1 /* linux/net/inet/arp.c
2  *
3  * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4  *
5  * Copyright (C) 1994 by Florian  La Roche
6  *
7  * This module implements the Address Resolution Protocol ARP (RFC 826),
8  * which is used to convert IP addresses (or in the future maybe other
9  * high-level addresses) into a low-level hardware address (like an Ethernet
10  * address).
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * Fixes:
18  *		Alan Cox	:	Removed the Ethernet assumptions in
19  *					Florian's code
20  *		Alan Cox	:	Fixed some small errors in the ARP
21  *					logic
22  *		Alan Cox	:	Allow >4K in /proc
23  *		Alan Cox	:	Make ARP add its own protocol entry
24  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25  *		Stephen Henson	:	Add AX25 support to arp_get_info()
26  *		Alan Cox	:	Drop data when a device is downed.
27  *		Alan Cox	:	Use init_timer().
28  *		Alan Cox	:	Double lock fixes.
29  *		Martin Seine	:	Move the arphdr structure
30  *					to if_arp.h for compatibility.
31  *					with BSD based programs.
32  *		Andrew Tridgell :       Added ARP netmask code and
33  *					re-arranged proxy handling.
34  *		Alan Cox	:	Changed to use notifiers.
35  *		Niibe Yutaka	:	Reply for this device or proxies only.
36  *		Alan Cox	:	Don't proxy across hardware types!
37  *		Jonathan Naylor :	Added support for NET/ROM.
38  *		Mike Shaver     :       RFC1122 checks.
39  *		Jonathan Naylor :	Only lookup the hardware address for
40  *					the correct hardware type.
41  *		Germano Caronni	:	Assorted subtle races.
42  *		Craig Schlenter :	Don't modify permanent entry
43  *					during arp_rcv.
44  *		Russ Nelson	:	Tidied up a few bits.
45  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46  *					eg intelligent arp probing and
47  *					generation
48  *					of host down events.
49  *		Alan Cox	:	Missing unlock in device events.
50  *		Eckes		:	ARP ioctl control errors.
51  *		Alexey Kuznetsov:	Arp free fix.
52  *		Manuel Rodriguez:	Gratuitous ARP.
53  *              Jonathan Layes  :       Added arpd support through kerneld
54  *                                      message queue (960314)
55  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56  *		Mike McLagan    :	Routing by source
57  *		Stuart Cheshire	:	Metricom and grat arp fixes
58  *					*** FOR 2.1 clean this up ***
59  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60  *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61  *					folded into the mainstream FDDI code.
62  *					Ack spit, Linus how did you allow that
63  *					one in...
64  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65  *					clean up the APFDDI & gen. FDDI bits.
66  *		Alexey Kuznetsov:	new arp state machine;
67  *					now it is in net/core/neighbour.c.
68  *		Krzysztof Halasa:	Added Frame Relay ARP support.
69  *		Shmulik Hen:		Split arp_send to arp_create and
70  *					arp_xmit so intermediate drivers like
71  *					bonding can change the skb before
72  *					sending (e.g. insert 8021q tag).
73  *		Harald Welte	:	convert to make use of jenkins hash
74  */
75 
76 #include <linux/types.h>
77 #include <linux/string.h>
78 #include <linux/kernel.h>
79 #include <linux/module.h>
80 #include <linux/sched.h>
81 #include <linux/config.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/stat.h>
96 #include <linux/init.h>
97 #include <linux/jhash.h>
98 #include <linux/module.h>
99 #ifdef CONFIG_SYSCTL
100 #include <linux/sysctl.h>
101 #endif
102 
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
111 #include <net/ax25.h>
112 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
113 #include <net/netrom.h>
114 #endif
115 #endif
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
120 
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
123 
124 #include <linux/netfilter_arp.h>
125 
126 /*
127  *	Interface to generic neighbour cache.
128  */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134 
135 static struct neigh_ops arp_generic_ops = {
136 	family:			AF_INET,
137 	solicit:		arp_solicit,
138 	error_report:		arp_error_report,
139 	output:			neigh_resolve_output,
140 	connected_output:	neigh_connected_output,
141 	hh_output:		dev_queue_xmit,
142 	queue_xmit:		dev_queue_xmit,
143 };
144 
145 static struct neigh_ops arp_hh_ops = {
146 	family:			AF_INET,
147 	solicit:		arp_solicit,
148 	error_report:		arp_error_report,
149 	output:			neigh_resolve_output,
150 	connected_output:	neigh_resolve_output,
151 	hh_output:		dev_queue_xmit,
152 	queue_xmit:		dev_queue_xmit,
153 };
154 
155 static struct neigh_ops arp_direct_ops = {
156 	family:			AF_INET,
157 	output:			dev_queue_xmit,
158 	connected_output:	dev_queue_xmit,
159 	hh_output:		dev_queue_xmit,
160 	queue_xmit:		dev_queue_xmit,
161 };
162 
163 struct neigh_ops arp_broken_ops = {
164 	family:			AF_INET,
165 	solicit:		arp_solicit,
166 	error_report:		arp_error_report,
167 	output:			neigh_compat_output,
168 	connected_output:	neigh_compat_output,
169 	hh_output:		dev_queue_xmit,
170 	queue_xmit:		dev_queue_xmit,
171 };
172 
173 struct neigh_table arp_tbl = {
174 	family:		AF_INET,
175 	entry_size:	sizeof(struct neighbour) + 4,
176 	key_len:	4,
177 	hash:		arp_hash,
178 	constructor:	arp_constructor,
179 	proxy_redo:	parp_redo,
180 	id:		"arp_cache",
181 	parms: {
182 		tbl:			&arp_tbl,
183 		base_reachable_time:	30 * HZ,
184 		retrans_time:		1 * HZ,
185 		gc_staletime:		60 * HZ,
186 		reachable_time:		30 * HZ,
187 		delay_probe_time:	5 * HZ,
188 		queue_len:		3,
189 		ucast_probes:		3,
190 		mcast_probes:		3,
191 		anycast_delay:		1 * HZ,
192 		proxy_delay:		(8 * HZ) / 10,
193 		proxy_qlen:		64,
194 		locktime:		1 * HZ,
195 	},
196 	gc_interval:	30 * HZ,
197 	gc_thresh1:	128,
198 	gc_thresh2:	512,
199 	gc_thresh3:	1024,
200 };
201 
arp_mc_map(u32 addr,u8 * haddr,struct net_device * dev,int dir)202 int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
203 {
204 	switch (dev->type) {
205 	case ARPHRD_ETHER:
206 	case ARPHRD_FDDI:
207 	case ARPHRD_IEEE802:
208 		ip_eth_mc_map(addr, haddr);
209 		return 0;
210 	case ARPHRD_IEEE802_TR:
211 		ip_tr_mc_map(addr, haddr);
212 		return 0;
213 	default:
214 		if (dir) {
215 			memcpy(haddr, dev->broadcast, dev->addr_len);
216 			return 0;
217 		}
218 	}
219 	return -EINVAL;
220 }
221 
222 
arp_hash(const void * pkey,const struct net_device * dev)223 static u32 arp_hash(const void *pkey, const struct net_device *dev)
224 {
225 	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
226 }
227 
arp_constructor(struct neighbour * neigh)228 static int arp_constructor(struct neighbour *neigh)
229 {
230 	u32 addr = *(u32*)neigh->primary_key;
231 	struct net_device *dev = neigh->dev;
232 	struct in_device *in_dev = in_dev_get(dev);
233 
234 	if (in_dev == NULL)
235 		return -EINVAL;
236 
237 	neigh->type = inet_addr_type(addr);
238 	if (in_dev->arp_parms)
239 		neigh->parms = in_dev->arp_parms;
240 
241 	in_dev_put(in_dev);
242 
243 	if (dev->hard_header == NULL) {
244 		neigh->nud_state = NUD_NOARP;
245 		neigh->ops = &arp_direct_ops;
246 		neigh->output = neigh->ops->queue_xmit;
247 	} else {
248 		/* Good devices (checked by reading texts, but only Ethernet is
249 		   tested)
250 
251 		   ARPHRD_ETHER: (ethernet, apfddi)
252 		   ARPHRD_FDDI: (fddi)
253 		   ARPHRD_IEEE802: (tr)
254 		   ARPHRD_METRICOM: (strip)
255 		   ARPHRD_ARCNET:
256 		   etc. etc. etc.
257 
258 		   ARPHRD_IPDDP will also work, if author repairs it.
259 		   I did not it, because this driver does not work even
260 		   in old paradigm.
261 		 */
262 
263 #if 1
264 		/* So... these "amateur" devices are hopeless.
265 		   The only thing, that I can say now:
266 		   It is very sad that we need to keep ugly obsolete
267 		   code to make them happy.
268 
269 		   They should be moved to more reasonable state, now
270 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
271 		   Besides that, they are sort of out of date
272 		   (a lot of redundant clones/copies, useless in 2.1),
273 		   I wonder why people believe that they work.
274 		 */
275 		switch (dev->type) {
276 		default:
277 			break;
278 		case ARPHRD_ROSE:
279 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
280 		case ARPHRD_AX25:
281 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
282 		case ARPHRD_NETROM:
283 #endif
284 			neigh->ops = &arp_broken_ops;
285 			neigh->output = neigh->ops->output;
286 			return 0;
287 #endif
288 		;}
289 #endif
290 		if (neigh->type == RTN_MULTICAST) {
291 			neigh->nud_state = NUD_NOARP;
292 			arp_mc_map(addr, neigh->ha, dev, 1);
293 		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
294 			neigh->nud_state = NUD_NOARP;
295 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
296 		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
297 			neigh->nud_state = NUD_NOARP;
298 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
299 		}
300 		if (dev->hard_header_cache)
301 			neigh->ops = &arp_hh_ops;
302 		else
303 			neigh->ops = &arp_generic_ops;
304 		if (neigh->nud_state&NUD_VALID)
305 			neigh->output = neigh->ops->connected_output;
306 		else
307 			neigh->output = neigh->ops->output;
308 	}
309 	return 0;
310 }
311 
arp_error_report(struct neighbour * neigh,struct sk_buff * skb)312 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
313 {
314 	dst_link_failure(skb);
315 	kfree_skb(skb);
316 }
317 
arp_solicit(struct neighbour * neigh,struct sk_buff * skb)318 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
319 {
320 	u32 saddr = 0;
321 	u8  *dst_ha = NULL;
322 	struct net_device *dev = neigh->dev;
323 	u32 target = *(u32*)neigh->primary_key;
324 	int probes = atomic_read(&neigh->probes);
325 	struct in_device *in_dev = in_dev_get(dev);
326 
327 	if (!in_dev)
328 		return;
329 
330 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
331 	default:
332 	case 0:		/* By default announce any local IP */
333 		if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
334 			saddr = skb->nh.iph->saddr;
335 		break;
336 	case 1:		/* Restrict announcements of saddr in same subnet */
337 		if (!skb)
338 			break;
339 		saddr = skb->nh.iph->saddr;
340 		if (inet_addr_type(saddr) == RTN_LOCAL) {
341 			/* saddr should be known to target */
342 			if (inet_addr_onlink(in_dev, target, saddr))
343 				break;
344 		}
345 		saddr = 0;
346 		break;
347 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
348 		break;
349 	}
350 
351 	if (in_dev)
352 		in_dev_put(in_dev);
353 	if (!saddr)
354 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
355 
356 	if ((probes -= neigh->parms->ucast_probes) < 0) {
357 		if (!(neigh->nud_state&NUD_VALID))
358 			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
359 		dst_ha = neigh->ha;
360 		read_lock_bh(&neigh->lock);
361 	} else if ((probes -= neigh->parms->app_probes) < 0) {
362 #ifdef CONFIG_ARPD
363 		neigh_app_ns(neigh);
364 #endif
365 		return;
366 	}
367 
368 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
369 		 dst_ha, dev->dev_addr, NULL);
370 	if (dst_ha)
371 		read_unlock_bh(&neigh->lock);
372 }
373 
arp_ignore(struct in_device * in_dev,struct net_device * dev,u32 sip,u32 tip)374 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
375 		      u32 sip, u32 tip)
376 {
377 	int scope;
378 
379 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
380 	case 0:	/* Reply, the tip is already validated */
381 		return 0;
382 	case 1:	/* Reply only if tip is configured on the incoming interface */
383 		sip = 0;
384 		scope = RT_SCOPE_HOST;
385 		break;
386 	case 2:	/*
387 		 * Reply only if tip is configured on the incoming interface
388 		 * and is in same subnet as sip
389 		 */
390 		scope = RT_SCOPE_HOST;
391 		break;
392 	case 3:	/* Do not reply for scope host addresses */
393 		sip = 0;
394 		scope = RT_SCOPE_LINK;
395 		dev = NULL;
396 		break;
397 	case 4:	/* Reserved */
398 	case 5:
399 	case 6:
400 	case 7:
401 		return 0;
402 	case 8:	/* Do not reply */
403 		return 1;
404 	default:
405 		return 0;
406 	}
407 	return !inet_confirm_addr(dev, sip, tip, scope);
408 }
409 
arp_filter(__u32 sip,__u32 tip,struct net_device * dev)410 static int arp_filter(__u32 sip, __u32 tip, struct net_device *dev)
411 {
412 	struct rtable *rt;
413 	int flag = 0;
414 	/*unsigned long now; */
415 
416 	if (ip_route_output(&rt, sip, tip, 0, 0) < 0)
417 		return 1;
418 	if (rt->u.dst.dev != dev) {
419 		NET_INC_STATS_BH(ArpFilter);
420 		flag = 1;
421 	}
422 	ip_rt_put(rt);
423 	return flag;
424 }
425 
426 /* OBSOLETE FUNCTIONS */
427 
428 /*
429  *	Find an arp mapping in the cache. If not found, post a request.
430  *
431  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
432  *	even if it exists. It is supposed that skb->dev was mangled
433  *	by a virtual device (eql, shaper). Nobody but broken devices
434  *	is allowed to use this function, it is scheduled to be removed. --ANK
435  */
436 
arp_set_predefined(int addr_hint,unsigned char * haddr,u32 paddr,struct net_device * dev)437 static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct net_device * dev)
438 {
439 	switch (addr_hint) {
440 	case RTN_LOCAL:
441 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
442 		memcpy(haddr, dev->dev_addr, dev->addr_len);
443 		return 1;
444 	case RTN_MULTICAST:
445 		arp_mc_map(paddr, haddr, dev, 1);
446 		return 1;
447 	case RTN_BROADCAST:
448 		memcpy(haddr, dev->broadcast, dev->addr_len);
449 		return 1;
450 	}
451 	return 0;
452 }
453 
454 
arp_find(unsigned char * haddr,struct sk_buff * skb)455 int arp_find(unsigned char *haddr, struct sk_buff *skb)
456 {
457 	struct net_device *dev = skb->dev;
458 	u32 paddr;
459 	struct neighbour *n;
460 
461 	if (!skb->dst) {
462 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
463 		kfree_skb(skb);
464 		return 1;
465 	}
466 
467 	paddr = ((struct rtable*)skb->dst)->rt_gateway;
468 
469 	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
470 		return 0;
471 
472 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
473 
474 	if (n) {
475 		n->used = jiffies;
476 		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
477 			read_lock_bh(&n->lock);
478  			memcpy(haddr, n->ha, dev->addr_len);
479 			read_unlock_bh(&n->lock);
480 			neigh_release(n);
481 			return 0;
482 		}
483 		neigh_release(n);
484 	} else
485 		kfree_skb(skb);
486 	return 1;
487 }
488 
489 /* END OF OBSOLETE FUNCTIONS */
490 
arp_bind_neighbour(struct dst_entry * dst)491 int arp_bind_neighbour(struct dst_entry *dst)
492 {
493 	struct net_device *dev = dst->dev;
494 	struct neighbour *n = dst->neighbour;
495 
496 	if (dev == NULL)
497 		return -EINVAL;
498 	if (n == NULL) {
499 		u32 nexthop = ((struct rtable*)dst)->rt_gateway;
500 		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
501 			nexthop = 0;
502 		n = __neigh_lookup_errno(
503 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
504 		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
505 #endif
506 		    &arp_tbl, &nexthop, dev);
507 		if (IS_ERR(n))
508 			return PTR_ERR(n);
509 		dst->neighbour = n;
510 	}
511 	return 0;
512 }
513 
514 /*
515  * Check if we can use proxy ARP for this path
516  */
517 
arp_fwd_proxy(struct in_device * in_dev,struct rtable * rt)518 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
519 {
520 	struct in_device *out_dev;
521 	int imi, omi = -1;
522 
523 	if (!IN_DEV_PROXY_ARP(in_dev))
524 		return 0;
525 
526 	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
527 		return 1;
528 	if (imi == -1)
529 		return 0;
530 
531 	/* place to check for proxy_arp for routes */
532 
533 	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
534 		omi = IN_DEV_MEDIUM_ID(out_dev);
535 		in_dev_put(out_dev);
536 	}
537 	return (omi != imi && omi != -1);
538 }
539 
540 /*
541  *	Interface to link layer: send routine and receive handler.
542  */
543 
544 /*
545  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
546  *	message.
547  */
arp_create(int type,int ptype,u32 dest_ip,struct net_device * dev,u32 src_ip,unsigned char * dest_hw,unsigned char * src_hw,unsigned char * target_hw)548 struct sk_buff *arp_create(int type, int ptype, u32 dest_ip,
549 			   struct net_device *dev, u32 src_ip,
550 			   unsigned char *dest_hw, unsigned char *src_hw,
551 			   unsigned char *target_hw)
552 {
553 	struct sk_buff *skb;
554 	struct arphdr *arp;
555 	unsigned char *arp_ptr;
556 
557 	/*
558 	 *	Allocate a buffer
559 	 */
560 
561 	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
562 				+ dev->hard_header_len + 15, GFP_ATOMIC);
563 	if (skb == NULL)
564 		return NULL;
565 
566 	skb_reserve(skb, (dev->hard_header_len+15)&~15);
567 	skb->nh.raw = skb->data;
568 	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
569 	skb->dev = dev;
570 	skb->protocol = htons (ETH_P_ARP);
571 	if (src_hw == NULL)
572 		src_hw = dev->dev_addr;
573 	if (dest_hw == NULL)
574 		dest_hw = dev->broadcast;
575 
576 	/*
577 	 *	Fill the device header for the ARP frame
578 	 */
579 	if (dev->hard_header &&
580 	    dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
581 		goto out;
582 
583 	/*
584 	 * Fill out the arp protocol part.
585 	 *
586 	 * The arp hardware type should match the device type, except for FDDI,
587 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
588 	 */
589 	/*
590 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
591 	 *	DIX code for the protocol. Make these device structure fields.
592 	 */
593 	switch (dev->type) {
594 	default:
595 		arp->ar_hrd = htons(dev->type);
596 		arp->ar_pro = htons(ETH_P_IP);
597 		break;
598 
599 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
600 	case ARPHRD_AX25:
601 		arp->ar_hrd = htons(ARPHRD_AX25);
602 		arp->ar_pro = htons(AX25_P_IP);
603 		break;
604 
605 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
606 	case ARPHRD_NETROM:
607 		arp->ar_hrd = htons(ARPHRD_NETROM);
608 		arp->ar_pro = htons(AX25_P_IP);
609 		break;
610 #endif
611 #endif
612 
613 #ifdef CONFIG_FDDI
614 	case ARPHRD_FDDI:
615 		arp->ar_hrd = htons(ARPHRD_ETHER);
616 		arp->ar_pro = htons(ETH_P_IP);
617 		break;
618 #endif
619 #ifdef CONFIG_TR
620 	case ARPHRD_IEEE802_TR:
621 		arp->ar_hrd = htons(ARPHRD_IEEE802);
622 		arp->ar_pro = htons(ETH_P_IP);
623 		break;
624 #endif
625 	}
626 
627 	arp->ar_hln = dev->addr_len;
628 	arp->ar_pln = 4;
629 	arp->ar_op = htons(type);
630 
631 	arp_ptr=(unsigned char *)(arp+1);
632 
633 	memcpy(arp_ptr, src_hw, dev->addr_len);
634 	arp_ptr+=dev->addr_len;
635 	memcpy(arp_ptr, &src_ip,4);
636 	arp_ptr+=4;
637 	if (target_hw != NULL)
638 		memcpy(arp_ptr, target_hw, dev->addr_len);
639 	else
640 		memset(arp_ptr, 0, dev->addr_len);
641 	arp_ptr+=dev->addr_len;
642 	memcpy(arp_ptr, &dest_ip, 4);
643 
644 	return skb;
645 
646 out:
647 	kfree_skb(skb);
648 	return NULL;
649 }
650 
651 /*
652  *	Send an arp packet.
653  */
arp_xmit(struct sk_buff * skb)654 void arp_xmit(struct sk_buff *skb)
655 {
656 	/* Send it off, maybe filter it using firewalling first.  */
657 	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
658 }
659 
660 /*
661  *	Create and send an arp packet.
662  */
arp_send(int type,int ptype,u32 dest_ip,struct net_device * dev,u32 src_ip,unsigned char * dest_hw,unsigned char * src_hw,unsigned char * target_hw)663 void arp_send(int type, int ptype, u32 dest_ip,
664 	      struct net_device *dev, u32 src_ip,
665 	      unsigned char *dest_hw, unsigned char *src_hw,
666 	      unsigned char *target_hw)
667 {
668 	struct sk_buff *skb;
669 
670 	/*
671 	 *	No arp on this interface.
672 	 */
673 
674 	if (dev->flags&IFF_NOARP)
675 		return;
676 
677 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
678 			 dest_hw, src_hw, target_hw);
679 	if (skb == NULL) {
680 		return;
681 	}
682 
683 	arp_xmit(skb);
684 }
685 
parp_redo(struct sk_buff * skb)686 static void parp_redo(struct sk_buff *skb)
687 {
688 	arp_rcv(skb, skb->dev, NULL);
689 }
690 
691 /*
692  *	Process an arp request.
693  */
694 
arp_process(struct sk_buff * skb)695 int arp_process(struct sk_buff *skb)
696 {
697 	struct net_device *dev = skb->dev;
698 	struct in_device *in_dev = in_dev_get(dev);
699 	struct arphdr *arp;
700 	unsigned char *arp_ptr;
701 	struct rtable *rt;
702 	unsigned char *sha, *tha;
703 	u32 sip, tip;
704 	u16 dev_type = dev->type;
705 	int addr_type;
706 	struct neighbour *n;
707 
708 	/* arp_rcv below verifies the ARP header, verifies the device
709 	 * is ARP'able, and linearizes the SKB (if needed).
710 	 */
711 
712 	if (in_dev == NULL)
713 		goto out;
714 
715 	arp = skb->nh.arph;
716 	arp_ptr= (unsigned char *)(arp+1);
717 
718 	switch (dev_type) {
719 	default:
720 		if (arp->ar_pro != htons(ETH_P_IP))
721 			goto out;
722 		if (htons(dev_type) != arp->ar_hrd)
723 			goto out;
724 		break;
725 #ifdef CONFIG_NET_ETHERNET
726 	case ARPHRD_ETHER:
727 		/*
728 		 * ETHERNET devices will accept ARP hardware types of either
729 		 * 1 (Ethernet) or 6 (IEEE 802.2).
730 		 */
731 		if (arp->ar_hrd != htons(ARPHRD_ETHER) &&
732 		    arp->ar_hrd != htons(ARPHRD_IEEE802))
733 			goto out;
734 		if (arp->ar_pro != htons(ETH_P_IP))
735 			goto out;
736 		break;
737 #endif
738 #ifdef CONFIG_TR
739 	case ARPHRD_IEEE802_TR:
740 		/*
741 		 * Token ring devices will accept ARP hardware types of either
742 		 * 1 (Ethernet) or 6 (IEEE 802.2).
743 		 */
744 		if (arp->ar_hrd != htons(ARPHRD_ETHER) &&
745 		    arp->ar_hrd != htons(ARPHRD_IEEE802))
746 			goto out;
747 		if (arp->ar_pro != htons(ETH_P_IP))
748 			goto out;
749 		break;
750 #endif
751 #ifdef CONFIG_FDDI
752 	case ARPHRD_FDDI:
753 		/*
754 		 * According to RFC 1390, FDDI devices should accept ARP hardware types
755 		 * of 1 (Ethernet).  However, to be more robust, we'll accept hardware
756 		 * types of either 1 (Ethernet) or 6 (IEEE 802.2).
757 		 */
758 		if (arp->ar_hrd != htons(ARPHRD_ETHER) &&
759 		    arp->ar_hrd != htons(ARPHRD_IEEE802))
760 			goto out;
761 		if (arp->ar_pro != htons(ETH_P_IP))
762 			goto out;
763 		break;
764 #endif
765 #ifdef CONFIG_NET_FC
766 	case ARPHRD_IEEE802:
767 		/*
768 		 * According to RFC 2625, Fibre Channel devices (which are IEEE
769 		 * 802 devices) should accept ARP hardware types of 6 (IEEE 802)
770 		 * and 1 (Ethernet).
771 		 */
772 		if (arp->ar_hrd != htons(ARPHRD_ETHER) &&
773 		    arp->ar_hrd != htons(ARPHRD_IEEE802))
774 			goto out;
775 		if (arp->ar_pro != htons(ETH_P_IP))
776 			goto out;
777 		break;
778 #endif
779 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
780 	case ARPHRD_AX25:
781 		if (arp->ar_pro != htons(AX25_P_IP))
782 			goto out;
783 		if (arp->ar_hrd != htons(ARPHRD_AX25))
784 			goto out;
785 		break;
786 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
787 	case ARPHRD_NETROM:
788 		if (arp->ar_pro != htons(AX25_P_IP))
789 			goto out;
790 		if (arp->ar_hrd != htons(ARPHRD_NETROM))
791 			goto out;
792 		break;
793 #endif
794 #endif
795 	}
796 
797 	/* Understand only these message types */
798 
799 	if (arp->ar_op != htons(ARPOP_REPLY) &&
800 	    arp->ar_op != htons(ARPOP_REQUEST))
801 		goto out;
802 
803 /*
804  *	Extract fields
805  */
806 	sha=arp_ptr;
807 	arp_ptr += dev->addr_len;
808 	memcpy(&sip, arp_ptr, 4);
809 	arp_ptr += 4;
810 	tha=arp_ptr;
811 	arp_ptr += dev->addr_len;
812 	memcpy(&tip, arp_ptr, 4);
813 /*
814  *	Check for bad requests for 127.x.x.x and requests for multicast
815  *	addresses.  If this is one such, delete it.
816  */
817 	if (LOOPBACK(tip) || MULTICAST(tip))
818 		goto out;
819 
820 /*
821  *     Special case: We must set Frame Relay source Q.922 address
822  */
823 	if (dev_type == ARPHRD_DLCI)
824 		sha = dev->broadcast;
825 
826 /*
827  *  Process entry.  The idea here is we want to send a reply if it is a
828  *  request for us or if it is a request for someone else that we hold
829  *  a proxy for.  We want to add an entry to our cache if it is a reply
830  *  to us or if it is a request for our address.
831  *  (The assumption for this last is that if someone is requesting our
832  *  address, they are probably intending to talk to us, so it saves time
833  *  if we cache their address.  Their address is also probably not in
834  *  our cache, since ours is not in their cache.)
835  *
836  *  Putting this another way, we only care about replies if they are to
837  *  us, in which case we add them to the cache.  For requests, we care
838  *  about those for us and those for our proxies.  We reply to both,
839  *  and in the case of requests for us we add the requester to the arp
840  *  cache.
841  */
842 
843 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
844 	if (sip == 0) {
845 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
846 		    inet_addr_type(tip) == RTN_LOCAL &&
847 		    !arp_ignore(in_dev,dev,sip,tip))
848 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
849 			         dev->dev_addr, sha);
850 		goto out;
851 	}
852 
853 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
854 	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
855 
856 		rt = (struct rtable*)skb->dst;
857 		addr_type = rt->rt_type;
858 
859 		if (addr_type == RTN_LOCAL) {
860 			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
861 			if (n) {
862 				int dont_send = 0;
863 
864 				if (!dont_send)
865 					dont_send |= arp_ignore(in_dev,dev,sip,tip);
866 				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
867 					dont_send |= arp_filter(sip,tip,dev);
868 				if (!dont_send)
869 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
870 
871 				neigh_release(n);
872 			}
873 			goto out;
874 		} else if (IN_DEV_FORWARD(in_dev)) {
875 			if ((rt->rt_flags&RTCF_DNAT) ||
876 			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
877 			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
878 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
879 				if (n)
880 					neigh_release(n);
881 
882 				if (skb->stamp.tv_sec == 0 ||
883 				    skb->pkt_type == PACKET_HOST ||
884 				    in_dev->arp_parms->proxy_delay == 0) {
885 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
886 				} else {
887 					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
888 					in_dev_put(in_dev);
889 					return 0;
890 				}
891 				goto out;
892 			}
893 		}
894 	}
895 
896 	/* Update our ARP tables */
897 
898 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
899 
900 #ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
901 	/* Unsolicited ARP is not accepted by default.
902 	   It is possible, that this option should be enabled for some
903 	   devices (strip is candidate)
904 	 */
905 	if (n == NULL &&
906 	    arp->ar_op == htons(ARPOP_REPLY) &&
907 	    inet_addr_type(sip) == RTN_UNICAST)
908 		n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
909 #endif
910 
911 	if (n) {
912 		int state = NUD_REACHABLE;
913 		int override = 0;
914 
915 		/* If several different ARP replies follows back-to-back,
916 		   use the FIRST one. It is possible, if several proxy
917 		   agents are active. Taking the first reply prevents
918 		   arp trashing and chooses the fastest router.
919 		 */
920 		if (jiffies - n->updated >= n->parms->locktime)
921 			override = 1;
922 
923 		/* Broadcast replies and request packets
924 		   do not assert neighbour reachability.
925 		 */
926 		if (arp->ar_op != htons(ARPOP_REPLY) ||
927 		    skb->pkt_type != PACKET_HOST)
928 			state = NUD_STALE;
929 		neigh_update(n, sha, state, override, 1);
930 		neigh_release(n);
931 	}
932 
933 out:
934 	if (in_dev)
935 		in_dev_put(in_dev);
936 	kfree_skb(skb);
937 	return 0;
938 }
939 
940 
941 /*
942  *	Receive an arp request from the device layer.
943  */
944 
arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt)945 int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt)
946 {
947 	struct arphdr *arp;
948 
949 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
950 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
951 				 (2 * dev->addr_len) +
952 				 (2 * sizeof(u32)))))
953 		goto freeskb;
954 
955 	arp = skb->nh.arph;
956 	if (arp->ar_hln != dev->addr_len ||
957 	    dev->flags & IFF_NOARP ||
958 	    skb->pkt_type == PACKET_OTHERHOST ||
959 	    skb->pkt_type == PACKET_LOOPBACK ||
960 	    arp->ar_pln != 4)
961 		goto freeskb;
962 
963 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
964 		goto out_of_mem;
965 
966 	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
967 
968 freeskb:
969 	kfree_skb(skb);
970 out_of_mem:
971 	return 0;
972 }
973 
974 /*
975  *	User level interface (ioctl, /proc)
976  */
977 
978 /*
979  *	Set (create) an ARP cache entry.
980  */
981 
arp_req_set(struct arpreq * r,struct net_device * dev)982 int arp_req_set(struct arpreq *r, struct net_device * dev)
983 {
984 	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
985 	struct neighbour *neigh;
986 	int err;
987 
988 	if (r->arp_flags&ATF_PUBL) {
989 		u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
990 		if (mask && mask != 0xFFFFFFFF)
991 			return -EINVAL;
992 		if (!dev && (r->arp_flags & ATF_COM)) {
993 			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
994 			if (!dev)
995 				return -ENODEV;
996 		}
997 		if (mask) {
998 			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
999 				return -ENOBUFS;
1000 			return 0;
1001 		}
1002 		if (dev == NULL) {
1003 			ipv4_devconf.proxy_arp = 1;
1004 			return 0;
1005 		}
1006 		if (__in_dev_get(dev)) {
1007 			__in_dev_get(dev)->cnf.proxy_arp = 1;
1008 			return 0;
1009 		}
1010 		return -ENXIO;
1011 	}
1012 
1013 	if (r->arp_flags & ATF_PERM)
1014 		r->arp_flags |= ATF_COM;
1015 	if (dev == NULL) {
1016 		struct rtable * rt;
1017 		if ((err = ip_route_output(&rt, ip, 0, RTO_ONLINK, 0)) != 0)
1018 			return err;
1019 		dev = rt->u.dst.dev;
1020 		ip_rt_put(rt);
1021 		if (!dev)
1022 			return -EINVAL;
1023 	}
1024 	switch (dev->type) {
1025 #ifdef CONFIG_FDDI
1026 	case ARPHRD_FDDI:
1027 		/*
1028 		 * According to RFC 1390, FDDI devices should accept ARP
1029 		 * hardware types of 1 (Ethernet).  However, to be more
1030 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1031 		 * or 6 (IEEE 802.2).
1032 		 */
1033 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1034 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1035 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1036 			return -EINVAL;
1037 		break;
1038 #endif
1039 	default:
1040 		if (r->arp_ha.sa_family != dev->type)
1041 			return -EINVAL;
1042 		break;
1043 	}
1044 
1045 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1046 	err = PTR_ERR(neigh);
1047 	if (!IS_ERR(neigh)) {
1048 		unsigned state = NUD_STALE;
1049 		if (r->arp_flags & ATF_PERM)
1050 			state = NUD_PERMANENT;
1051 		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1052 				   r->arp_ha.sa_data : NULL, state, 1, 0);
1053 		neigh_release(neigh);
1054 	}
1055 	return err;
1056 }
1057 
arp_state_to_flags(struct neighbour * neigh)1058 static unsigned arp_state_to_flags(struct neighbour *neigh)
1059 {
1060 	unsigned flags = 0;
1061 	if (neigh->nud_state&NUD_PERMANENT)
1062 		flags = ATF_PERM|ATF_COM;
1063 	else if (neigh->nud_state&NUD_VALID)
1064 		flags = ATF_COM;
1065 	return flags;
1066 }
1067 
1068 /*
1069  *	Get an ARP cache entry.
1070  */
1071 
arp_req_get(struct arpreq * r,struct net_device * dev)1072 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1073 {
1074 	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1075 	struct neighbour *neigh;
1076 	int err = -ENXIO;
1077 
1078 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1079 	if (neigh) {
1080 		read_lock_bh(&neigh->lock);
1081 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1082 		r->arp_flags = arp_state_to_flags(neigh);
1083 		read_unlock_bh(&neigh->lock);
1084 		r->arp_ha.sa_family = dev->type;
1085 		strncpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1086 		neigh_release(neigh);
1087 		err = 0;
1088 	}
1089 	return err;
1090 }
1091 
arp_req_delete(struct arpreq * r,struct net_device * dev)1092 int arp_req_delete(struct arpreq *r, struct net_device * dev)
1093 {
1094 	int err;
1095 	u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1096 	struct neighbour *neigh;
1097 
1098 	if (r->arp_flags & ATF_PUBL) {
1099 		u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
1100 		if (mask == 0xFFFFFFFF)
1101 			return pneigh_delete(&arp_tbl, &ip, dev);
1102 		if (mask == 0) {
1103 			if (dev == NULL) {
1104 				ipv4_devconf.proxy_arp = 0;
1105 				return 0;
1106 			}
1107 			if (__in_dev_get(dev)) {
1108 				__in_dev_get(dev)->cnf.proxy_arp = 0;
1109 				return 0;
1110 			}
1111 			return -ENXIO;
1112 		}
1113 		return -EINVAL;
1114 	}
1115 
1116 	if (dev == NULL) {
1117 		struct rtable * rt;
1118 		if ((err = ip_route_output(&rt, ip, 0, RTO_ONLINK, 0)) != 0)
1119 			return err;
1120 		dev = rt->u.dst.dev;
1121 		ip_rt_put(rt);
1122 		if (!dev)
1123 			return -EINVAL;
1124 	}
1125 	err = -ENXIO;
1126 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1127 	if (neigh) {
1128 		if (neigh->nud_state&~NUD_NOARP)
1129 			err = neigh_update(neigh, NULL, NUD_FAILED, 1, 0);
1130 		neigh_release(neigh);
1131 	}
1132 	return err;
1133 }
1134 
1135 /*
1136  *	Handle an ARP layer I/O control request.
1137  */
1138 
arp_ioctl(unsigned int cmd,void * arg)1139 int arp_ioctl(unsigned int cmd, void *arg)
1140 {
1141 	int err;
1142 	struct arpreq r;
1143 	struct net_device * dev = NULL;
1144 
1145 	switch(cmd) {
1146 		case SIOCDARP:
1147 		case SIOCSARP:
1148 			if (!capable(CAP_NET_ADMIN))
1149 				return -EPERM;
1150 		case SIOCGARP:
1151 			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1152 			if (err)
1153 				return -EFAULT;
1154 			break;
1155 		default:
1156 			return -EINVAL;
1157 	}
1158 
1159 	if (r.arp_pa.sa_family != AF_INET)
1160 		return -EPFNOSUPPORT;
1161 
1162 	if (!(r.arp_flags & ATF_PUBL) &&
1163 	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1164 		return -EINVAL;
1165 	if (!(r.arp_flags & ATF_NETMASK))
1166 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr=htonl(0xFFFFFFFFUL);
1167 
1168 	rtnl_lock();
1169 	if (r.arp_dev[0]) {
1170 		err = -ENODEV;
1171 		if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1172 			goto out;
1173 
1174 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1175 		if (!r.arp_ha.sa_family)
1176 			r.arp_ha.sa_family = dev->type;
1177 		err = -EINVAL;
1178 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1179 			goto out;
1180 	} else if (cmd == SIOCGARP) {
1181 		err = -ENODEV;
1182 		goto out;
1183 	}
1184 
1185 	switch(cmd) {
1186 	case SIOCDARP:
1187 	        err = arp_req_delete(&r, dev);
1188 		break;
1189 	case SIOCSARP:
1190 		err = arp_req_set(&r, dev);
1191 		break;
1192 	case SIOCGARP:
1193 		err = arp_req_get(&r, dev);
1194 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1195 			err = -EFAULT;
1196 		break;
1197 	}
1198 out:
1199 	rtnl_unlock();
1200 	return err;
1201 }
1202 
1203 #ifdef CONFIG_PROC_FS
1204 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1205 
1206 /* ------------------------------------------------------------------------ */
1207 /*
1208  *	ax25 -> ASCII conversion
1209  */
ax2asc2(ax25_address * a,char * buf)1210 static char *ax2asc2(ax25_address *a, char *buf)
1211 {
1212 	char c, *s;
1213 	int n;
1214 
1215 	for (n = 0, s = buf; n < 6; n++) {
1216 		c = (a->ax25_call[n] >> 1) & 0x7F;
1217 
1218 		if (c != ' ') *s++ = c;
1219 	}
1220 
1221 	*s++ = '-';
1222 
1223 	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1224 		*s++ = '1';
1225 		n -= 10;
1226 	}
1227 
1228 	*s++ = n + '0';
1229 	*s++ = '\0';
1230 
1231 	if (*buf == '\0' || *buf == '-')
1232 	   return "*";
1233 
1234 	return buf;
1235 
1236 }
1237 #endif /* CONFIG_AX25 */
1238 
1239 #define HBUFFERLEN 30
1240 
arp_format_neigh_entry(struct seq_file * seq,struct neighbour * n)1241 static void arp_format_neigh_entry(struct seq_file *seq,
1242 				   struct neighbour *n)
1243 {
1244 	char hbuffer[HBUFFERLEN];
1245 	const char hexbuf[] =  "0123456789ABCDEF";
1246 	int k, j;
1247 	char tbuf[16];
1248 	struct net_device *dev = n->dev;
1249 	int hatype = dev->type;
1250 
1251 	read_lock(&n->lock);
1252 
1253 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1254 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1255 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1256 		ax2asc2((ax25_address *)n->ha, hbuffer);
1257 	else {
1258 #endif
1259 	for (k=0,j=0;k<HBUFFERLEN-3 && j<dev->addr_len;j++) {
1260 		hbuffer[k++]=hexbuf[(n->ha[j]>>4)&15 ];
1261 		hbuffer[k++]=hexbuf[n->ha[j]&15     ];
1262 		hbuffer[k++]=':';
1263 	}
1264 	hbuffer[--k]=0;
1265 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1266 	}
1267 #endif
1268 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1269 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1270 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1271 	read_unlock(&n->lock);
1272 }
1273 
arp_format_pneigh_entry(struct seq_file * seq,struct pneigh_entry * n)1274 static void arp_format_pneigh_entry(struct seq_file *seq,
1275 				    struct pneigh_entry *n)
1276 {
1277 	struct net_device *dev = n->dev;
1278 	int hatype = dev ? dev->type : 0;
1279 	char tbuf[16];
1280 
1281 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1282 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1283 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1284 		   dev ? dev->name : "*");
1285 }
1286 
arp_seq_show(struct seq_file * seq,void * v)1287 static int arp_seq_show(struct seq_file *seq, void *v)
1288 {
1289 	if (v == SEQ_START_TOKEN) {
1290 		seq_puts(seq, "IP address       HW type     Flags       "
1291 			      "HW address            Mask     Device\n");
1292 	} else {
1293 		struct neigh_seq_state *state = seq->private;
1294 
1295 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1296 			arp_format_pneigh_entry(seq, v);
1297 		else
1298 			arp_format_neigh_entry(seq, v);
1299 	}
1300 
1301 	return 0;
1302 }
1303 
arp_seq_start(struct seq_file * seq,loff_t * pos)1304 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1305 {
1306 	/* Don't want to confuse "arp -a" w/ magic entries,
1307 	 * so we tell the generic iterator to skip NUD_NOARP.
1308 	 */
1309 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1310 }
1311 
1312 /* ------------------------------------------------------------------------ */
1313 
1314 static struct seq_operations arp_seq_ops = {
1315 	.start	= arp_seq_start,
1316 	.next	= neigh_seq_next,
1317 	.stop	= neigh_seq_stop,
1318 	.show	= arp_seq_show,
1319 };
1320 
arp_seq_open(struct inode * inode,struct file * file)1321 static int arp_seq_open(struct inode *inode, struct file *file)
1322 {
1323 	struct seq_file *seq;
1324 	int rc = -ENOMEM;
1325 	struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1326 
1327 	if (!s)
1328 		goto out;
1329 
1330 	memset(s, 0, sizeof(*s));
1331 	rc = seq_open(file, &arp_seq_ops);
1332 	if (rc)
1333 		goto out_kfree;
1334 
1335 	seq = file->private_data;
1336 	seq->private = s;
1337 out:
1338 	return rc;
1339 out_kfree:
1340 	kfree(s);
1341 	goto out;
1342 }
1343 
1344 static struct file_operations arp_seq_fops = {
1345 	.owner		= THIS_MODULE,
1346 	.open		= arp_seq_open,
1347 	.read		= seq_read,
1348 	.llseek		= seq_lseek,
1349 	.release	= seq_release_private,
1350 };
1351 #endif /* CONFIG_PROC_FS */
1352 
arp_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1353 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1354 {
1355 	struct net_device *dev = ptr;
1356 
1357 	switch (event) {
1358 	case NETDEV_CHANGEADDR:
1359 		neigh_changeaddr(&arp_tbl, dev);
1360 		rt_cache_flush(0);
1361 		break;
1362 	default:
1363 		break;
1364 	}
1365 
1366 	return NOTIFY_DONE;
1367 }
1368 
1369 struct notifier_block arp_netdev_notifier = {
1370 	.notifier_call = arp_netdev_event,
1371 };
1372 
1373 /* Note, that it is not on notifier chain.
1374    It is necessary, that this routine was called after route cache will be
1375    flushed.
1376  */
arp_ifdown(struct net_device * dev)1377 void arp_ifdown(struct net_device *dev)
1378 {
1379 	neigh_ifdown(&arp_tbl, dev);
1380 }
1381 
1382 
1383 /*
1384  *	Called once on startup.
1385  */
1386 
1387 static struct packet_type arp_packet_type = {
1388 	type:	__constant_htons(ETH_P_ARP),
1389 	func:	arp_rcv,
1390 	data:	(void*) 1, /* understand shared skbs */
1391 };
1392 
arp_init(void)1393 void __init arp_init (void)
1394 {
1395 	neigh_table_init(&arp_tbl);
1396 
1397 	dev_add_pack(&arp_packet_type);
1398 
1399 #ifdef CONFIG_PROC_FS
1400 	if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1401 		panic("unable to create arp proc entry");
1402 #endif
1403 #ifdef CONFIG_SYSCTL
1404 	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4, NET_IPV4_NEIGH, "ipv4");
1405 #endif
1406 	register_netdevice_notifier(&arp_netdev_notifier);
1407 }
1408 
1409 
1410