1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! A contiguous growable array type with heap-allocated contents, written
4 //! `Vec<T>`.
5 //!
6 //! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7 //! *O*(1) pop (from the end).
8 //!
9 //! Vectors ensure they never allocate more than `isize::MAX` bytes.
10 //!
11 //! # Examples
12 //!
13 //! You can explicitly create a [`Vec`] with [`Vec::new`]:
14 //!
15 //! ```
16 //! let v: Vec<i32> = Vec::new();
17 //! ```
18 //!
19 //! ...or by using the [`vec!`] macro:
20 //!
21 //! ```
22 //! let v: Vec<i32> = vec![];
23 //!
24 //! let v = vec![1, 2, 3, 4, 5];
25 //!
26 //! let v = vec![0; 10]; // ten zeroes
27 //! ```
28 //!
29 //! You can [`push`] values onto the end of a vector (which will grow the vector
30 //! as needed):
31 //!
32 //! ```
33 //! let mut v = vec![1, 2];
34 //!
35 //! v.push(3);
36 //! ```
37 //!
38 //! Popping values works in much the same way:
39 //!
40 //! ```
41 //! let mut v = vec![1, 2];
42 //!
43 //! let two = v.pop();
44 //! ```
45 //!
46 //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47 //!
48 //! ```
49 //! let mut v = vec![1, 2, 3];
50 //! let three = v[2];
51 //! v[1] = v[1] + 5;
52 //! ```
53 //!
54 //! [`push`]: Vec::push
55 
56 #![stable(feature = "rust1", since = "1.0.0")]
57 
58 #[cfg(not(no_global_oom_handling))]
59 use core::cmp;
60 use core::cmp::Ordering;
61 use core::fmt;
62 use core::hash::{Hash, Hasher};
63 use core::iter;
64 use core::marker::PhantomData;
65 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
66 use core::ops::{self, Index, IndexMut, Range, RangeBounds};
67 use core::ptr::{self, NonNull};
68 use core::slice::{self, SliceIndex};
69 
70 use crate::alloc::{Allocator, Global};
71 #[cfg(not(no_borrow))]
72 use crate::borrow::{Cow, ToOwned};
73 use crate::boxed::Box;
74 use crate::collections::{TryReserveError, TryReserveErrorKind};
75 use crate::raw_vec::RawVec;
76 
77 #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
78 pub use self::extract_if::ExtractIf;
79 
80 mod extract_if;
81 
82 #[cfg(not(no_global_oom_handling))]
83 #[stable(feature = "vec_splice", since = "1.21.0")]
84 pub use self::splice::Splice;
85 
86 #[cfg(not(no_global_oom_handling))]
87 mod splice;
88 
89 #[stable(feature = "drain", since = "1.6.0")]
90 pub use self::drain::Drain;
91 
92 mod drain;
93 
94 #[cfg(not(no_borrow))]
95 #[cfg(not(no_global_oom_handling))]
96 mod cow;
97 
98 #[cfg(not(no_global_oom_handling))]
99 pub(crate) use self::in_place_collect::AsVecIntoIter;
100 #[stable(feature = "rust1", since = "1.0.0")]
101 pub use self::into_iter::IntoIter;
102 
103 mod into_iter;
104 
105 #[cfg(not(no_global_oom_handling))]
106 use self::is_zero::IsZero;
107 
108 mod is_zero;
109 
110 #[cfg(not(no_global_oom_handling))]
111 mod in_place_collect;
112 
113 mod partial_eq;
114 
115 #[cfg(not(no_global_oom_handling))]
116 use self::spec_from_elem::SpecFromElem;
117 
118 #[cfg(not(no_global_oom_handling))]
119 mod spec_from_elem;
120 
121 use self::set_len_on_drop::SetLenOnDrop;
122 
123 mod set_len_on_drop;
124 
125 #[cfg(not(no_global_oom_handling))]
126 use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
127 
128 #[cfg(not(no_global_oom_handling))]
129 mod in_place_drop;
130 
131 #[cfg(not(no_global_oom_handling))]
132 use self::spec_from_iter_nested::SpecFromIterNested;
133 
134 #[cfg(not(no_global_oom_handling))]
135 mod spec_from_iter_nested;
136 
137 #[cfg(not(no_global_oom_handling))]
138 use self::spec_from_iter::SpecFromIter;
139 
140 #[cfg(not(no_global_oom_handling))]
141 mod spec_from_iter;
142 
143 #[cfg(not(no_global_oom_handling))]
144 use self::spec_extend::SpecExtend;
145 
146 use self::spec_extend::TrySpecExtend;
147 
148 mod spec_extend;
149 
150 /// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
151 ///
152 /// # Examples
153 ///
154 /// ```
155 /// let mut vec = Vec::new();
156 /// vec.push(1);
157 /// vec.push(2);
158 ///
159 /// assert_eq!(vec.len(), 2);
160 /// assert_eq!(vec[0], 1);
161 ///
162 /// assert_eq!(vec.pop(), Some(2));
163 /// assert_eq!(vec.len(), 1);
164 ///
165 /// vec[0] = 7;
166 /// assert_eq!(vec[0], 7);
167 ///
168 /// vec.extend([1, 2, 3]);
169 ///
170 /// for x in &vec {
171 ///     println!("{x}");
172 /// }
173 /// assert_eq!(vec, [7, 1, 2, 3]);
174 /// ```
175 ///
176 /// The [`vec!`] macro is provided for convenient initialization:
177 ///
178 /// ```
179 /// let mut vec1 = vec![1, 2, 3];
180 /// vec1.push(4);
181 /// let vec2 = Vec::from([1, 2, 3, 4]);
182 /// assert_eq!(vec1, vec2);
183 /// ```
184 ///
185 /// It can also initialize each element of a `Vec<T>` with a given value.
186 /// This may be more efficient than performing allocation and initialization
187 /// in separate steps, especially when initializing a vector of zeros:
188 ///
189 /// ```
190 /// let vec = vec![0; 5];
191 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
192 ///
193 /// // The following is equivalent, but potentially slower:
194 /// let mut vec = Vec::with_capacity(5);
195 /// vec.resize(5, 0);
196 /// assert_eq!(vec, [0, 0, 0, 0, 0]);
197 /// ```
198 ///
199 /// For more information, see
200 /// [Capacity and Reallocation](#capacity-and-reallocation).
201 ///
202 /// Use a `Vec<T>` as an efficient stack:
203 ///
204 /// ```
205 /// let mut stack = Vec::new();
206 ///
207 /// stack.push(1);
208 /// stack.push(2);
209 /// stack.push(3);
210 ///
211 /// while let Some(top) = stack.pop() {
212 ///     // Prints 3, 2, 1
213 ///     println!("{top}");
214 /// }
215 /// ```
216 ///
217 /// # Indexing
218 ///
219 /// The `Vec` type allows access to values by index, because it implements the
220 /// [`Index`] trait. An example will be more explicit:
221 ///
222 /// ```
223 /// let v = vec![0, 2, 4, 6];
224 /// println!("{}", v[1]); // it will display '2'
225 /// ```
226 ///
227 /// However be careful: if you try to access an index which isn't in the `Vec`,
228 /// your software will panic! You cannot do this:
229 ///
230 /// ```should_panic
231 /// let v = vec![0, 2, 4, 6];
232 /// println!("{}", v[6]); // it will panic!
233 /// ```
234 ///
235 /// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236 /// the `Vec`.
237 ///
238 /// # Slicing
239 ///
240 /// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241 /// To get a [slice][prim@slice], use [`&`]. Example:
242 ///
243 /// ```
244 /// fn read_slice(slice: &[usize]) {
245 ///     // ...
246 /// }
247 ///
248 /// let v = vec![0, 1];
249 /// read_slice(&v);
250 ///
251 /// // ... and that's all!
252 /// // you can also do it like this:
253 /// let u: &[usize] = &v;
254 /// // or like this:
255 /// let u: &[_] = &v;
256 /// ```
257 ///
258 /// In Rust, it's more common to pass slices as arguments rather than vectors
259 /// when you just want to provide read access. The same goes for [`String`] and
260 /// [`&str`].
261 ///
262 /// # Capacity and reallocation
263 ///
264 /// The capacity of a vector is the amount of space allocated for any future
265 /// elements that will be added onto the vector. This is not to be confused with
266 /// the *length* of a vector, which specifies the number of actual elements
267 /// within the vector. If a vector's length exceeds its capacity, its capacity
268 /// will automatically be increased, but its elements will have to be
269 /// reallocated.
270 ///
271 /// For example, a vector with capacity 10 and length 0 would be an empty vector
272 /// with space for 10 more elements. Pushing 10 or fewer elements onto the
273 /// vector will not change its capacity or cause reallocation to occur. However,
274 /// if the vector's length is increased to 11, it will have to reallocate, which
275 /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
276 /// whenever possible to specify how big the vector is expected to get.
277 ///
278 /// # Guarantees
279 ///
280 /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
281 /// about its design. This ensures that it's as low-overhead as possible in
282 /// the general case, and can be correctly manipulated in primitive ways
283 /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
284 /// If additional type parameters are added (e.g., to support custom allocators),
285 /// overriding their defaults may change the behavior.
286 ///
287 /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
288 /// triplet. No more, no less. The order of these fields is completely
289 /// unspecified, and you should use the appropriate methods to modify these.
290 /// The pointer will never be null, so this type is null-pointer-optimized.
291 ///
292 /// However, the pointer might not actually point to allocated memory. In particular,
293 /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294 /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
295 /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296 /// types inside a `Vec`, it will not allocate space for them. *Note that in this case
297 /// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
298 /// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
299 /// details are very subtle --- if you intend to allocate memory using a `Vec`
300 /// and use it for something else (either to pass to unsafe code, or to build your
301 /// own memory-backed collection), be sure to deallocate this memory by using
302 /// `from_raw_parts` to recover the `Vec` and then dropping it.
303 ///
304 /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
305 /// (as defined by the allocator Rust is configured to use by default), and its
306 /// pointer points to [`len`] initialized, contiguous elements in order (what
307 /// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
308 /// logically uninitialized, contiguous elements.
309 ///
310 /// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311 /// visualized as below. The top part is the `Vec` struct, it contains a
312 /// pointer to the head of the allocation in the heap, length and capacity.
313 /// The bottom part is the allocation on the heap, a contiguous memory block.
314 ///
315 /// ```text
316 ///             ptr      len  capacity
317 ///        +--------+--------+--------+
318 ///        | 0x0123 |      2 |      4 |
319 ///        +--------+--------+--------+
320 ///             |
321 ///             v
322 /// Heap   +--------+--------+--------+--------+
323 ///        |    'a' |    'b' | uninit | uninit |
324 ///        +--------+--------+--------+--------+
325 /// ```
326 ///
327 /// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328 /// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329 ///   layout (including the order of fields).
330 ///
331 /// `Vec` will never perform a "small optimization" where elements are actually
332 /// stored on the stack for two reasons:
333 ///
334 /// * It would make it more difficult for unsafe code to correctly manipulate
335 ///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336 ///   only moved, and it would be more difficult to determine if a `Vec` had
337 ///   actually allocated memory.
338 ///
339 /// * It would penalize the general case, incurring an additional branch
340 ///   on every access.
341 ///
342 /// `Vec` will never automatically shrink itself, even if completely empty. This
343 /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
344 /// and then filling it back up to the same [`len`] should incur no calls to
345 /// the allocator. If you wish to free up unused memory, use
346 /// [`shrink_to_fit`] or [`shrink_to`].
347 ///
348 /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349 /// sufficient. [`push`] and [`insert`] *will* (re)allocate if
350 /// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
351 /// accurate, and can be relied on. It can even be used to manually free the memory
352 /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353 /// when not necessary.
354 ///
355 /// `Vec` does not guarantee any particular growth strategy when reallocating
356 /// when full, nor when [`reserve`] is called. The current strategy is basic
357 /// and it may prove desirable to use a non-constant growth factor. Whatever
358 /// strategy is used will of course guarantee *O*(1) amortized [`push`].
359 ///
360 /// `vec![x; n]`, `vec![a, b, c, d]`, and
361 /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
362 /// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
363 /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364 /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
365 ///
366 /// `Vec` will not specifically overwrite any data that is removed from it,
367 /// but also won't specifically preserve it. Its uninitialized memory is
368 /// scratch space that it may use however it wants. It will generally just do
369 /// whatever is most efficient or otherwise easy to implement. Do not rely on
370 /// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371 /// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
372 /// first, that might not actually happen because the optimizer does not consider
373 /// this a side-effect that must be preserved. There is one case which we will
374 /// not break, however: using `unsafe` code to write to the excess capacity,
375 /// and then increasing the length to match, is always valid.
376 ///
377 /// Currently, `Vec` does not guarantee the order in which elements are dropped.
378 /// The order has changed in the past and may change again.
379 ///
380 /// [`get`]: slice::get
381 /// [`get_mut`]: slice::get_mut
382 /// [`String`]: crate::string::String
383 /// [`&str`]: type@str
384 /// [`shrink_to_fit`]: Vec::shrink_to_fit
385 /// [`shrink_to`]: Vec::shrink_to
386 /// [capacity]: Vec::capacity
387 /// [`capacity`]: Vec::capacity
388 /// [mem::size_of::\<T>]: core::mem::size_of
389 /// [len]: Vec::len
390 /// [`len`]: Vec::len
391 /// [`push`]: Vec::push
392 /// [`insert`]: Vec::insert
393 /// [`reserve`]: Vec::reserve
394 /// [`MaybeUninit`]: core::mem::MaybeUninit
395 /// [owned slice]: Box
396 #[stable(feature = "rust1", since = "1.0.0")]
397 #[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
398 #[rustc_insignificant_dtor]
399 pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
400     buf: RawVec<T, A>,
401     len: usize,
402 }
403 
404 ////////////////////////////////////////////////////////////////////////////////
405 // Inherent methods
406 ////////////////////////////////////////////////////////////////////////////////
407 
408 impl<T> Vec<T> {
409     /// Constructs a new, empty `Vec<T>`.
410     ///
411     /// The vector will not allocate until elements are pushed onto it.
412     ///
413     /// # Examples
414     ///
415     /// ```
416     /// # #![allow(unused_mut)]
417     /// let mut vec: Vec<i32> = Vec::new();
418     /// ```
419     #[inline]
420     #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
421     #[stable(feature = "rust1", since = "1.0.0")]
422     #[must_use]
new() -> Self423     pub const fn new() -> Self {
424         Vec { buf: RawVec::NEW, len: 0 }
425     }
426 
427     /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
428     ///
429     /// The vector will be able to hold at least `capacity` elements without
430     /// reallocating. This method is allowed to allocate for more elements than
431     /// `capacity`. If `capacity` is 0, the vector will not allocate.
432     ///
433     /// It is important to note that although the returned vector has the
434     /// minimum *capacity* specified, the vector will have a zero *length*. For
435     /// an explanation of the difference between length and capacity, see
436     /// *[Capacity and reallocation]*.
437     ///
438     /// If it is important to know the exact allocated capacity of a `Vec`,
439     /// always use the [`capacity`] method after construction.
440     ///
441     /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
442     /// and the capacity will always be `usize::MAX`.
443     ///
444     /// [Capacity and reallocation]: #capacity-and-reallocation
445     /// [`capacity`]: Vec::capacity
446     ///
447     /// # Panics
448     ///
449     /// Panics if the new capacity exceeds `isize::MAX` bytes.
450     ///
451     /// # Examples
452     ///
453     /// ```
454     /// let mut vec = Vec::with_capacity(10);
455     ///
456     /// // The vector contains no items, even though it has capacity for more
457     /// assert_eq!(vec.len(), 0);
458     /// assert!(vec.capacity() >= 10);
459     ///
460     /// // These are all done without reallocating...
461     /// for i in 0..10 {
462     ///     vec.push(i);
463     /// }
464     /// assert_eq!(vec.len(), 10);
465     /// assert!(vec.capacity() >= 10);
466     ///
467     /// // ...but this may make the vector reallocate
468     /// vec.push(11);
469     /// assert_eq!(vec.len(), 11);
470     /// assert!(vec.capacity() >= 11);
471     ///
472     /// // A vector of a zero-sized type will always over-allocate, since no
473     /// // allocation is necessary
474     /// let vec_units = Vec::<()>::with_capacity(10);
475     /// assert_eq!(vec_units.capacity(), usize::MAX);
476     /// ```
477     #[cfg(not(no_global_oom_handling))]
478     #[inline]
479     #[stable(feature = "rust1", since = "1.0.0")]
480     #[must_use]
with_capacity(capacity: usize) -> Self481     pub fn with_capacity(capacity: usize) -> Self {
482         Self::with_capacity_in(capacity, Global)
483     }
484 
485     /// Tries to construct a new, empty `Vec<T>` with at least the specified capacity.
486     ///
487     /// The vector will be able to hold at least `capacity` elements without
488     /// reallocating. This method is allowed to allocate for more elements than
489     /// `capacity`. If `capacity` is 0, the vector will not allocate.
490     ///
491     /// It is important to note that although the returned vector has the
492     /// minimum *capacity* specified, the vector will have a zero *length*. For
493     /// an explanation of the difference between length and capacity, see
494     /// *[Capacity and reallocation]*.
495     ///
496     /// If it is important to know the exact allocated capacity of a `Vec`,
497     /// always use the [`capacity`] method after construction.
498     ///
499     /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
500     /// and the capacity will always be `usize::MAX`.
501     ///
502     /// [Capacity and reallocation]: #capacity-and-reallocation
503     /// [`capacity`]: Vec::capacity
504     ///
505     /// # Examples
506     ///
507     /// ```
508     /// let mut vec = Vec::try_with_capacity(10).unwrap();
509     ///
510     /// // The vector contains no items, even though it has capacity for more
511     /// assert_eq!(vec.len(), 0);
512     /// assert!(vec.capacity() >= 10);
513     ///
514     /// // These are all done without reallocating...
515     /// for i in 0..10 {
516     ///     vec.push(i);
517     /// }
518     /// assert_eq!(vec.len(), 10);
519     /// assert!(vec.capacity() >= 10);
520     ///
521     /// // ...but this may make the vector reallocate
522     /// vec.push(11);
523     /// assert_eq!(vec.len(), 11);
524     /// assert!(vec.capacity() >= 11);
525     ///
526     /// let mut result = Vec::try_with_capacity(usize::MAX);
527     /// assert!(result.is_err());
528     ///
529     /// // A vector of a zero-sized type will always over-allocate, since no
530     /// // allocation is necessary
531     /// let vec_units = Vec::<()>::try_with_capacity(10).unwrap();
532     /// assert_eq!(vec_units.capacity(), usize::MAX);
533     /// ```
534     #[inline]
535     #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity(capacity: usize) -> Result<Self, TryReserveError>536     pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537         Self::try_with_capacity_in(capacity, Global)
538     }
539 
540     /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
541     ///
542     /// # Safety
543     ///
544     /// This is highly unsafe, due to the number of invariants that aren't
545     /// checked:
546     ///
547     /// * `ptr` must have been allocated using the global allocator, such as via
548     ///   the [`alloc::alloc`] function.
549     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
550     ///   (`T` having a less strict alignment is not sufficient, the alignment really
551     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
552     ///   allocated and deallocated with the same layout.)
553     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
554     ///   to be the same size as the pointer was allocated with. (Because similar to
555     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
556     /// * `length` needs to be less than or equal to `capacity`.
557     /// * The first `length` values must be properly initialized values of type `T`.
558     /// * `capacity` needs to be the capacity that the pointer was allocated with.
559     /// * The allocated size in bytes must be no larger than `isize::MAX`.
560     ///   See the safety documentation of [`pointer::offset`].
561     ///
562     /// These requirements are always upheld by any `ptr` that has been allocated
563     /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
564     /// upheld.
565     ///
566     /// Violating these may cause problems like corrupting the allocator's
567     /// internal data structures. For example it is normally **not** safe
568     /// to build a `Vec<u8>` from a pointer to a C `char` array with length
569     /// `size_t`, doing so is only safe if the array was initially allocated by
570     /// a `Vec` or `String`.
571     /// It's also not safe to build one from a `Vec<u16>` and its length, because
572     /// the allocator cares about the alignment, and these two types have different
573     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
574     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
575     /// these issues, it is often preferable to do casting/transmuting using
576     /// [`slice::from_raw_parts`] instead.
577     ///
578     /// The ownership of `ptr` is effectively transferred to the
579     /// `Vec<T>` which may then deallocate, reallocate or change the
580     /// contents of memory pointed to by the pointer at will. Ensure
581     /// that nothing else uses the pointer after calling this
582     /// function.
583     ///
584     /// [`String`]: crate::string::String
585     /// [`alloc::alloc`]: crate::alloc::alloc
586     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
587     ///
588     /// # Examples
589     ///
590     /// ```
591     /// use std::ptr;
592     /// use std::mem;
593     ///
594     /// let v = vec![1, 2, 3];
595     ///
596     // FIXME Update this when vec_into_raw_parts is stabilized
597     /// // Prevent running `v`'s destructor so we are in complete control
598     /// // of the allocation.
599     /// let mut v = mem::ManuallyDrop::new(v);
600     ///
601     /// // Pull out the various important pieces of information about `v`
602     /// let p = v.as_mut_ptr();
603     /// let len = v.len();
604     /// let cap = v.capacity();
605     ///
606     /// unsafe {
607     ///     // Overwrite memory with 4, 5, 6
608     ///     for i in 0..len {
609     ///         ptr::write(p.add(i), 4 + i);
610     ///     }
611     ///
612     ///     // Put everything back together into a Vec
613     ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
614     ///     assert_eq!(rebuilt, [4, 5, 6]);
615     /// }
616     /// ```
617     ///
618     /// Using memory that was allocated elsewhere:
619     ///
620     /// ```rust
621     /// use std::alloc::{alloc, Layout};
622     ///
623     /// fn main() {
624     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
625     ///
626     ///     let vec = unsafe {
627     ///         let mem = alloc(layout).cast::<u32>();
628     ///         if mem.is_null() {
629     ///             return;
630     ///         }
631     ///
632     ///         mem.write(1_000_000);
633     ///
634     ///         Vec::from_raw_parts(mem, 1, 16)
635     ///     };
636     ///
637     ///     assert_eq!(vec, &[1_000_000]);
638     ///     assert_eq!(vec.capacity(), 16);
639     /// }
640     /// ```
641     #[inline]
642     #[stable(feature = "rust1", since = "1.0.0")]
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self643     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
644         unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
645     }
646 }
647 
648 impl<T, A: Allocator> Vec<T, A> {
649     /// Constructs a new, empty `Vec<T, A>`.
650     ///
651     /// The vector will not allocate until elements are pushed onto it.
652     ///
653     /// # Examples
654     ///
655     /// ```
656     /// #![feature(allocator_api)]
657     ///
658     /// use std::alloc::System;
659     ///
660     /// # #[allow(unused_mut)]
661     /// let mut vec: Vec<i32, _> = Vec::new_in(System);
662     /// ```
663     #[inline]
664     #[unstable(feature = "allocator_api", issue = "32838")]
new_in(alloc: A) -> Self665     pub const fn new_in(alloc: A) -> Self {
666         Vec { buf: RawVec::new_in(alloc), len: 0 }
667     }
668 
669     /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
670     /// with the provided allocator.
671     ///
672     /// The vector will be able to hold at least `capacity` elements without
673     /// reallocating. This method is allowed to allocate for more elements than
674     /// `capacity`. If `capacity` is 0, the vector will not allocate.
675     ///
676     /// It is important to note that although the returned vector has the
677     /// minimum *capacity* specified, the vector will have a zero *length*. For
678     /// an explanation of the difference between length and capacity, see
679     /// *[Capacity and reallocation]*.
680     ///
681     /// If it is important to know the exact allocated capacity of a `Vec`,
682     /// always use the [`capacity`] method after construction.
683     ///
684     /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
685     /// and the capacity will always be `usize::MAX`.
686     ///
687     /// [Capacity and reallocation]: #capacity-and-reallocation
688     /// [`capacity`]: Vec::capacity
689     ///
690     /// # Panics
691     ///
692     /// Panics if the new capacity exceeds `isize::MAX` bytes.
693     ///
694     /// # Examples
695     ///
696     /// ```
697     /// #![feature(allocator_api)]
698     ///
699     /// use std::alloc::System;
700     ///
701     /// let mut vec = Vec::with_capacity_in(10, System);
702     ///
703     /// // The vector contains no items, even though it has capacity for more
704     /// assert_eq!(vec.len(), 0);
705     /// assert!(vec.capacity() >= 10);
706     ///
707     /// // These are all done without reallocating...
708     /// for i in 0..10 {
709     ///     vec.push(i);
710     /// }
711     /// assert_eq!(vec.len(), 10);
712     /// assert!(vec.capacity() >= 10);
713     ///
714     /// // ...but this may make the vector reallocate
715     /// vec.push(11);
716     /// assert_eq!(vec.len(), 11);
717     /// assert!(vec.capacity() >= 11);
718     ///
719     /// // A vector of a zero-sized type will always over-allocate, since no
720     /// // allocation is necessary
721     /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
722     /// assert_eq!(vec_units.capacity(), usize::MAX);
723     /// ```
724     #[cfg(not(no_global_oom_handling))]
725     #[inline]
726     #[unstable(feature = "allocator_api", issue = "32838")]
with_capacity_in(capacity: usize, alloc: A) -> Self727     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
728         Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
729     }
730 
731     /// Tries to construct a new, empty `Vec<T, A>` with at least the specified capacity
732     /// with the provided allocator.
733     ///
734     /// The vector will be able to hold at least `capacity` elements without
735     /// reallocating. This method is allowed to allocate for more elements than
736     /// `capacity`. If `capacity` is 0, the vector will not allocate.
737     ///
738     /// It is important to note that although the returned vector has the
739     /// minimum *capacity* specified, the vector will have a zero *length*. For
740     /// an explanation of the difference between length and capacity, see
741     /// *[Capacity and reallocation]*.
742     ///
743     /// If it is important to know the exact allocated capacity of a `Vec`,
744     /// always use the [`capacity`] method after construction.
745     ///
746     /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
747     /// and the capacity will always be `usize::MAX`.
748     ///
749     /// [Capacity and reallocation]: #capacity-and-reallocation
750     /// [`capacity`]: Vec::capacity
751     ///
752     /// # Examples
753     ///
754     /// ```
755     /// #![feature(allocator_api)]
756     ///
757     /// use std::alloc::System;
758     ///
759     /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
760     ///
761     /// // The vector contains no items, even though it has capacity for more
762     /// assert_eq!(vec.len(), 0);
763     /// assert!(vec.capacity() >= 10);
764     ///
765     /// // These are all done without reallocating...
766     /// for i in 0..10 {
767     ///     vec.push(i);
768     /// }
769     /// assert_eq!(vec.len(), 10);
770     /// assert!(vec.capacity() >= 10);
771     ///
772     /// // ...but this may make the vector reallocate
773     /// vec.push(11);
774     /// assert_eq!(vec.len(), 11);
775     /// assert!(vec.capacity() >= 11);
776     ///
777     /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
778     /// assert!(result.is_err());
779     ///
780     /// // A vector of a zero-sized type will always over-allocate, since no
781     /// // allocation is necessary
782     /// let vec_units = Vec::<(), System>::try_with_capacity_in(10, System).unwrap();
783     /// assert_eq!(vec_units.capacity(), usize::MAX);
784     /// ```
785     #[inline]
786     #[stable(feature = "kernel", since = "1.0.0")]
try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError>787     pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
788         Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
789     }
790 
791     /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
792     /// and an allocator.
793     ///
794     /// # Safety
795     ///
796     /// This is highly unsafe, due to the number of invariants that aren't
797     /// checked:
798     ///
799     /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
800     /// * `T` needs to have the same alignment as what `ptr` was allocated with.
801     ///   (`T` having a less strict alignment is not sufficient, the alignment really
802     ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
803     ///   allocated and deallocated with the same layout.)
804     /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
805     ///   to be the same size as the pointer was allocated with. (Because similar to
806     ///   alignment, [`dealloc`] must be called with the same layout `size`.)
807     /// * `length` needs to be less than or equal to `capacity`.
808     /// * The first `length` values must be properly initialized values of type `T`.
809     /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
810     /// * The allocated size in bytes must be no larger than `isize::MAX`.
811     ///   See the safety documentation of [`pointer::offset`].
812     ///
813     /// These requirements are always upheld by any `ptr` that has been allocated
814     /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
815     /// upheld.
816     ///
817     /// Violating these may cause problems like corrupting the allocator's
818     /// internal data structures. For example it is **not** safe
819     /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
820     /// It's also not safe to build one from a `Vec<u16>` and its length, because
821     /// the allocator cares about the alignment, and these two types have different
822     /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
823     /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
824     ///
825     /// The ownership of `ptr` is effectively transferred to the
826     /// `Vec<T>` which may then deallocate, reallocate or change the
827     /// contents of memory pointed to by the pointer at will. Ensure
828     /// that nothing else uses the pointer after calling this
829     /// function.
830     ///
831     /// [`String`]: crate::string::String
832     /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
833     /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
834     /// [*fit*]: crate::alloc::Allocator#memory-fitting
835     ///
836     /// # Examples
837     ///
838     /// ```
839     /// #![feature(allocator_api)]
840     ///
841     /// use std::alloc::System;
842     ///
843     /// use std::ptr;
844     /// use std::mem;
845     ///
846     /// let mut v = Vec::with_capacity_in(3, System);
847     /// v.push(1);
848     /// v.push(2);
849     /// v.push(3);
850     ///
851     // FIXME Update this when vec_into_raw_parts is stabilized
852     /// // Prevent running `v`'s destructor so we are in complete control
853     /// // of the allocation.
854     /// let mut v = mem::ManuallyDrop::new(v);
855     ///
856     /// // Pull out the various important pieces of information about `v`
857     /// let p = v.as_mut_ptr();
858     /// let len = v.len();
859     /// let cap = v.capacity();
860     /// let alloc = v.allocator();
861     ///
862     /// unsafe {
863     ///     // Overwrite memory with 4, 5, 6
864     ///     for i in 0..len {
865     ///         ptr::write(p.add(i), 4 + i);
866     ///     }
867     ///
868     ///     // Put everything back together into a Vec
869     ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
870     ///     assert_eq!(rebuilt, [4, 5, 6]);
871     /// }
872     /// ```
873     ///
874     /// Using memory that was allocated elsewhere:
875     ///
876     /// ```rust
877     /// #![feature(allocator_api)]
878     ///
879     /// use std::alloc::{AllocError, Allocator, Global, Layout};
880     ///
881     /// fn main() {
882     ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
883     ///
884     ///     let vec = unsafe {
885     ///         let mem = match Global.allocate(layout) {
886     ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
887     ///             Err(AllocError) => return,
888     ///         };
889     ///
890     ///         mem.write(1_000_000);
891     ///
892     ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
893     ///     };
894     ///
895     ///     assert_eq!(vec, &[1_000_000]);
896     ///     assert_eq!(vec.capacity(), 16);
897     /// }
898     /// ```
899     #[inline]
900     #[unstable(feature = "allocator_api", issue = "32838")]
from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self901     pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
902         unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
903     }
904 
905     /// Decomposes a `Vec<T>` into its raw components.
906     ///
907     /// Returns the raw pointer to the underlying data, the length of
908     /// the vector (in elements), and the allocated capacity of the
909     /// data (in elements). These are the same arguments in the same
910     /// order as the arguments to [`from_raw_parts`].
911     ///
912     /// After calling this function, the caller is responsible for the
913     /// memory previously managed by the `Vec`. The only way to do
914     /// this is to convert the raw pointer, length, and capacity back
915     /// into a `Vec` with the [`from_raw_parts`] function, allowing
916     /// the destructor to perform the cleanup.
917     ///
918     /// [`from_raw_parts`]: Vec::from_raw_parts
919     ///
920     /// # Examples
921     ///
922     /// ```
923     /// #![feature(vec_into_raw_parts)]
924     /// let v: Vec<i32> = vec![-1, 0, 1];
925     ///
926     /// let (ptr, len, cap) = v.into_raw_parts();
927     ///
928     /// let rebuilt = unsafe {
929     ///     // We can now make changes to the components, such as
930     ///     // transmuting the raw pointer to a compatible type.
931     ///     let ptr = ptr as *mut u32;
932     ///
933     ///     Vec::from_raw_parts(ptr, len, cap)
934     /// };
935     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
936     /// ```
937     #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts(self) -> (*mut T, usize, usize)938     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
939         let mut me = ManuallyDrop::new(self);
940         (me.as_mut_ptr(), me.len(), me.capacity())
941     }
942 
943     /// Decomposes a `Vec<T>` into its raw components.
944     ///
945     /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
946     /// the allocated capacity of the data (in elements), and the allocator. These are the same
947     /// arguments in the same order as the arguments to [`from_raw_parts_in`].
948     ///
949     /// After calling this function, the caller is responsible for the
950     /// memory previously managed by the `Vec`. The only way to do
951     /// this is to convert the raw pointer, length, and capacity back
952     /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
953     /// the destructor to perform the cleanup.
954     ///
955     /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
956     ///
957     /// # Examples
958     ///
959     /// ```
960     /// #![feature(allocator_api, vec_into_raw_parts)]
961     ///
962     /// use std::alloc::System;
963     ///
964     /// let mut v: Vec<i32, System> = Vec::new_in(System);
965     /// v.push(-1);
966     /// v.push(0);
967     /// v.push(1);
968     ///
969     /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
970     ///
971     /// let rebuilt = unsafe {
972     ///     // We can now make changes to the components, such as
973     ///     // transmuting the raw pointer to a compatible type.
974     ///     let ptr = ptr as *mut u32;
975     ///
976     ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
977     /// };
978     /// assert_eq!(rebuilt, [4294967295, 0, 1]);
979     /// ```
980     #[unstable(feature = "allocator_api", issue = "32838")]
981     // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A)982     pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
983         let mut me = ManuallyDrop::new(self);
984         let len = me.len();
985         let capacity = me.capacity();
986         let ptr = me.as_mut_ptr();
987         let alloc = unsafe { ptr::read(me.allocator()) };
988         (ptr, len, capacity, alloc)
989     }
990 
991     /// Returns the total number of elements the vector can hold without
992     /// reallocating.
993     ///
994     /// # Examples
995     ///
996     /// ```
997     /// let mut vec: Vec<i32> = Vec::with_capacity(10);
998     /// vec.push(42);
999     /// assert!(vec.capacity() >= 10);
1000     /// ```
1001     #[inline]
1002     #[stable(feature = "rust1", since = "1.0.0")]
capacity(&self) -> usize1003     pub fn capacity(&self) -> usize {
1004         self.buf.capacity()
1005     }
1006 
1007     /// Reserves capacity for at least `additional` more elements to be inserted
1008     /// in the given `Vec<T>`. The collection may reserve more space to
1009     /// speculatively avoid frequent reallocations. After calling `reserve`,
1010     /// capacity will be greater than or equal to `self.len() + additional`.
1011     /// Does nothing if capacity is already sufficient.
1012     ///
1013     /// # Panics
1014     ///
1015     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1016     ///
1017     /// # Examples
1018     ///
1019     /// ```
1020     /// let mut vec = vec![1];
1021     /// vec.reserve(10);
1022     /// assert!(vec.capacity() >= 11);
1023     /// ```
1024     #[cfg(not(no_global_oom_handling))]
1025     #[stable(feature = "rust1", since = "1.0.0")]
reserve(&mut self, additional: usize)1026     pub fn reserve(&mut self, additional: usize) {
1027         self.buf.reserve(self.len, additional);
1028     }
1029 
1030     /// Reserves the minimum capacity for at least `additional` more elements to
1031     /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1032     /// deliberately over-allocate to speculatively avoid frequent allocations.
1033     /// After calling `reserve_exact`, capacity will be greater than or equal to
1034     /// `self.len() + additional`. Does nothing if the capacity is already
1035     /// sufficient.
1036     ///
1037     /// Note that the allocator may give the collection more space than it
1038     /// requests. Therefore, capacity can not be relied upon to be precisely
1039     /// minimal. Prefer [`reserve`] if future insertions are expected.
1040     ///
1041     /// [`reserve`]: Vec::reserve
1042     ///
1043     /// # Panics
1044     ///
1045     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1046     ///
1047     /// # Examples
1048     ///
1049     /// ```
1050     /// let mut vec = vec![1];
1051     /// vec.reserve_exact(10);
1052     /// assert!(vec.capacity() >= 11);
1053     /// ```
1054     #[cfg(not(no_global_oom_handling))]
1055     #[stable(feature = "rust1", since = "1.0.0")]
reserve_exact(&mut self, additional: usize)1056     pub fn reserve_exact(&mut self, additional: usize) {
1057         self.buf.reserve_exact(self.len, additional);
1058     }
1059 
1060     /// Tries to reserve capacity for at least `additional` more elements to be inserted
1061     /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1062     /// frequent reallocations. After calling `try_reserve`, capacity will be
1063     /// greater than or equal to `self.len() + additional` if it returns
1064     /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1065     /// preserves the contents even if an error occurs.
1066     ///
1067     /// # Errors
1068     ///
1069     /// If the capacity overflows, or the allocator reports a failure, then an error
1070     /// is returned.
1071     ///
1072     /// # Examples
1073     ///
1074     /// ```
1075     /// use std::collections::TryReserveError;
1076     ///
1077     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1078     ///     let mut output = Vec::new();
1079     ///
1080     ///     // Pre-reserve the memory, exiting if we can't
1081     ///     output.try_reserve(data.len())?;
1082     ///
1083     ///     // Now we know this can't OOM in the middle of our complex work
1084     ///     output.extend(data.iter().map(|&val| {
1085     ///         val * 2 + 5 // very complicated
1086     ///     }));
1087     ///
1088     ///     Ok(output)
1089     /// }
1090     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1091     /// ```
1092     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>1093     pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1094         self.buf.try_reserve(self.len, additional)
1095     }
1096 
1097     /// Tries to reserve the minimum capacity for at least `additional`
1098     /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1099     /// this will not deliberately over-allocate to speculatively avoid frequent
1100     /// allocations. After calling `try_reserve_exact`, capacity will be greater
1101     /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1102     /// Does nothing if the capacity is already sufficient.
1103     ///
1104     /// Note that the allocator may give the collection more space than it
1105     /// requests. Therefore, capacity can not be relied upon to be precisely
1106     /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1107     ///
1108     /// [`try_reserve`]: Vec::try_reserve
1109     ///
1110     /// # Errors
1111     ///
1112     /// If the capacity overflows, or the allocator reports a failure, then an error
1113     /// is returned.
1114     ///
1115     /// # Examples
1116     ///
1117     /// ```
1118     /// use std::collections::TryReserveError;
1119     ///
1120     /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1121     ///     let mut output = Vec::new();
1122     ///
1123     ///     // Pre-reserve the memory, exiting if we can't
1124     ///     output.try_reserve_exact(data.len())?;
1125     ///
1126     ///     // Now we know this can't OOM in the middle of our complex work
1127     ///     output.extend(data.iter().map(|&val| {
1128     ///         val * 2 + 5 // very complicated
1129     ///     }));
1130     ///
1131     ///     Ok(output)
1132     /// }
1133     /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1134     /// ```
1135     #[stable(feature = "try_reserve", since = "1.57.0")]
try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError>1136     pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1137         self.buf.try_reserve_exact(self.len, additional)
1138     }
1139 
1140     /// Shrinks the capacity of the vector as much as possible.
1141     ///
1142     /// It will drop down as close as possible to the length but the allocator
1143     /// may still inform the vector that there is space for a few more elements.
1144     ///
1145     /// # Examples
1146     ///
1147     /// ```
1148     /// let mut vec = Vec::with_capacity(10);
1149     /// vec.extend([1, 2, 3]);
1150     /// assert!(vec.capacity() >= 10);
1151     /// vec.shrink_to_fit();
1152     /// assert!(vec.capacity() >= 3);
1153     /// ```
1154     #[cfg(not(no_global_oom_handling))]
1155     #[stable(feature = "rust1", since = "1.0.0")]
shrink_to_fit(&mut self)1156     pub fn shrink_to_fit(&mut self) {
1157         // The capacity is never less than the length, and there's nothing to do when
1158         // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1159         // by only calling it with a greater capacity.
1160         if self.capacity() > self.len {
1161             self.buf.shrink_to_fit(self.len);
1162         }
1163     }
1164 
1165     /// Shrinks the capacity of the vector with a lower bound.
1166     ///
1167     /// The capacity will remain at least as large as both the length
1168     /// and the supplied value.
1169     ///
1170     /// If the current capacity is less than the lower limit, this is a no-op.
1171     ///
1172     /// # Examples
1173     ///
1174     /// ```
1175     /// let mut vec = Vec::with_capacity(10);
1176     /// vec.extend([1, 2, 3]);
1177     /// assert!(vec.capacity() >= 10);
1178     /// vec.shrink_to(4);
1179     /// assert!(vec.capacity() >= 4);
1180     /// vec.shrink_to(0);
1181     /// assert!(vec.capacity() >= 3);
1182     /// ```
1183     #[cfg(not(no_global_oom_handling))]
1184     #[stable(feature = "shrink_to", since = "1.56.0")]
shrink_to(&mut self, min_capacity: usize)1185     pub fn shrink_to(&mut self, min_capacity: usize) {
1186         if self.capacity() > min_capacity {
1187             self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1188         }
1189     }
1190 
1191     /// Converts the vector into [`Box<[T]>`][owned slice].
1192     ///
1193     /// If the vector has excess capacity, its items will be moved into a
1194     /// newly-allocated buffer with exactly the right capacity.
1195     ///
1196     /// [owned slice]: Box
1197     ///
1198     /// # Examples
1199     ///
1200     /// ```
1201     /// let v = vec![1, 2, 3];
1202     ///
1203     /// let slice = v.into_boxed_slice();
1204     /// ```
1205     ///
1206     /// Any excess capacity is removed:
1207     ///
1208     /// ```
1209     /// let mut vec = Vec::with_capacity(10);
1210     /// vec.extend([1, 2, 3]);
1211     ///
1212     /// assert!(vec.capacity() >= 10);
1213     /// let slice = vec.into_boxed_slice();
1214     /// assert_eq!(slice.into_vec().capacity(), 3);
1215     /// ```
1216     #[cfg(not(no_global_oom_handling))]
1217     #[stable(feature = "rust1", since = "1.0.0")]
into_boxed_slice(mut self) -> Box<[T], A>1218     pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1219         unsafe {
1220             self.shrink_to_fit();
1221             let me = ManuallyDrop::new(self);
1222             let buf = ptr::read(&me.buf);
1223             let len = me.len();
1224             buf.into_box(len).assume_init()
1225         }
1226     }
1227 
1228     /// Shortens the vector, keeping the first `len` elements and dropping
1229     /// the rest.
1230     ///
1231     /// If `len` is greater than the vector's current length, this has no
1232     /// effect.
1233     ///
1234     /// The [`drain`] method can emulate `truncate`, but causes the excess
1235     /// elements to be returned instead of dropped.
1236     ///
1237     /// Note that this method has no effect on the allocated capacity
1238     /// of the vector.
1239     ///
1240     /// # Examples
1241     ///
1242     /// Truncating a five element vector to two elements:
1243     ///
1244     /// ```
1245     /// let mut vec = vec![1, 2, 3, 4, 5];
1246     /// vec.truncate(2);
1247     /// assert_eq!(vec, [1, 2]);
1248     /// ```
1249     ///
1250     /// No truncation occurs when `len` is greater than the vector's current
1251     /// length:
1252     ///
1253     /// ```
1254     /// let mut vec = vec![1, 2, 3];
1255     /// vec.truncate(8);
1256     /// assert_eq!(vec, [1, 2, 3]);
1257     /// ```
1258     ///
1259     /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1260     /// method.
1261     ///
1262     /// ```
1263     /// let mut vec = vec![1, 2, 3];
1264     /// vec.truncate(0);
1265     /// assert_eq!(vec, []);
1266     /// ```
1267     ///
1268     /// [`clear`]: Vec::clear
1269     /// [`drain`]: Vec::drain
1270     #[stable(feature = "rust1", since = "1.0.0")]
truncate(&mut self, len: usize)1271     pub fn truncate(&mut self, len: usize) {
1272         // This is safe because:
1273         //
1274         // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1275         //   case avoids creating an invalid slice, and
1276         // * the `len` of the vector is shrunk before calling `drop_in_place`,
1277         //   such that no value will be dropped twice in case `drop_in_place`
1278         //   were to panic once (if it panics twice, the program aborts).
1279         unsafe {
1280             // Note: It's intentional that this is `>` and not `>=`.
1281             //       Changing it to `>=` has negative performance
1282             //       implications in some cases. See #78884 for more.
1283             if len > self.len {
1284                 return;
1285             }
1286             let remaining_len = self.len - len;
1287             let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1288             self.len = len;
1289             ptr::drop_in_place(s);
1290         }
1291     }
1292 
1293     /// Extracts a slice containing the entire vector.
1294     ///
1295     /// Equivalent to `&s[..]`.
1296     ///
1297     /// # Examples
1298     ///
1299     /// ```
1300     /// use std::io::{self, Write};
1301     /// let buffer = vec![1, 2, 3, 5, 8];
1302     /// io::sink().write(buffer.as_slice()).unwrap();
1303     /// ```
1304     #[inline]
1305     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_slice(&self) -> &[T]1306     pub fn as_slice(&self) -> &[T] {
1307         self
1308     }
1309 
1310     /// Extracts a mutable slice of the entire vector.
1311     ///
1312     /// Equivalent to `&mut s[..]`.
1313     ///
1314     /// # Examples
1315     ///
1316     /// ```
1317     /// use std::io::{self, Read};
1318     /// let mut buffer = vec![0; 3];
1319     /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1320     /// ```
1321     #[inline]
1322     #[stable(feature = "vec_as_slice", since = "1.7.0")]
as_mut_slice(&mut self) -> &mut [T]1323     pub fn as_mut_slice(&mut self) -> &mut [T] {
1324         self
1325     }
1326 
1327     /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1328     /// valid for zero sized reads if the vector didn't allocate.
1329     ///
1330     /// The caller must ensure that the vector outlives the pointer this
1331     /// function returns, or else it will end up pointing to garbage.
1332     /// Modifying the vector may cause its buffer to be reallocated,
1333     /// which would also make any pointers to it invalid.
1334     ///
1335     /// The caller must also ensure that the memory the pointer (non-transitively) points to
1336     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1337     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1338     ///
1339     /// # Examples
1340     ///
1341     /// ```
1342     /// let x = vec![1, 2, 4];
1343     /// let x_ptr = x.as_ptr();
1344     ///
1345     /// unsafe {
1346     ///     for i in 0..x.len() {
1347     ///         assert_eq!(*x_ptr.add(i), 1 << i);
1348     ///     }
1349     /// }
1350     /// ```
1351     ///
1352     /// [`as_mut_ptr`]: Vec::as_mut_ptr
1353     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1354     #[inline]
as_ptr(&self) -> *const T1355     pub fn as_ptr(&self) -> *const T {
1356         // We shadow the slice method of the same name to avoid going through
1357         // `deref`, which creates an intermediate reference.
1358         self.buf.ptr()
1359     }
1360 
1361     /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1362     /// raw pointer valid for zero sized reads if the vector didn't allocate.
1363     ///
1364     /// The caller must ensure that the vector outlives the pointer this
1365     /// function returns, or else it will end up pointing to garbage.
1366     /// Modifying the vector may cause its buffer to be reallocated,
1367     /// which would also make any pointers to it invalid.
1368     ///
1369     /// # Examples
1370     ///
1371     /// ```
1372     /// // Allocate vector big enough for 4 elements.
1373     /// let size = 4;
1374     /// let mut x: Vec<i32> = Vec::with_capacity(size);
1375     /// let x_ptr = x.as_mut_ptr();
1376     ///
1377     /// // Initialize elements via raw pointer writes, then set length.
1378     /// unsafe {
1379     ///     for i in 0..size {
1380     ///         *x_ptr.add(i) = i as i32;
1381     ///     }
1382     ///     x.set_len(size);
1383     /// }
1384     /// assert_eq!(&*x, &[0, 1, 2, 3]);
1385     /// ```
1386     #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1387     #[inline]
as_mut_ptr(&mut self) -> *mut T1388     pub fn as_mut_ptr(&mut self) -> *mut T {
1389         // We shadow the slice method of the same name to avoid going through
1390         // `deref_mut`, which creates an intermediate reference.
1391         self.buf.ptr()
1392     }
1393 
1394     /// Returns a reference to the underlying allocator.
1395     #[unstable(feature = "allocator_api", issue = "32838")]
1396     #[inline]
allocator(&self) -> &A1397     pub fn allocator(&self) -> &A {
1398         self.buf.allocator()
1399     }
1400 
1401     /// Forces the length of the vector to `new_len`.
1402     ///
1403     /// This is a low-level operation that maintains none of the normal
1404     /// invariants of the type. Normally changing the length of a vector
1405     /// is done using one of the safe operations instead, such as
1406     /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1407     ///
1408     /// [`truncate`]: Vec::truncate
1409     /// [`resize`]: Vec::resize
1410     /// [`extend`]: Extend::extend
1411     /// [`clear`]: Vec::clear
1412     ///
1413     /// # Safety
1414     ///
1415     /// - `new_len` must be less than or equal to [`capacity()`].
1416     /// - The elements at `old_len..new_len` must be initialized.
1417     ///
1418     /// [`capacity()`]: Vec::capacity
1419     ///
1420     /// # Examples
1421     ///
1422     /// This method can be useful for situations in which the vector
1423     /// is serving as a buffer for other code, particularly over FFI:
1424     ///
1425     /// ```no_run
1426     /// # #![allow(dead_code)]
1427     /// # // This is just a minimal skeleton for the doc example;
1428     /// # // don't use this as a starting point for a real library.
1429     /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1430     /// # const Z_OK: i32 = 0;
1431     /// # extern "C" {
1432     /// #     fn deflateGetDictionary(
1433     /// #         strm: *mut std::ffi::c_void,
1434     /// #         dictionary: *mut u8,
1435     /// #         dictLength: *mut usize,
1436     /// #     ) -> i32;
1437     /// # }
1438     /// # impl StreamWrapper {
1439     /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1440     ///     // Per the FFI method's docs, "32768 bytes is always enough".
1441     ///     let mut dict = Vec::with_capacity(32_768);
1442     ///     let mut dict_length = 0;
1443     ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1444     ///     // 1. `dict_length` elements were initialized.
1445     ///     // 2. `dict_length` <= the capacity (32_768)
1446     ///     // which makes `set_len` safe to call.
1447     ///     unsafe {
1448     ///         // Make the FFI call...
1449     ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1450     ///         if r == Z_OK {
1451     ///             // ...and update the length to what was initialized.
1452     ///             dict.set_len(dict_length);
1453     ///             Some(dict)
1454     ///         } else {
1455     ///             None
1456     ///         }
1457     ///     }
1458     /// }
1459     /// # }
1460     /// ```
1461     ///
1462     /// While the following example is sound, there is a memory leak since
1463     /// the inner vectors were not freed prior to the `set_len` call:
1464     ///
1465     /// ```
1466     /// let mut vec = vec![vec![1, 0, 0],
1467     ///                    vec![0, 1, 0],
1468     ///                    vec![0, 0, 1]];
1469     /// // SAFETY:
1470     /// // 1. `old_len..0` is empty so no elements need to be initialized.
1471     /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1472     /// unsafe {
1473     ///     vec.set_len(0);
1474     /// }
1475     /// ```
1476     ///
1477     /// Normally, here, one would use [`clear`] instead to correctly drop
1478     /// the contents and thus not leak memory.
1479     #[inline]
1480     #[stable(feature = "rust1", since = "1.0.0")]
set_len(&mut self, new_len: usize)1481     pub unsafe fn set_len(&mut self, new_len: usize) {
1482         debug_assert!(new_len <= self.capacity());
1483 
1484         self.len = new_len;
1485     }
1486 
1487     /// Removes an element from the vector and returns it.
1488     ///
1489     /// The removed element is replaced by the last element of the vector.
1490     ///
1491     /// This does not preserve ordering, but is *O*(1).
1492     /// If you need to preserve the element order, use [`remove`] instead.
1493     ///
1494     /// [`remove`]: Vec::remove
1495     ///
1496     /// # Panics
1497     ///
1498     /// Panics if `index` is out of bounds.
1499     ///
1500     /// # Examples
1501     ///
1502     /// ```
1503     /// let mut v = vec!["foo", "bar", "baz", "qux"];
1504     ///
1505     /// assert_eq!(v.swap_remove(1), "bar");
1506     /// assert_eq!(v, ["foo", "qux", "baz"]);
1507     ///
1508     /// assert_eq!(v.swap_remove(0), "foo");
1509     /// assert_eq!(v, ["baz", "qux"]);
1510     /// ```
1511     #[inline]
1512     #[stable(feature = "rust1", since = "1.0.0")]
swap_remove(&mut self, index: usize) -> T1513     pub fn swap_remove(&mut self, index: usize) -> T {
1514         #[cold]
1515         #[inline(never)]
1516         fn assert_failed(index: usize, len: usize) -> ! {
1517             panic!("swap_remove index (is {index}) should be < len (is {len})");
1518         }
1519 
1520         let len = self.len();
1521         if index >= len {
1522             assert_failed(index, len);
1523         }
1524         unsafe {
1525             // We replace self[index] with the last element. Note that if the
1526             // bounds check above succeeds there must be a last element (which
1527             // can be self[index] itself).
1528             let value = ptr::read(self.as_ptr().add(index));
1529             let base_ptr = self.as_mut_ptr();
1530             ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1531             self.set_len(len - 1);
1532             value
1533         }
1534     }
1535 
1536     /// Inserts an element at position `index` within the vector, shifting all
1537     /// elements after it to the right.
1538     ///
1539     /// # Panics
1540     ///
1541     /// Panics if `index > len`.
1542     ///
1543     /// # Examples
1544     ///
1545     /// ```
1546     /// let mut vec = vec![1, 2, 3];
1547     /// vec.insert(1, 4);
1548     /// assert_eq!(vec, [1, 4, 2, 3]);
1549     /// vec.insert(4, 5);
1550     /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1551     /// ```
1552     #[cfg(not(no_global_oom_handling))]
1553     #[stable(feature = "rust1", since = "1.0.0")]
insert(&mut self, index: usize, element: T)1554     pub fn insert(&mut self, index: usize, element: T) {
1555         #[cold]
1556         #[inline(never)]
1557         fn assert_failed(index: usize, len: usize) -> ! {
1558             panic!("insertion index (is {index}) should be <= len (is {len})");
1559         }
1560 
1561         let len = self.len();
1562 
1563         // space for the new element
1564         if len == self.buf.capacity() {
1565             self.reserve(1);
1566         }
1567 
1568         unsafe {
1569             // infallible
1570             // The spot to put the new value
1571             {
1572                 let p = self.as_mut_ptr().add(index);
1573                 if index < len {
1574                     // Shift everything over to make space. (Duplicating the
1575                     // `index`th element into two consecutive places.)
1576                     ptr::copy(p, p.add(1), len - index);
1577                 } else if index == len {
1578                     // No elements need shifting.
1579                 } else {
1580                     assert_failed(index, len);
1581                 }
1582                 // Write it in, overwriting the first copy of the `index`th
1583                 // element.
1584                 ptr::write(p, element);
1585             }
1586             self.set_len(len + 1);
1587         }
1588     }
1589 
1590     /// Removes and returns the element at position `index` within the vector,
1591     /// shifting all elements after it to the left.
1592     ///
1593     /// Note: Because this shifts over the remaining elements, it has a
1594     /// worst-case performance of *O*(*n*). If you don't need the order of elements
1595     /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1596     /// elements from the beginning of the `Vec`, consider using
1597     /// [`VecDeque::pop_front`] instead.
1598     ///
1599     /// [`swap_remove`]: Vec::swap_remove
1600     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1601     ///
1602     /// # Panics
1603     ///
1604     /// Panics if `index` is out of bounds.
1605     ///
1606     /// # Examples
1607     ///
1608     /// ```
1609     /// let mut v = vec![1, 2, 3];
1610     /// assert_eq!(v.remove(1), 2);
1611     /// assert_eq!(v, [1, 3]);
1612     /// ```
1613     #[stable(feature = "rust1", since = "1.0.0")]
1614     #[track_caller]
remove(&mut self, index: usize) -> T1615     pub fn remove(&mut self, index: usize) -> T {
1616         #[cold]
1617         #[inline(never)]
1618         #[track_caller]
1619         fn assert_failed(index: usize, len: usize) -> ! {
1620             panic!("removal index (is {index}) should be < len (is {len})");
1621         }
1622 
1623         let len = self.len();
1624         if index >= len {
1625             assert_failed(index, len);
1626         }
1627         unsafe {
1628             // infallible
1629             let ret;
1630             {
1631                 // the place we are taking from.
1632                 let ptr = self.as_mut_ptr().add(index);
1633                 // copy it out, unsafely having a copy of the value on
1634                 // the stack and in the vector at the same time.
1635                 ret = ptr::read(ptr);
1636 
1637                 // Shift everything down to fill in that spot.
1638                 ptr::copy(ptr.add(1), ptr, len - index - 1);
1639             }
1640             self.set_len(len - 1);
1641             ret
1642         }
1643     }
1644 
1645     /// Retains only the elements specified by the predicate.
1646     ///
1647     /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1648     /// This method operates in place, visiting each element exactly once in the
1649     /// original order, and preserves the order of the retained elements.
1650     ///
1651     /// # Examples
1652     ///
1653     /// ```
1654     /// let mut vec = vec![1, 2, 3, 4];
1655     /// vec.retain(|&x| x % 2 == 0);
1656     /// assert_eq!(vec, [2, 4]);
1657     /// ```
1658     ///
1659     /// Because the elements are visited exactly once in the original order,
1660     /// external state may be used to decide which elements to keep.
1661     ///
1662     /// ```
1663     /// let mut vec = vec![1, 2, 3, 4, 5];
1664     /// let keep = [false, true, true, false, true];
1665     /// let mut iter = keep.iter();
1666     /// vec.retain(|_| *iter.next().unwrap());
1667     /// assert_eq!(vec, [2, 3, 5]);
1668     /// ```
1669     #[stable(feature = "rust1", since = "1.0.0")]
retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool,1670     pub fn retain<F>(&mut self, mut f: F)
1671     where
1672         F: FnMut(&T) -> bool,
1673     {
1674         self.retain_mut(|elem| f(elem));
1675     }
1676 
1677     /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1678     ///
1679     /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1680     /// This method operates in place, visiting each element exactly once in the
1681     /// original order, and preserves the order of the retained elements.
1682     ///
1683     /// # Examples
1684     ///
1685     /// ```
1686     /// let mut vec = vec![1, 2, 3, 4];
1687     /// vec.retain_mut(|x| if *x <= 3 {
1688     ///     *x += 1;
1689     ///     true
1690     /// } else {
1691     ///     false
1692     /// });
1693     /// assert_eq!(vec, [2, 3, 4]);
1694     /// ```
1695     #[stable(feature = "vec_retain_mut", since = "1.61.0")]
retain_mut<F>(&mut self, mut f: F) where F: FnMut(&mut T) -> bool,1696     pub fn retain_mut<F>(&mut self, mut f: F)
1697     where
1698         F: FnMut(&mut T) -> bool,
1699     {
1700         let original_len = self.len();
1701         // Avoid double drop if the drop guard is not executed,
1702         // since we may make some holes during the process.
1703         unsafe { self.set_len(0) };
1704 
1705         // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1706         //      |<-              processed len   ->| ^- next to check
1707         //                  |<-  deleted cnt     ->|
1708         //      |<-              original_len                          ->|
1709         // Kept: Elements which predicate returns true on.
1710         // Hole: Moved or dropped element slot.
1711         // Unchecked: Unchecked valid elements.
1712         //
1713         // This drop guard will be invoked when predicate or `drop` of element panicked.
1714         // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1715         // In cases when predicate and `drop` never panick, it will be optimized out.
1716         struct BackshiftOnDrop<'a, T, A: Allocator> {
1717             v: &'a mut Vec<T, A>,
1718             processed_len: usize,
1719             deleted_cnt: usize,
1720             original_len: usize,
1721         }
1722 
1723         impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1724             fn drop(&mut self) {
1725                 if self.deleted_cnt > 0 {
1726                     // SAFETY: Trailing unchecked items must be valid since we never touch them.
1727                     unsafe {
1728                         ptr::copy(
1729                             self.v.as_ptr().add(self.processed_len),
1730                             self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1731                             self.original_len - self.processed_len,
1732                         );
1733                     }
1734                 }
1735                 // SAFETY: After filling holes, all items are in contiguous memory.
1736                 unsafe {
1737                     self.v.set_len(self.original_len - self.deleted_cnt);
1738                 }
1739             }
1740         }
1741 
1742         let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1743 
1744         fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1745             original_len: usize,
1746             f: &mut F,
1747             g: &mut BackshiftOnDrop<'_, T, A>,
1748         ) where
1749             F: FnMut(&mut T) -> bool,
1750         {
1751             while g.processed_len != original_len {
1752                 // SAFETY: Unchecked element must be valid.
1753                 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1754                 if !f(cur) {
1755                     // Advance early to avoid double drop if `drop_in_place` panicked.
1756                     g.processed_len += 1;
1757                     g.deleted_cnt += 1;
1758                     // SAFETY: We never touch this element again after dropped.
1759                     unsafe { ptr::drop_in_place(cur) };
1760                     // We already advanced the counter.
1761                     if DELETED {
1762                         continue;
1763                     } else {
1764                         break;
1765                     }
1766                 }
1767                 if DELETED {
1768                     // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1769                     // We use copy for move, and never touch this element again.
1770                     unsafe {
1771                         let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1772                         ptr::copy_nonoverlapping(cur, hole_slot, 1);
1773                     }
1774                 }
1775                 g.processed_len += 1;
1776             }
1777         }
1778 
1779         // Stage 1: Nothing was deleted.
1780         process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1781 
1782         // Stage 2: Some elements were deleted.
1783         process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1784 
1785         // All item are processed. This can be optimized to `set_len` by LLVM.
1786         drop(g);
1787     }
1788 
1789     /// Removes all but the first of consecutive elements in the vector that resolve to the same
1790     /// key.
1791     ///
1792     /// If the vector is sorted, this removes all duplicates.
1793     ///
1794     /// # Examples
1795     ///
1796     /// ```
1797     /// let mut vec = vec![10, 20, 21, 30, 20];
1798     ///
1799     /// vec.dedup_by_key(|i| *i / 10);
1800     ///
1801     /// assert_eq!(vec, [10, 20, 30, 20]);
1802     /// ```
1803     #[stable(feature = "dedup_by", since = "1.16.0")]
1804     #[inline]
dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq,1805     pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1806     where
1807         F: FnMut(&mut T) -> K,
1808         K: PartialEq,
1809     {
1810         self.dedup_by(|a, b| key(a) == key(b))
1811     }
1812 
1813     /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1814     /// relation.
1815     ///
1816     /// The `same_bucket` function is passed references to two elements from the vector and
1817     /// must determine if the elements compare equal. The elements are passed in opposite order
1818     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1819     ///
1820     /// If the vector is sorted, this removes all duplicates.
1821     ///
1822     /// # Examples
1823     ///
1824     /// ```
1825     /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1826     ///
1827     /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1828     ///
1829     /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1830     /// ```
1831     #[stable(feature = "dedup_by", since = "1.16.0")]
dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool,1832     pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1833     where
1834         F: FnMut(&mut T, &mut T) -> bool,
1835     {
1836         let len = self.len();
1837         if len <= 1 {
1838             return;
1839         }
1840 
1841         /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1842         struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1843             /* Offset of the element we want to check if it is duplicate */
1844             read: usize,
1845 
1846             /* Offset of the place where we want to place the non-duplicate
1847              * when we find it. */
1848             write: usize,
1849 
1850             /* The Vec that would need correction if `same_bucket` panicked */
1851             vec: &'a mut Vec<T, A>,
1852         }
1853 
1854         impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1855             fn drop(&mut self) {
1856                 /* This code gets executed when `same_bucket` panics */
1857 
1858                 /* SAFETY: invariant guarantees that `read - write`
1859                  * and `len - read` never overflow and that the copy is always
1860                  * in-bounds. */
1861                 unsafe {
1862                     let ptr = self.vec.as_mut_ptr();
1863                     let len = self.vec.len();
1864 
1865                     /* How many items were left when `same_bucket` panicked.
1866                      * Basically vec[read..].len() */
1867                     let items_left = len.wrapping_sub(self.read);
1868 
1869                     /* Pointer to first item in vec[write..write+items_left] slice */
1870                     let dropped_ptr = ptr.add(self.write);
1871                     /* Pointer to first item in vec[read..] slice */
1872                     let valid_ptr = ptr.add(self.read);
1873 
1874                     /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1875                      * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1876                     ptr::copy(valid_ptr, dropped_ptr, items_left);
1877 
1878                     /* How many items have been already dropped
1879                      * Basically vec[read..write].len() */
1880                     let dropped = self.read.wrapping_sub(self.write);
1881 
1882                     self.vec.set_len(len - dropped);
1883                 }
1884             }
1885         }
1886 
1887         let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1888         let ptr = gap.vec.as_mut_ptr();
1889 
1890         /* Drop items while going through Vec, it should be more efficient than
1891          * doing slice partition_dedup + truncate */
1892 
1893         /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1894          * are always in-bounds and read_ptr never aliases prev_ptr */
1895         unsafe {
1896             while gap.read < len {
1897                 let read_ptr = ptr.add(gap.read);
1898                 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1899 
1900                 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1901                     // Increase `gap.read` now since the drop may panic.
1902                     gap.read += 1;
1903                     /* We have found duplicate, drop it in-place */
1904                     ptr::drop_in_place(read_ptr);
1905                 } else {
1906                     let write_ptr = ptr.add(gap.write);
1907 
1908                     /* Because `read_ptr` can be equal to `write_ptr`, we either
1909                      * have to use `copy` or conditional `copy_nonoverlapping`.
1910                      * Looks like the first option is faster. */
1911                     ptr::copy(read_ptr, write_ptr, 1);
1912 
1913                     /* We have filled that place, so go further */
1914                     gap.write += 1;
1915                     gap.read += 1;
1916                 }
1917             }
1918 
1919             /* Technically we could let `gap` clean up with its Drop, but
1920              * when `same_bucket` is guaranteed to not panic, this bloats a little
1921              * the codegen, so we just do it manually */
1922             gap.vec.set_len(gap.write);
1923             mem::forget(gap);
1924         }
1925     }
1926 
1927     /// Appends an element to the back of a collection.
1928     ///
1929     /// # Panics
1930     ///
1931     /// Panics if the new capacity exceeds `isize::MAX` bytes.
1932     ///
1933     /// # Examples
1934     ///
1935     /// ```
1936     /// let mut vec = vec![1, 2];
1937     /// vec.push(3);
1938     /// assert_eq!(vec, [1, 2, 3]);
1939     /// ```
1940     #[cfg(not(no_global_oom_handling))]
1941     #[inline]
1942     #[stable(feature = "rust1", since = "1.0.0")]
push(&mut self, value: T)1943     pub fn push(&mut self, value: T) {
1944         // This will panic or abort if we would allocate > isize::MAX bytes
1945         // or if the length increment would overflow for zero-sized types.
1946         if self.len == self.buf.capacity() {
1947             self.buf.reserve_for_push(self.len);
1948         }
1949         unsafe {
1950             let end = self.as_mut_ptr().add(self.len);
1951             ptr::write(end, value);
1952             self.len += 1;
1953         }
1954     }
1955 
1956     /// Tries to append an element to the back of a collection.
1957     ///
1958     /// # Examples
1959     ///
1960     /// ```
1961     /// let mut vec = vec![1, 2];
1962     /// vec.try_push(3).unwrap();
1963     /// assert_eq!(vec, [1, 2, 3]);
1964     /// ```
1965     #[inline]
1966     #[stable(feature = "kernel", since = "1.0.0")]
try_push(&mut self, value: T) -> Result<(), TryReserveError>1967     pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1968         if self.len == self.buf.capacity() {
1969             self.buf.try_reserve_for_push(self.len)?;
1970         }
1971         unsafe {
1972             let end = self.as_mut_ptr().add(self.len);
1973             ptr::write(end, value);
1974             self.len += 1;
1975         }
1976         Ok(())
1977     }
1978 
1979     /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1980     /// with the element.
1981     ///
1982     /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1983     /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1984     ///
1985     /// [`push`]: Vec::push
1986     /// [`reserve`]: Vec::reserve
1987     /// [`try_reserve`]: Vec::try_reserve
1988     ///
1989     /// # Examples
1990     ///
1991     /// A manual, panic-free alternative to [`FromIterator`]:
1992     ///
1993     /// ```
1994     /// #![feature(vec_push_within_capacity)]
1995     ///
1996     /// use std::collections::TryReserveError;
1997     /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1998     ///     let mut vec = Vec::new();
1999     ///     for value in iter {
2000     ///         if let Err(value) = vec.push_within_capacity(value) {
2001     ///             vec.try_reserve(1)?;
2002     ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2003     ///             let _ = vec.push_within_capacity(value);
2004     ///         }
2005     ///     }
2006     ///     Ok(vec)
2007     /// }
2008     /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2009     /// ```
2010     #[inline]
2011     #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
push_within_capacity(&mut self, value: T) -> Result<(), T>2012     pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2013         if self.len == self.buf.capacity() {
2014             return Err(value);
2015         }
2016         unsafe {
2017             let end = self.as_mut_ptr().add(self.len);
2018             ptr::write(end, value);
2019             self.len += 1;
2020         }
2021         Ok(())
2022     }
2023 
2024     /// Removes the last element from a vector and returns it, or [`None`] if it
2025     /// is empty.
2026     ///
2027     /// If you'd like to pop the first element, consider using
2028     /// [`VecDeque::pop_front`] instead.
2029     ///
2030     /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2031     ///
2032     /// # Examples
2033     ///
2034     /// ```
2035     /// let mut vec = vec![1, 2, 3];
2036     /// assert_eq!(vec.pop(), Some(3));
2037     /// assert_eq!(vec, [1, 2]);
2038     /// ```
2039     #[inline]
2040     #[stable(feature = "rust1", since = "1.0.0")]
pop(&mut self) -> Option<T>2041     pub fn pop(&mut self) -> Option<T> {
2042         if self.len == 0 {
2043             None
2044         } else {
2045             unsafe {
2046                 self.len -= 1;
2047                 Some(ptr::read(self.as_ptr().add(self.len())))
2048             }
2049         }
2050     }
2051 
2052     /// Moves all the elements of `other` into `self`, leaving `other` empty.
2053     ///
2054     /// # Panics
2055     ///
2056     /// Panics if the new capacity exceeds `isize::MAX` bytes.
2057     ///
2058     /// # Examples
2059     ///
2060     /// ```
2061     /// let mut vec = vec![1, 2, 3];
2062     /// let mut vec2 = vec![4, 5, 6];
2063     /// vec.append(&mut vec2);
2064     /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2065     /// assert_eq!(vec2, []);
2066     /// ```
2067     #[cfg(not(no_global_oom_handling))]
2068     #[inline]
2069     #[stable(feature = "append", since = "1.4.0")]
append(&mut self, other: &mut Self)2070     pub fn append(&mut self, other: &mut Self) {
2071         unsafe {
2072             self.append_elements(other.as_slice() as _);
2073             other.set_len(0);
2074         }
2075     }
2076 
2077     /// Appends elements to `self` from other buffer.
2078     #[cfg(not(no_global_oom_handling))]
2079     #[inline]
append_elements(&mut self, other: *const [T])2080     unsafe fn append_elements(&mut self, other: *const [T]) {
2081         let count = unsafe { (*other).len() };
2082         self.reserve(count);
2083         let len = self.len();
2084         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2085         self.len += count;
2086     }
2087 
2088     /// Tries to append elements to `self` from other buffer.
2089     #[inline]
try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError>2090     unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
2091         let count = unsafe { (*other).len() };
2092         self.try_reserve(count)?;
2093         let len = self.len();
2094         unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2095         self.len += count;
2096         Ok(())
2097     }
2098 
2099     /// Removes the specified range from the vector in bulk, returning all
2100     /// removed elements as an iterator. If the iterator is dropped before
2101     /// being fully consumed, it drops the remaining removed elements.
2102     ///
2103     /// The returned iterator keeps a mutable borrow on the vector to optimize
2104     /// its implementation.
2105     ///
2106     /// # Panics
2107     ///
2108     /// Panics if the starting point is greater than the end point or if
2109     /// the end point is greater than the length of the vector.
2110     ///
2111     /// # Leaking
2112     ///
2113     /// If the returned iterator goes out of scope without being dropped (due to
2114     /// [`mem::forget`], for example), the vector may have lost and leaked
2115     /// elements arbitrarily, including elements outside the range.
2116     ///
2117     /// # Examples
2118     ///
2119     /// ```
2120     /// let mut v = vec![1, 2, 3];
2121     /// let u: Vec<_> = v.drain(1..).collect();
2122     /// assert_eq!(v, &[1]);
2123     /// assert_eq!(u, &[2, 3]);
2124     ///
2125     /// // A full range clears the vector, like `clear()` does
2126     /// v.drain(..);
2127     /// assert_eq!(v, &[]);
2128     /// ```
2129     #[stable(feature = "drain", since = "1.6.0")]
drain<R>(&mut self, range: R) -> Drain<'_, T, A> where R: RangeBounds<usize>,2130     pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2131     where
2132         R: RangeBounds<usize>,
2133     {
2134         // Memory safety
2135         //
2136         // When the Drain is first created, it shortens the length of
2137         // the source vector to make sure no uninitialized or moved-from elements
2138         // are accessible at all if the Drain's destructor never gets to run.
2139         //
2140         // Drain will ptr::read out the values to remove.
2141         // When finished, remaining tail of the vec is copied back to cover
2142         // the hole, and the vector length is restored to the new length.
2143         //
2144         let len = self.len();
2145         let Range { start, end } = slice::range(range, ..len);
2146 
2147         unsafe {
2148             // set self.vec length's to start, to be safe in case Drain is leaked
2149             self.set_len(start);
2150             let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2151             Drain {
2152                 tail_start: end,
2153                 tail_len: len - end,
2154                 iter: range_slice.iter(),
2155                 vec: NonNull::from(self),
2156             }
2157         }
2158     }
2159 
2160     /// Clears the vector, removing all values.
2161     ///
2162     /// Note that this method has no effect on the allocated capacity
2163     /// of the vector.
2164     ///
2165     /// # Examples
2166     ///
2167     /// ```
2168     /// let mut v = vec![1, 2, 3];
2169     ///
2170     /// v.clear();
2171     ///
2172     /// assert!(v.is_empty());
2173     /// ```
2174     #[inline]
2175     #[stable(feature = "rust1", since = "1.0.0")]
clear(&mut self)2176     pub fn clear(&mut self) {
2177         let elems: *mut [T] = self.as_mut_slice();
2178 
2179         // SAFETY:
2180         // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2181         // - Setting `self.len` before calling `drop_in_place` means that,
2182         //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2183         //   do nothing (leaking the rest of the elements) instead of dropping
2184         //   some twice.
2185         unsafe {
2186             self.len = 0;
2187             ptr::drop_in_place(elems);
2188         }
2189     }
2190 
2191     /// Returns the number of elements in the vector, also referred to
2192     /// as its 'length'.
2193     ///
2194     /// # Examples
2195     ///
2196     /// ```
2197     /// let a = vec![1, 2, 3];
2198     /// assert_eq!(a.len(), 3);
2199     /// ```
2200     #[inline]
2201     #[stable(feature = "rust1", since = "1.0.0")]
len(&self) -> usize2202     pub fn len(&self) -> usize {
2203         self.len
2204     }
2205 
2206     /// Returns `true` if the vector contains no elements.
2207     ///
2208     /// # Examples
2209     ///
2210     /// ```
2211     /// let mut v = Vec::new();
2212     /// assert!(v.is_empty());
2213     ///
2214     /// v.push(1);
2215     /// assert!(!v.is_empty());
2216     /// ```
2217     #[stable(feature = "rust1", since = "1.0.0")]
is_empty(&self) -> bool2218     pub fn is_empty(&self) -> bool {
2219         self.len() == 0
2220     }
2221 
2222     /// Splits the collection into two at the given index.
2223     ///
2224     /// Returns a newly allocated vector containing the elements in the range
2225     /// `[at, len)`. After the call, the original vector will be left containing
2226     /// the elements `[0, at)` with its previous capacity unchanged.
2227     ///
2228     /// # Panics
2229     ///
2230     /// Panics if `at > len`.
2231     ///
2232     /// # Examples
2233     ///
2234     /// ```
2235     /// let mut vec = vec![1, 2, 3];
2236     /// let vec2 = vec.split_off(1);
2237     /// assert_eq!(vec, [1]);
2238     /// assert_eq!(vec2, [2, 3]);
2239     /// ```
2240     #[cfg(not(no_global_oom_handling))]
2241     #[inline]
2242     #[must_use = "use `.truncate()` if you don't need the other half"]
2243     #[stable(feature = "split_off", since = "1.4.0")]
split_off(&mut self, at: usize) -> Self where A: Clone,2244     pub fn split_off(&mut self, at: usize) -> Self
2245     where
2246         A: Clone,
2247     {
2248         #[cold]
2249         #[inline(never)]
2250         fn assert_failed(at: usize, len: usize) -> ! {
2251             panic!("`at` split index (is {at}) should be <= len (is {len})");
2252         }
2253 
2254         if at > self.len() {
2255             assert_failed(at, self.len());
2256         }
2257 
2258         if at == 0 {
2259             // the new vector can take over the original buffer and avoid the copy
2260             return mem::replace(
2261                 self,
2262                 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2263             );
2264         }
2265 
2266         let other_len = self.len - at;
2267         let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2268 
2269         // Unsafely `set_len` and copy items to `other`.
2270         unsafe {
2271             self.set_len(at);
2272             other.set_len(other_len);
2273 
2274             ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2275         }
2276         other
2277     }
2278 
2279     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2280     ///
2281     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2282     /// difference, with each additional slot filled with the result of
2283     /// calling the closure `f`. The return values from `f` will end up
2284     /// in the `Vec` in the order they have been generated.
2285     ///
2286     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2287     ///
2288     /// This method uses a closure to create new values on every push. If
2289     /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2290     /// want to use the [`Default`] trait to generate values, you can
2291     /// pass [`Default::default`] as the second argument.
2292     ///
2293     /// # Examples
2294     ///
2295     /// ```
2296     /// let mut vec = vec![1, 2, 3];
2297     /// vec.resize_with(5, Default::default);
2298     /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2299     ///
2300     /// let mut vec = vec![];
2301     /// let mut p = 1;
2302     /// vec.resize_with(4, || { p *= 2; p });
2303     /// assert_eq!(vec, [2, 4, 8, 16]);
2304     /// ```
2305     #[cfg(not(no_global_oom_handling))]
2306     #[stable(feature = "vec_resize_with", since = "1.33.0")]
resize_with<F>(&mut self, new_len: usize, f: F) where F: FnMut() -> T,2307     pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2308     where
2309         F: FnMut() -> T,
2310     {
2311         let len = self.len();
2312         if new_len > len {
2313             self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2314         } else {
2315             self.truncate(new_len);
2316         }
2317     }
2318 
2319     /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2320     /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2321     /// `'a`. If the type has only static references, or none at all, then this
2322     /// may be chosen to be `'static`.
2323     ///
2324     /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2325     /// so the leaked allocation may include unused capacity that is not part
2326     /// of the returned slice.
2327     ///
2328     /// This function is mainly useful for data that lives for the remainder of
2329     /// the program's life. Dropping the returned reference will cause a memory
2330     /// leak.
2331     ///
2332     /// # Examples
2333     ///
2334     /// Simple usage:
2335     ///
2336     /// ```
2337     /// let x = vec![1, 2, 3];
2338     /// let static_ref: &'static mut [usize] = x.leak();
2339     /// static_ref[0] += 1;
2340     /// assert_eq!(static_ref, &[2, 2, 3]);
2341     /// ```
2342     #[stable(feature = "vec_leak", since = "1.47.0")]
2343     #[inline]
leak<'a>(self) -> &'a mut [T] where A: 'a,2344     pub fn leak<'a>(self) -> &'a mut [T]
2345     where
2346         A: 'a,
2347     {
2348         let mut me = ManuallyDrop::new(self);
2349         unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2350     }
2351 
2352     /// Returns the remaining spare capacity of the vector as a slice of
2353     /// `MaybeUninit<T>`.
2354     ///
2355     /// The returned slice can be used to fill the vector with data (e.g. by
2356     /// reading from a file) before marking the data as initialized using the
2357     /// [`set_len`] method.
2358     ///
2359     /// [`set_len`]: Vec::set_len
2360     ///
2361     /// # Examples
2362     ///
2363     /// ```
2364     /// // Allocate vector big enough for 10 elements.
2365     /// let mut v = Vec::with_capacity(10);
2366     ///
2367     /// // Fill in the first 3 elements.
2368     /// let uninit = v.spare_capacity_mut();
2369     /// uninit[0].write(0);
2370     /// uninit[1].write(1);
2371     /// uninit[2].write(2);
2372     ///
2373     /// // Mark the first 3 elements of the vector as being initialized.
2374     /// unsafe {
2375     ///     v.set_len(3);
2376     /// }
2377     ///
2378     /// assert_eq!(&v, &[0, 1, 2]);
2379     /// ```
2380     #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2381     #[inline]
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]2382     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2383         // Note:
2384         // This method is not implemented in terms of `split_at_spare_mut`,
2385         // to prevent invalidation of pointers to the buffer.
2386         unsafe {
2387             slice::from_raw_parts_mut(
2388                 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2389                 self.buf.capacity() - self.len,
2390             )
2391         }
2392     }
2393 
2394     /// Returns vector content as a slice of `T`, along with the remaining spare
2395     /// capacity of the vector as a slice of `MaybeUninit<T>`.
2396     ///
2397     /// The returned spare capacity slice can be used to fill the vector with data
2398     /// (e.g. by reading from a file) before marking the data as initialized using
2399     /// the [`set_len`] method.
2400     ///
2401     /// [`set_len`]: Vec::set_len
2402     ///
2403     /// Note that this is a low-level API, which should be used with care for
2404     /// optimization purposes. If you need to append data to a `Vec`
2405     /// you can use [`push`], [`extend`], [`extend_from_slice`],
2406     /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2407     /// [`resize_with`], depending on your exact needs.
2408     ///
2409     /// [`push`]: Vec::push
2410     /// [`extend`]: Vec::extend
2411     /// [`extend_from_slice`]: Vec::extend_from_slice
2412     /// [`extend_from_within`]: Vec::extend_from_within
2413     /// [`insert`]: Vec::insert
2414     /// [`append`]: Vec::append
2415     /// [`resize`]: Vec::resize
2416     /// [`resize_with`]: Vec::resize_with
2417     ///
2418     /// # Examples
2419     ///
2420     /// ```
2421     /// #![feature(vec_split_at_spare)]
2422     ///
2423     /// let mut v = vec![1, 1, 2];
2424     ///
2425     /// // Reserve additional space big enough for 10 elements.
2426     /// v.reserve(10);
2427     ///
2428     /// let (init, uninit) = v.split_at_spare_mut();
2429     /// let sum = init.iter().copied().sum::<u32>();
2430     ///
2431     /// // Fill in the next 4 elements.
2432     /// uninit[0].write(sum);
2433     /// uninit[1].write(sum * 2);
2434     /// uninit[2].write(sum * 3);
2435     /// uninit[3].write(sum * 4);
2436     ///
2437     /// // Mark the 4 elements of the vector as being initialized.
2438     /// unsafe {
2439     ///     let len = v.len();
2440     ///     v.set_len(len + 4);
2441     /// }
2442     ///
2443     /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2444     /// ```
2445     #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2446     #[inline]
split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>])2447     pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2448         // SAFETY:
2449         // - len is ignored and so never changed
2450         let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2451         (init, spare)
2452     }
2453 
2454     /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2455     ///
2456     /// This method provides unique access to all vec parts at once in `extend_from_within`.
split_at_spare_mut_with_len( &mut self, ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize)2457     unsafe fn split_at_spare_mut_with_len(
2458         &mut self,
2459     ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2460         let ptr = self.as_mut_ptr();
2461         // SAFETY:
2462         // - `ptr` is guaranteed to be valid for `self.len` elements
2463         // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2464         // uninitialized
2465         let spare_ptr = unsafe { ptr.add(self.len) };
2466         let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2467         let spare_len = self.buf.capacity() - self.len;
2468 
2469         // SAFETY:
2470         // - `ptr` is guaranteed to be valid for `self.len` elements
2471         // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2472         unsafe {
2473             let initialized = slice::from_raw_parts_mut(ptr, self.len);
2474             let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2475 
2476             (initialized, spare, &mut self.len)
2477         }
2478     }
2479 }
2480 
2481 impl<T: Clone, A: Allocator> Vec<T, A> {
2482     /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2483     ///
2484     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2485     /// difference, with each additional slot filled with `value`.
2486     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2487     ///
2488     /// This method requires `T` to implement [`Clone`],
2489     /// in order to be able to clone the passed value.
2490     /// If you need more flexibility (or want to rely on [`Default`] instead of
2491     /// [`Clone`]), use [`Vec::resize_with`].
2492     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2493     ///
2494     /// # Examples
2495     ///
2496     /// ```
2497     /// let mut vec = vec!["hello"];
2498     /// vec.resize(3, "world");
2499     /// assert_eq!(vec, ["hello", "world", "world"]);
2500     ///
2501     /// let mut vec = vec![1, 2, 3, 4];
2502     /// vec.resize(2, 0);
2503     /// assert_eq!(vec, [1, 2]);
2504     /// ```
2505     #[cfg(not(no_global_oom_handling))]
2506     #[stable(feature = "vec_resize", since = "1.5.0")]
resize(&mut self, new_len: usize, value: T)2507     pub fn resize(&mut self, new_len: usize, value: T) {
2508         let len = self.len();
2509 
2510         if new_len > len {
2511             self.extend_with(new_len - len, value)
2512         } else {
2513             self.truncate(new_len);
2514         }
2515     }
2516 
2517     /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2518     ///
2519     /// If `new_len` is greater than `len`, the `Vec` is extended by the
2520     /// difference, with each additional slot filled with `value`.
2521     /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2522     ///
2523     /// This method requires `T` to implement [`Clone`],
2524     /// in order to be able to clone the passed value.
2525     /// If you need more flexibility (or want to rely on [`Default`] instead of
2526     /// [`Clone`]), use [`Vec::resize_with`].
2527     /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2528     ///
2529     /// # Examples
2530     ///
2531     /// ```
2532     /// let mut vec = vec!["hello"];
2533     /// vec.try_resize(3, "world").unwrap();
2534     /// assert_eq!(vec, ["hello", "world", "world"]);
2535     ///
2536     /// let mut vec = vec![1, 2, 3, 4];
2537     /// vec.try_resize(2, 0).unwrap();
2538     /// assert_eq!(vec, [1, 2]);
2539     ///
2540     /// let mut vec = vec![42];
2541     /// let result = vec.try_resize(usize::MAX, 0);
2542     /// assert!(result.is_err());
2543     /// ```
2544     #[stable(feature = "kernel", since = "1.0.0")]
try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError>2545     pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2546         let len = self.len();
2547 
2548         if new_len > len {
2549             self.try_extend_with(new_len - len, value)
2550         } else {
2551             self.truncate(new_len);
2552             Ok(())
2553         }
2554     }
2555 
2556     /// Clones and appends all elements in a slice to the `Vec`.
2557     ///
2558     /// Iterates over the slice `other`, clones each element, and then appends
2559     /// it to this `Vec`. The `other` slice is traversed in-order.
2560     ///
2561     /// Note that this function is same as [`extend`] except that it is
2562     /// specialized to work with slices instead. If and when Rust gets
2563     /// specialization this function will likely be deprecated (but still
2564     /// available).
2565     ///
2566     /// # Examples
2567     ///
2568     /// ```
2569     /// let mut vec = vec![1];
2570     /// vec.extend_from_slice(&[2, 3, 4]);
2571     /// assert_eq!(vec, [1, 2, 3, 4]);
2572     /// ```
2573     ///
2574     /// [`extend`]: Vec::extend
2575     #[cfg(not(no_global_oom_handling))]
2576     #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
extend_from_slice(&mut self, other: &[T])2577     pub fn extend_from_slice(&mut self, other: &[T]) {
2578         self.spec_extend(other.iter())
2579     }
2580 
2581     /// Tries to clone and append all elements in a slice to the `Vec`.
2582     ///
2583     /// Iterates over the slice `other`, clones each element, and then appends
2584     /// it to this `Vec`. The `other` slice is traversed in-order.
2585     ///
2586     /// Note that this function is same as [`extend`] except that it is
2587     /// specialized to work with slices instead. If and when Rust gets
2588     /// specialization this function will likely be deprecated (but still
2589     /// available).
2590     ///
2591     /// # Examples
2592     ///
2593     /// ```
2594     /// let mut vec = vec![1];
2595     /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2596     /// assert_eq!(vec, [1, 2, 3, 4]);
2597     /// ```
2598     ///
2599     /// [`extend`]: Vec::extend
2600     #[stable(feature = "kernel", since = "1.0.0")]
try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError>2601     pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2602         self.try_spec_extend(other.iter())
2603     }
2604 
2605     /// Copies elements from `src` range to the end of the vector.
2606     ///
2607     /// # Panics
2608     ///
2609     /// Panics if the starting point is greater than the end point or if
2610     /// the end point is greater than the length of the vector.
2611     ///
2612     /// # Examples
2613     ///
2614     /// ```
2615     /// let mut vec = vec![0, 1, 2, 3, 4];
2616     ///
2617     /// vec.extend_from_within(2..);
2618     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2619     ///
2620     /// vec.extend_from_within(..2);
2621     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2622     ///
2623     /// vec.extend_from_within(4..8);
2624     /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2625     /// ```
2626     #[cfg(not(no_global_oom_handling))]
2627     #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
extend_from_within<R>(&mut self, src: R) where R: RangeBounds<usize>,2628     pub fn extend_from_within<R>(&mut self, src: R)
2629     where
2630         R: RangeBounds<usize>,
2631     {
2632         let range = slice::range(src, ..self.len());
2633         self.reserve(range.len());
2634 
2635         // SAFETY:
2636         // - `slice::range` guarantees that the given range is valid for indexing self
2637         unsafe {
2638             self.spec_extend_from_within(range);
2639         }
2640     }
2641 }
2642 
2643 impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2644     /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2645     ///
2646     /// # Panics
2647     ///
2648     /// Panics if the length of the resulting vector would overflow a `usize`.
2649     ///
2650     /// This is only possible when flattening a vector of arrays of zero-sized
2651     /// types, and thus tends to be irrelevant in practice. If
2652     /// `size_of::<T>() > 0`, this will never panic.
2653     ///
2654     /// # Examples
2655     ///
2656     /// ```
2657     /// #![feature(slice_flatten)]
2658     ///
2659     /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2660     /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2661     ///
2662     /// let mut flattened = vec.into_flattened();
2663     /// assert_eq!(flattened.pop(), Some(6));
2664     /// ```
2665     #[unstable(feature = "slice_flatten", issue = "95629")]
into_flattened(self) -> Vec<T, A>2666     pub fn into_flattened(self) -> Vec<T, A> {
2667         let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2668         let (new_len, new_cap) = if T::IS_ZST {
2669             (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2670         } else {
2671             // SAFETY:
2672             // - `cap * N` cannot overflow because the allocation is already in
2673             // the address space.
2674             // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2675             // valid elements in the allocation.
2676             unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2677         };
2678         // SAFETY:
2679         // - `ptr` was allocated by `self`
2680         // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2681         // - `new_cap` refers to the same sized allocation as `cap` because
2682         // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2683         // - `len` <= `cap`, so `len * N` <= `cap * N`.
2684         unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2685     }
2686 }
2687 
2688 impl<T: Clone, A: Allocator> Vec<T, A> {
2689     #[cfg(not(no_global_oom_handling))]
2690     /// Extend the vector by `n` clones of value.
extend_with(&mut self, n: usize, value: T)2691     fn extend_with(&mut self, n: usize, value: T) {
2692         self.reserve(n);
2693 
2694         unsafe {
2695             let mut ptr = self.as_mut_ptr().add(self.len());
2696             // Use SetLenOnDrop to work around bug where compiler
2697             // might not realize the store through `ptr` through self.set_len()
2698             // don't alias.
2699             let mut local_len = SetLenOnDrop::new(&mut self.len);
2700 
2701             // Write all elements except the last one
2702             for _ in 1..n {
2703                 ptr::write(ptr, value.clone());
2704                 ptr = ptr.add(1);
2705                 // Increment the length in every step in case clone() panics
2706                 local_len.increment_len(1);
2707             }
2708 
2709             if n > 0 {
2710                 // We can write the last element directly without cloning needlessly
2711                 ptr::write(ptr, value);
2712                 local_len.increment_len(1);
2713             }
2714 
2715             // len set by scope guard
2716         }
2717     }
2718 
2719     /// Try to extend the vector by `n` clones of value.
try_extend_with(&mut self, n: usize, value: T) -> Result<(), TryReserveError>2720     fn try_extend_with(&mut self, n: usize, value: T) -> Result<(), TryReserveError> {
2721         self.try_reserve(n)?;
2722 
2723         unsafe {
2724             let mut ptr = self.as_mut_ptr().add(self.len());
2725             // Use SetLenOnDrop to work around bug where compiler
2726             // might not realize the store through `ptr` through self.set_len()
2727             // don't alias.
2728             let mut local_len = SetLenOnDrop::new(&mut self.len);
2729 
2730             // Write all elements except the last one
2731             for _ in 1..n {
2732                 ptr::write(ptr, value.clone());
2733                 ptr = ptr.add(1);
2734                 // Increment the length in every step in case clone() panics
2735                 local_len.increment_len(1);
2736             }
2737 
2738             if n > 0 {
2739                 // We can write the last element directly without cloning needlessly
2740                 ptr::write(ptr, value);
2741                 local_len.increment_len(1);
2742             }
2743 
2744             // len set by scope guard
2745             Ok(())
2746         }
2747     }
2748 }
2749 
2750 impl<T: PartialEq, A: Allocator> Vec<T, A> {
2751     /// Removes consecutive repeated elements in the vector according to the
2752     /// [`PartialEq`] trait implementation.
2753     ///
2754     /// If the vector is sorted, this removes all duplicates.
2755     ///
2756     /// # Examples
2757     ///
2758     /// ```
2759     /// let mut vec = vec![1, 2, 2, 3, 2];
2760     ///
2761     /// vec.dedup();
2762     ///
2763     /// assert_eq!(vec, [1, 2, 3, 2]);
2764     /// ```
2765     #[stable(feature = "rust1", since = "1.0.0")]
2766     #[inline]
dedup(&mut self)2767     pub fn dedup(&mut self) {
2768         self.dedup_by(|a, b| a == b)
2769     }
2770 }
2771 
2772 ////////////////////////////////////////////////////////////////////////////////
2773 // Internal methods and functions
2774 ////////////////////////////////////////////////////////////////////////////////
2775 
2776 #[doc(hidden)]
2777 #[cfg(not(no_global_oom_handling))]
2778 #[stable(feature = "rust1", since = "1.0.0")]
from_elem<T: Clone>(elem: T, n: usize) -> Vec<T>2779 pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2780     <T as SpecFromElem>::from_elem(elem, n, Global)
2781 }
2782 
2783 #[doc(hidden)]
2784 #[cfg(not(no_global_oom_handling))]
2785 #[unstable(feature = "allocator_api", issue = "32838")]
from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A>2786 pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2787     <T as SpecFromElem>::from_elem(elem, n, alloc)
2788 }
2789 
2790 trait ExtendFromWithinSpec {
2791     /// # Safety
2792     ///
2793     /// - `src` needs to be valid index
2794     /// - `self.capacity() - self.len()` must be `>= src.len()`
spec_extend_from_within(&mut self, src: Range<usize>)2795     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2796 }
2797 
2798 impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2799     default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2800         // SAFETY:
2801         // - len is increased only after initializing elements
2802         let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2803 
2804         // SAFETY:
2805         // - caller guarantees that src is a valid index
2806         let to_clone = unsafe { this.get_unchecked(src) };
2807 
2808         iter::zip(to_clone, spare)
2809             .map(|(src, dst)| dst.write(src.clone()))
2810             // Note:
2811             // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2812             // - len is increased after each element to prevent leaks (see issue #82533)
2813             .for_each(|_| *len += 1);
2814     }
2815 }
2816 
2817 impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
spec_extend_from_within(&mut self, src: Range<usize>)2818     unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2819         let count = src.len();
2820         {
2821             let (init, spare) = self.split_at_spare_mut();
2822 
2823             // SAFETY:
2824             // - caller guarantees that `src` is a valid index
2825             let source = unsafe { init.get_unchecked(src) };
2826 
2827             // SAFETY:
2828             // - Both pointers are created from unique slice references (`&mut [_]`)
2829             //   so they are valid and do not overlap.
2830             // - Elements are :Copy so it's OK to copy them, without doing
2831             //   anything with the original values
2832             // - `count` is equal to the len of `source`, so source is valid for
2833             //   `count` reads
2834             // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2835             //   is valid for `count` writes
2836             unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2837         }
2838 
2839         // SAFETY:
2840         // - The elements were just initialized by `copy_nonoverlapping`
2841         self.len += count;
2842     }
2843 }
2844 
2845 ////////////////////////////////////////////////////////////////////////////////
2846 // Common trait implementations for Vec
2847 ////////////////////////////////////////////////////////////////////////////////
2848 
2849 #[stable(feature = "rust1", since = "1.0.0")]
2850 impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2851     type Target = [T];
2852 
2853     #[inline]
deref(&self) -> &[T]2854     fn deref(&self) -> &[T] {
2855         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2856     }
2857 }
2858 
2859 #[stable(feature = "rust1", since = "1.0.0")]
2860 impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2861     #[inline]
deref_mut(&mut self) -> &mut [T]2862     fn deref_mut(&mut self) -> &mut [T] {
2863         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2864     }
2865 }
2866 
2867 #[cfg(not(no_global_oom_handling))]
2868 #[stable(feature = "rust1", since = "1.0.0")]
2869 impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2870     #[cfg(not(test))]
clone(&self) -> Self2871     fn clone(&self) -> Self {
2872         let alloc = self.allocator().clone();
2873         <[T]>::to_vec_in(&**self, alloc)
2874     }
2875 
2876     // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2877     // required for this method definition, is not available. Instead use the
2878     // `slice::to_vec` function which is only available with cfg(test)
2879     // NB see the slice::hack module in slice.rs for more information
2880     #[cfg(test)]
clone(&self) -> Self2881     fn clone(&self) -> Self {
2882         let alloc = self.allocator().clone();
2883         crate::slice::to_vec(&**self, alloc)
2884     }
2885 
clone_from(&mut self, other: &Self)2886     fn clone_from(&mut self, other: &Self) {
2887         crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2888     }
2889 }
2890 
2891 /// The hash of a vector is the same as that of the corresponding slice,
2892 /// as required by the `core::borrow::Borrow` implementation.
2893 ///
2894 /// ```
2895 /// use std::hash::BuildHasher;
2896 ///
2897 /// let b = std::collections::hash_map::RandomState::new();
2898 /// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2899 /// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2900 /// assert_eq!(b.hash_one(v), b.hash_one(s));
2901 /// ```
2902 #[stable(feature = "rust1", since = "1.0.0")]
2903 impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2904     #[inline]
hash<H: Hasher>(&self, state: &mut H)2905     fn hash<H: Hasher>(&self, state: &mut H) {
2906         Hash::hash(&**self, state)
2907     }
2908 }
2909 
2910 #[stable(feature = "rust1", since = "1.0.0")]
2911 #[rustc_on_unimplemented(
2912     message = "vector indices are of type `usize` or ranges of `usize`",
2913     label = "vector indices are of type `usize` or ranges of `usize`"
2914 )]
2915 impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2916     type Output = I::Output;
2917 
2918     #[inline]
index(&self, index: I) -> &Self::Output2919     fn index(&self, index: I) -> &Self::Output {
2920         Index::index(&**self, index)
2921     }
2922 }
2923 
2924 #[stable(feature = "rust1", since = "1.0.0")]
2925 #[rustc_on_unimplemented(
2926     message = "vector indices are of type `usize` or ranges of `usize`",
2927     label = "vector indices are of type `usize` or ranges of `usize`"
2928 )]
2929 impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2930     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output2931     fn index_mut(&mut self, index: I) -> &mut Self::Output {
2932         IndexMut::index_mut(&mut **self, index)
2933     }
2934 }
2935 
2936 #[cfg(not(no_global_oom_handling))]
2937 #[stable(feature = "rust1", since = "1.0.0")]
2938 impl<T> FromIterator<T> for Vec<T> {
2939     #[inline]
from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T>2940     fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2941         <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2942     }
2943 }
2944 
2945 #[stable(feature = "rust1", since = "1.0.0")]
2946 impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2947     type Item = T;
2948     type IntoIter = IntoIter<T, A>;
2949 
2950     /// Creates a consuming iterator, that is, one that moves each value out of
2951     /// the vector (from start to end). The vector cannot be used after calling
2952     /// this.
2953     ///
2954     /// # Examples
2955     ///
2956     /// ```
2957     /// let v = vec!["a".to_string(), "b".to_string()];
2958     /// let mut v_iter = v.into_iter();
2959     ///
2960     /// let first_element: Option<String> = v_iter.next();
2961     ///
2962     /// assert_eq!(first_element, Some("a".to_string()));
2963     /// assert_eq!(v_iter.next(), Some("b".to_string()));
2964     /// assert_eq!(v_iter.next(), None);
2965     /// ```
2966     #[inline]
into_iter(self) -> Self::IntoIter2967     fn into_iter(self) -> Self::IntoIter {
2968         unsafe {
2969             let mut me = ManuallyDrop::new(self);
2970             let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2971             let begin = me.as_mut_ptr();
2972             let end = if T::IS_ZST {
2973                 begin.wrapping_byte_add(me.len())
2974             } else {
2975                 begin.add(me.len()) as *const T
2976             };
2977             let cap = me.buf.capacity();
2978             IntoIter {
2979                 buf: NonNull::new_unchecked(begin),
2980                 phantom: PhantomData,
2981                 cap,
2982                 alloc,
2983                 ptr: begin,
2984                 end,
2985             }
2986         }
2987     }
2988 }
2989 
2990 #[stable(feature = "rust1", since = "1.0.0")]
2991 impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2992     type Item = &'a T;
2993     type IntoIter = slice::Iter<'a, T>;
2994 
into_iter(self) -> Self::IntoIter2995     fn into_iter(self) -> Self::IntoIter {
2996         self.iter()
2997     }
2998 }
2999 
3000 #[stable(feature = "rust1", since = "1.0.0")]
3001 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3002     type Item = &'a mut T;
3003     type IntoIter = slice::IterMut<'a, T>;
3004 
into_iter(self) -> Self::IntoIter3005     fn into_iter(self) -> Self::IntoIter {
3006         self.iter_mut()
3007     }
3008 }
3009 
3010 #[cfg(not(no_global_oom_handling))]
3011 #[stable(feature = "rust1", since = "1.0.0")]
3012 impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3013     #[inline]
extend<I: IntoIterator<Item = T>>(&mut self, iter: I)3014     fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3015         <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3016     }
3017 
3018     #[inline]
extend_one(&mut self, item: T)3019     fn extend_one(&mut self, item: T) {
3020         self.push(item);
3021     }
3022 
3023     #[inline]
extend_reserve(&mut self, additional: usize)3024     fn extend_reserve(&mut self, additional: usize) {
3025         self.reserve(additional);
3026     }
3027 }
3028 
3029 impl<T, A: Allocator> Vec<T, A> {
3030     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3031     // they have no further optimizations to apply
3032     #[cfg(not(no_global_oom_handling))]
extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I)3033     fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3034         // This is the case for a general iterator.
3035         //
3036         // This function should be the moral equivalent of:
3037         //
3038         //      for item in iterator {
3039         //          self.push(item);
3040         //      }
3041         while let Some(element) = iterator.next() {
3042             let len = self.len();
3043             if len == self.capacity() {
3044                 let (lower, _) = iterator.size_hint();
3045                 self.reserve(lower.saturating_add(1));
3046             }
3047             unsafe {
3048                 ptr::write(self.as_mut_ptr().add(len), element);
3049                 // Since next() executes user code which can panic we have to bump the length
3050                 // after each step.
3051                 // NB can't overflow since we would have had to alloc the address space
3052                 self.set_len(len + 1);
3053             }
3054         }
3055     }
3056 
3057     // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3058     // they have no further optimizations to apply
try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError>3059     fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
3060         // This is the case for a general iterator.
3061         //
3062         // This function should be the moral equivalent of:
3063         //
3064         //      for item in iterator {
3065         //          self.push(item);
3066         //      }
3067         while let Some(element) = iterator.next() {
3068             let len = self.len();
3069             if len == self.capacity() {
3070                 let (lower, _) = iterator.size_hint();
3071                 self.try_reserve(lower.saturating_add(1))?;
3072             }
3073             unsafe {
3074                 ptr::write(self.as_mut_ptr().add(len), element);
3075                 // Since next() executes user code which can panic we have to bump the length
3076                 // after each step.
3077                 // NB can't overflow since we would have had to alloc the address space
3078                 self.set_len(len + 1);
3079             }
3080         }
3081 
3082         Ok(())
3083     }
3084 
3085     // specific extend for `TrustedLen` iterators, called both by the specializations
3086     // and internal places where resolving specialization makes compilation slower
3087     #[cfg(not(no_global_oom_handling))]
extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>)3088     fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3089         let (low, high) = iterator.size_hint();
3090         if let Some(additional) = high {
3091             debug_assert_eq!(
3092                 low,
3093                 additional,
3094                 "TrustedLen iterator's size hint is not exact: {:?}",
3095                 (low, high)
3096             );
3097             self.reserve(additional);
3098             unsafe {
3099                 let ptr = self.as_mut_ptr();
3100                 let mut local_len = SetLenOnDrop::new(&mut self.len);
3101                 iterator.for_each(move |element| {
3102                     ptr::write(ptr.add(local_len.current_len()), element);
3103                     // Since the loop executes user code which can panic we have to update
3104                     // the length every step to correctly drop what we've written.
3105                     // NB can't overflow since we would have had to alloc the address space
3106                     local_len.increment_len(1);
3107                 });
3108             }
3109         } else {
3110             // Per TrustedLen contract a `None` upper bound means that the iterator length
3111             // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3112             // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3113             // This avoids additional codegen for a fallback code path which would eventually
3114             // panic anyway.
3115             panic!("capacity overflow");
3116         }
3117     }
3118 
3119     // specific extend for `TrustedLen` iterators, called both by the specializations
3120     // and internal places where resolving specialization makes compilation slower
try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError>3121     fn try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError> {
3122         let (low, high) = iterator.size_hint();
3123         if let Some(additional) = high {
3124             debug_assert_eq!(
3125                 low,
3126                 additional,
3127                 "TrustedLen iterator's size hint is not exact: {:?}",
3128                 (low, high)
3129             );
3130             self.try_reserve(additional)?;
3131             unsafe {
3132                 let ptr = self.as_mut_ptr();
3133                 let mut local_len = SetLenOnDrop::new(&mut self.len);
3134                 iterator.for_each(move |element| {
3135                     ptr::write(ptr.add(local_len.current_len()), element);
3136                     // Since the loop executes user code which can panic we have to update
3137                     // the length every step to correctly drop what we've written.
3138                     // NB can't overflow since we would have had to alloc the address space
3139                     local_len.increment_len(1);
3140                 });
3141             }
3142             Ok(())
3143         } else {
3144             Err(TryReserveErrorKind::CapacityOverflow.into())
3145         }
3146     }
3147 
3148     /// Creates a splicing iterator that replaces the specified range in the vector
3149     /// with the given `replace_with` iterator and yields the removed items.
3150     /// `replace_with` does not need to be the same length as `range`.
3151     ///
3152     /// `range` is removed even if the iterator is not consumed until the end.
3153     ///
3154     /// It is unspecified how many elements are removed from the vector
3155     /// if the `Splice` value is leaked.
3156     ///
3157     /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3158     ///
3159     /// This is optimal if:
3160     ///
3161     /// * The tail (elements in the vector after `range`) is empty,
3162     /// * or `replace_with` yields fewer or equal elements than `range`’s length
3163     /// * or the lower bound of its `size_hint()` is exact.
3164     ///
3165     /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3166     ///
3167     /// # Panics
3168     ///
3169     /// Panics if the starting point is greater than the end point or if
3170     /// the end point is greater than the length of the vector.
3171     ///
3172     /// # Examples
3173     ///
3174     /// ```
3175     /// let mut v = vec![1, 2, 3, 4];
3176     /// let new = [7, 8, 9];
3177     /// let u: Vec<_> = v.splice(1..3, new).collect();
3178     /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3179     /// assert_eq!(u, &[2, 3]);
3180     /// ```
3181     #[cfg(not(no_global_oom_handling))]
3182     #[inline]
3183     #[stable(feature = "vec_splice", since = "1.21.0")]
splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A> where R: RangeBounds<usize>, I: IntoIterator<Item = T>,3184     pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3185     where
3186         R: RangeBounds<usize>,
3187         I: IntoIterator<Item = T>,
3188     {
3189         Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3190     }
3191 
3192     /// Creates an iterator which uses a closure to determine if an element should be removed.
3193     ///
3194     /// If the closure returns true, then the element is removed and yielded.
3195     /// If the closure returns false, the element will remain in the vector and will not be yielded
3196     /// by the iterator.
3197     ///
3198     /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3199     /// or the iteration short-circuits, then the remaining elements will be retained.
3200     /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
3201     ///
3202     /// [`retain`]: Vec::retain
3203     ///
3204     /// Using this method is equivalent to the following code:
3205     ///
3206     /// ```
3207     /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3208     /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3209     /// let mut i = 0;
3210     /// while i < vec.len() {
3211     ///     if some_predicate(&mut vec[i]) {
3212     ///         let val = vec.remove(i);
3213     ///         // your code here
3214     ///     } else {
3215     ///         i += 1;
3216     ///     }
3217     /// }
3218     ///
3219     /// # assert_eq!(vec, vec![1, 4, 5]);
3220     /// ```
3221     ///
3222     /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3223     /// because it can backshift the elements of the array in bulk.
3224     ///
3225     /// Note that `extract_if` also lets you mutate every element in the filter closure,
3226     /// regardless of whether you choose to keep or remove it.
3227     ///
3228     /// # Examples
3229     ///
3230     /// Splitting an array into evens and odds, reusing the original allocation:
3231     ///
3232     /// ```
3233     /// #![feature(extract_if)]
3234     /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3235     ///
3236     /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<Vec<_>>();
3237     /// let odds = numbers;
3238     ///
3239     /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3240     /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3241     /// ```
3242     #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A> where F: FnMut(&mut T) -> bool,3243     pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
3244     where
3245         F: FnMut(&mut T) -> bool,
3246     {
3247         let old_len = self.len();
3248 
3249         // Guard against us getting leaked (leak amplification)
3250         unsafe {
3251             self.set_len(0);
3252         }
3253 
3254         ExtractIf { vec: self, idx: 0, del: 0, old_len, pred: filter }
3255     }
3256 }
3257 
3258 /// Extend implementation that copies elements out of references before pushing them onto the Vec.
3259 ///
3260 /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3261 /// append the entire slice at once.
3262 ///
3263 /// [`copy_from_slice`]: slice::copy_from_slice
3264 #[cfg(not(no_global_oom_handling))]
3265 #[stable(feature = "extend_ref", since = "1.2.0")]
3266 impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)3267     fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3268         self.spec_extend(iter.into_iter())
3269     }
3270 
3271     #[inline]
extend_one(&mut self, &item: &'a T)3272     fn extend_one(&mut self, &item: &'a T) {
3273         self.push(item);
3274     }
3275 
3276     #[inline]
extend_reserve(&mut self, additional: usize)3277     fn extend_reserve(&mut self, additional: usize) {
3278         self.reserve(additional);
3279     }
3280 }
3281 
3282 /// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3283 #[stable(feature = "rust1", since = "1.0.0")]
3284 impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3285 where
3286     T: PartialOrd,
3287     A1: Allocator,
3288     A2: Allocator,
3289 {
3290     #[inline]
partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering>3291     fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3292         PartialOrd::partial_cmp(&**self, &**other)
3293     }
3294 }
3295 
3296 #[stable(feature = "rust1", since = "1.0.0")]
3297 impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3298 
3299 /// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3300 #[stable(feature = "rust1", since = "1.0.0")]
3301 impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3302     #[inline]
cmp(&self, other: &Self) -> Ordering3303     fn cmp(&self, other: &Self) -> Ordering {
3304         Ord::cmp(&**self, &**other)
3305     }
3306 }
3307 
3308 #[stable(feature = "rust1", since = "1.0.0")]
3309 unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
drop(&mut self)3310     fn drop(&mut self) {
3311         unsafe {
3312             // use drop for [T]
3313             // use a raw slice to refer to the elements of the vector as weakest necessary type;
3314             // could avoid questions of validity in certain cases
3315             ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3316         }
3317         // RawVec handles deallocation
3318     }
3319 }
3320 
3321 #[stable(feature = "rust1", since = "1.0.0")]
3322 impl<T> Default for Vec<T> {
3323     /// Creates an empty `Vec<T>`.
3324     ///
3325     /// The vector will not allocate until elements are pushed onto it.
default() -> Vec<T>3326     fn default() -> Vec<T> {
3327         Vec::new()
3328     }
3329 }
3330 
3331 #[stable(feature = "rust1", since = "1.0.0")]
3332 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result3333     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3334         fmt::Debug::fmt(&**self, f)
3335     }
3336 }
3337 
3338 #[stable(feature = "rust1", since = "1.0.0")]
3339 impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
as_ref(&self) -> &Vec<T, A>3340     fn as_ref(&self) -> &Vec<T, A> {
3341         self
3342     }
3343 }
3344 
3345 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3346 impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
as_mut(&mut self) -> &mut Vec<T, A>3347     fn as_mut(&mut self) -> &mut Vec<T, A> {
3348         self
3349     }
3350 }
3351 
3352 #[stable(feature = "rust1", since = "1.0.0")]
3353 impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
as_ref(&self) -> &[T]3354     fn as_ref(&self) -> &[T] {
3355         self
3356     }
3357 }
3358 
3359 #[stable(feature = "vec_as_mut", since = "1.5.0")]
3360 impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
as_mut(&mut self) -> &mut [T]3361     fn as_mut(&mut self) -> &mut [T] {
3362         self
3363     }
3364 }
3365 
3366 #[cfg(not(no_global_oom_handling))]
3367 #[stable(feature = "rust1", since = "1.0.0")]
3368 impl<T: Clone> From<&[T]> for Vec<T> {
3369     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3370     ///
3371     /// # Examples
3372     ///
3373     /// ```
3374     /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3375     /// ```
3376     #[cfg(not(test))]
from(s: &[T]) -> Vec<T>3377     fn from(s: &[T]) -> Vec<T> {
3378         s.to_vec()
3379     }
3380     #[cfg(test)]
from(s: &[T]) -> Vec<T>3381     fn from(s: &[T]) -> Vec<T> {
3382         crate::slice::to_vec(s, Global)
3383     }
3384 }
3385 
3386 #[cfg(not(no_global_oom_handling))]
3387 #[stable(feature = "vec_from_mut", since = "1.19.0")]
3388 impl<T: Clone> From<&mut [T]> for Vec<T> {
3389     /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3390     ///
3391     /// # Examples
3392     ///
3393     /// ```
3394     /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3395     /// ```
3396     #[cfg(not(test))]
from(s: &mut [T]) -> Vec<T>3397     fn from(s: &mut [T]) -> Vec<T> {
3398         s.to_vec()
3399     }
3400     #[cfg(test)]
from(s: &mut [T]) -> Vec<T>3401     fn from(s: &mut [T]) -> Vec<T> {
3402         crate::slice::to_vec(s, Global)
3403     }
3404 }
3405 
3406 #[cfg(not(no_global_oom_handling))]
3407 #[stable(feature = "vec_from_array", since = "1.44.0")]
3408 impl<T, const N: usize> From<[T; N]> for Vec<T> {
3409     /// Allocate a `Vec<T>` and move `s`'s items into it.
3410     ///
3411     /// # Examples
3412     ///
3413     /// ```
3414     /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3415     /// ```
3416     #[cfg(not(test))]
from(s: [T; N]) -> Vec<T>3417     fn from(s: [T; N]) -> Vec<T> {
3418         <[T]>::into_vec(Box::new(s))
3419     }
3420 
3421     #[cfg(test)]
from(s: [T; N]) -> Vec<T>3422     fn from(s: [T; N]) -> Vec<T> {
3423         crate::slice::into_vec(Box::new(s))
3424     }
3425 }
3426 
3427 #[cfg(not(no_borrow))]
3428 #[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3429 impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3430 where
3431     [T]: ToOwned<Owned = Vec<T>>,
3432 {
3433     /// Convert a clone-on-write slice into a vector.
3434     ///
3435     /// If `s` already owns a `Vec<T>`, it will be returned directly.
3436     /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3437     /// filled by cloning `s`'s items into it.
3438     ///
3439     /// # Examples
3440     ///
3441     /// ```
3442     /// # use std::borrow::Cow;
3443     /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3444     /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3445     /// assert_eq!(Vec::from(o), Vec::from(b));
3446     /// ```
from(s: Cow<'a, [T]>) -> Vec<T>3447     fn from(s: Cow<'a, [T]>) -> Vec<T> {
3448         s.into_owned()
3449     }
3450 }
3451 
3452 // note: test pulls in std, which causes errors here
3453 #[cfg(not(test))]
3454 #[stable(feature = "vec_from_box", since = "1.18.0")]
3455 impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3456     /// Convert a boxed slice into a vector by transferring ownership of
3457     /// the existing heap allocation.
3458     ///
3459     /// # Examples
3460     ///
3461     /// ```
3462     /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3463     /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3464     /// ```
from(s: Box<[T], A>) -> Self3465     fn from(s: Box<[T], A>) -> Self {
3466         s.into_vec()
3467     }
3468 }
3469 
3470 // note: test pulls in std, which causes errors here
3471 #[cfg(not(no_global_oom_handling))]
3472 #[cfg(not(test))]
3473 #[stable(feature = "box_from_vec", since = "1.20.0")]
3474 impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3475     /// Convert a vector into a boxed slice.
3476     ///
3477     /// If `v` has excess capacity, its items will be moved into a
3478     /// newly-allocated buffer with exactly the right capacity.
3479     ///
3480     /// # Examples
3481     ///
3482     /// ```
3483     /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3484     /// ```
3485     ///
3486     /// Any excess capacity is removed:
3487     /// ```
3488     /// let mut vec = Vec::with_capacity(10);
3489     /// vec.extend([1, 2, 3]);
3490     ///
3491     /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3492     /// ```
from(v: Vec<T, A>) -> Self3493     fn from(v: Vec<T, A>) -> Self {
3494         v.into_boxed_slice()
3495     }
3496 }
3497 
3498 #[cfg(not(no_global_oom_handling))]
3499 #[stable(feature = "rust1", since = "1.0.0")]
3500 impl From<&str> for Vec<u8> {
3501     /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3502     ///
3503     /// # Examples
3504     ///
3505     /// ```
3506     /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3507     /// ```
from(s: &str) -> Vec<u8>3508     fn from(s: &str) -> Vec<u8> {
3509         From::from(s.as_bytes())
3510     }
3511 }
3512 
3513 #[stable(feature = "array_try_from_vec", since = "1.48.0")]
3514 impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3515     type Error = Vec<T, A>;
3516 
3517     /// Gets the entire contents of the `Vec<T>` as an array,
3518     /// if its size exactly matches that of the requested array.
3519     ///
3520     /// # Examples
3521     ///
3522     /// ```
3523     /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3524     /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3525     /// ```
3526     ///
3527     /// If the length doesn't match, the input comes back in `Err`:
3528     /// ```
3529     /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3530     /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3531     /// ```
3532     ///
3533     /// If you're fine with just getting a prefix of the `Vec<T>`,
3534     /// you can call [`.truncate(N)`](Vec::truncate) first.
3535     /// ```
3536     /// let mut v = String::from("hello world").into_bytes();
3537     /// v.sort();
3538     /// v.truncate(2);
3539     /// let [a, b]: [_; 2] = v.try_into().unwrap();
3540     /// assert_eq!(a, b' ');
3541     /// assert_eq!(b, b'd');
3542     /// ```
try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>>3543     fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3544         if vec.len() != N {
3545             return Err(vec);
3546         }
3547 
3548         // SAFETY: `.set_len(0)` is always sound.
3549         unsafe { vec.set_len(0) };
3550 
3551         // SAFETY: A `Vec`'s pointer is always aligned properly, and
3552         // the alignment the array needs is the same as the items.
3553         // We checked earlier that we have sufficient items.
3554         // The items will not double-drop as the `set_len`
3555         // tells the `Vec` not to also drop them.
3556         let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3557         Ok(array)
3558     }
3559 }
3560