3);
1429 if (dma > 1)
1430 mwdma_mask |= (1 << 4);
1431 }
1432
1433 udma_mask = 0;
1434 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1435 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1436
1437 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1438 }
1439 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1440
ata_qc_complete_internal(struct ata_queued_cmd * qc)1441 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1442 {
1443 struct completion *waiting = qc->private_data;
1444
1445 complete(waiting);
1446 }
1447
1448 /**
1449 * ata_exec_internal_sg - execute libata internal command
1450 * @dev: Device to which the command is sent
1451 * @tf: Taskfile registers for the command and the result
1452 * @cdb: CDB for packet command
1453 * @dma_dir: Data transfer direction of the command
1454 * @sgl: sg list for the data buffer of the command
1455 * @n_elem: Number of sg entries
1456 * @timeout: Timeout in msecs (0 for default)
1457 *
1458 * Executes libata internal command with timeout. @tf contains
1459 * command on entry and result on return. Timeout and error
1460 * conditions are reported via return value. No recovery action
1461 * is taken after a command times out. It's caller's duty to
1462 * clean up after timeout.
1463 *
1464 * LOCKING:
1465 * None. Should be called with kernel context, might sleep.
1466 *
1467 * RETURNS:
1468 * Zero on success, AC_ERR_* mask on failure
1469 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned int timeout)1470 static unsigned ata_exec_internal_sg(struct ata_device *dev,
1471 struct ata_taskfile *tf, const u8 *cdb,
1472 int dma_dir, struct scatterlist *sgl,
1473 unsigned int n_elem, unsigned int timeout)
1474 {
1475 struct ata_link *link = dev->link;
1476 struct ata_port *ap = link->ap;
1477 u8 command = tf->command;
1478 int auto_timeout = 0;
1479 struct ata_queued_cmd *qc;
1480 unsigned int preempted_tag;
1481 u32 preempted_sactive;
1482 u64 preempted_qc_active;
1483 int preempted_nr_active_links;
1484 DECLARE_COMPLETION_ONSTACK(wait);
1485 unsigned long flags;
1486 unsigned int err_mask;
1487 int rc;
1488
1489 spin_lock_irqsave(ap->lock, flags);
1490
1491 /* no internal command while frozen */
1492 if (ap->pflags & ATA_PFLAG_FROZEN) {
1493 spin_unlock_irqrestore(ap->lock, flags);
1494 return AC_ERR_SYSTEM;
1495 }
1496
1497 /* initialize internal qc */
1498 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1499
1500 qc->tag = ATA_TAG_INTERNAL;
1501 qc->hw_tag = 0;
1502 qc->scsicmd = NULL;
1503 qc->ap = ap;
1504 qc->dev = dev;
1505 ata_qc_reinit(qc);
1506
1507 preempted_tag = link->active_tag;
1508 preempted_sactive = link->sactive;
1509 preempted_qc_active = ap->qc_active;
1510 preempted_nr_active_links = ap->nr_active_links;
1511 link->active_tag = ATA_TAG_POISON;
1512 link->sactive = 0;
1513 ap->qc_active = 0;
1514 ap->nr_active_links = 0;
1515
1516 /* prepare & issue qc */
1517 qc->tf = *tf;
1518 if (cdb)
1519 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1520
1521 /* some SATA bridges need us to indicate data xfer direction */
1522 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1523 dma_dir == DMA_FROM_DEVICE)
1524 qc->tf.feature |= ATAPI_DMADIR;
1525
1526 qc->flags |= ATA_QCFLAG_RESULT_TF;
1527 qc->dma_dir = dma_dir;
1528 if (dma_dir != DMA_NONE) {
1529 unsigned int i, buflen = 0;
1530 struct scatterlist *sg;
1531
1532 for_each_sg(sgl, sg, n_elem, i)
1533 buflen += sg->length;
1534
1535 ata_sg_init(qc, sgl, n_elem);
1536 qc->nbytes = buflen;
1537 }
1538
1539 qc->private_data = &wait;
1540 qc->complete_fn = ata_qc_complete_internal;
1541
1542 ata_qc_issue(qc);
1543
1544 spin_unlock_irqrestore(ap->lock, flags);
1545
1546 if (!timeout) {
1547 if (ata_probe_timeout)
1548 timeout = ata_probe_timeout * 1000;
1549 else {
1550 timeout = ata_internal_cmd_timeout(dev, command);
1551 auto_timeout = 1;
1552 }
1553 }
1554
1555 if (ap->ops->error_handler)
1556 ata_eh_release(ap);
1557
1558 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1559
1560 if (ap->ops->error_handler)
1561 ata_eh_acquire(ap);
1562
1563 ata_sff_flush_pio_task(ap);
1564
1565 if (!rc) {
1566 spin_lock_irqsave(ap->lock, flags);
1567
1568 /* We're racing with irq here. If we lose, the
1569 * following test prevents us from completing the qc
1570 * twice. If we win, the port is frozen and will be
1571 * cleaned up by ->post_internal_cmd().
1572 */
1573 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1574 qc->err_mask |= AC_ERR_TIMEOUT;
1575
1576 if (ap->ops->error_handler)
1577 ata_port_freeze(ap);
1578 else
1579 ata_qc_complete(qc);
1580
1581 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1582 timeout, command);
1583 }
1584
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 }
1587
1588 /* do post_internal_cmd */
1589 if (ap->ops->post_internal_cmd)
1590 ap->ops->post_internal_cmd(qc);
1591
1592 /* perform minimal error analysis */
1593 if (qc->flags & ATA_QCFLAG_FAILED) {
1594 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1595 qc->err_mask |= AC_ERR_DEV;
1596
1597 if (!qc->err_mask)
1598 qc->err_mask |= AC_ERR_OTHER;
1599
1600 if (qc->err_mask & ~AC_ERR_OTHER)
1601 qc->err_mask &= ~AC_ERR_OTHER;
1602 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1603 qc->result_tf.status |= ATA_SENSE;
1604 }
1605
1606 /* finish up */
1607 spin_lock_irqsave(ap->lock, flags);
1608
1609 *tf = qc->result_tf;
1610 err_mask = qc->err_mask;
1611
1612 ata_qc_free(qc);
1613 link->active_tag = preempted_tag;
1614 link->sactive = preempted_sactive;
1615 ap->qc_active = preempted_qc_active;
1616 ap->nr_active_links = preempted_nr_active_links;
1617
1618 spin_unlock_irqrestore(ap->lock, flags);
1619
1620 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1621 ata_internal_cmd_timed_out(dev, command);
1622
1623 return err_mask;
1624 }
1625
1626 /**
1627 * ata_exec_internal - execute libata internal command
1628 * @dev: Device to which the command is sent
1629 * @tf: Taskfile registers for the command and the result
1630 * @cdb: CDB for packet command
1631 * @dma_dir: Data transfer direction of the command
1632 * @buf: Data buffer of the command
1633 * @buflen: Length of data buffer
1634 * @timeout: Timeout in msecs (0 for default)
1635 *
1636 * Wrapper around ata_exec_internal_sg() which takes simple
1637 * buffer instead of sg list.
1638 *
1639 * LOCKING:
1640 * None. Should be called with kernel context, might sleep.
1641 *
1642 * RETURNS:
1643 * Zero on success, AC_ERR_* mask on failure
1644 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1645 unsigned ata_exec_internal(struct ata_device *dev,
1646 struct ata_taskfile *tf, const u8 *cdb,
1647 int dma_dir, void *buf, unsigned int buflen,
1648 unsigned int timeout)
1649 {
1650 struct scatterlist *psg = NULL, sg;
1651 unsigned int n_elem = 0;
1652
1653 if (dma_dir != DMA_NONE) {
1654 WARN_ON(!buf);
1655 sg_init_one(&sg, buf, buflen);
1656 psg = &sg;
1657 n_elem++;
1658 }
1659
1660 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1661 timeout);
1662 }
1663
1664 /**
1665 * ata_pio_need_iordy - check if iordy needed
1666 * @adev: ATA device
1667 *
1668 * Check if the current speed of the device requires IORDY. Used
1669 * by various controllers for chip configuration.
1670 */
ata_pio_need_iordy(const struct ata_device * adev)1671 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1672 {
1673 /* Don't set IORDY if we're preparing for reset. IORDY may
1674 * lead to controller lock up on certain controllers if the
1675 * port is not occupied. See bko#11703 for details.
1676 */
1677 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1678 return 0;
1679 /* Controller doesn't support IORDY. Probably a pointless
1680 * check as the caller should know this.
1681 */
1682 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1683 return 0;
1684 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1685 if (ata_id_is_cfa(adev->id)
1686 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1687 return 0;
1688 /* PIO3 and higher it is mandatory */
1689 if (adev->pio_mode > XFER_PIO_2)
1690 return 1;
1691 /* We turn it on when possible */
1692 if (ata_id_has_iordy(adev->id))
1693 return 1;
1694 return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1697
1698 /**
1699 * ata_pio_mask_no_iordy - Return the non IORDY mask
1700 * @adev: ATA device
1701 *
1702 * Compute the highest mode possible if we are not using iordy. Return
1703 * -1 if no iordy mode is available.
1704 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1705 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1706 {
1707 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1708 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1709 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1710 /* Is the speed faster than the drive allows non IORDY ? */
1711 if (pio) {
1712 /* This is cycle times not frequency - watch the logic! */
1713 if (pio > 240) /* PIO2 is 240nS per cycle */
1714 return 3 << ATA_SHIFT_PIO;
1715 return 7 << ATA_SHIFT_PIO;
1716 }
1717 }
1718 return 3 << ATA_SHIFT_PIO;
1719 }
1720
1721 /**
1722 * ata_do_dev_read_id - default ID read method
1723 * @dev: device
1724 * @tf: proposed taskfile
1725 * @id: data buffer
1726 *
1727 * Issue the identify taskfile and hand back the buffer containing
1728 * identify data. For some RAID controllers and for pre ATA devices
1729 * this function is wrapped or replaced by the driver
1730 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1731 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1732 struct ata_taskfile *tf, __le16 *id)
1733 {
1734 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1735 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1736 }
1737 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1738
1739 /**
1740 * ata_dev_read_id - Read ID data from the specified device
1741 * @dev: target device
1742 * @p_class: pointer to class of the target device (may be changed)
1743 * @flags: ATA_READID_* flags
1744 * @id: buffer to read IDENTIFY data into
1745 *
1746 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1747 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1748 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1749 * for pre-ATA4 drives.
1750 *
1751 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1752 * now we abort if we hit that case.
1753 *
1754 * LOCKING:
1755 * Kernel thread context (may sleep)
1756 *
1757 * RETURNS:
1758 * 0 on success, -errno otherwise.
1759 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1760 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1761 unsigned int flags, u16 *id)
1762 {
1763 struct ata_port *ap = dev->link->ap;
1764 unsigned int class = *p_class;
1765 struct ata_taskfile tf;
1766 unsigned int err_mask = 0;
1767 const char *reason;
1768 bool is_semb = class == ATA_DEV_SEMB;
1769 int may_fallback = 1, tried_spinup = 0;
1770 int rc;
1771
1772 retry:
1773 ata_tf_init(dev, &tf);
1774
1775 switch (class) {
1776 case ATA_DEV_SEMB:
1777 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1778 fallthrough;
1779 case ATA_DEV_ATA:
1780 case ATA_DEV_ZAC:
1781 tf.command = ATA_CMD_ID_ATA;
1782 break;
1783 case ATA_DEV_ATAPI:
1784 tf.command = ATA_CMD_ID_ATAPI;
1785 break;
1786 default:
1787 rc = -ENODEV;
1788 reason = "unsupported class";
1789 goto err_out;
1790 }
1791
1792 tf.protocol = ATA_PROT_PIO;
1793
1794 /* Some devices choke if TF registers contain garbage. Make
1795 * sure those are properly initialized.
1796 */
1797 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1798
1799 /* Device presence detection is unreliable on some
1800 * controllers. Always poll IDENTIFY if available.
1801 */
1802 tf.flags |= ATA_TFLAG_POLLING;
1803
1804 if (ap->ops->read_id)
1805 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1806 else
1807 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1808
1809 if (err_mask) {
1810 if (err_mask & AC_ERR_NODEV_HINT) {
1811 ata_dev_dbg(dev, "NODEV after polling detection\n");
1812 return -ENOENT;
1813 }
1814
1815 if (is_semb) {
1816 ata_dev_info(dev,
1817 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1818 /* SEMB is not supported yet */
1819 *p_class = ATA_DEV_SEMB_UNSUP;
1820 return 0;
1821 }
1822
1823 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1824 /* Device or controller might have reported
1825 * the wrong device class. Give a shot at the
1826 * other IDENTIFY if the current one is
1827 * aborted by the device.
1828 */
1829 if (may_fallback) {
1830 may_fallback = 0;
1831
1832 if (class == ATA_DEV_ATA)
1833 class = ATA_DEV_ATAPI;
1834 else
1835 class = ATA_DEV_ATA;
1836 goto retry;
1837 }
1838
1839 /* Control reaches here iff the device aborted
1840 * both flavors of IDENTIFYs which happens
1841 * sometimes with phantom devices.
1842 */
1843 ata_dev_dbg(dev,
1844 "both IDENTIFYs aborted, assuming NODEV\n");
1845 return -ENOENT;
1846 }
1847
1848 rc = -EIO;
1849 reason = "I/O error";
1850 goto err_out;
1851 }
1852
1853 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1854 ata_dev_info(dev, "dumping IDENTIFY data, "
1855 "class=%d may_fallback=%d tried_spinup=%d\n",
1856 class, may_fallback, tried_spinup);
1857 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1858 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1859 }
1860
1861 /* Falling back doesn't make sense if ID data was read
1862 * successfully at least once.
1863 */
1864 may_fallback = 0;
1865
1866 swap_buf_le16(id, ATA_ID_WORDS);
1867
1868 /* sanity check */
1869 rc = -EINVAL;
1870 reason = "device reports invalid type";
1871
1872 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1873 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1874 goto err_out;
1875 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1876 ata_id_is_ata(id)) {
1877 ata_dev_dbg(dev,
1878 "host indicates ignore ATA devices, ignored\n");
1879 return -ENOENT;
1880 }
1881 } else {
1882 if (ata_id_is_ata(id))
1883 goto err_out;
1884 }
1885
1886 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1887 tried_spinup = 1;
1888 /*
1889 * Drive powered-up in standby mode, and requires a specific
1890 * SET_FEATURES spin-up subcommand before it will accept
1891 * anything other than the original IDENTIFY command.
1892 */
1893 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1894 if (err_mask && id[2] != 0x738c) {
1895 rc = -EIO;
1896 reason = "SPINUP failed";
1897 goto err_out;
1898 }
1899 /*
1900 * If the drive initially returned incomplete IDENTIFY info,
1901 * we now must reissue the IDENTIFY command.
1902 */
1903 if (id[2] == 0x37c8)
1904 goto retry;
1905 }
1906
1907 if ((flags & ATA_READID_POSTRESET) &&
1908 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1909 /*
1910 * The exact sequence expected by certain pre-ATA4 drives is:
1911 * SRST RESET
1912 * IDENTIFY (optional in early ATA)
1913 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1914 * anything else..
1915 * Some drives were very specific about that exact sequence.
1916 *
1917 * Note that ATA4 says lba is mandatory so the second check
1918 * should never trigger.
1919 */
1920 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1921 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1922 if (err_mask) {
1923 rc = -EIO;
1924 reason = "INIT_DEV_PARAMS failed";
1925 goto err_out;
1926 }
1927
1928 /* current CHS translation info (id[53-58]) might be
1929 * changed. reread the identify device info.
1930 */
1931 flags &= ~ATA_READID_POSTRESET;
1932 goto retry;
1933 }
1934 }
1935
1936 *p_class = class;
1937
1938 return 0;
1939
1940 err_out:
1941 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1942 reason, err_mask);
1943 return rc;
1944 }
1945
1946 /**
1947 * ata_read_log_page - read a specific log page
1948 * @dev: target device
1949 * @log: log to read
1950 * @page: page to read
1951 * @buf: buffer to store read page
1952 * @sectors: number of sectors to read
1953 *
1954 * Read log page using READ_LOG_EXT command.
1955 *
1956 * LOCKING:
1957 * Kernel thread context (may sleep).
1958 *
1959 * RETURNS:
1960 * 0 on success, AC_ERR_* mask otherwise.
1961 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)1962 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1963 u8 page, void *buf, unsigned int sectors)
1964 {
1965 unsigned long ap_flags = dev->link->ap->flags;
1966 struct ata_taskfile tf;
1967 unsigned int err_mask;
1968 bool dma = false;
1969
1970 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
1971
1972 /*
1973 * Return error without actually issuing the command on controllers
1974 * which e.g. lockup on a read log page.
1975 */
1976 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
1977 return AC_ERR_DEV;
1978
1979 retry:
1980 ata_tf_init(dev, &tf);
1981 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
1982 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
1983 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
1984 tf.protocol = ATA_PROT_DMA;
1985 dma = true;
1986 } else {
1987 tf.command = ATA_CMD_READ_LOG_EXT;
1988 tf.protocol = ATA_PROT_PIO;
1989 dma = false;
1990 }
1991 tf.lbal = log;
1992 tf.lbam = page;
1993 tf.nsect = sectors;
1994 tf.hob_nsect = sectors >> 8;
1995 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
1996
1997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1998 buf, sectors * ATA_SECT_SIZE, 0);
1999
2000 if (err_mask) {
2001 if (dma) {
2002 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2003 goto retry;
2004 }
2005 ata_dev_err(dev,
2006 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2007 (unsigned int)log, (unsigned int)page, err_mask);
2008 }
2009
2010 return err_mask;
2011 }
2012
ata_log_supported(struct ata_device * dev,u8 log)2013 static int ata_log_supported(struct ata_device *dev, u8 log)
2014 {
2015 struct ata_port *ap = dev->link->ap;
2016
2017 if (dev->horkage & ATA_HORKAGE_NO_LOG_DIR)
2018 return 0;
2019
2020 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2021 return 0;
2022 return get_unaligned_le16(&ap->sector_buf[log * 2]);
2023 }
2024
ata_identify_page_supported(struct ata_device * dev,u8 page)2025 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2026 {
2027 struct ata_port *ap = dev->link->ap;
2028 unsigned int err, i;
2029
2030 if (dev->horkage & ATA_HORKAGE_NO_ID_DEV_LOG)
2031 return false;
2032
2033 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2034 /*
2035 * IDENTIFY DEVICE data log is defined as mandatory starting
2036 * with ACS-3 (ATA version 10). Warn about the missing log
2037 * for drives which implement this ATA level or above.
2038 */
2039 if (ata_id_major_version(dev->id) >= 10)
2040 ata_dev_warn(dev,
2041 "ATA Identify Device Log not supported\n");
2042 dev->horkage |= ATA_HORKAGE_NO_ID_DEV_LOG;
2043 return false;
2044 }
2045
2046 /*
2047 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2048 * supported.
2049 */
2050 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2051 1);
2052 if (err)
2053 return false;
2054
2055 for (i = 0; i < ap->sector_buf[8]; i++) {
2056 if (ap->sector_buf[9 + i] == page)
2057 return true;
2058 }
2059
2060 return false;
2061 }
2062
ata_do_link_spd_horkage(struct ata_device * dev)2063 static int ata_do_link_spd_horkage(struct ata_device *dev)
2064 {
2065 struct ata_link *plink = ata_dev_phys_link(dev);
2066 u32 target, target_limit;
2067
2068 if (!sata_scr_valid(plink))
2069 return 0;
2070
2071 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2072 target = 1;
2073 else
2074 return 0;
2075
2076 target_limit = (1 << target) - 1;
2077
2078 /* if already on stricter limit, no need to push further */
2079 if (plink->sata_spd_limit <= target_limit)
2080 return 0;
2081
2082 plink->sata_spd_limit = target_limit;
2083
2084 /* Request another EH round by returning -EAGAIN if link is
2085 * going faster than the target speed. Forward progress is
2086 * guaranteed by setting sata_spd_limit to target_limit above.
2087 */
2088 if (plink->sata_spd > target) {
2089 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2090 sata_spd_string(target));
2091 return -EAGAIN;
2092 }
2093 return 0;
2094 }
2095
ata_dev_knobble(struct ata_device * dev)2096 static inline u8 ata_dev_knobble(struct ata_device *dev)
2097 {
2098 struct ata_port *ap = dev->link->ap;
2099
2100 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2101 return 0;
2102
2103 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2104 }
2105
ata_dev_config_ncq_send_recv(struct ata_device * dev)2106 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2107 {
2108 struct ata_port *ap = dev->link->ap;
2109 unsigned int err_mask;
2110
2111 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2112 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2113 return;
2114 }
2115 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2116 0, ap->sector_buf, 1);
2117 if (!err_mask) {
2118 u8 *cmds = dev->ncq_send_recv_cmds;
2119
2120 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2121 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2122
2123 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2124 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2125 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2126 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2127 }
2128 }
2129 }
2130
ata_dev_config_ncq_non_data(struct ata_device * dev)2131 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2132 {
2133 struct ata_port *ap = dev->link->ap;
2134 unsigned int err_mask;
2135
2136 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2137 ata_dev_warn(dev,
2138 "NCQ Send/Recv Log not supported\n");
2139 return;
2140 }
2141 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2142 0, ap->sector_buf, 1);
2143 if (!err_mask) {
2144 u8 *cmds = dev->ncq_non_data_cmds;
2145
2146 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2147 }
2148 }
2149
ata_dev_config_ncq_prio(struct ata_device * dev)2150 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2151 {
2152 struct ata_port *ap = dev->link->ap;
2153 unsigned int err_mask;
2154
2155 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2156 return;
2157
2158 err_mask = ata_read_log_page(dev,
2159 ATA_LOG_IDENTIFY_DEVICE,
2160 ATA_LOG_SATA_SETTINGS,
2161 ap->sector_buf,
2162 1);
2163 if (err_mask)
2164 goto not_supported;
2165
2166 if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2167 goto not_supported;
2168
2169 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2170
2171 return;
2172
2173 not_supported:
2174 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2175 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2176 }
2177
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2178 static bool ata_dev_check_adapter(struct ata_device *dev,
2179 unsigned short vendor_id)
2180 {
2181 struct pci_dev *pcidev = NULL;
2182 struct device *parent_dev = NULL;
2183
2184 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2185 parent_dev = parent_dev->parent) {
2186 if (dev_is_pci(parent_dev)) {
2187 pcidev = to_pci_dev(parent_dev);
2188 if (pcidev->vendor == vendor_id)
2189 return true;
2190 break;
2191 }
2192 }
2193
2194 return false;
2195 }
2196
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2197 static int ata_dev_config_ncq(struct ata_device *dev,
2198 char *desc, size_t desc_sz)
2199 {
2200 struct ata_port *ap = dev->link->ap;
2201 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2202 unsigned int err_mask;
2203 char *aa_desc = "";
2204
2205 if (!ata_id_has_ncq(dev->id)) {
2206 desc[0] = '\0';
2207 return 0;
2208 }
2209 if (!IS_ENABLED(CONFIG_SATA_HOST))
2210 return 0;
2211 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2212 snprintf(desc, desc_sz, "NCQ (not used)");
2213 return 0;
2214 }
2215
2216 if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2217 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2218 snprintf(desc, desc_sz, "NCQ (not used)");
2219 return 0;
2220 }
2221
2222 if (ap->flags & ATA_FLAG_NCQ) {
2223 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2224 dev->flags |= ATA_DFLAG_NCQ;
2225 }
2226
2227 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2228 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2229 ata_id_has_fpdma_aa(dev->id)) {
2230 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2231 SATA_FPDMA_AA);
2232 if (err_mask) {
2233 ata_dev_err(dev,
2234 "failed to enable AA (error_mask=0x%x)\n",
2235 err_mask);
2236 if (err_mask != AC_ERR_DEV) {
2237 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2238 return -EIO;
2239 }
2240 } else
2241 aa_desc = ", AA";
2242 }
2243
2244 if (hdepth >= ddepth)
2245 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2246 else
2247 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2248 ddepth, aa_desc);
2249
2250 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2251 if (ata_id_has_ncq_send_and_recv(dev->id))
2252 ata_dev_config_ncq_send_recv(dev);
2253 if (ata_id_has_ncq_non_data(dev->id))
2254 ata_dev_config_ncq_non_data(dev);
2255 if (ata_id_has_ncq_prio(dev->id))
2256 ata_dev_config_ncq_prio(dev);
2257 }
2258
2259 return 0;
2260 }
2261
ata_dev_config_sense_reporting(struct ata_device * dev)2262 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2263 {
2264 unsigned int err_mask;
2265
2266 if (!ata_id_has_sense_reporting(dev->id))
2267 return;
2268
2269 if (ata_id_sense_reporting_enabled(dev->id))
2270 return;
2271
2272 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2273 if (err_mask) {
2274 ata_dev_dbg(dev,
2275 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2276 err_mask);
2277 }
2278 }
2279
ata_dev_config_zac(struct ata_device * dev)2280 static void ata_dev_config_zac(struct ata_device *dev)
2281 {
2282 struct ata_port *ap = dev->link->ap;
2283 unsigned int err_mask;
2284 u8 *identify_buf = ap->sector_buf;
2285
2286 dev->zac_zones_optimal_open = U32_MAX;
2287 dev->zac_zones_optimal_nonseq = U32_MAX;
2288 dev->zac_zones_max_open = U32_MAX;
2289
2290 /*
2291 * Always set the 'ZAC' flag for Host-managed devices.
2292 */
2293 if (dev->class == ATA_DEV_ZAC)
2294 dev->flags |= ATA_DFLAG_ZAC;
2295 else if (ata_id_zoned_cap(dev->id) == 0x01)
2296 /*
2297 * Check for host-aware devices.
2298 */
2299 dev->flags |= ATA_DFLAG_ZAC;
2300
2301 if (!(dev->flags & ATA_DFLAG_ZAC))
2302 return;
2303
2304 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2305 ata_dev_warn(dev,
2306 "ATA Zoned Information Log not supported\n");
2307 return;
2308 }
2309
2310 /*
2311 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2312 */
2313 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2314 ATA_LOG_ZONED_INFORMATION,
2315 identify_buf, 1);
2316 if (!err_mask) {
2317 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2318
2319 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2320 if ((zoned_cap >> 63))
2321 dev->zac_zoned_cap = (zoned_cap & 1);
2322 opt_open = get_unaligned_le64(&identify_buf[24]);
2323 if ((opt_open >> 63))
2324 dev->zac_zones_optimal_open = (u32)opt_open;
2325 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2326 if ((opt_nonseq >> 63))
2327 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2328 max_open = get_unaligned_le64(&identify_buf[40]);
2329 if ((max_open >> 63))
2330 dev->zac_zones_max_open = (u32)max_open;
2331 }
2332 }
2333
ata_dev_config_trusted(struct ata_device * dev)2334 static void ata_dev_config_trusted(struct ata_device *dev)
2335 {
2336 struct ata_port *ap = dev->link->ap;
2337 u64 trusted_cap;
2338 unsigned int err;
2339
2340 if (!ata_id_has_trusted(dev->id))
2341 return;
2342
2343 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2344 ata_dev_warn(dev,
2345 "Security Log not supported\n");
2346 return;
2347 }
2348
2349 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2350 ap->sector_buf, 1);
2351 if (err)
2352 return;
2353
2354 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2355 if (!(trusted_cap & (1ULL << 63))) {
2356 ata_dev_dbg(dev,
2357 "Trusted Computing capability qword not valid!\n");
2358 return;
2359 }
2360
2361 if (trusted_cap & (1 << 0))
2362 dev->flags |= ATA_DFLAG_TRUSTED;
2363 }
2364
ata_dev_config_lba(struct ata_device * dev)2365 static int ata_dev_config_lba(struct ata_device *dev)
2366 {
2367 const u16 *id = dev->id;
2368 const char *lba_desc;
2369 char ncq_desc[24];
2370 int ret;
2371
2372 dev->flags |= ATA_DFLAG_LBA;
2373
2374 if (ata_id_has_lba48(id)) {
2375 lba_desc = "LBA48";
2376 dev->flags |= ATA_DFLAG_LBA48;
2377 if (dev->n_sectors >= (1UL << 28) &&
2378 ata_id_has_flush_ext(id))
2379 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2380 } else {
2381 lba_desc = "LBA";
2382 }
2383
2384 /* config NCQ */
2385 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2386
2387 /* print device info to dmesg */
2388 if (ata_dev_print_info(dev))
2389 ata_dev_info(dev,
2390 "%llu sectors, multi %u: %s %s\n",
2391 (unsigned long long)dev->n_sectors,
2392 dev->multi_count, lba_desc, ncq_desc);
2393
2394 return ret;
2395 }
2396
ata_dev_config_chs(struct ata_device * dev)2397 static void ata_dev_config_chs(struct ata_device *dev)
2398 {
2399 const u16 *id = dev->id;
2400
2401 if (ata_id_current_chs_valid(id)) {
2402 /* Current CHS translation is valid. */
2403 dev->cylinders = id[54];
2404 dev->heads = id[55];
2405 dev->sectors = id[56];
2406 } else {
2407 /* Default translation */
2408 dev->cylinders = id[1];
2409 dev->heads = id[3];
2410 dev->sectors = id[6];
2411 }
2412
2413 /* print device info to dmesg */
2414 if (ata_dev_print_info(dev))
2415 ata_dev_info(dev,
2416 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2417 (unsigned long long)dev->n_sectors,
2418 dev->multi_count, dev->cylinders,
2419 dev->heads, dev->sectors);
2420 }
2421
ata_dev_config_devslp(struct ata_device * dev)2422 static void ata_dev_config_devslp(struct ata_device *dev)
2423 {
2424 u8 *sata_setting = dev->link->ap->sector_buf;
2425 unsigned int err_mask;
2426 int i, j;
2427
2428 /*
2429 * Check device sleep capability. Get DevSlp timing variables
2430 * from SATA Settings page of Identify Device Data Log.
2431 */
2432 if (!ata_id_has_devslp(dev->id) ||
2433 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2434 return;
2435
2436 err_mask = ata_read_log_page(dev,
2437 ATA_LOG_IDENTIFY_DEVICE,
2438 ATA_LOG_SATA_SETTINGS,
2439 sata_setting, 1);
2440 if (err_mask)
2441 return;
2442
2443 dev->flags |= ATA_DFLAG_DEVSLP;
2444 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2445 j = ATA_LOG_DEVSLP_OFFSET + i;
2446 dev->devslp_timing[i] = sata_setting[j];
2447 }
2448 }
2449
ata_dev_config_cpr(struct ata_device * dev)2450 static void ata_dev_config_cpr(struct ata_device *dev)
2451 {
2452 unsigned int err_mask;
2453 size_t buf_len;
2454 int i, nr_cpr = 0;
2455 struct ata_cpr_log *cpr_log = NULL;
2456 u8 *desc, *buf = NULL;
2457
2458 if (ata_id_major_version(dev->id) < 11)
2459 goto out;
2460
2461 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2462 if (buf_len == 0)
2463 goto out;
2464
2465 /*
2466 * Read the concurrent positioning ranges log (0x47). We can have at
2467 * most 255 32B range descriptors plus a 64B header. This log varies in
2468 * size, so use the size reported in the GPL directory. Reading beyond
2469 * the supported length will result in an error.
2470 */
2471 buf_len <<= 9;
2472 buf = kzalloc(buf_len, GFP_KERNEL);
2473 if (!buf)
2474 goto out;
2475
2476 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2477 0, buf, buf_len >> 9);
2478 if (err_mask)
2479 goto out;
2480
2481 nr_cpr = buf[0];
2482 if (!nr_cpr)
2483 goto out;
2484
2485 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2486 if (!cpr_log)
2487 goto out;
2488
2489 cpr_log->nr_cpr = nr_cpr;
2490 desc = &buf[64];
2491 for (i = 0; i < nr_cpr; i++, desc += 32) {
2492 cpr_log->cpr[i].num = desc[0];
2493 cpr_log->cpr[i].num_storage_elements = desc[1];
2494 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2495 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2496 }
2497
2498 out:
2499 swap(dev->cpr_log, cpr_log);
2500 kfree(cpr_log);
2501 kfree(buf);
2502 }
2503
ata_dev_print_features(struct ata_device * dev)2504 static void ata_dev_print_features(struct ata_device *dev)
2505 {
2506 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2507 return;
2508
2509 ata_dev_info(dev,
2510 "Features:%s%s%s%s%s%s\n",
2511 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2512 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2513 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2514 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2515 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2516 dev->cpr_log ? " CPR" : "");
2517 }
2518
2519 /**
2520 * ata_dev_configure - Configure the specified ATA/ATAPI device
2521 * @dev: Target device to configure
2522 *
2523 * Configure @dev according to @dev->id. Generic and low-level
2524 * driver specific fixups are also applied.
2525 *
2526 * LOCKING:
2527 * Kernel thread context (may sleep)
2528 *
2529 * RETURNS:
2530 * 0 on success, -errno otherwise
2531 */
ata_dev_configure(struct ata_device * dev)2532 int ata_dev_configure(struct ata_device *dev)
2533 {
2534 struct ata_port *ap = dev->link->ap;
2535 bool print_info = ata_dev_print_info(dev);
2536 const u16 *id = dev->id;
2537 unsigned int xfer_mask;
2538 unsigned int err_mask;
2539 char revbuf[7]; /* XYZ-99\0 */
2540 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2541 char modelbuf[ATA_ID_PROD_LEN+1];
2542 int rc;
2543
2544 if (!ata_dev_enabled(dev)) {
2545 ata_dev_dbg(dev, "no device\n");
2546 return 0;
2547 }
2548
2549 /* set horkage */
2550 dev->horkage |= ata_dev_blacklisted(dev);
2551 ata_force_horkage(dev);
2552
2553 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2554 ata_dev_info(dev, "unsupported device, disabling\n");
2555 ata_dev_disable(dev);
2556 return 0;
2557 }
2558
2559 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2560 dev->class == ATA_DEV_ATAPI) {
2561 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2562 atapi_enabled ? "not supported with this driver"
2563 : "disabled");
2564 ata_dev_disable(dev);
2565 return 0;
2566 }
2567
2568 rc = ata_do_link_spd_horkage(dev);
2569 if (rc)
2570 return rc;
2571
2572 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2573 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2574 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2575 dev->horkage |= ATA_HORKAGE_NOLPM;
2576
2577 if (ap->flags & ATA_FLAG_NO_LPM)
2578 dev->horkage |= ATA_HORKAGE_NOLPM;
2579
2580 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2581 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2582 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2583 }
2584
2585 /* let ACPI work its magic */
2586 rc = ata_acpi_on_devcfg(dev);
2587 if (rc)
2588 return rc;
2589
2590 /* massage HPA, do it early as it might change IDENTIFY data */
2591 rc = ata_hpa_resize(dev);
2592 if (rc)
2593 return rc;
2594
2595 /* print device capabilities */
2596 ata_dev_dbg(dev,
2597 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2598 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2599 __func__,
2600 id[49], id[82], id[83], id[84],
2601 id[85], id[86], id[87], id[88]);
2602
2603 /* initialize to-be-configured parameters */
2604 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2605 dev->max_sectors = 0;
2606 dev->cdb_len = 0;
2607 dev->n_sectors = 0;
2608 dev->cylinders = 0;
2609 dev->heads = 0;
2610 dev->sectors = 0;
2611 dev->multi_count = 0;
2612
2613 /*
2614 * common ATA, ATAPI feature tests
2615 */
2616
2617 /* find max transfer mode; for printk only */
2618 xfer_mask = ata_id_xfermask(id);
2619
2620 ata_dump_id(dev, id);
2621
2622 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2623 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2624 sizeof(fwrevbuf));
2625
2626 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2627 sizeof(modelbuf));
2628
2629 /* ATA-specific feature tests */
2630 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2631 if (ata_id_is_cfa(id)) {
2632 /* CPRM may make this media unusable */
2633 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2634 ata_dev_warn(dev,
2635 "supports DRM functions and may not be fully accessible\n");
2636 snprintf(revbuf, 7, "CFA");
2637 } else {
2638 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2639 /* Warn the user if the device has TPM extensions */
2640 if (ata_id_has_tpm(id))
2641 ata_dev_warn(dev,
2642 "supports DRM functions and may not be fully accessible\n");
2643 }
2644
2645 dev->n_sectors = ata_id_n_sectors(id);
2646
2647 /* get current R/W Multiple count setting */
2648 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2649 unsigned int max = dev->id[47] & 0xff;
2650 unsigned int cnt = dev->id[59] & 0xff;
2651 /* only recognize/allow powers of two here */
2652 if (is_power_of_2(max) && is_power_of_2(cnt))
2653 if (cnt <= max)
2654 dev->multi_count = cnt;
2655 }
2656
2657 /* print device info to dmesg */
2658 if (print_info)
2659 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2660 revbuf, modelbuf, fwrevbuf,
2661 ata_mode_string(xfer_mask));
2662
2663 if (ata_id_has_lba(id)) {
2664 rc = ata_dev_config_lba(dev);
2665 if (rc)
2666 return rc;
2667 } else {
2668 ata_dev_config_chs(dev);
2669 }
2670
2671 ata_dev_config_devslp(dev);
2672 ata_dev_config_sense_reporting(dev);
2673 ata_dev_config_zac(dev);
2674 ata_dev_config_trusted(dev);
2675 ata_dev_config_cpr(dev);
2676 dev->cdb_len = 32;
2677
2678 if (print_info)
2679 ata_dev_print_features(dev);
2680 }
2681
2682 /* ATAPI-specific feature tests */
2683 else if (dev->class == ATA_DEV_ATAPI) {
2684 const char *cdb_intr_string = "";
2685 const char *atapi_an_string = "";
2686 const char *dma_dir_string = "";
2687 u32 sntf;
2688
2689 rc = atapi_cdb_len(id);
2690 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2691 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2692 rc = -EINVAL;
2693 goto err_out_nosup;
2694 }
2695 dev->cdb_len = (unsigned int) rc;
2696
2697 /* Enable ATAPI AN if both the host and device have
2698 * the support. If PMP is attached, SNTF is required
2699 * to enable ATAPI AN to discern between PHY status
2700 * changed notifications and ATAPI ANs.
2701 */
2702 if (atapi_an &&
2703 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2704 (!sata_pmp_attached(ap) ||
2705 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2706 /* issue SET feature command to turn this on */
2707 err_mask = ata_dev_set_feature(dev,
2708 SETFEATURES_SATA_ENABLE, SATA_AN);
2709 if (err_mask)
2710 ata_dev_err(dev,
2711 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2712 err_mask);
2713 else {
2714 dev->flags |= ATA_DFLAG_AN;
2715 atapi_an_string = ", ATAPI AN";
2716 }
2717 }
2718
2719 if (ata_id_cdb_intr(dev->id)) {
2720 dev->flags |= ATA_DFLAG_CDB_INTR;
2721 cdb_intr_string = ", CDB intr";
2722 }
2723
2724 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2725 dev->flags |= ATA_DFLAG_DMADIR;
2726 dma_dir_string = ", DMADIR";
2727 }
2728
2729 if (ata_id_has_da(dev->id)) {
2730 dev->flags |= ATA_DFLAG_DA;
2731 zpodd_init(dev);
2732 }
2733
2734 /* print device info to dmesg */
2735 if (print_info)
2736 ata_dev_info(dev,
2737 "ATAPI: %s, %s, max %s%s%s%s\n",
2738 modelbuf, fwrevbuf,
2739 ata_mode_string(xfer_mask),
2740 cdb_intr_string, atapi_an_string,
2741 dma_dir_string);
2742 }
2743
2744 /* determine max_sectors */
2745 dev->max_sectors = ATA_MAX_SECTORS;
2746 if (dev->flags & ATA_DFLAG_LBA48)
2747 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2748
2749 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2750 200 sectors */
2751 if (ata_dev_knobble(dev)) {
2752 if (print_info)
2753 ata_dev_info(dev, "applying bridge limits\n");
2754 dev->udma_mask &= ATA_UDMA5;
2755 dev->max_sectors = ATA_MAX_SECTORS;
2756 }
2757
2758 if ((dev->class == ATA_DEV_ATAPI) &&
2759 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2760 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2761 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2762 }
2763
2764 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2765 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2766 dev->max_sectors);
2767
2768 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2769 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2770 dev->max_sectors);
2771
2772 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2773 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2774
2775 if (ap->ops->dev_config)
2776 ap->ops->dev_config(dev);
2777
2778 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2779 /* Let the user know. We don't want to disallow opens for
2780 rescue purposes, or in case the vendor is just a blithering
2781 idiot. Do this after the dev_config call as some controllers
2782 with buggy firmware may want to avoid reporting false device
2783 bugs */
2784
2785 if (print_info) {
2786 ata_dev_warn(dev,
2787 "Drive reports diagnostics failure. This may indicate a drive\n");
2788 ata_dev_warn(dev,
2789 "fault or invalid emulation. Contact drive vendor for information.\n");
2790 }
2791 }
2792
2793 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2794 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2795 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2796 }
2797
2798 return 0;
2799
2800 err_out_nosup:
2801 return rc;
2802 }
2803
2804 /**
2805 * ata_cable_40wire - return 40 wire cable type
2806 * @ap: port
2807 *
2808 * Helper method for drivers which want to hardwire 40 wire cable
2809 * detection.
2810 */
2811
ata_cable_40wire(struct ata_port * ap)2812 int ata_cable_40wire(struct ata_port *ap)
2813 {
2814 return ATA_CBL_PATA40;
2815 }
2816 EXPORT_SYMBOL_GPL(ata_cable_40wire);
2817
2818 /**
2819 * ata_cable_80wire - return 80 wire cable type
2820 * @ap: port
2821 *
2822 * Helper method for drivers which want to hardwire 80 wire cable
2823 * detection.
2824 */
2825
ata_cable_80wire(struct ata_port * ap)2826 int ata_cable_80wire(struct ata_port *ap)
2827 {
2828 return ATA_CBL_PATA80;
2829 }
2830 EXPORT_SYMBOL_GPL(ata_cable_80wire);
2831
2832 /**
2833 * ata_cable_unknown - return unknown PATA cable.
2834 * @ap: port
2835 *
2836 * Helper method for drivers which have no PATA cable detection.
2837 */
2838
ata_cable_unknown(struct ata_port * ap)2839 int ata_cable_unknown(struct ata_port *ap)
2840 {
2841 return ATA_CBL_PATA_UNK;
2842 }
2843 EXPORT_SYMBOL_GPL(ata_cable_unknown);
2844
2845 /**
2846 * ata_cable_ignore - return ignored PATA cable.
2847 * @ap: port
2848 *
2849 * Helper method for drivers which don't use cable type to limit
2850 * transfer mode.
2851 */
ata_cable_ignore(struct ata_port * ap)2852 int ata_cable_ignore(struct ata_port *ap)
2853 {
2854 return ATA_CBL_PATA_IGN;
2855 }
2856 EXPORT_SYMBOL_GPL(ata_cable_ignore);
2857
2858 /**
2859 * ata_cable_sata - return SATA cable type
2860 * @ap: port
2861 *
2862 * Helper method for drivers which have SATA cables
2863 */
2864
ata_cable_sata(struct ata_port * ap)2865 int ata_cable_sata(struct ata_port *ap)
2866 {
2867 return ATA_CBL_SATA;
2868 }
2869 EXPORT_SYMBOL_GPL(ata_cable_sata);
2870
2871 /**
2872 * ata_bus_probe - Reset and probe ATA bus
2873 * @ap: Bus to probe
2874 *
2875 * Master ATA bus probing function. Initiates a hardware-dependent
2876 * bus reset, then attempts to identify any devices found on
2877 * the bus.
2878 *
2879 * LOCKING:
2880 * PCI/etc. bus probe sem.
2881 *
2882 * RETURNS:
2883 * Zero on success, negative errno otherwise.
2884 */
2885
ata_bus_probe(struct ata_port * ap)2886 int ata_bus_probe(struct ata_port *ap)
2887 {
2888 unsigned int classes[ATA_MAX_DEVICES];
2889 int tries[ATA_MAX_DEVICES];
2890 int rc;
2891 struct ata_device *dev;
2892
2893 ata_for_each_dev(dev, &ap->link, ALL)
2894 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2895
2896 retry:
2897 ata_for_each_dev(dev, &ap->link, ALL) {
2898 /* If we issue an SRST then an ATA drive (not ATAPI)
2899 * may change configuration and be in PIO0 timing. If
2900 * we do a hard reset (or are coming from power on)
2901 * this is true for ATA or ATAPI. Until we've set a
2902 * suitable controller mode we should not touch the
2903 * bus as we may be talking too fast.
2904 */
2905 dev->pio_mode = XFER_PIO_0;
2906 dev->dma_mode = 0xff;
2907
2908 /* If the controller has a pio mode setup function
2909 * then use it to set the chipset to rights. Don't
2910 * touch the DMA setup as that will be dealt with when
2911 * configuring devices.
2912 */
2913 if (ap->ops->set_piomode)
2914 ap->ops->set_piomode(ap, dev);
2915 }
2916
2917 /* reset and determine device classes */
2918 ap->ops->phy_reset(ap);
2919
2920 ata_for_each_dev(dev, &ap->link, ALL) {
2921 if (dev->class != ATA_DEV_UNKNOWN)
2922 classes[dev->devno] = dev->class;
2923 else
2924 classes[dev->devno] = ATA_DEV_NONE;
2925
2926 dev->class = ATA_DEV_UNKNOWN;
2927 }
2928
2929 /* read IDENTIFY page and configure devices. We have to do the identify
2930 specific sequence bass-ackwards so that PDIAG- is released by
2931 the slave device */
2932
2933 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2934 if (tries[dev->devno])
2935 dev->class = classes[dev->devno];
2936
2937 if (!ata_dev_enabled(dev))
2938 continue;
2939
2940 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2941 dev->id);
2942 if (rc)
2943 goto fail;
2944 }
2945
2946 /* Now ask for the cable type as PDIAG- should have been released */
2947 if (ap->ops->cable_detect)
2948 ap->cbl = ap->ops->cable_detect(ap);
2949
2950 /* We may have SATA bridge glue hiding here irrespective of
2951 * the reported cable types and sensed types. When SATA
2952 * drives indicate we have a bridge, we don't know which end
2953 * of the link the bridge is which is a problem.
2954 */
2955 ata_for_each_dev(dev, &ap->link, ENABLED)
2956 if (ata_id_is_sata(dev->id))
2957 ap->cbl = ATA_CBL_SATA;
2958
2959 /* After the identify sequence we can now set up the devices. We do
2960 this in the normal order so that the user doesn't get confused */
2961
2962 ata_for_each_dev(dev, &ap->link, ENABLED) {
2963 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2964 rc = ata_dev_configure(dev);
2965 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2966 if (rc)
2967 goto fail;
2968 }
2969
2970 /* configure transfer mode */
2971 rc = ata_set_mode(&ap->link, &dev);
2972 if (rc)
2973 goto fail;
2974
2975 ata_for_each_dev(dev, &ap->link, ENABLED)
2976 return 0;
2977
2978 return -ENODEV;
2979
2980 fail:
2981 tries[dev->devno]--;
2982
2983 switch (rc) {
2984 case -EINVAL:
2985 /* eeek, something went very wrong, give up */
2986 tries[dev->devno] = 0;
2987 break;
2988
2989 case -ENODEV:
2990 /* give it just one more chance */
2991 tries[dev->devno] = min(tries[dev->devno], 1);
2992 fallthrough;
2993 case -EIO:
2994 if (tries[dev->devno] == 1) {
2995 /* This is the last chance, better to slow
2996 * down than lose it.
2997 */
2998 sata_down_spd_limit(&ap->link, 0);
2999 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
3000 }
3001 }
3002
3003 if (!tries[dev->devno])
3004 ata_dev_disable(dev);
3005
3006 goto retry;
3007 }
3008
3009 /**
3010 * sata_print_link_status - Print SATA link status
3011 * @link: SATA link to printk link status about
3012 *
3013 * This function prints link speed and status of a SATA link.
3014 *
3015 * LOCKING:
3016 * None.
3017 */
sata_print_link_status(struct ata_link * link)3018 static void sata_print_link_status(struct ata_link *link)
3019 {
3020 u32 sstatus, scontrol, tmp;
3021
3022 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3023 return;
3024 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3025 return;
3026
3027 if (ata_phys_link_online(link)) {
3028 tmp = (sstatus >> 4) & 0xf;
3029 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3030 sata_spd_string(tmp), sstatus, scontrol);
3031 } else {
3032 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3033 sstatus, scontrol);
3034 }
3035 }
3036
3037 /**
3038 * ata_dev_pair - return other device on cable
3039 * @adev: device
3040 *
3041 * Obtain the other device on the same cable, or if none is
3042 * present NULL is returned
3043 */
3044
ata_dev_pair(struct ata_device * adev)3045 struct ata_device *ata_dev_pair(struct ata_device *adev)
3046 {
3047 struct ata_link *link = adev->link;
3048 struct ata_device *pair = &link->device[1 - adev->devno];
3049 if (!ata_dev_enabled(pair))
3050 return NULL;
3051 return pair;
3052 }
3053 EXPORT_SYMBOL_GPL(ata_dev_pair);
3054
3055 /**
3056 * sata_down_spd_limit - adjust SATA spd limit downward
3057 * @link: Link to adjust SATA spd limit for
3058 * @spd_limit: Additional limit
3059 *
3060 * Adjust SATA spd limit of @link downward. Note that this
3061 * function only adjusts the limit. The change must be applied
3062 * using sata_set_spd().
3063 *
3064 * If @spd_limit is non-zero, the speed is limited to equal to or
3065 * lower than @spd_limit if such speed is supported. If
3066 * @spd_limit is slower than any supported speed, only the lowest
3067 * supported speed is allowed.
3068 *
3069 * LOCKING:
3070 * Inherited from caller.
3071 *
3072 * RETURNS:
3073 * 0 on success, negative errno on failure
3074 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3075 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3076 {
3077 u32 sstatus, spd, mask;
3078 int rc, bit;
3079
3080 if (!sata_scr_valid(link))
3081 return -EOPNOTSUPP;
3082
3083 /* If SCR can be read, use it to determine the current SPD.
3084 * If not, use cached value in link->sata_spd.
3085 */
3086 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3087 if (rc == 0 && ata_sstatus_online(sstatus))
3088 spd = (sstatus >> 4) & 0xf;
3089 else
3090 spd = link->sata_spd;
3091
3092 mask = link->sata_spd_limit;
3093 if (mask <= 1)
3094 return -EINVAL;
3095
3096 /* unconditionally mask off the highest bit */
3097 bit = fls(mask) - 1;
3098 mask &= ~(1 << bit);
3099
3100 /*
3101 * Mask off all speeds higher than or equal to the current one. At
3102 * this point, if current SPD is not available and we previously
3103 * recorded the link speed from SStatus, the driver has already
3104 * masked off the highest bit so mask should already be 1 or 0.
3105 * Otherwise, we should not force 1.5Gbps on a link where we have
3106 * not previously recorded speed from SStatus. Just return in this
3107 * case.
3108 */
3109 if (spd > 1)
3110 mask &= (1 << (spd - 1)) - 1;
3111 else
3112 return -EINVAL;
3113
3114 /* were we already at the bottom? */
3115 if (!mask)
3116 return -EINVAL;
3117
3118 if (spd_limit) {
3119 if (mask & ((1 << spd_limit) - 1))
3120 mask &= (1 << spd_limit) - 1;
3121 else {
3122 bit = ffs(mask) - 1;
3123 mask = 1 << bit;
3124 }
3125 }
3126
3127 link->sata_spd_limit = mask;
3128
3129 ata_link_warn(link, "limiting SATA link speed to %s\n",
3130 sata_spd_string(fls(mask)));
3131
3132 return 0;
3133 }
3134
3135 #ifdef CONFIG_ATA_ACPI
3136 /**
3137 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3138 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3139 * @cycle: cycle duration in ns
3140 *
3141 * Return matching xfer mode for @cycle. The returned mode is of
3142 * the transfer type specified by @xfer_shift. If @cycle is too
3143 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3144 * than the fastest known mode, the fasted mode is returned.
3145 *
3146 * LOCKING:
3147 * None.
3148 *
3149 * RETURNS:
3150 * Matching xfer_mode, 0xff if no match found.
3151 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3152 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3153 {
3154 u8 base_mode = 0xff, last_mode = 0xff;
3155 const struct ata_xfer_ent *ent;
3156 const struct ata_timing *t;
3157
3158 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3159 if (ent->shift == xfer_shift)
3160 base_mode = ent->base;
3161
3162 for (t = ata_timing_find_mode(base_mode);
3163 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3164 unsigned short this_cycle;
3165
3166 switch (xfer_shift) {
3167 case ATA_SHIFT_PIO:
3168 case ATA_SHIFT_MWDMA:
3169 this_cycle = t->cycle;
3170 break;
3171 case ATA_SHIFT_UDMA:
3172 this_cycle = t->udma;
3173 break;
3174 default:
3175 return 0xff;
3176 }
3177
3178 if (cycle > this_cycle)
3179 break;
3180
3181 last_mode = t->mode;
3182 }
3183
3184 return last_mode;
3185 }
3186 #endif
3187
3188 /**
3189 * ata_down_xfermask_limit - adjust dev xfer masks downward
3190 * @dev: Device to adjust xfer masks
3191 * @sel: ATA_DNXFER_* selector
3192 *
3193 * Adjust xfer masks of @dev downward. Note that this function
3194 * does not apply the change. Invoking ata_set_mode() afterwards
3195 * will apply the limit.
3196 *
3197 * LOCKING:
3198 * Inherited from caller.
3199 *
3200 * RETURNS:
3201 * 0 on success, negative errno on failure
3202 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3203 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3204 {
3205 char buf[32];
3206 unsigned int orig_mask, xfer_mask;
3207 unsigned int pio_mask, mwdma_mask, udma_mask;
3208 int quiet, highbit;
3209
3210 quiet = !!(sel & ATA_DNXFER_QUIET);
3211 sel &= ~ATA_DNXFER_QUIET;
3212
3213 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3214 dev->mwdma_mask,
3215 dev->udma_mask);
3216 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3217
3218 switch (sel) {
3219 case ATA_DNXFER_PIO:
3220 highbit = fls(pio_mask) - 1;
3221 pio_mask &= ~(1 << highbit);
3222 break;
3223
3224 case ATA_DNXFER_DMA:
3225 if (udma_mask) {
3226 highbit = fls(udma_mask) - 1;
3227 udma_mask &= ~(1 << highbit);
3228 if (!udma_mask)
3229 return -ENOENT;
3230 } else if (mwdma_mask) {
3231 highbit = fls(mwdma_mask) - 1;
3232 mwdma_mask &= ~(1 << highbit);
3233 if (!mwdma_mask)
3234 return -ENOENT;
3235 }
3236 break;
3237
3238 case ATA_DNXFER_40C:
3239 udma_mask &= ATA_UDMA_MASK_40C;
3240 break;
3241
3242 case ATA_DNXFER_FORCE_PIO0:
3243 pio_mask &= 1;
3244 fallthrough;
3245 case ATA_DNXFER_FORCE_PIO:
3246 mwdma_mask = 0;
3247 udma_mask = 0;
3248 break;
3249
3250 default:
3251 BUG();
3252 }
3253
3254 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3255
3256 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3257 return -ENOENT;
3258
3259 if (!quiet) {
3260 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3261 snprintf(buf, sizeof(buf), "%s:%s",
3262 ata_mode_string(xfer_mask),
3263 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3264 else
3265 snprintf(buf, sizeof(buf), "%s",
3266 ata_mode_string(xfer_mask));
3267
3268 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3269 }
3270
3271 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3272 &dev->udma_mask);
3273
3274 return 0;
3275 }
3276
ata_dev_set_mode(struct ata_device * dev)3277 static int ata_dev_set_mode(struct ata_device *dev)
3278 {
3279 struct ata_port *ap = dev->link->ap;
3280 struct ata_eh_context *ehc = &dev->link->eh_context;
3281 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3282 const char *dev_err_whine = "";
3283 int ign_dev_err = 0;
3284 unsigned int err_mask = 0;
3285 int rc;
3286
3287 dev->flags &= ~ATA_DFLAG_PIO;
3288 if (dev->xfer_shift == ATA_SHIFT_PIO)
3289 dev->flags |= ATA_DFLAG_PIO;
3290
3291 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3292 dev_err_whine = " (SET_XFERMODE skipped)";
3293 else {
3294 if (nosetxfer)
3295 ata_dev_warn(dev,
3296 "NOSETXFER but PATA detected - can't "
3297 "skip SETXFER, might malfunction\n");
3298 err_mask = ata_dev_set_xfermode(dev);
3299 }
3300
3301 if (err_mask & ~AC_ERR_DEV)
3302 goto fail;
3303
3304 /* revalidate */
3305 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3306 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3307 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3308 if (rc)
3309 return rc;
3310
3311 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3312 /* Old CFA may refuse this command, which is just fine */
3313 if (ata_id_is_cfa(dev->id))
3314 ign_dev_err = 1;
3315 /* Catch several broken garbage emulations plus some pre
3316 ATA devices */
3317 if (ata_id_major_version(dev->id) == 0 &&
3318 dev->pio_mode <= XFER_PIO_2)
3319 ign_dev_err = 1;
3320 /* Some very old devices and some bad newer ones fail
3321 any kind of SET_XFERMODE request but support PIO0-2
3322 timings and no IORDY */
3323 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3324 ign_dev_err = 1;
3325 }
3326 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3327 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3328 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3329 dev->dma_mode == XFER_MW_DMA_0 &&
3330 (dev->id[63] >> 8) & 1)
3331 ign_dev_err = 1;
3332
3333 /* if the device is actually configured correctly, ignore dev err */
3334 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3335 ign_dev_err = 1;
3336
3337 if (err_mask & AC_ERR_DEV) {
3338 if (!ign_dev_err)
3339 goto fail;
3340 else
3341 dev_err_whine = " (device error ignored)";
3342 }
3343
3344 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3345 dev->xfer_shift, (int)dev->xfer_mode);
3346
3347 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3348 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3349 ata_dev_info(dev, "configured for %s%s\n",
3350 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3351 dev_err_whine);
3352
3353 return 0;
3354
3355 fail:
3356 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3357 return -EIO;
3358 }
3359
3360 /**
3361 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3362 * @link: link on which timings will be programmed
3363 * @r_failed_dev: out parameter for failed device
3364 *
3365 * Standard implementation of the function used to tune and set
3366 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3367 * ata_dev_set_mode() fails, pointer to the failing device is
3368 * returned in @r_failed_dev.
3369 *
3370 * LOCKING:
3371 * PCI/etc. bus probe sem.
3372 *
3373 * RETURNS:
3374 * 0 on success, negative errno otherwise
3375 */
3376
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3377 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3378 {
3379 struct ata_port *ap = link->ap;
3380 struct ata_device *dev;
3381 int rc = 0, used_dma = 0, found = 0;
3382
3383 /* step 1: calculate xfer_mask */
3384 ata_for_each_dev(dev, link, ENABLED) {
3385 unsigned int pio_mask, dma_mask;
3386 unsigned int mode_mask;
3387
3388 mode_mask = ATA_DMA_MASK_ATA;
3389 if (dev->class == ATA_DEV_ATAPI)
3390 mode_mask = ATA_DMA_MASK_ATAPI;
3391 else if (ata_id_is_cfa(dev->id))
3392 mode_mask = ATA_DMA_MASK_CFA;
3393
3394 ata_dev_xfermask(dev);
3395 ata_force_xfermask(dev);
3396
3397 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3398
3399 if (libata_dma_mask & mode_mask)
3400 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3401 dev->udma_mask);
3402 else
3403 dma_mask = 0;
3404
3405 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3406 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3407
3408 found = 1;
3409 if (ata_dma_enabled(dev))
3410 used_dma = 1;
3411 }
3412 if (!found)
3413 goto out;
3414
3415 /* step 2: always set host PIO timings */
3416 ata_for_each_dev(dev, link, ENABLED) {
3417 if (dev->pio_mode == 0xff) {
3418 ata_dev_warn(dev, "no PIO support\n");
3419 rc = -EINVAL;
3420 goto out;
3421 }
3422
3423 dev->xfer_mode = dev->pio_mode;
3424 dev->xfer_shift = ATA_SHIFT_PIO;
3425 if (ap->ops->set_piomode)
3426 ap->ops->set_piomode(ap, dev);
3427 }
3428
3429 /* step 3: set host DMA timings */
3430 ata_for_each_dev(dev, link, ENABLED) {
3431 if (!ata_dma_enabled(dev))
3432 continue;
3433
3434 dev->xfer_mode = dev->dma_mode;
3435 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3436 if (ap->ops->set_dmamode)
3437 ap->ops->set_dmamode(ap, dev);
3438 }
3439
3440 /* step 4: update devices' xfer mode */
3441 ata_for_each_dev(dev, link, ENABLED) {
3442 rc = ata_dev_set_mode(dev);
3443 if (rc)
3444 goto out;
3445 }
3446
3447 /* Record simplex status. If we selected DMA then the other
3448 * host channels are not permitted to do so.
3449 */
3450 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3451 ap->host->simplex_claimed = ap;
3452
3453 out:
3454 if (rc)
3455 *r_failed_dev = dev;
3456 return rc;
3457 }
3458 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3459
3460 /**
3461 * ata_wait_ready - wait for link to become ready
3462 * @link: link to be waited on
3463 * @deadline: deadline jiffies for the operation
3464 * @check_ready: callback to check link readiness
3465 *
3466 * Wait for @link to become ready. @check_ready should return
3467 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3468 * link doesn't seem to be occupied, other errno for other error
3469 * conditions.
3470 *
3471 * Transient -ENODEV conditions are allowed for
3472 * ATA_TMOUT_FF_WAIT.
3473 *
3474 * LOCKING:
3475 * EH context.
3476 *
3477 * RETURNS:
3478 * 0 if @link is ready before @deadline; otherwise, -errno.
3479 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3480 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3481 int (*check_ready)(struct ata_link *link))
3482 {
3483 unsigned long start = jiffies;
3484 unsigned long nodev_deadline;
3485 int warned = 0;
3486
3487 /* choose which 0xff timeout to use, read comment in libata.h */
3488 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3489 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3490 else
3491 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3492
3493 /* Slave readiness can't be tested separately from master. On
3494 * M/S emulation configuration, this function should be called
3495 * only on the master and it will handle both master and slave.
3496 */
3497 WARN_ON(link == link->ap->slave_link);
3498
3499 if (time_after(nodev_deadline, deadline))
3500 nodev_deadline = deadline;
3501
3502 while (1) {
3503 unsigned long now = jiffies;
3504 int ready, tmp;
3505
3506 ready = tmp = check_ready(link);
3507 if (ready > 0)
3508 return 0;
3509
3510 /*
3511 * -ENODEV could be transient. Ignore -ENODEV if link
3512 * is online. Also, some SATA devices take a long
3513 * time to clear 0xff after reset. Wait for
3514 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3515 * offline.
3516 *
3517 * Note that some PATA controllers (pata_ali) explode
3518 * if status register is read more than once when
3519 * there's no device attached.
3520 */
3521 if (ready == -ENODEV) {
3522 if (ata_link_online(link))
3523 ready = 0;
3524 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3525 !ata_link_offline(link) &&
3526 time_before(now, nodev_deadline))
3527 ready = 0;
3528 }
3529
3530 if (ready)
3531 return ready;
3532 if (time_after(now, deadline))
3533 return -EBUSY;
3534
3535 if (!warned && time_after(now, start + 5 * HZ) &&
3536 (deadline - now > 3 * HZ)) {
3537 ata_link_warn(link,
3538 "link is slow to respond, please be patient "
3539 "(ready=%d)\n", tmp);
3540 warned = 1;
3541 }
3542
3543 ata_msleep(link->ap, 50);
3544 }
3545 }
3546
3547 /**
3548 * ata_wait_after_reset - wait for link to become ready after reset
3549 * @link: link to be waited on
3550 * @deadline: deadline jiffies for the operation
3551 * @check_ready: callback to check link readiness
3552 *
3553 * Wait for @link to become ready after reset.
3554 *
3555 * LOCKING:
3556 * EH context.
3557 *
3558 * RETURNS:
3559 * 0 if @link is ready before @deadline; otherwise, -errno.
3560 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3561 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3562 int (*check_ready)(struct ata_link *link))
3563 {
3564 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3565
3566 return ata_wait_ready(link, deadline, check_ready);
3567 }
3568 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3569
3570 /**
3571 * ata_std_prereset - prepare for reset
3572 * @link: ATA link to be reset
3573 * @deadline: deadline jiffies for the operation
3574 *
3575 * @link is about to be reset. Initialize it. Failure from
3576 * prereset makes libata abort whole reset sequence and give up
3577 * that port, so prereset should be best-effort. It does its
3578 * best to prepare for reset sequence but if things go wrong, it
3579 * should just whine, not fail.
3580 *
3581 * LOCKING:
3582 * Kernel thread context (may sleep)
3583 *
3584 * RETURNS:
3585 * Always 0.
3586 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3587 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3588 {
3589 struct ata_port *ap = link->ap;
3590 struct ata_eh_context *ehc = &link->eh_context;
3591 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3592 int rc;
3593
3594 /* if we're about to do hardreset, nothing more to do */
3595 if (ehc->i.action & ATA_EH_HARDRESET)
3596 return 0;
3597
3598 /* if SATA, resume link */
3599 if (ap->flags & ATA_FLAG_SATA) {
3600 rc = sata_link_resume(link, timing, deadline);
3601 /* whine about phy resume failure but proceed */
3602 if (rc && rc != -EOPNOTSUPP)
3603 ata_link_warn(link,
3604 "failed to resume link for reset (errno=%d)\n",
3605 rc);
3606 }
3607
3608 /* no point in trying softreset on offline link */
3609 if (ata_phys_link_offline(link))
3610 ehc->i.action &= ~ATA_EH_SOFTRESET;
3611
3612 return 0;
3613 }
3614 EXPORT_SYMBOL_GPL(ata_std_prereset);
3615
3616 /**
3617 * sata_std_hardreset - COMRESET w/o waiting or classification
3618 * @link: link to reset
3619 * @class: resulting class of attached device
3620 * @deadline: deadline jiffies for the operation
3621 *
3622 * Standard SATA COMRESET w/o waiting or classification.
3623 *
3624 * LOCKING:
3625 * Kernel thread context (may sleep)
3626 *
3627 * RETURNS:
3628 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3629 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3630 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3631 unsigned long deadline)
3632 {
3633 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3634 bool online;
3635 int rc;
3636
3637 /* do hardreset */
3638 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3639 return online ? -EAGAIN : rc;
3640 }
3641 EXPORT_SYMBOL_GPL(sata_std_hardreset);
3642
3643 /**
3644 * ata_std_postreset - standard postreset callback
3645 * @link: the target ata_link
3646 * @classes: classes of attached devices
3647 *
3648 * This function is invoked after a successful reset. Note that
3649 * the device might have been reset more than once using
3650 * different reset methods before postreset is invoked.
3651 *
3652 * LOCKING:
3653 * Kernel thread context (may sleep)
3654 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3655 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3656 {
3657 u32 serror;
3658
3659 /* reset complete, clear SError */
3660 if (!sata_scr_read(link, SCR_ERROR, &serror))
3661 sata_scr_write(link, SCR_ERROR, serror);
3662
3663 /* print link status */
3664 sata_print_link_status(link);
3665 }
3666 EXPORT_SYMBOL_GPL(ata_std_postreset);
3667
3668 /**
3669 * ata_dev_same_device - Determine whether new ID matches configured device
3670 * @dev: device to compare against
3671 * @new_class: class of the new device
3672 * @new_id: IDENTIFY page of the new device
3673 *
3674 * Compare @new_class and @new_id against @dev and determine
3675 * whether @dev is the device indicated by @new_class and
3676 * @new_id.
3677 *
3678 * LOCKING:
3679 * None.
3680 *
3681 * RETURNS:
3682 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3683 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3684 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3685 const u16 *new_id)
3686 {
3687 const u16 *old_id = dev->id;
3688 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3689 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3690
3691 if (dev->class != new_class) {
3692 ata_dev_info(dev, "class mismatch %d != %d\n",
3693 dev->class, new_class);
3694 return 0;
3695 }
3696
3697 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3698 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3699 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3700 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3701
3702 if (strcmp(model[0], model[1])) {
3703 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3704 model[0], model[1]);
3705 return 0;
3706 }
3707
3708 if (strcmp(serial[0], serial[1])) {
3709 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3710 serial[0], serial[1]);
3711 return 0;
3712 }
3713
3714 return 1;
3715 }
3716
3717 /**
3718 * ata_dev_reread_id - Re-read IDENTIFY data
3719 * @dev: target ATA device
3720 * @readid_flags: read ID flags
3721 *
3722 * Re-read IDENTIFY page and make sure @dev is still attached to
3723 * the port.
3724 *
3725 * LOCKING:
3726 * Kernel thread context (may sleep)
3727 *
3728 * RETURNS:
3729 * 0 on success, negative errno otherwise
3730 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3731 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3732 {
3733 unsigned int class = dev->class;
3734 u16 *id = (void *)dev->link->ap->sector_buf;
3735 int rc;
3736
3737 /* read ID data */
3738 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3739 if (rc)
3740 return rc;
3741
3742 /* is the device still there? */
3743 if (!ata_dev_same_device(dev, class, id))
3744 return -ENODEV;
3745
3746 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3747 return 0;
3748 }
3749
3750 /**
3751 * ata_dev_revalidate - Revalidate ATA device
3752 * @dev: device to revalidate
3753 * @new_class: new class code
3754 * @readid_flags: read ID flags
3755 *
3756 * Re-read IDENTIFY page, make sure @dev is still attached to the
3757 * port and reconfigure it according to the new IDENTIFY page.
3758 *
3759 * LOCKING:
3760 * Kernel thread context (may sleep)
3761 *
3762 * RETURNS:
3763 * 0 on success, negative errno otherwise
3764 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3765 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3766 unsigned int readid_flags)
3767 {
3768 u64 n_sectors = dev->n_sectors;
3769 u64 n_native_sectors = dev->n_native_sectors;
3770 int rc;
3771
3772 if (!ata_dev_enabled(dev))
3773 return -ENODEV;
3774
3775 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3776 if (ata_class_enabled(new_class) &&
3777 new_class != ATA_DEV_ATA &&
3778 new_class != ATA_DEV_ATAPI &&
3779 new_class != ATA_DEV_ZAC &&
3780 new_class != ATA_DEV_SEMB) {
3781 ata_dev_info(dev, "class mismatch %u != %u\n",
3782 dev->class, new_class);
3783 rc = -ENODEV;
3784 goto fail;
3785 }
3786
3787 /* re-read ID */
3788 rc = ata_dev_reread_id(dev, readid_flags);
3789 if (rc)
3790 goto fail;
3791
3792 /* configure device according to the new ID */
3793 rc = ata_dev_configure(dev);
3794 if (rc)
3795 goto fail;
3796
3797 /* verify n_sectors hasn't changed */
3798 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3799 dev->n_sectors == n_sectors)
3800 return 0;
3801
3802 /* n_sectors has changed */
3803 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3804 (unsigned long long)n_sectors,
3805 (unsigned long long)dev->n_sectors);
3806
3807 /*
3808 * Something could have caused HPA to be unlocked
3809 * involuntarily. If n_native_sectors hasn't changed and the
3810 * new size matches it, keep the device.
3811 */
3812 if (dev->n_native_sectors == n_native_sectors &&
3813 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3814 ata_dev_warn(dev,
3815 "new n_sectors matches native, probably "
3816 "late HPA unlock, n_sectors updated\n");
3817 /* use the larger n_sectors */
3818 return 0;
3819 }
3820
3821 /*
3822 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3823 * unlocking HPA in those cases.
3824 *
3825 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3826 */
3827 if (dev->n_native_sectors == n_native_sectors &&
3828 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3829 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3830 ata_dev_warn(dev,
3831 "old n_sectors matches native, probably "
3832 "late HPA lock, will try to unlock HPA\n");
3833 /* try unlocking HPA */
3834 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3835 rc = -EIO;
3836 } else
3837 rc = -ENODEV;
3838
3839 /* restore original n_[native_]sectors and fail */
3840 dev->n_native_sectors = n_native_sectors;
3841 dev->n_sectors = n_sectors;
3842 fail:
3843 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3844 return rc;
3845 }
3846
3847 struct ata_blacklist_entry {
3848 const char *model_num;
3849 const char *model_rev;
3850 unsigned long horkage;
3851 };
3852
3853 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3854 /* Devices with DMA related problems under Linux */
3855 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3856 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3857 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3858 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3859 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3860 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3861 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3862 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3863 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3864 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
3865 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3866 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3867 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3868 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3869 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3870 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
3871 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3872 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3873 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3874 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3875 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3876 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3877 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3878 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3879 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3880 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3881 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
3882 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3883 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3884 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3885 /* Odd clown on sil3726/4726 PMPs */
3886 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
3887 /* Similar story with ASMedia 1092 */
3888 { "ASMT109x- Config", NULL, ATA_HORKAGE_DISABLE },
3889
3890 /* Weird ATAPI devices */
3891 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3892 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
3893 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3894 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
3895
3896 /*
3897 * Causes silent data corruption with higher max sects.
3898 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3899 */
3900 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
3901
3902 /*
3903 * These devices time out with higher max sects.
3904 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3905 */
3906 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3907 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
3908
3909 /* Devices we expect to fail diagnostics */
3910
3911 /* Devices where NCQ should be avoided */
3912 /* NCQ is slow */
3913 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3914 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ },
3915 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3916 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3917 /* NCQ is broken */
3918 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
3919 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
3920 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
3921 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
3922 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
3923
3924 /* Seagate NCQ + FLUSH CACHE firmware bug */
3925 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3926 ATA_HORKAGE_FIRMWARE_WARN },
3927
3928 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3929 ATA_HORKAGE_FIRMWARE_WARN },
3930
3931 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3932 ATA_HORKAGE_FIRMWARE_WARN },
3933
3934 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
3935 ATA_HORKAGE_FIRMWARE_WARN },
3936
3937 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3938 the ST disks also have LPM issues */
3939 { "ST1000LM024 HN-M101MBB", NULL, ATA_HORKAGE_BROKEN_FPDMA_AA |
3940 ATA_HORKAGE_NOLPM },
3941 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
3942
3943 /* Blacklist entries taken from Silicon Image 3124/3132
3944 Windows driver .inf file - also several Linux problem reports */
3945 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ },
3946 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ },
3947 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ },
3948
3949 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3950 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ },
3951
3952 /* Sandisk SD7/8/9s lock up hard on large trims */
3953 { "SanDisk SD[789]*", NULL, ATA_HORKAGE_MAX_TRIM_128M },
3954
3955 /* devices which puke on READ_NATIVE_MAX */
3956 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA },
3957 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3958 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3959 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
3960
3961 /* this one allows HPA unlocking but fails IOs on the area */
3962 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
3963
3964 /* Devices which report 1 sector over size HPA */
3965 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE },
3966 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE },
3967 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE },
3968
3969 /* Devices which get the IVB wrong */
3970 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB },
3971 /* Maybe we should just blacklist TSSTcorp... */
3972 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB },
3973
3974 /* Devices that do not need bridging limits applied */
3975 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK },
3976 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK },
3977
3978 /* Devices which aren't very happy with higher link speeds */
3979 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS },
3980 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS },
3981
3982 /*
3983 * Devices which choke on SETXFER. Applies only if both the
3984 * device and controller are SATA.
3985 */
3986 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3987 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
3988 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
3989 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
3990 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
3991
3992 /* These specific Pioneer models have LPM issues */
3993 { "PIONEER BD-RW BDR-207M", NULL, ATA_HORKAGE_NOLPM },
3994 { "PIONEER BD-RW BDR-205", NULL, ATA_HORKAGE_NOLPM },
3995
3996 /* Crucial BX100 SSD 500GB has broken LPM support */
3997 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
3998
3999 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4000 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4001 ATA_HORKAGE_ZERO_AFTER_TRIM |
4002 ATA_HORKAGE_NOLPM },
4003 /* 512GB MX100 with newer firmware has only LPM issues */
4004 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4005 ATA_HORKAGE_NOLPM },
4006
4007 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4008 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4009 ATA_HORKAGE_ZERO_AFTER_TRIM |
4010 ATA_HORKAGE_NOLPM },
4011 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4012 ATA_HORKAGE_ZERO_AFTER_TRIM |
4013 ATA_HORKAGE_NOLPM },
4014
4015 /* These specific Samsung models/firmware-revs do not handle LPM well */
4016 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM },
4017 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM },
4018 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_HORKAGE_NOLPM },
4019 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM },
4020
4021 /* devices that don't properly handle queued TRIM commands */
4022 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4023 ATA_HORKAGE_ZERO_AFTER_TRIM },
4024 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4025 ATA_HORKAGE_ZERO_AFTER_TRIM },
4026 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4027 ATA_HORKAGE_ZERO_AFTER_TRIM },
4028 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4029 ATA_HORKAGE_ZERO_AFTER_TRIM },
4030 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4031 ATA_HORKAGE_ZERO_AFTER_TRIM },
4032 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4033 ATA_HORKAGE_ZERO_AFTER_TRIM },
4034 { "Samsung SSD 840 EVO*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4035 ATA_HORKAGE_NO_DMA_LOG |
4036 ATA_HORKAGE_ZERO_AFTER_TRIM },
4037 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4038 ATA_HORKAGE_ZERO_AFTER_TRIM },
4039 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4040 ATA_HORKAGE_ZERO_AFTER_TRIM },
4041 { "Samsung SSD 860*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4042 ATA_HORKAGE_ZERO_AFTER_TRIM |
4043 ATA_HORKAGE_NO_NCQ_ON_ATI },
4044 { "Samsung SSD 870*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4045 ATA_HORKAGE_ZERO_AFTER_TRIM |
4046 ATA_HORKAGE_NO_NCQ_ON_ATI },
4047 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4048 ATA_HORKAGE_ZERO_AFTER_TRIM },
4049
4050 /* devices that don't properly handle TRIM commands */
4051 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM },
4052 { "M88V29*", NULL, ATA_HORKAGE_NOTRIM },
4053
4054 /*
4055 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4056 * (Return Zero After Trim) flags in the ATA Command Set are
4057 * unreliable in the sense that they only define what happens if
4058 * the device successfully executed the DSM TRIM command. TRIM
4059 * is only advisory, however, and the device is free to silently
4060 * ignore all or parts of the request.
4061 *
4062 * Whitelist drives that are known to reliably return zeroes
4063 * after TRIM.
4064 */
4065
4066 /*
4067 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4068 * that model before whitelisting all other intel SSDs.
4069 */
4070 { "INTEL*SSDSC2MH*", NULL, 0 },
4071
4072 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4073 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4074 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4075 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4076 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4077 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4078 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4079 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM },
4080
4081 /*
4082 * Some WD SATA-I drives spin up and down erratically when the link
4083 * is put into the slumber mode. We don't have full list of the
4084 * affected devices. Disable LPM if the device matches one of the
4085 * known prefixes and is SATA-1. As a side effect LPM partial is
4086 * lost too.
4087 *
4088 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4089 */
4090 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4091 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4092 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4093 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4094 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4095 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4096 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4097
4098 /*
4099 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4100 * log page is accessed. Ensure we never ask for this log page with
4101 * these devices.
4102 */
4103 { "SATADOM-ML 3ME", NULL, ATA_HORKAGE_NO_LOG_DIR },
4104
4105 /* End Marker */
4106 { }
4107 };
4108
ata_dev_blacklisted(const struct ata_device * dev)4109 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4110 {
4111 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4112 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4113 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4114
4115 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4116 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4117
4118 while (ad->model_num) {
4119 if (glob_match(ad->model_num, model_num)) {
4120 if (ad->model_rev == NULL)
4121 return ad->horkage;
4122 if (glob_match(ad->model_rev, model_rev))
4123 return ad->horkage;
4124 }
4125 ad++;
4126 }
4127 return 0;
4128 }
4129
ata_dma_blacklisted(const struct ata_device * dev)4130 static int ata_dma_blacklisted(const struct ata_device *dev)
4131 {
4132 /* We don't support polling DMA.
4133 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4134 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4135 */
4136 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4137 (dev->flags & ATA_DFLAG_CDB_INTR))
4138 return 1;
4139 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4140 }
4141
4142 /**
4143 * ata_is_40wire - check drive side detection
4144 * @dev: device
4145 *
4146 * Perform drive side detection decoding, allowing for device vendors
4147 * who can't follow the documentation.
4148 */
4149
ata_is_40wire(struct ata_device * dev)4150 static int ata_is_40wire(struct ata_device *dev)
4151 {
4152 if (dev->horkage & ATA_HORKAGE_IVB)
4153 return ata_drive_40wire_relaxed(dev->id);
4154 return ata_drive_40wire(dev->id);
4155 }
4156
4157 /**
4158 * cable_is_40wire - 40/80/SATA decider
4159 * @ap: port to consider
4160 *
4161 * This function encapsulates the policy for speed management
4162 * in one place. At the moment we don't cache the result but
4163 * there is a good case for setting ap->cbl to the result when
4164 * we are called with unknown cables (and figuring out if it
4165 * impacts hotplug at all).
4166 *
4167 * Return 1 if the cable appears to be 40 wire.
4168 */
4169
cable_is_40wire(struct ata_port * ap)4170 static int cable_is_40wire(struct ata_port *ap)
4171 {
4172 struct ata_link *link;
4173 struct ata_device *dev;
4174
4175 /* If the controller thinks we are 40 wire, we are. */
4176 if (ap->cbl == ATA_CBL_PATA40)
4177 return 1;
4178
4179 /* If the controller thinks we are 80 wire, we are. */
4180 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4181 return 0;
4182
4183 /* If the system is known to be 40 wire short cable (eg
4184 * laptop), then we allow 80 wire modes even if the drive
4185 * isn't sure.
4186 */
4187 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4188 return 0;
4189
4190 /* If the controller doesn't know, we scan.
4191 *
4192 * Note: We look for all 40 wire detects at this point. Any
4193 * 80 wire detect is taken to be 80 wire cable because
4194 * - in many setups only the one drive (slave if present) will
4195 * give a valid detect
4196 * - if you have a non detect capable drive you don't want it
4197 * to colour the choice
4198 */
4199 ata_for_each_link(link, ap, EDGE) {
4200 ata_for_each_dev(dev, link, ENABLED) {
4201 if (!ata_is_40wire(dev))
4202 return 0;
4203 }
4204 }
4205 return 1;
4206 }
4207
4208 /**
4209 * ata_dev_xfermask - Compute supported xfermask of the given device
4210 * @dev: Device to compute xfermask for
4211 *
4212 * Compute supported xfermask of @dev and store it in
4213 * dev->*_mask. This function is responsible for applying all
4214 * known limits including host controller limits, device
4215 * blacklist, etc...
4216 *
4217 * LOCKING:
4218 * None.
4219 */
ata_dev_xfermask(struct ata_device * dev)4220 static void ata_dev_xfermask(struct ata_device *dev)
4221 {
4222 struct ata_link *link = dev->link;
4223 struct ata_port *ap = link->ap;
4224 struct ata_host *host = ap->host;
4225 unsigned int xfer_mask;
4226
4227 /* controller modes available */
4228 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4229 ap->mwdma_mask, ap->udma_mask);
4230
4231 /* drive modes available */
4232 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4233 dev->mwdma_mask, dev->udma_mask);
4234 xfer_mask &= ata_id_xfermask(dev->id);
4235
4236 /*
4237 * CFA Advanced TrueIDE timings are not allowed on a shared
4238 * cable
4239 */
4240 if (ata_dev_pair(dev)) {
4241 /* No PIO5 or PIO6 */
4242 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4243 /* No MWDMA3 or MWDMA 4 */
4244 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4245 }
4246
4247 if (ata_dma_blacklisted(dev)) {
4248 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4249 ata_dev_warn(dev,
4250 "device is on DMA blacklist, disabling DMA\n");
4251 }
4252
4253 if ((host->flags & ATA_HOST_SIMPLEX) &&
4254 host->simplex_claimed && host->simplex_claimed != ap) {
4255 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4256 ata_dev_warn(dev,
4257 "simplex DMA is claimed by other device, disabling DMA\n");
4258 }
4259
4260 if (ap->flags & ATA_FLAG_NO_IORDY)
4261 xfer_mask &= ata_pio_mask_no_iordy(dev);
4262
4263 if (ap->ops->mode_filter)
4264 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4265
4266 /* Apply cable rule here. Don't apply it early because when
4267 * we handle hot plug the cable type can itself change.
4268 * Check this last so that we know if the transfer rate was
4269 * solely limited by the cable.
4270 * Unknown or 80 wire cables reported host side are checked
4271 * drive side as well. Cases where we know a 40wire cable
4272 * is used safely for 80 are not checked here.
4273 */
4274 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4275 /* UDMA/44 or higher would be available */
4276 if (cable_is_40wire(ap)) {
4277 ata_dev_warn(dev,
4278 "limited to UDMA/33 due to 40-wire cable\n");
4279 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4280 }
4281
4282 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4283 &dev->mwdma_mask, &dev->udma_mask);
4284 }
4285
4286 /**
4287 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4288 * @dev: Device to which command will be sent
4289 *
4290 * Issue SET FEATURES - XFER MODE command to device @dev
4291 * on port @ap.
4292 *
4293 * LOCKING:
4294 * PCI/etc. bus probe sem.
4295 *
4296 * RETURNS:
4297 * 0 on success, AC_ERR_* mask otherwise.
4298 */
4299
ata_dev_set_xfermode(struct ata_device * dev)4300 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4301 {
4302 struct ata_taskfile tf;
4303
4304 /* set up set-features taskfile */
4305 ata_dev_dbg(dev, "set features - xfer mode\n");
4306
4307 /* Some controllers and ATAPI devices show flaky interrupt
4308 * behavior after setting xfer mode. Use polling instead.
4309 */
4310 ata_tf_init(dev, &tf);
4311 tf.command = ATA_CMD_SET_FEATURES;
4312 tf.feature = SETFEATURES_XFER;
4313 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4314 tf.protocol = ATA_PROT_NODATA;
4315 /* If we are using IORDY we must send the mode setting command */
4316 if (ata_pio_need_iordy(dev))
4317 tf.nsect = dev->xfer_mode;
4318 /* If the device has IORDY and the controller does not - turn it off */
4319 else if (ata_id_has_iordy(dev->id))
4320 tf.nsect = 0x01;
4321 else /* In the ancient relic department - skip all of this */
4322 return 0;
4323
4324 /*
4325 * On some disks, this command causes spin-up, so we need longer
4326 * timeout.
4327 */
4328 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4329 }
4330
4331 /**
4332 * ata_dev_set_feature - Issue SET FEATURES
4333 * @dev: Device to which command will be sent
4334 * @subcmd: The SET FEATURES subcommand to be sent
4335 * @action: The sector count represents a subcommand specific action
4336 *
4337 * Issue SET FEATURES command to device @dev on port @ap with sector count
4338 *
4339 * LOCKING:
4340 * PCI/etc. bus probe sem.
4341 *
4342 * RETURNS:
4343 * 0 on success, AC_ERR_* mask otherwise.
4344 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4345 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4346 {
4347 struct ata_taskfile tf;
4348 unsigned int timeout = 0;
4349
4350 /* set up set-features taskfile */
4351 ata_dev_dbg(dev, "set features\n");
4352
4353 ata_tf_init(dev, &tf);
4354 tf.command = ATA_CMD_SET_FEATURES;
4355 tf.feature = subcmd;
4356 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4357 tf.protocol = ATA_PROT_NODATA;
4358 tf.nsect = action;
4359
4360 if (subcmd == SETFEATURES_SPINUP)
4361 timeout = ata_probe_timeout ?
4362 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4363
4364 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4365 }
4366 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4367
4368 /**
4369 * ata_dev_init_params - Issue INIT DEV PARAMS command
4370 * @dev: Device to which command will be sent
4371 * @heads: Number of heads (taskfile parameter)
4372 * @sectors: Number of sectors (taskfile parameter)
4373 *
4374 * LOCKING:
4375 * Kernel thread context (may sleep)
4376 *
4377 * RETURNS:
4378 * 0 on success, AC_ERR_* mask otherwise.
4379 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4380 static unsigned int ata_dev_init_params(struct ata_device *dev,
4381 u16 heads, u16 sectors)
4382 {
4383 struct ata_taskfile tf;
4384 unsigned int err_mask;
4385
4386 /* Number of sectors per track 1-255. Number of heads 1-16 */
4387 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4388 return AC_ERR_INVALID;
4389
4390 /* set up init dev params taskfile */
4391 ata_dev_dbg(dev, "init dev params \n");
4392
4393 ata_tf_init(dev, &tf);
4394 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4395 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4396 tf.protocol = ATA_PROT_NODATA;
4397 tf.nsect = sectors;
4398 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4399
4400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4401 /* A clean abort indicates an original or just out of spec drive
4402 and we should continue as we issue the setup based on the
4403 drive reported working geometry */
4404 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4405 err_mask = 0;
4406
4407 return err_mask;
4408 }
4409
4410 /**
4411 * atapi_check_dma - Check whether ATAPI DMA can be supported
4412 * @qc: Metadata associated with taskfile to check
4413 *
4414 * Allow low-level driver to filter ATA PACKET commands, returning
4415 * a status indicating whether or not it is OK to use DMA for the
4416 * supplied PACKET command.
4417 *
4418 * LOCKING:
4419 * spin_lock_irqsave(host lock)
4420 *
4421 * RETURNS: 0 when ATAPI DMA can be used
4422 * nonzero otherwise
4423 */
atapi_check_dma(struct ata_queued_cmd * qc)4424 int atapi_check_dma(struct ata_queued_cmd *qc)
4425 {
4426 struct ata_port *ap = qc->ap;
4427
4428 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4429 * few ATAPI devices choke on such DMA requests.
4430 */
4431 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4432 unlikely(qc->nbytes & 15))
4433 return 1;
4434
4435 if (ap->ops->check_atapi_dma)
4436 return ap->ops->check_atapi_dma(qc);
4437
4438 return 0;
4439 }
4440
4441 /**
4442 * ata_std_qc_defer - Check whether a qc needs to be deferred
4443 * @qc: ATA command in question
4444 *
4445 * Non-NCQ commands cannot run with any other command, NCQ or
4446 * not. As upper layer only knows the queue depth, we are
4447 * responsible for maintaining exclusion. This function checks
4448 * whether a new command @qc can be issued.
4449 *
4450 * LOCKING:
4451 * spin_lock_irqsave(host lock)
4452 *
4453 * RETURNS:
4454 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4455 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4456 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4457 {
4458 struct ata_link *link = qc->dev->link;
4459
4460 if (ata_is_ncq(qc->tf.protocol)) {
4461 if (!ata_tag_valid(link->active_tag))
4462 return 0;
4463 } else {
4464 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4465 return 0;
4466 }
4467
4468 return ATA_DEFER_LINK;
4469 }
4470 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4471
ata_noop_qc_prep(struct ata_queued_cmd * qc)4472 enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4473 {
4474 return AC_ERR_OK;
4475 }
4476 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4477
4478 /**
4479 * ata_sg_init - Associate command with scatter-gather table.
4480 * @qc: Command to be associated
4481 * @sg: Scatter-gather table.
4482 * @n_elem: Number of elements in s/g table.
4483 *
4484 * Initialize the data-related elements of queued_cmd @qc
4485 * to point to a scatter-gather table @sg, containing @n_elem
4486 * elements.
4487 *
4488 * LOCKING:
4489 * spin_lock_irqsave(host lock)
4490 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4491 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4492 unsigned int n_elem)
4493 {
4494 qc->sg = sg;
4495 qc->n_elem = n_elem;
4496 qc->cursg = qc->sg;
4497 }
4498
4499 #ifdef CONFIG_HAS_DMA
4500
4501 /**
4502 * ata_sg_clean - Unmap DMA memory associated with command
4503 * @qc: Command containing DMA memory to be released
4504 *
4505 * Unmap all mapped DMA memory associated with this command.
4506 *
4507 * LOCKING:
4508 * spin_lock_irqsave(host lock)
4509 */
ata_sg_clean(struct ata_queued_cmd * qc)4510 static void ata_sg_clean(struct ata_queued_cmd *qc)
4511 {
4512 struct ata_port *ap = qc->ap;
4513 struct scatterlist *sg = qc->sg;
4514 int dir = qc->dma_dir;
4515
4516 WARN_ON_ONCE(sg == NULL);
4517
4518 if (qc->n_elem)
4519 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4520
4521 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4522 qc->sg = NULL;
4523 }
4524
4525 /**
4526 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4527 * @qc: Command with scatter-gather table to be mapped.
4528 *
4529 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4530 *
4531 * LOCKING:
4532 * spin_lock_irqsave(host lock)
4533 *
4534 * RETURNS:
4535 * Zero on success, negative on error.
4536 *
4537 */
ata_sg_setup(struct ata_queued_cmd * qc)4538 static int ata_sg_setup(struct ata_queued_cmd *qc)
4539 {
4540 struct ata_port *ap = qc->ap;
4541 unsigned int n_elem;
4542
4543 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4544 if (n_elem < 1)
4545 return -1;
4546
4547 qc->orig_n_elem = qc->n_elem;
4548 qc->n_elem = n_elem;
4549 qc->flags |= ATA_QCFLAG_DMAMAP;
4550
4551 return 0;
4552 }
4553
4554 #else /* !CONFIG_HAS_DMA */
4555
ata_sg_clean(struct ata_queued_cmd * qc)4556 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4557 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4558
4559 #endif /* !CONFIG_HAS_DMA */
4560
4561 /**
4562 * swap_buf_le16 - swap halves of 16-bit words in place
4563 * @buf: Buffer to swap
4564 * @buf_words: Number of 16-bit words in buffer.
4565 *
4566 * Swap halves of 16-bit words if needed to convert from
4567 * little-endian byte order to native cpu byte order, or
4568 * vice-versa.
4569 *
4570 * LOCKING:
4571 * Inherited from caller.
4572 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4573 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4574 {
4575 #ifdef __BIG_ENDIAN
4576 unsigned int i;
4577
4578 for (i = 0; i < buf_words; i++)
4579 buf[i] = le16_to_cpu(buf[i]);
4580 #endif /* __BIG_ENDIAN */
4581 }
4582
4583 /**
4584 * ata_qc_free - free unused ata_queued_cmd
4585 * @qc: Command to complete
4586 *
4587 * Designed to free unused ata_queued_cmd object
4588 * in case something prevents using it.
4589 *
4590 * LOCKING:
4591 * spin_lock_irqsave(host lock)
4592 */
ata_qc_free(struct ata_queued_cmd * qc)4593 void ata_qc_free(struct ata_queued_cmd *qc)
4594 {
4595 qc->flags = 0;
4596 if (ata_tag_valid(qc->tag))
4597 qc->tag = ATA_TAG_POISON;
4598 }
4599
__ata_qc_complete(struct ata_queued_cmd * qc)4600 void __ata_qc_complete(struct ata_queued_cmd *qc)
4601 {
4602 struct ata_port *ap;
4603 struct ata_link *link;
4604
4605 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4606 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4607 ap = qc->ap;
4608 link = qc->dev->link;
4609
4610 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4611 ata_sg_clean(qc);
4612
4613 /* command should be marked inactive atomically with qc completion */
4614 if (ata_is_ncq(qc->tf.protocol)) {
4615 link->sactive &= ~(1 << qc->hw_tag);
4616 if (!link->sactive)
4617 ap->nr_active_links--;
4618 } else {
4619 link->active_tag = ATA_TAG_POISON;
4620 ap->nr_active_links--;
4621 }
4622
4623 /* clear exclusive status */
4624 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4625 ap->excl_link == link))
4626 ap->excl_link = NULL;
4627
4628 /* atapi: mark qc as inactive to prevent the interrupt handler
4629 * from completing the command twice later, before the error handler
4630 * is called. (when rc != 0 and atapi request sense is needed)
4631 */
4632 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4633 ap->qc_active &= ~(1ULL << qc->tag);
4634
4635 /* call completion callback */
4636 qc->complete_fn(qc);
4637 }
4638
fill_result_tf(struct ata_queued_cmd * qc)4639 static void fill_result_tf(struct ata_queued_cmd *qc)
4640 {
4641 struct ata_port *ap = qc->ap;
4642
4643 qc->result_tf.flags = qc->tf.flags;
4644 ap->ops->qc_fill_rtf(qc);
4645 }
4646
ata_verify_xfer(struct ata_queued_cmd * qc)4647 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4648 {
4649 struct ata_device *dev = qc->dev;
4650
4651 if (!ata_is_data(qc->tf.protocol))
4652 return;
4653
4654 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4655 return;
4656
4657 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4658 }
4659
4660 /**
4661 * ata_qc_complete - Complete an active ATA command
4662 * @qc: Command to complete
4663 *
4664 * Indicate to the mid and upper layers that an ATA command has
4665 * completed, with either an ok or not-ok status.
4666 *
4667 * Refrain from calling this function multiple times when
4668 * successfully completing multiple NCQ commands.
4669 * ata_qc_complete_multiple() should be used instead, which will
4670 * properly update IRQ expect state.
4671 *
4672 * LOCKING:
4673 * spin_lock_irqsave(host lock)
4674 */
ata_qc_complete(struct ata_queued_cmd * qc)4675 void ata_qc_complete(struct ata_queued_cmd *qc)
4676 {
4677 struct ata_port *ap = qc->ap;
4678
4679 /* Trigger the LED (if available) */
4680 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4681
4682 /* XXX: New EH and old EH use different mechanisms to
4683 * synchronize EH with regular execution path.
4684 *
4685 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4686 * Normal execution path is responsible for not accessing a
4687 * failed qc. libata core enforces the rule by returning NULL
4688 * from ata_qc_from_tag() for failed qcs.
4689 *
4690 * Old EH depends on ata_qc_complete() nullifying completion
4691 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4692 * not synchronize with interrupt handler. Only PIO task is
4693 * taken care of.
4694 */
4695 if (ap->ops->error_handler) {
4696 struct ata_device *dev = qc->dev;
4697 struct ata_eh_info *ehi = &dev->link->eh_info;
4698
4699 if (unlikely(qc->err_mask))
4700 qc->flags |= ATA_QCFLAG_FAILED;
4701
4702 /*
4703 * Finish internal commands without any further processing
4704 * and always with the result TF filled.
4705 */
4706 if (unlikely(ata_tag_internal(qc->tag))) {
4707 fill_result_tf(qc);
4708 trace_ata_qc_complete_internal(qc);
4709 __ata_qc_complete(qc);
4710 return;
4711 }
4712
4713 /*
4714 * Non-internal qc has failed. Fill the result TF and
4715 * summon EH.
4716 */
4717 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4718 fill_result_tf(qc);
4719 trace_ata_qc_complete_failed(qc);
4720 ata_qc_schedule_eh(qc);
4721 return;
4722 }
4723
4724 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4725
4726 /* read result TF if requested */
4727 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4728 fill_result_tf(qc);
4729
4730 trace_ata_qc_complete_done(qc);
4731 /* Some commands need post-processing after successful
4732 * completion.
4733 */
4734 switch (qc->tf.command) {
4735 case ATA_CMD_SET_FEATURES:
4736 if (qc->tf.feature != SETFEATURES_WC_ON &&
4737 qc->tf.feature != SETFEATURES_WC_OFF &&
4738 qc->tf.feature != SETFEATURES_RA_ON &&
4739 qc->tf.feature != SETFEATURES_RA_OFF)
4740 break;
4741 fallthrough;
4742 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4743 case ATA_CMD_SET_MULTI: /* multi_count changed */
4744 /* revalidate device */
4745 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4746 ata_port_schedule_eh(ap);
4747 break;
4748
4749 case ATA_CMD_SLEEP:
4750 dev->flags |= ATA_DFLAG_SLEEPING;
4751 break;
4752 }
4753
4754 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4755 ata_verify_xfer(qc);
4756
4757 __ata_qc_complete(qc);
4758 } else {
4759 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4760 return;
4761
4762 /* read result TF if failed or requested */
4763 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4764 fill_result_tf(qc);
4765
4766 __ata_qc_complete(qc);
4767 }
4768 }
4769 EXPORT_SYMBOL_GPL(ata_qc_complete);
4770
4771 /**
4772 * ata_qc_get_active - get bitmask of active qcs
4773 * @ap: port in question
4774 *
4775 * LOCKING:
4776 * spin_lock_irqsave(host lock)
4777 *
4778 * RETURNS:
4779 * Bitmask of active qcs
4780 */
ata_qc_get_active(struct ata_port * ap)4781 u64 ata_qc_get_active(struct ata_port *ap)
4782 {
4783 u64 qc_active = ap->qc_active;
4784
4785 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4786 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4787 qc_active |= (1 << 0);
4788 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4789 }
4790
4791 return qc_active;
4792 }
4793 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4794
4795 /**
4796 * ata_qc_issue - issue taskfile to device
4797 * @qc: command to issue to device
4798 *
4799 * Prepare an ATA command to submission to device.
4800 * This includes mapping the data into a DMA-able
4801 * area, filling in the S/G table, and finally
4802 * writing the taskfile to hardware, starting the command.
4803 *
4804 * LOCKING:
4805 * spin_lock_irqsave(host lock)
4806 */
ata_qc_issue(struct ata_queued_cmd * qc)4807 void ata_qc_issue(struct ata_queued_cmd *qc)
4808 {
4809 struct ata_port *ap = qc->ap;
4810 struct ata_link *link = qc->dev->link;
4811 u8 prot = qc->tf.protocol;
4812
4813 /* Make sure only one non-NCQ command is outstanding. The
4814 * check is skipped for old EH because it reuses active qc to
4815 * request ATAPI sense.
4816 */
4817 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4818
4819 if (ata_is_ncq(prot)) {
4820 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4821
4822 if (!link->sactive)
4823 ap->nr_active_links++;
4824 link->sactive |= 1 << qc->hw_tag;
4825 } else {
4826 WARN_ON_ONCE(link->sactive);
4827
4828 ap->nr_active_links++;
4829 link->active_tag = qc->tag;
4830 }
4831
4832 qc->flags |= ATA_QCFLAG_ACTIVE;
4833 ap->qc_active |= 1ULL << qc->tag;
4834
4835 /*
4836 * We guarantee to LLDs that they will have at least one
4837 * non-zero sg if the command is a data command.
4838 */
4839 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4840 goto sys_err;
4841
4842 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4843 (ap->flags & ATA_FLAG_PIO_DMA)))
4844 if (ata_sg_setup(qc))
4845 goto sys_err;
4846
4847 /* if device is sleeping, schedule reset and abort the link */
4848 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4849 link->eh_info.action |= ATA_EH_RESET;
4850 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4851 ata_link_abort(link);
4852 return;
4853 }
4854
4855 trace_ata_qc_prep(qc);
4856 qc->err_mask |= ap->ops->qc_prep(qc);
4857 if (unlikely(qc->err_mask))
4858 goto err;
4859 trace_ata_qc_issue(qc);
4860 qc->err_mask |= ap->ops->qc_issue(qc);
4861 if (unlikely(qc->err_mask))
4862 goto err;
4863 return;
4864
4865 sys_err:
4866 qc->err_mask |= AC_ERR_SYSTEM;
4867 err:
4868 ata_qc_complete(qc);
4869 }
4870
4871 /**
4872 * ata_phys_link_online - test whether the given link is online
4873 * @link: ATA link to test
4874 *
4875 * Test whether @link is online. Note that this function returns
4876 * 0 if online status of @link cannot be obtained, so
4877 * ata_link_online(link) != !ata_link_offline(link).
4878 *
4879 * LOCKING:
4880 * None.
4881 *
4882 * RETURNS:
4883 * True if the port online status is available and online.
4884 */
ata_phys_link_online(struct ata_link * link)4885 bool ata_phys_link_online(struct ata_link *link)
4886 {
4887 u32 sstatus;
4888
4889 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4890 ata_sstatus_online(sstatus))
4891 return true;
4892 return false;
4893 }
4894
4895 /**
4896 * ata_phys_link_offline - test whether the given link is offline
4897 * @link: ATA link to test
4898 *
4899 * Test whether @link is offline. Note that this function
4900 * returns 0 if offline status of @link cannot be obtained, so
4901 * ata_link_online(link) != !ata_link_offline(link).
4902 *
4903 * LOCKING:
4904 * None.
4905 *
4906 * RETURNS:
4907 * True if the port offline status is available and offline.
4908 */
ata_phys_link_offline(struct ata_link * link)4909 bool ata_phys_link_offline(struct ata_link *link)
4910 {
4911 u32 sstatus;
4912
4913 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4914 !ata_sstatus_online(sstatus))
4915 return true;
4916 return false;
4917 }
4918
4919 /**
4920 * ata_link_online - test whether the given link is online
4921 * @link: ATA link to test
4922 *
4923 * Test whether @link is online. This is identical to
4924 * ata_phys_link_online() when there's no slave link. When
4925 * there's a slave link, this function should only be called on
4926 * the master link and will return true if any of M/S links is
4927 * online.
4928 *
4929 * LOCKING:
4930 * None.
4931 *
4932 * RETURNS:
4933 * True if the port online status is available and online.
4934 */
ata_link_online(struct ata_link * link)4935 bool ata_link_online(struct ata_link *link)
4936 {
4937 struct ata_link *slave = link->ap->slave_link;
4938
4939 WARN_ON(link == slave); /* shouldn't be called on slave link */
4940
4941 return ata_phys_link_online(link) ||
4942 (slave && ata_phys_link_online(slave));
4943 }
4944 EXPORT_SYMBOL_GPL(ata_link_online);
4945
4946 /**
4947 * ata_link_offline - test whether the given link is offline
4948 * @link: ATA link to test
4949 *
4950 * Test whether @link is offline. This is identical to
4951 * ata_phys_link_offline() when there's no slave link. When
4952 * there's a slave link, this function should only be called on
4953 * the master link and will return true if both M/S links are
4954 * offline.
4955 *
4956 * LOCKING:
4957 * None.
4958 *
4959 * RETURNS:
4960 * True if the port offline status is available and offline.
4961 */
ata_link_offline(struct ata_link * link)4962 bool ata_link_offline(struct ata_link *link)
4963 {
4964 struct ata_link *slave = link->ap->slave_link;
4965
4966 WARN_ON(link == slave); /* shouldn't be called on slave link */
4967
4968 return ata_phys_link_offline(link) &&
4969 (!slave || ata_phys_link_offline(slave));
4970 }
4971 EXPORT_SYMBOL_GPL(ata_link_offline);
4972
4973 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)4974 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4975 unsigned int action, unsigned int ehi_flags,
4976 bool async)
4977 {
4978 struct ata_link *link;
4979 unsigned long flags;
4980
4981 /* Previous resume operation might still be in
4982 * progress. Wait for PM_PENDING to clear.
4983 */
4984 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4985 ata_port_wait_eh(ap);
4986 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4987 }
4988
4989 /* request PM ops to EH */
4990 spin_lock_irqsave(ap->lock, flags);
4991
4992 ap->pm_mesg = mesg;
4993 ap->pflags |= ATA_PFLAG_PM_PENDING;
4994 ata_for_each_link(link, ap, HOST_FIRST) {
4995 link->eh_info.action |= action;
4996 link->eh_info.flags |= ehi_flags;
4997 }
4998
4999 ata_port_schedule_eh(ap);
5000
5001 spin_unlock_irqrestore(ap->lock, flags);
5002
5003 if (!async) {
5004 ata_port_wait_eh(ap);
5005 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5006 }
5007 }
5008
5009 /*
5010 * On some hardware, device fails to respond after spun down for suspend. As
5011 * the device won't be used before being resumed, we don't need to touch the
5012 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5013 *
5014 * http://thread.gmane.org/gmane.linux.ide/46764
5015 */
5016 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5017 | ATA_EHI_NO_AUTOPSY
5018 | ATA_EHI_NO_RECOVERY;
5019
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5020 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5021 {
5022 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5023 }
5024
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5025 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5026 {
5027 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5028 }
5029
ata_port_pm_suspend(struct device * dev)5030 static int ata_port_pm_suspend(struct device *dev)
5031 {
5032 struct ata_port *ap = to_ata_port(dev);
5033
5034 if (pm_runtime_suspended(dev))
5035 return 0;
5036
5037 ata_port_suspend(ap, PMSG_SUSPEND);
5038 return 0;
5039 }
5040
ata_port_pm_freeze(struct device * dev)5041 static int ata_port_pm_freeze(struct device *dev)
5042 {
5043 struct ata_port *ap = to_ata_port(dev);
5044
5045 if (pm_runtime_suspended(dev))
5046 return 0;
5047
5048 ata_port_suspend(ap, PMSG_FREEZE);
5049 return 0;
5050 }
5051
ata_port_pm_poweroff(struct device * dev)5052 static int ata_port_pm_poweroff(struct device *dev)
5053 {
5054 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5055 return 0;
5056 }
5057
5058 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5059 | ATA_EHI_QUIET;
5060
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5061 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5062 {
5063 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5064 }
5065
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5066 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5067 {
5068 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5069 }
5070
ata_port_pm_resume(struct device * dev)5071 static int ata_port_pm_resume(struct device *dev)
5072 {
5073 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5074 pm_runtime_disable(dev);
5075 pm_runtime_set_active(dev);
5076 pm_runtime_enable(dev);
5077 return 0;
5078 }
5079
5080 /*
5081 * For ODDs, the upper layer will poll for media change every few seconds,
5082 * which will make it enter and leave suspend state every few seconds. And
5083 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5084 * is very little and the ODD may malfunction after constantly being reset.
5085 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5086 * ODD is attached to the port.
5087 */
ata_port_runtime_idle(struct device * dev)5088 static int ata_port_runtime_idle(struct device *dev)
5089 {
5090 struct ata_port *ap = to_ata_port(dev);
5091 struct ata_link *link;
5092 struct ata_device *adev;
5093
5094 ata_for_each_link(link, ap, HOST_FIRST) {
5095 ata_for_each_dev(adev, link, ENABLED)
5096 if (adev->class == ATA_DEV_ATAPI &&
5097 !zpodd_dev_enabled(adev))
5098 return -EBUSY;
5099 }
5100
5101 return 0;
5102 }
5103
ata_port_runtime_suspend(struct device * dev)5104 static int ata_port_runtime_suspend(struct device *dev)
5105 {
5106 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5107 return 0;
5108 }
5109
ata_port_runtime_resume(struct device * dev)5110 static int ata_port_runtime_resume(struct device *dev)
5111 {
5112 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5113 return 0;
5114 }
5115
5116 static const struct dev_pm_ops ata_port_pm_ops = {
5117 .suspend = ata_port_pm_suspend,
5118 .resume = ata_port_pm_resume,
5119 .freeze = ata_port_pm_freeze,
5120 .thaw = ata_port_pm_resume,
5121 .poweroff = ata_port_pm_poweroff,
5122 .restore = ata_port_pm_resume,
5123
5124 .runtime_suspend = ata_port_runtime_suspend,
5125 .runtime_resume = ata_port_runtime_resume,
5126 .runtime_idle = ata_port_runtime_idle,
5127 };
5128
5129 /* sas ports don't participate in pm runtime management of ata_ports,
5130 * and need to resume ata devices at the domain level, not the per-port
5131 * level. sas suspend/resume is async to allow parallel port recovery
5132 * since sas has multiple ata_port instances per Scsi_Host.
5133 */
ata_sas_port_suspend(struct ata_port * ap)5134 void ata_sas_port_suspend(struct ata_port *ap)
5135 {
5136 ata_port_suspend_async(ap, PMSG_SUSPEND);
5137 }
5138 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5139
ata_sas_port_resume(struct ata_port * ap)5140 void ata_sas_port_resume(struct ata_port *ap)
5141 {
5142 ata_port_resume_async(ap, PMSG_RESUME);
5143 }
5144 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5145
5146 /**
5147 * ata_host_suspend - suspend host
5148 * @host: host to suspend
5149 * @mesg: PM message
5150 *
5151 * Suspend @host. Actual operation is performed by port suspend.
5152 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5153 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5154 {
5155 host->dev->power.power_state = mesg;
5156 }
5157 EXPORT_SYMBOL_GPL(ata_host_suspend);
5158
5159 /**
5160 * ata_host_resume - resume host
5161 * @host: host to resume
5162 *
5163 * Resume @host. Actual operation is performed by port resume.
5164 */
ata_host_resume(struct ata_host * host)5165 void ata_host_resume(struct ata_host *host)
5166 {
5167 host->dev->power.power_state = PMSG_ON;
5168 }
5169 EXPORT_SYMBOL_GPL(ata_host_resume);
5170 #endif
5171
5172 const struct device_type ata_port_type = {
5173 .name = "ata_port",
5174 #ifdef CONFIG_PM
5175 .pm = &ata_port_pm_ops,
5176 #endif
5177 };
5178
5179 /**
5180 * ata_dev_init - Initialize an ata_device structure
5181 * @dev: Device structure to initialize
5182 *
5183 * Initialize @dev in preparation for probing.
5184 *
5185 * LOCKING:
5186 * Inherited from caller.
5187 */
ata_dev_init(struct ata_device * dev)5188 void ata_dev_init(struct ata_device *dev)
5189 {
5190 struct ata_link *link = ata_dev_phys_link(dev);
5191 struct ata_port *ap = link->ap;
5192 unsigned long flags;
5193
5194 /* SATA spd limit is bound to the attached device, reset together */
5195 link->sata_spd_limit = link->hw_sata_spd_limit;
5196 link->sata_spd = 0;
5197
5198 /* High bits of dev->flags are used to record warm plug
5199 * requests which occur asynchronously. Synchronize using
5200 * host lock.
5201 */
5202 spin_lock_irqsave(ap->lock, flags);
5203 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5204 dev->horkage = 0;
5205 spin_unlock_irqrestore(ap->lock, flags);
5206
5207 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5208 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5209 dev->pio_mask = UINT_MAX;
5210 dev->mwdma_mask = UINT_MAX;
5211 dev->udma_mask = UINT_MAX;
5212 }
5213
5214 /**
5215 * ata_link_init - Initialize an ata_link structure
5216 * @ap: ATA port link is attached to
5217 * @link: Link structure to initialize
5218 * @pmp: Port multiplier port number
5219 *
5220 * Initialize @link.
5221 *
5222 * LOCKING:
5223 * Kernel thread context (may sleep)
5224 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5225 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5226 {
5227 int i;
5228
5229 /* clear everything except for devices */
5230 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5231 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5232
5233 link->ap = ap;
5234 link->pmp = pmp;
5235 link->active_tag = ATA_TAG_POISON;
5236 link->hw_sata_spd_limit = UINT_MAX;
5237
5238 /* can't use iterator, ap isn't initialized yet */
5239 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5240 struct ata_device *dev = &link->device[i];
5241
5242 dev->link = link;
5243 dev->devno = dev - link->device;
5244 #ifdef CONFIG_ATA_ACPI
5245 dev->gtf_filter = ata_acpi_gtf_filter;
5246 #endif
5247 ata_dev_init(dev);
5248 }
5249 }
5250
5251 /**
5252 * sata_link_init_spd - Initialize link->sata_spd_limit
5253 * @link: Link to configure sata_spd_limit for
5254 *
5255 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5256 * configured value.
5257 *
5258 * LOCKING:
5259 * Kernel thread context (may sleep).
5260 *
5261 * RETURNS:
5262 * 0 on success, -errno on failure.
5263 */
sata_link_init_spd(struct ata_link * link)5264 int sata_link_init_spd(struct ata_link *link)
5265 {
5266 u8 spd;
5267 int rc;
5268
5269 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5270 if (rc)
5271 return rc;
5272
5273 spd = (link->saved_scontrol >> 4) & 0xf;
5274 if (spd)
5275 link->hw_sata_spd_limit &= (1 << spd) - 1;
5276
5277 ata_force_link_limits(link);
5278
5279 link->sata_spd_limit = link->hw_sata_spd_limit;
5280
5281 return 0;
5282 }
5283
5284 /**
5285 * ata_port_alloc - allocate and initialize basic ATA port resources
5286 * @host: ATA host this allocated port belongs to
5287 *
5288 * Allocate and initialize basic ATA port resources.
5289 *
5290 * RETURNS:
5291 * Allocate ATA port on success, NULL on failure.
5292 *
5293 * LOCKING:
5294 * Inherited from calling layer (may sleep).
5295 */
ata_port_alloc(struct ata_host * host)5296 struct ata_port *ata_port_alloc(struct ata_host *host)
5297 {
5298 struct ata_port *ap;
5299
5300 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5301 if (!ap)
5302 return NULL;
5303
5304 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5305 ap->lock = &host->lock;
5306 ap->print_id = -1;
5307 ap->local_port_no = -1;
5308 ap->host = host;
5309 ap->dev = host->dev;
5310
5311 mutex_init(&ap->scsi_scan_mutex);
5312 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5313 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5314 INIT_LIST_HEAD(&ap->eh_done_q);
5315 init_waitqueue_head(&ap->eh_wait_q);
5316 init_completion(&ap->park_req_pending);
5317 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5318 TIMER_DEFERRABLE);
5319
5320 ap->cbl = ATA_CBL_NONE;
5321
5322 ata_link_init(ap, &ap->link, 0);
5323
5324 #ifdef ATA_IRQ_TRAP
5325 ap->stats.unhandled_irq = 1;
5326 ap->stats.idle_irq = 1;
5327 #endif
5328 ata_sff_port_init(ap);
5329
5330 return ap;
5331 }
5332
ata_devres_release(struct device * gendev,void * res)5333 static void ata_devres_release(struct device *gendev, void *res)
5334 {
5335 struct ata_host *host = dev_get_drvdata(gendev);
5336 int i;
5337
5338 for (i = 0; i < host->n_ports; i++) {
5339 struct ata_port *ap = host->ports[i];
5340
5341 if (!ap)
5342 continue;
5343
5344 if (ap->scsi_host)
5345 scsi_host_put(ap->scsi_host);
5346
5347 }
5348
5349 dev_set_drvdata(gendev, NULL);
5350 ata_host_put(host);
5351 }
5352
ata_host_release(struct kref * kref)5353 static void ata_host_release(struct kref *kref)
5354 {
5355 struct ata_host *host = container_of(kref, struct ata_host, kref);
5356 int i;
5357
5358 for (i = 0; i < host->n_ports; i++) {
5359 struct ata_port *ap = host->ports[i];
5360
5361 kfree(ap->pmp_link);
5362 kfree(ap->slave_link);
5363 kfree(ap);
5364 host->ports[i] = NULL;
5365 }
5366 kfree(host);
5367 }
5368
ata_host_get(struct ata_host * host)5369 void ata_host_get(struct ata_host *host)
5370 {
5371 kref_get(&host->kref);
5372 }
5373
ata_host_put(struct ata_host * host)5374 void ata_host_put(struct ata_host *host)
5375 {
5376 kref_put(&host->kref, ata_host_release);
5377 }
5378 EXPORT_SYMBOL_GPL(ata_host_put);
5379
5380 /**
5381 * ata_host_alloc - allocate and init basic ATA host resources
5382 * @dev: generic device this host is associated with
5383 * @max_ports: maximum number of ATA ports associated with this host
5384 *
5385 * Allocate and initialize basic ATA host resources. LLD calls
5386 * this function to allocate a host, initializes it fully and
5387 * attaches it using ata_host_register().
5388 *
5389 * @max_ports ports are allocated and host->n_ports is
5390 * initialized to @max_ports. The caller is allowed to decrease
5391 * host->n_ports before calling ata_host_register(). The unused
5392 * ports will be automatically freed on registration.
5393 *
5394 * RETURNS:
5395 * Allocate ATA host on success, NULL on failure.
5396 *
5397 * LOCKING:
5398 * Inherited from calling layer (may sleep).
5399 */
ata_host_alloc(struct device * dev,int max_ports)5400 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5401 {
5402 struct ata_host *host;
5403 size_t sz;
5404 int i;
5405 void *dr;
5406
5407 /* alloc a container for our list of ATA ports (buses) */
5408 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5409 host = kzalloc(sz, GFP_KERNEL);
5410 if (!host)
5411 return NULL;
5412
5413 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5414 goto err_free;
5415
5416 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5417 if (!dr)
5418 goto err_out;
5419
5420 devres_add(dev, dr);
5421 dev_set_drvdata(dev, host);
5422
5423 spin_lock_init(&host->lock);
5424 mutex_init(&host->eh_mutex);
5425 host->dev = dev;
5426 host->n_ports = max_ports;
5427 kref_init(&host->kref);
5428
5429 /* allocate ports bound to this host */
5430 for (i = 0; i < max_ports; i++) {
5431 struct ata_port *ap;
5432
5433 ap = ata_port_alloc(host);
5434 if (!ap)
5435 goto err_out;
5436
5437 ap->port_no = i;
5438 host->ports[i] = ap;
5439 }
5440
5441 devres_remove_group(dev, NULL);
5442 return host;
5443
5444 err_out:
5445 devres_release_group(dev, NULL);
5446 err_free:
5447 kfree(host);
5448 return NULL;
5449 }
5450 EXPORT_SYMBOL_GPL(ata_host_alloc);
5451
5452 /**
5453 * ata_host_alloc_pinfo - alloc host and init with port_info array
5454 * @dev: generic device this host is associated with
5455 * @ppi: array of ATA port_info to initialize host with
5456 * @n_ports: number of ATA ports attached to this host
5457 *
5458 * Allocate ATA host and initialize with info from @ppi. If NULL
5459 * terminated, @ppi may contain fewer entries than @n_ports. The
5460 * last entry will be used for the remaining ports.
5461 *
5462 * RETURNS:
5463 * Allocate ATA host on success, NULL on failure.
5464 *
5465 * LOCKING:
5466 * Inherited from calling layer (may sleep).
5467 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5468 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5469 const struct ata_port_info * const * ppi,
5470 int n_ports)
5471 {
5472 const struct ata_port_info *pi = &ata_dummy_port_info;
5473 struct ata_host *host;
5474 int i, j;
5475
5476 host = ata_host_alloc(dev, n_ports);
5477 if (!host)
5478 return NULL;
5479
5480 for (i = 0, j = 0; i < host->n_ports; i++) {
5481 struct ata_port *ap = host->ports[i];
5482
5483 if (ppi[j])
5484 pi = ppi[j++];
5485
5486 ap->pio_mask = pi->pio_mask;
5487 ap->mwdma_mask = pi->mwdma_mask;
5488 ap->udma_mask = pi->udma_mask;
5489 ap->flags |= pi->flags;
5490 ap->link.flags |= pi->link_flags;
5491 ap->ops = pi->port_ops;
5492
5493 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5494 host->ops = pi->port_ops;
5495 }
5496
5497 return host;
5498 }
5499 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5500
ata_host_stop(struct device * gendev,void * res)5501 static void ata_host_stop(struct device *gendev, void *res)
5502 {
5503 struct ata_host *host = dev_get_drvdata(gendev);
5504 int i;
5505
5506 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5507
5508 for (i = 0; i < host->n_ports; i++) {
5509 struct ata_port *ap = host->ports[i];
5510
5511 if (ap->ops->port_stop)
5512 ap->ops->port_stop(ap);
5513 }
5514
5515 if (host->ops->host_stop)
5516 host->ops->host_stop(host);
5517 }
5518
5519 /**
5520 * ata_finalize_port_ops - finalize ata_port_operations
5521 * @ops: ata_port_operations to finalize
5522 *
5523 * An ata_port_operations can inherit from another ops and that
5524 * ops can again inherit from another. This can go on as many
5525 * times as necessary as long as there is no loop in the
5526 * inheritance chain.
5527 *
5528 * Ops tables are finalized when the host is started. NULL or
5529 * unspecified entries are inherited from the closet ancestor
5530 * which has the method and the entry is populated with it.
5531 * After finalization, the ops table directly points to all the
5532 * methods and ->inherits is no longer necessary and cleared.
5533 *
5534 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5535 *
5536 * LOCKING:
5537 * None.
5538 */
ata_finalize_port_ops(struct ata_port_operations * ops)5539 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5540 {
5541 static DEFINE_SPINLOCK(lock);
5542 const struct ata_port_operations *cur;
5543 void **begin = (void **)ops;
5544 void **end = (void **)&ops->inherits;
5545 void **pp;
5546
5547 if (!ops || !ops->inherits)
5548 return;
5549
5550 spin_lock(&lock);
5551
5552 for (cur = ops->inherits; cur; cur = cur->inherits) {
5553 void **inherit = (void **)cur;
5554
5555 for (pp = begin; pp < end; pp++, inherit++)
5556 if (!*pp)
5557 *pp = *inherit;
5558 }
5559
5560 for (pp = begin; pp < end; pp++)
5561 if (IS_ERR(*pp))
5562 *pp = NULL;
5563
5564 ops->inherits = NULL;
5565
5566 spin_unlock(&lock);
5567 }
5568
5569 /**
5570 * ata_host_start - start and freeze ports of an ATA host
5571 * @host: ATA host to start ports for
5572 *
5573 * Start and then freeze ports of @host. Started status is
5574 * recorded in host->flags, so this function can be called
5575 * multiple times. Ports are guaranteed to get started only
5576 * once. If host->ops is not initialized yet, it is set to the
5577 * first non-dummy port ops.
5578 *
5579 * LOCKING:
5580 * Inherited from calling layer (may sleep).
5581 *
5582 * RETURNS:
5583 * 0 if all ports are started successfully, -errno otherwise.
5584 */
ata_host_start(struct ata_host * host)5585 int ata_host_start(struct ata_host *host)
5586 {
5587 int have_stop = 0;
5588 void *start_dr = NULL;
5589 int i, rc;
5590
5591 if (host->flags & ATA_HOST_STARTED)
5592 return 0;
5593
5594 ata_finalize_port_ops(host->ops);
5595
5596 for (i = 0; i < host->n_ports; i++) {
5597 struct ata_port *ap = host->ports[i];
5598
5599 ata_finalize_port_ops(ap->ops);
5600
5601 if (!host->ops && !ata_port_is_dummy(ap))
5602 host->ops = ap->ops;
5603
5604 if (ap->ops->port_stop)
5605 have_stop = 1;
5606 }
5607
5608 if (host->ops && host->ops->host_stop)
5609 have_stop = 1;
5610
5611 if (have_stop) {
5612 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5613 if (!start_dr)
5614 return -ENOMEM;
5615 }
5616
5617 for (i = 0; i < host->n_ports; i++) {
5618 struct ata_port *ap = host->ports[i];
5619
5620 if (ap->ops->port_start) {
5621 rc = ap->ops->port_start(ap);
5622 if (rc) {
5623 if (rc != -ENODEV)
5624 dev_err(host->dev,
5625 "failed to start port %d (errno=%d)\n",
5626 i, rc);
5627 goto err_out;
5628 }
5629 }
5630 ata_eh_freeze_port(ap);
5631 }
5632
5633 if (start_dr)
5634 devres_add(host->dev, start_dr);
5635 host->flags |= ATA_HOST_STARTED;
5636 return 0;
5637
5638 err_out:
5639 while (--i >= 0) {
5640 struct ata_port *ap = host->ports[i];
5641
5642 if (ap->ops->port_stop)
5643 ap->ops->port_stop(ap);
5644 }
5645 devres_free(start_dr);
5646 return rc;
5647 }
5648 EXPORT_SYMBOL_GPL(ata_host_start);
5649
5650 /**
5651 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5652 * @host: host to initialize
5653 * @dev: device host is attached to
5654 * @ops: port_ops
5655 *
5656 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5657 void ata_host_init(struct ata_host *host, struct device *dev,
5658 struct ata_port_operations *ops)
5659 {
5660 spin_lock_init(&host->lock);
5661 mutex_init(&host->eh_mutex);
5662 host->n_tags = ATA_MAX_QUEUE;
5663 host->dev = dev;
5664 host->ops = ops;
5665 kref_init(&host->kref);
5666 }
5667 EXPORT_SYMBOL_GPL(ata_host_init);
5668
__ata_port_probe(struct ata_port * ap)5669 void __ata_port_probe(struct ata_port *ap)
5670 {
5671 struct ata_eh_info *ehi = &ap->link.eh_info;
5672 unsigned long flags;
5673
5674 /* kick EH for boot probing */
5675 spin_lock_irqsave(ap->lock, flags);
5676
5677 ehi->probe_mask |= ATA_ALL_DEVICES;
5678 ehi->action |= ATA_EH_RESET;
5679 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5680
5681 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5682 ap->pflags |= ATA_PFLAG_LOADING;
5683 ata_port_schedule_eh(ap);
5684
5685 spin_unlock_irqrestore(ap->lock, flags);
5686 }
5687
ata_port_probe(struct ata_port * ap)5688 int ata_port_probe(struct ata_port *ap)
5689 {
5690 int rc = 0;
5691
5692 if (ap->ops->error_handler) {
5693 __ata_port_probe(ap);
5694 ata_port_wait_eh(ap);
5695 } else {
5696 rc = ata_bus_probe(ap);
5697 }
5698 return rc;
5699 }
5700
5701
async_port_probe(void * data,async_cookie_t cookie)5702 static void async_port_probe(void *data, async_cookie_t cookie)
5703 {
5704 struct ata_port *ap = data;
5705
5706 /*
5707 * If we're not allowed to scan this host in parallel,
5708 * we need to wait until all previous scans have completed
5709 * before going further.
5710 * Jeff Garzik says this is only within a controller, so we
5711 * don't need to wait for port 0, only for later ports.
5712 */
5713 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5714 async_synchronize_cookie(cookie);
5715
5716 (void)ata_port_probe(ap);
5717
5718 /* in order to keep device order, we need to synchronize at this point */
5719 async_synchronize_cookie(cookie);
5720
5721 ata_scsi_scan_host(ap, 1);
5722 }
5723
5724 /**
5725 * ata_host_register - register initialized ATA host
5726 * @host: ATA host to register
5727 * @sht: template for SCSI host
5728 *
5729 * Register initialized ATA host. @host is allocated using
5730 * ata_host_alloc() and fully initialized by LLD. This function
5731 * starts ports, registers @host with ATA and SCSI layers and
5732 * probe registered devices.
5733 *
5734 * LOCKING:
5735 * Inherited from calling layer (may sleep).
5736 *
5737 * RETURNS:
5738 * 0 on success, -errno otherwise.
5739 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)5740 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5741 {
5742 int i, rc;
5743
5744 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5745
5746 /* host must have been started */
5747 if (!(host->flags & ATA_HOST_STARTED)) {
5748 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5749 WARN_ON(1);
5750 return -EINVAL;
5751 }
5752
5753 /* Blow away unused ports. This happens when LLD can't
5754 * determine the exact number of ports to allocate at
5755 * allocation time.
5756 */
5757 for (i = host->n_ports; host->ports[i]; i++)
5758 kfree(host->ports[i]);
5759
5760 /* give ports names and add SCSI hosts */
5761 for (i = 0; i < host->n_ports; i++) {
5762 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5763 host->ports[i]->local_port_no = i + 1;
5764 }
5765
5766 /* Create associated sysfs transport objects */
5767 for (i = 0; i < host->n_ports; i++) {
5768 rc = ata_tport_add(host->dev,host->ports[i]);
5769 if (rc) {
5770 goto err_tadd;
5771 }
5772 }
5773
5774 rc = ata_scsi_add_hosts(host, sht);
5775 if (rc)
5776 goto err_tadd;
5777
5778 /* set cable, sata_spd_limit and report */
5779 for (i = 0; i < host->n_ports; i++) {
5780 struct ata_port *ap = host->ports[i];
5781 unsigned int xfer_mask;
5782
5783 /* set SATA cable type if still unset */
5784 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5785 ap->cbl = ATA_CBL_SATA;
5786
5787 /* init sata_spd_limit to the current value */
5788 sata_link_init_spd(&ap->link);
5789 if (ap->slave_link)
5790 sata_link_init_spd(ap->slave_link);
5791
5792 /* print per-port info to dmesg */
5793 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5794 ap->udma_mask);
5795
5796 if (!ata_port_is_dummy(ap)) {
5797 ata_port_info(ap, "%cATA max %s %s\n",
5798 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5799 ata_mode_string(xfer_mask),
5800 ap->link.eh_info.desc);
5801 ata_ehi_clear_desc(&ap->link.eh_info);
5802 } else
5803 ata_port_info(ap, "DUMMY\n");
5804 }
5805
5806 /* perform each probe asynchronously */
5807 for (i = 0; i < host->n_ports; i++) {
5808 struct ata_port *ap = host->ports[i];
5809 ap->cookie = async_schedule(async_port_probe, ap);
5810 }
5811
5812 return 0;
5813
5814 err_tadd:
5815 while (--i >= 0) {
5816 ata_tport_delete(host->ports[i]);
5817 }
5818 return rc;
5819
5820 }
5821 EXPORT_SYMBOL_GPL(ata_host_register);
5822
5823 /**
5824 * ata_host_activate - start host, request IRQ and register it
5825 * @host: target ATA host
5826 * @irq: IRQ to request
5827 * @irq_handler: irq_handler used when requesting IRQ
5828 * @irq_flags: irq_flags used when requesting IRQ
5829 * @sht: scsi_host_template to use when registering the host
5830 *
5831 * After allocating an ATA host and initializing it, most libata
5832 * LLDs perform three steps to activate the host - start host,
5833 * request IRQ and register it. This helper takes necessary
5834 * arguments and performs the three steps in one go.
5835 *
5836 * An invalid IRQ skips the IRQ registration and expects the host to
5837 * have set polling mode on the port. In this case, @irq_handler
5838 * should be NULL.
5839 *
5840 * LOCKING:
5841 * Inherited from calling layer (may sleep).
5842 *
5843 * RETURNS:
5844 * 0 on success, -errno otherwise.
5845 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)5846 int ata_host_activate(struct ata_host *host, int irq,
5847 irq_handler_t irq_handler, unsigned long irq_flags,
5848 struct scsi_host_template *sht)
5849 {
5850 int i, rc;
5851 char *irq_desc;
5852
5853 rc = ata_host_start(host);
5854 if (rc)
5855 return rc;
5856
5857 /* Special case for polling mode */
5858 if (!irq) {
5859 WARN_ON(irq_handler);
5860 return ata_host_register(host, sht);
5861 }
5862
5863 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5864 dev_driver_string(host->dev),
5865 dev_name(host->dev));
5866 if (!irq_desc)
5867 return -ENOMEM;
5868
5869 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5870 irq_desc, host);
5871 if (rc)
5872 return rc;
5873
5874 for (i = 0; i < host->n_ports; i++)
5875 ata_port_desc(host->ports[i], "irq %d", irq);
5876
5877 rc = ata_host_register(host, sht);
5878 /* if failed, just free the IRQ and leave ports alone */
5879 if (rc)
5880 devm_free_irq(host->dev, irq, host);
5881
5882 return rc;
5883 }
5884 EXPORT_SYMBOL_GPL(ata_host_activate);
5885
5886 /**
5887 * ata_port_detach - Detach ATA port in preparation of device removal
5888 * @ap: ATA port to be detached
5889 *
5890 * Detach all ATA devices and the associated SCSI devices of @ap;
5891 * then, remove the associated SCSI host. @ap is guaranteed to
5892 * be quiescent on return from this function.
5893 *
5894 * LOCKING:
5895 * Kernel thread context (may sleep).
5896 */
ata_port_detach(struct ata_port * ap)5897 static void ata_port_detach(struct ata_port *ap)
5898 {
5899 unsigned long flags;
5900 struct ata_link *link;
5901 struct ata_device *dev;
5902
5903 if (!ap->ops->error_handler)
5904 goto skip_eh;
5905
5906 /* tell EH we're leaving & flush EH */
5907 spin_lock_irqsave(ap->lock, flags);
5908 ap->pflags |= ATA_PFLAG_UNLOADING;
5909 ata_port_schedule_eh(ap);
5910 spin_unlock_irqrestore(ap->lock, flags);
5911
5912 /* wait till EH commits suicide */
5913 ata_port_wait_eh(ap);
5914
5915 /* it better be dead now */
5916 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5917
5918 cancel_delayed_work_sync(&ap->hotplug_task);
5919
5920 skip_eh:
5921 /* clean up zpodd on port removal */
5922 ata_for_each_link(link, ap, HOST_FIRST) {
5923 ata_for_each_dev(dev, link, ALL) {
5924 if (zpodd_dev_enabled(dev))
5925 zpodd_exit(dev);
5926 }
5927 }
5928 if (ap->pmp_link) {
5929 int i;
5930 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5931 ata_tlink_delete(&ap->pmp_link[i]);
5932 }
5933 /* remove the associated SCSI host */
5934 scsi_remove_host(ap->scsi_host);
5935 ata_tport_delete(ap);
5936 }
5937
5938 /**
5939 * ata_host_detach - Detach all ports of an ATA host
5940 * @host: Host to detach
5941 *
5942 * Detach all ports of @host.
5943 *
5944 * LOCKING:
5945 * Kernel thread context (may sleep).
5946 */
ata_host_detach(struct ata_host * host)5947 void ata_host_detach(struct ata_host *host)
5948 {
5949 int i;
5950
5951 for (i = 0; i < host->n_ports; i++) {
5952 /* Ensure ata_port probe has completed */
5953 async_synchronize_cookie(host->ports[i]->cookie + 1);
5954 ata_port_detach(host->ports[i]);
5955 }
5956
5957 /* the host is dead now, dissociate ACPI */
5958 ata_acpi_dissociate(host);
5959 }
5960 EXPORT_SYMBOL_GPL(ata_host_detach);
5961
5962 #ifdef CONFIG_PCI
5963
5964 /**
5965 * ata_pci_remove_one - PCI layer callback for device removal
5966 * @pdev: PCI device that was removed
5967 *
5968 * PCI layer indicates to libata via this hook that hot-unplug or
5969 * module unload event has occurred. Detach all ports. Resource
5970 * release is handled via devres.
5971 *
5972 * LOCKING:
5973 * Inherited from PCI layer (may sleep).
5974 */
ata_pci_remove_one(struct pci_dev * pdev)5975 void ata_pci_remove_one(struct pci_dev *pdev)
5976 {
5977 struct ata_host *host = pci_get_drvdata(pdev);
5978
5979 ata_host_detach(host);
5980 }
5981 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5982
ata_pci_shutdown_one(struct pci_dev * pdev)5983 void ata_pci_shutdown_one(struct pci_dev *pdev)
5984 {
5985 struct ata_host *host = pci_get_drvdata(pdev);
5986 int i;
5987
5988 for (i = 0; i < host->n_ports; i++) {
5989 struct ata_port *ap = host->ports[i];
5990
5991 ap->pflags |= ATA_PFLAG_FROZEN;
5992
5993 /* Disable port interrupts */
5994 if (ap->ops->freeze)
5995 ap->ops->freeze(ap);
5996
5997 /* Stop the port DMA engines */
5998 if (ap->ops->port_stop)
5999 ap->ops->port_stop(ap);
6000 }
6001 }
6002 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6003
6004 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6005 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6006 {
6007 unsigned long tmp = 0;
6008
6009 switch (bits->width) {
6010 case 1: {
6011 u8 tmp8 = 0;
6012 pci_read_config_byte(pdev, bits->reg, &tmp8);
6013 tmp = tmp8;
6014 break;
6015 }
6016 case 2: {
6017 u16 tmp16 = 0;
6018 pci_read_config_word(pdev, bits->reg, &tmp16);
6019 tmp = tmp16;
6020 break;
6021 }
6022 case 4: {
6023 u32 tmp32 = 0;
6024 pci_read_config_dword(pdev, bits->reg, &tmp32);
6025 tmp = tmp32;
6026 break;
6027 }
6028
6029 default:
6030 return -EINVAL;
6031 }
6032
6033 tmp &= bits->mask;
6034
6035 return (tmp == bits->val) ? 1 : 0;
6036 }
6037 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6038
6039 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6040 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6041 {
6042 pci_save_state(pdev);
6043 pci_disable_device(pdev);
6044
6045 if (mesg.event & PM_EVENT_SLEEP)
6046 pci_set_power_state(pdev, PCI_D3hot);
6047 }
6048 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6049
ata_pci_device_do_resume(struct pci_dev * pdev)6050 int ata_pci_device_do_resume(struct pci_dev *pdev)
6051 {
6052 int rc;
6053
6054 pci_set_power_state(pdev, PCI_D0);
6055 pci_restore_state(pdev);
6056
6057 rc = pcim_enable_device(pdev);
6058 if (rc) {
6059 dev_err(&pdev->dev,
6060 "failed to enable device after resume (%d)\n", rc);
6061 return rc;
6062 }
6063
6064 pci_set_master(pdev);
6065 return 0;
6066 }
6067 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6068
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6069 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6070 {
6071 struct ata_host *host = pci_get_drvdata(pdev);
6072
6073 ata_host_suspend(host, mesg);
6074
6075 ata_pci_device_do_suspend(pdev, mesg);
6076
6077 return 0;
6078 }
6079 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6080
ata_pci_device_resume(struct pci_dev * pdev)6081 int ata_pci_device_resume(struct pci_dev *pdev)
6082 {
6083 struct ata_host *host = pci_get_drvdata(pdev);
6084 int rc;
6085
6086 rc = ata_pci_device_do_resume(pdev);
6087 if (rc == 0)
6088 ata_host_resume(host);
6089 return rc;
6090 }
6091 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6092 #endif /* CONFIG_PM */
6093 #endif /* CONFIG_PCI */
6094
6095 /**
6096 * ata_platform_remove_one - Platform layer callback for device removal
6097 * @pdev: Platform device that was removed
6098 *
6099 * Platform layer indicates to libata via this hook that hot-unplug or
6100 * module unload event has occurred. Detach all ports. Resource
6101 * release is handled via devres.
6102 *
6103 * LOCKING:
6104 * Inherited from platform layer (may sleep).
6105 */
ata_platform_remove_one(struct platform_device * pdev)6106 int ata_platform_remove_one(struct platform_device *pdev)
6107 {
6108 struct ata_host *host = platform_get_drvdata(pdev);
6109
6110 ata_host_detach(host);
6111
6112 return 0;
6113 }
6114 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6115
6116 #ifdef CONFIG_ATA_FORCE
6117
6118 #define force_cbl(name, flag) \
6119 { #name, .cbl = (flag) }
6120
6121 #define force_spd_limit(spd, val) \
6122 { #spd, .spd_limit = (val) }
6123
6124 #define force_xfer(mode, shift) \
6125 { #mode, .xfer_mask = (1UL << (shift)) }
6126
6127 #define force_lflag_on(name, flags) \
6128 { #name, .lflags_on = (flags) }
6129
6130 #define force_lflag_onoff(name, flags) \
6131 { "no" #name, .lflags_on = (flags) }, \
6132 { #name, .lflags_off = (flags) }
6133
6134 #define force_horkage_on(name, flag) \
6135 { #name, .horkage_on = (flag) }
6136
6137 #define force_horkage_onoff(name, flag) \
6138 { "no" #name, .horkage_on = (flag) }, \
6139 { #name, .horkage_off = (flag) }
6140
6141 static const struct ata_force_param force_tbl[] __initconst = {
6142 force_cbl(40c, ATA_CBL_PATA40),
6143 force_cbl(80c, ATA_CBL_PATA80),
6144 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6145 force_cbl(unk, ATA_CBL_PATA_UNK),
6146 force_cbl(ign, ATA_CBL_PATA_IGN),
6147 force_cbl(sata, ATA_CBL_SATA),
6148
6149 force_spd_limit(1.5Gbps, 1),
6150 force_spd_limit(3.0Gbps, 2),
6151
6152 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6153 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6154 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6155 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6156 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6157 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6158 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6159 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6160 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6161 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6162 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6163 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6164 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6165 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6166 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6167 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6168 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6169 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6170 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6171 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6172 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6173 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6174 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6175 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6176 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6177 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6178 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6179 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6180 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6181 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6182 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6183 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6184 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6185 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6186
6187 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6188 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6189 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6190 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6191 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6192
6193 force_horkage_onoff(ncq, ATA_HORKAGE_NONCQ),
6194 force_horkage_onoff(ncqtrim, ATA_HORKAGE_NO_NCQ_TRIM),
6195 force_horkage_onoff(ncqati, ATA_HORKAGE_NO_NCQ_ON_ATI),
6196
6197 force_horkage_onoff(trim, ATA_HORKAGE_NOTRIM),
6198 force_horkage_on(trim_zero, ATA_HORKAGE_ZERO_AFTER_TRIM),
6199 force_horkage_on(max_trim_128m, ATA_HORKAGE_MAX_TRIM_128M),
6200
6201 force_horkage_onoff(dma, ATA_HORKAGE_NODMA),
6202 force_horkage_on(atapi_dmadir, ATA_HORKAGE_ATAPI_DMADIR),
6203 force_horkage_on(atapi_mod16_dma, ATA_HORKAGE_ATAPI_MOD16_DMA),
6204
6205 force_horkage_onoff(dmalog, ATA_HORKAGE_NO_DMA_LOG),
6206 force_horkage_onoff(iddevlog, ATA_HORKAGE_NO_ID_DEV_LOG),
6207 force_horkage_onoff(logdir, ATA_HORKAGE_NO_LOG_DIR),
6208
6209 force_horkage_on(max_sec_128, ATA_HORKAGE_MAX_SEC_128),
6210 force_horkage_on(max_sec_1024, ATA_HORKAGE_MAX_SEC_1024),
6211 force_horkage_on(max_sec_lba48, ATA_HORKAGE_MAX_SEC_LBA48),
6212
6213 force_horkage_onoff(lpm, ATA_HORKAGE_NOLPM),
6214 force_horkage_onoff(setxfer, ATA_HORKAGE_NOSETXFER),
6215 force_horkage_on(dump_id, ATA_HORKAGE_DUMP_ID),
6216
6217 force_horkage_on(disable, ATA_HORKAGE_DISABLE),
6218 };
6219
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6220 static int __init ata_parse_force_one(char **cur,
6221 struct ata_force_ent *force_ent,
6222 const char **reason)
6223 {
6224 char *start = *cur, *p = *cur;
6225 char *id, *val, *endp;
6226 const struct ata_force_param *match_fp = NULL;
6227 int nr_matches = 0, i;
6228
6229 /* find where this param ends and update *cur */
6230 while (*p != '\0' && *p != ',')
6231 p++;
6232
6233 if (*p == '\0')
6234 *cur = p;
6235 else
6236 *cur = p + 1;
6237
6238 *p = '\0';
6239
6240 /* parse */
6241 p = strchr(start, ':');
6242 if (!p) {
6243 val = strstrip(start);
6244 goto parse_val;
6245 }
6246 *p = '\0';
6247
6248 id = strstrip(start);
6249 val = strstrip(p + 1);
6250
6251 /* parse id */
6252 p = strchr(id, '.');
6253 if (p) {
6254 *p++ = '\0';
6255 force_ent->device = simple_strtoul(p, &endp, 10);
6256 if (p == endp || *endp != '\0') {
6257 *reason = "invalid device";
6258 return -EINVAL;
6259 }
6260 }
6261
6262 force_ent->port = simple_strtoul(id, &endp, 10);
6263 if (id == endp || *endp != '\0') {
6264 *reason = "invalid port/link";
6265 return -EINVAL;
6266 }
6267
6268 parse_val:
6269 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6270 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6271 const struct ata_force_param *fp = &force_tbl[i];
6272
6273 if (strncasecmp(val, fp->name, strlen(val)))
6274 continue;
6275
6276 nr_matches++;
6277 match_fp = fp;
6278
6279 if (strcasecmp(val, fp->name) == 0) {
6280 nr_matches = 1;
6281 break;
6282 }
6283 }
6284
6285 if (!nr_matches) {
6286 *reason = "unknown value";
6287 return -EINVAL;
6288 }
6289 if (nr_matches > 1) {
6290 *reason = "ambiguous value";
6291 return -EINVAL;
6292 }
6293
6294 force_ent->param = *match_fp;
6295
6296 return 0;
6297 }
6298
ata_parse_force_param(void)6299 static void __init ata_parse_force_param(void)
6300 {
6301 int idx = 0, size = 1;
6302 int last_port = -1, last_device = -1;
6303 char *p, *cur, *next;
6304
6305 /* Calculate maximum number of params and allocate ata_force_tbl */
6306 for (p = ata_force_param_buf; *p; p++)
6307 if (*p == ',')
6308 size++;
6309
6310 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6311 if (!ata_force_tbl) {
6312 printk(KERN_WARNING "ata: failed to extend force table, "
6313 "libata.force ignored\n");
6314 return;
6315 }
6316
6317 /* parse and populate the table */
6318 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6319 const char *reason = "";
6320 struct ata_force_ent te = { .port = -1, .device = -1 };
6321
6322 next = cur;
6323 if (ata_parse_force_one(&next, &te, &reason)) {
6324 printk(KERN_WARNING "ata: failed to parse force "
6325 "parameter \"%s\" (%s)\n",
6326 cur, reason);
6327 continue;
6328 }
6329
6330 if (te.port == -1) {
6331 te.port = last_port;
6332 te.device = last_device;
6333 }
6334
6335 ata_force_tbl[idx++] = te;
6336
6337 last_port = te.port;
6338 last_device = te.device;
6339 }
6340
6341 ata_force_tbl_size = idx;
6342 }
6343
ata_free_force_param(void)6344 static void ata_free_force_param(void)
6345 {
6346 kfree(ata_force_tbl);
6347 }
6348 #else
ata_parse_force_param(void)6349 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6350 static inline void ata_free_force_param(void) { }
6351 #endif
6352
ata_init(void)6353 static int __init ata_init(void)
6354 {
6355 int rc;
6356
6357 ata_parse_force_param();
6358
6359 rc = ata_sff_init();
6360 if (rc) {
6361 ata_free_force_param();
6362 return rc;
6363 }
6364
6365 libata_transport_init();
6366 ata_scsi_transport_template = ata_attach_transport();
6367 if (!ata_scsi_transport_template) {
6368 ata_sff_exit();
6369 rc = -ENOMEM;
6370 goto err_out;
6371 }
6372
6373 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6374 return 0;
6375
6376 err_out:
6377 return rc;
6378 }
6379
ata_exit(void)6380 static void __exit ata_exit(void)
6381 {
6382 ata_release_transport(ata_scsi_transport_template);
6383 libata_transport_exit();
6384 ata_sff_exit();
6385 ata_free_force_param();
6386 }
6387
6388 subsys_initcall(ata_init);
6389 module_exit(ata_exit);
6390
6391 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6392
ata_ratelimit(void)6393 int ata_ratelimit(void)
6394 {
6395 return __ratelimit(&ratelimit);
6396 }
6397 EXPORT_SYMBOL_GPL(ata_ratelimit);
6398
6399 /**
6400 * ata_msleep - ATA EH owner aware msleep
6401 * @ap: ATA port to attribute the sleep to
6402 * @msecs: duration to sleep in milliseconds
6403 *
6404 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6405 * ownership is released before going to sleep and reacquired
6406 * after the sleep is complete. IOW, other ports sharing the
6407 * @ap->host will be allowed to own the EH while this task is
6408 * sleeping.
6409 *
6410 * LOCKING:
6411 * Might sleep.
6412 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6413 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6414 {
6415 bool owns_eh = ap && ap->host->eh_owner == current;
6416
6417 if (owns_eh)
6418 ata_eh_release(ap);
6419
6420 if (msecs < 20) {
6421 unsigned long usecs = msecs * USEC_PER_MSEC;
6422 usleep_range(usecs, usecs + 50);
6423 } else {
6424 msleep(msecs);
6425 }
6426
6427 if (owns_eh)
6428 ata_eh_acquire(ap);
6429 }
6430 EXPORT_SYMBOL_GPL(ata_msleep);
6431
6432 /**
6433 * ata_wait_register - wait until register value changes
6434 * @ap: ATA port to wait register for, can be NULL
6435 * @reg: IO-mapped register
6436 * @mask: Mask to apply to read register value
6437 * @val: Wait condition
6438 * @interval: polling interval in milliseconds
6439 * @timeout: timeout in milliseconds
6440 *
6441 * Waiting for some bits of register to change is a common
6442 * operation for ATA controllers. This function reads 32bit LE
6443 * IO-mapped register @reg and tests for the following condition.
6444 *
6445 * (*@reg & mask) != val
6446 *
6447 * If the condition is met, it returns; otherwise, the process is
6448 * repeated after @interval_msec until timeout.
6449 *
6450 * LOCKING:
6451 * Kernel thread context (may sleep)
6452 *
6453 * RETURNS:
6454 * The final register value.
6455 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6456 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6457 unsigned long interval, unsigned long timeout)
6458 {
6459 unsigned long deadline;
6460 u32 tmp;
6461
6462 tmp = ioread32(reg);
6463
6464 /* Calculate timeout _after_ the first read to make sure
6465 * preceding writes reach the controller before starting to
6466 * eat away the timeout.
6467 */
6468 deadline = ata_deadline(jiffies, timeout);
6469
6470 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6471 ata_msleep(ap, interval);
6472 tmp = ioread32(reg);
6473 }
6474
6475 return tmp;
6476 }
6477 EXPORT_SYMBOL_GPL(ata_wait_register);
6478
6479 /*
6480 * Dummy port_ops
6481 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6482 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6483 {
6484 return AC_ERR_SYSTEM;
6485 }
6486
ata_dummy_error_handler(struct ata_port * ap)6487 static void ata_dummy_error_handler(struct ata_port *ap)
6488 {
6489 /* truly dummy */
6490 }
6491
6492 struct ata_port_operations ata_dummy_port_ops = {
6493 .qc_prep = ata_noop_qc_prep,
6494 .qc_issue = ata_dummy_qc_issue,
6495 .error_handler = ata_dummy_error_handler,
6496 .sched_eh = ata_std_sched_eh,
6497 .end_eh = ata_std_end_eh,
6498 };
6499 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6500
6501 const struct ata_port_info ata_dummy_port_info = {
6502 .port_ops = &ata_dummy_port_ops,
6503 };
6504 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6505
ata_print_version(const struct device * dev,const char * version)6506 void ata_print_version(const struct device *dev, const char *version)
6507 {
6508 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6509 }
6510 EXPORT_SYMBOL(ata_print_version);
6511
6512 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6513 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6514 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6515 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6516 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6517