1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/sysfs.h>
71 #include <linux/types.h>
72 #include <linux/minmax.h>
73 #include <linux/mm.h>
74 #include <linux/cpu.h>
75 #include <linux/kasan.h>
76 #include <linux/percpu.h>
77
78 #include <asm/cpu.h>
79 #include <asm/cpufeature.h>
80 #include <asm/cpu_ops.h>
81 #include <asm/fpsimd.h>
82 #include <asm/hwcap.h>
83 #include <asm/insn.h>
84 #include <asm/kvm_host.h>
85 #include <asm/mmu_context.h>
86 #include <asm/mte.h>
87 #include <asm/processor.h>
88 #include <asm/smp.h>
89 #include <asm/sysreg.h>
90 #include <asm/traps.h>
91 #include <asm/vectors.h>
92 #include <asm/virt.h>
93
94 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
95 static unsigned long elf_hwcap __read_mostly;
96
97 #ifdef CONFIG_COMPAT
98 #define COMPAT_ELF_HWCAP_DEFAULT \
99 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
100 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
101 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
102 COMPAT_HWCAP_LPAE)
103 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
104 unsigned int compat_elf_hwcap2 __read_mostly;
105 #endif
106
107 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
108 EXPORT_SYMBOL(cpu_hwcaps);
109 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
110
111 /* Need also bit for ARM64_CB_PATCH */
112 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121 * support it?
122 */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
128 */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
134 */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 /*
138 * Flag to indicate if we have computed the system wide
139 * capabilities based on the boot time active CPUs. This
140 * will be used to determine if a new booting CPU should
141 * go through the verification process to make sure that it
142 * supports the system capabilities, without using a hotplug
143 * notifier. This is also used to decide if we could use
144 * the fast path for checking constant CPU caps.
145 */
146 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
147 EXPORT_SYMBOL(arm64_const_caps_ready);
finalize_system_capabilities(void)148 static inline void finalize_system_capabilities(void)
149 {
150 static_branch_enable(&arm64_const_caps_ready);
151 }
152
dump_cpu_features(void)153 void dump_cpu_features(void)
154 {
155 /* file-wide pr_fmt adds "CPU features: " prefix */
156 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
157 }
158
159 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
160 EXPORT_SYMBOL(cpu_hwcap_keys);
161
162 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 { \
164 .sign = SIGNED, \
165 .visible = VISIBLE, \
166 .strict = STRICT, \
167 .type = TYPE, \
168 .shift = SHIFT, \
169 .width = WIDTH, \
170 .safe_val = SAFE_VAL, \
171 }
172
173 /* Define a feature with unsigned values */
174 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
175 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
176
177 /* Define a feature with a signed value */
178 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
179 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
180
181 #define ARM64_FTR_END \
182 { \
183 .width = 0, \
184 }
185
186 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
187
188 static bool __system_matches_cap(unsigned int n);
189
190 /*
191 * NOTE: Any changes to the visibility of features should be kept in
192 * sync with the documentation of the CPU feature register ABI.
193 */
194 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
209 ARM64_FTR_END,
210 };
211
212 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
220 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
221 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
222 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
227 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
231 ARM64_FTR_END,
232 };
233
234 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
235 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0),
236 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
237 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_APA3_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
239 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_GPA3_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_WFXT_SHIFT, 4, 0),
242 ARM64_FTR_END,
243 };
244
245 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
256 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
257 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY),
262 ARM64_FTR_END,
263 };
264
265 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
266 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
267 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SME_SHIFT, 4, 0),
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
271 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
272 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
275 ARM64_FTR_END,
276 };
277
278 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
279 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
285 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
287 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
288 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
289 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
290 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
291 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
292 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
293 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
294 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
296 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
297 ARM64_FTR_END,
298 };
299
300 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_FA64_SHIFT, 1, 0),
303 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I16I64_SHIFT, 4, 0),
305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F64F64_SHIFT, 1, 0),
307 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_I8I32_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F16F32_SHIFT, 1, 0),
311 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_B16F32_SHIFT, 1, 0),
313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_F32F32_SHIFT, 1, 0),
315 ARM64_FTR_END,
316 };
317
318 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
319 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
322 /*
323 * Page size not being supported at Stage-2 is not fatal. You
324 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
325 * your favourite nesting hypervisor.
326 *
327 * There is a small corner case where the hypervisor explicitly
328 * advertises a given granule size at Stage-2 (value 2) on some
329 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
330 * vCPUs. Although this is not forbidden by the architecture, it
331 * indicates that the hypervisor is being silly (or buggy).
332 *
333 * We make no effort to cope with this and pretend that if these
334 * fields are inconsistent across vCPUs, then it isn't worth
335 * trying to bring KVM up.
336 */
337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
340 /*
341 * We already refuse to boot CPUs that don't support our configured
342 * page size, so we can only detect mismatches for a page size other
343 * than the one we're currently using. Unfortunately, SoCs like this
344 * exist in the wild so, even though we don't like it, we'll have to go
345 * along with it and treat them as non-strict.
346 */
347 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
348 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
350
351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
352 /* Linux shouldn't care about secure memory */
353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
356 /*
357 * Differing PARange is fine as long as all peripherals and memory are mapped
358 * within the minimum PARange of all CPUs
359 */
360 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
361 ARM64_FTR_END,
362 };
363
364 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
365 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0),
366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
368 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
376 ARM64_FTR_END,
377 };
378
379 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
380 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
381 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
386 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
387 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
390 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
394 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
395 ARM64_FTR_END,
396 };
397
398 static const struct arm64_ftr_bits ftr_ctr[] = {
399 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
400 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
401 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
402 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
403 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
405 /*
406 * Linux can handle differing I-cache policies. Userspace JITs will
407 * make use of *minLine.
408 * If we have differing I-cache policies, report it as the weakest - VIPT.
409 */
410 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
412 ARM64_FTR_END,
413 };
414
415 static struct arm64_ftr_override __ro_after_init no_override = { };
416
417 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
418 .name = "SYS_CTR_EL0",
419 .ftr_bits = ftr_ctr,
420 .override = &no_override,
421 };
422
423 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
424 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
428 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
429 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
430 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
431 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
432 ARM64_FTR_END,
433 };
434
435 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
436 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
437 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
441 /*
442 * We can instantiate multiple PMU instances with different levels
443 * of support.
444 */
445 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
447 ARM64_FTR_END,
448 };
449
450 static const struct arm64_ftr_bits ftr_mvfr2[] = {
451 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
453 ARM64_FTR_END,
454 };
455
456 static const struct arm64_ftr_bits ftr_dczid[] = {
457 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
458 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
459 ARM64_FTR_END,
460 };
461
462 static const struct arm64_ftr_bits ftr_gmid[] = {
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0),
464 ARM64_FTR_END,
465 };
466
467 static const struct arm64_ftr_bits ftr_id_isar0[] = {
468 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
475 ARM64_FTR_END,
476 };
477
478 static const struct arm64_ftr_bits ftr_id_isar5[] = {
479 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
480 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
485 ARM64_FTR_END,
486 };
487
488 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
489 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
490 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
491 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
492 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
496
497 /*
498 * SpecSEI = 1 indicates that the PE might generate an SError on an
499 * external abort on speculative read. It is safe to assume that an
500 * SError might be generated than it will not be. Hence it has been
501 * classified as FTR_HIGHER_SAFE.
502 */
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
504 ARM64_FTR_END,
505 };
506
507 static const struct arm64_ftr_bits ftr_id_isar4[] = {
508 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
510 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
511 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
512 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
513 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
516 ARM64_FTR_END,
517 };
518
519 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
520 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
521 ARM64_FTR_END,
522 };
523
524 static const struct arm64_ftr_bits ftr_id_isar6[] = {
525 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
526 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
527 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
532 ARM64_FTR_END,
533 };
534
535 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
539 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
542 ARM64_FTR_END,
543 };
544
545 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
546 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
547 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
548 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
549 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
550 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
551 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
554 ARM64_FTR_END,
555 };
556
557 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
558 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
559 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
560 ARM64_FTR_END,
561 };
562
563 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
564 /* [31:28] TraceFilt */
565 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_PERFMON_SHIFT, 4, 0),
566 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
567 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
568 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
569 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
570 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
572 ARM64_FTR_END,
573 };
574
575 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
576 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
577 ARM64_FTR_END,
578 };
579
580 static const struct arm64_ftr_bits ftr_zcr[] = {
581 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
582 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */
583 ARM64_FTR_END,
584 };
585
586 static const struct arm64_ftr_bits ftr_smcr[] = {
587 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
588 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
589 ARM64_FTR_END,
590 };
591
592 /*
593 * Common ftr bits for a 32bit register with all hidden, strict
594 * attributes, with 4bit feature fields and a default safe value of
595 * 0. Covers the following 32bit registers:
596 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
597 */
598 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
599 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
600 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
601 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
602 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
603 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
604 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
605 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
606 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
607 ARM64_FTR_END,
608 };
609
610 /* Table for a single 32bit feature value */
611 static const struct arm64_ftr_bits ftr_single32[] = {
612 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
613 ARM64_FTR_END,
614 };
615
616 static const struct arm64_ftr_bits ftr_raz[] = {
617 ARM64_FTR_END,
618 };
619
620 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
621 .sys_id = id, \
622 .reg = &(struct arm64_ftr_reg){ \
623 .name = id_str, \
624 .override = (ovr), \
625 .ftr_bits = &((table)[0]), \
626 }}
627
628 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
629 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
630
631 #define ARM64_FTR_REG(id, table) \
632 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
633
634 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
635 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
636 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
637 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
638
639 static const struct __ftr_reg_entry {
640 u32 sys_id;
641 struct arm64_ftr_reg *reg;
642 } arm64_ftr_regs[] = {
643
644 /* Op1 = 0, CRn = 0, CRm = 1 */
645 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
646 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
647 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
648 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
649 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
650 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
651 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
652
653 /* Op1 = 0, CRn = 0, CRm = 2 */
654 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
655 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
656 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
657 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
658 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
659 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
660 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
661 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
662
663 /* Op1 = 0, CRn = 0, CRm = 3 */
664 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
665 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
666 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
667 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
668 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
669 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
670
671 /* Op1 = 0, CRn = 0, CRm = 4 */
672 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
673 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
674 &id_aa64pfr1_override),
675 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
676 ARM64_FTR_REG(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0),
677
678 /* Op1 = 0, CRn = 0, CRm = 5 */
679 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
680 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
681
682 /* Op1 = 0, CRn = 0, CRm = 6 */
683 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
684 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
685 &id_aa64isar1_override),
686 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
687 &id_aa64isar2_override),
688
689 /* Op1 = 0, CRn = 0, CRm = 7 */
690 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
691 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
692 &id_aa64mmfr1_override),
693 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
694
695 /* Op1 = 0, CRn = 1, CRm = 2 */
696 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
697 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
698
699 /* Op1 = 1, CRn = 0, CRm = 0 */
700 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
701
702 /* Op1 = 3, CRn = 0, CRm = 0 */
703 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
704 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
705
706 /* Op1 = 3, CRn = 14, CRm = 0 */
707 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
708 };
709
search_cmp_ftr_reg(const void * id,const void * regp)710 static int search_cmp_ftr_reg(const void *id, const void *regp)
711 {
712 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
713 }
714
715 /*
716 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
717 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
718 * ascending order of sys_id, we use binary search to find a matching
719 * entry.
720 *
721 * returns - Upon success, matching ftr_reg entry for id.
722 * - NULL on failure. It is upto the caller to decide
723 * the impact of a failure.
724 */
get_arm64_ftr_reg_nowarn(u32 sys_id)725 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
726 {
727 const struct __ftr_reg_entry *ret;
728
729 ret = bsearch((const void *)(unsigned long)sys_id,
730 arm64_ftr_regs,
731 ARRAY_SIZE(arm64_ftr_regs),
732 sizeof(arm64_ftr_regs[0]),
733 search_cmp_ftr_reg);
734 if (ret)
735 return ret->reg;
736 return NULL;
737 }
738
739 /*
740 * get_arm64_ftr_reg - Looks up a feature register entry using
741 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
742 *
743 * returns - Upon success, matching ftr_reg entry for id.
744 * - NULL on failure but with an WARN_ON().
745 */
get_arm64_ftr_reg(u32 sys_id)746 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
747 {
748 struct arm64_ftr_reg *reg;
749
750 reg = get_arm64_ftr_reg_nowarn(sys_id);
751
752 /*
753 * Requesting a non-existent register search is an error. Warn
754 * and let the caller handle it.
755 */
756 WARN_ON(!reg);
757 return reg;
758 }
759
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)760 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
761 s64 ftr_val)
762 {
763 u64 mask = arm64_ftr_mask(ftrp);
764
765 reg &= ~mask;
766 reg |= (ftr_val << ftrp->shift) & mask;
767 return reg;
768 }
769
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)770 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
771 s64 cur)
772 {
773 s64 ret = 0;
774
775 switch (ftrp->type) {
776 case FTR_EXACT:
777 ret = ftrp->safe_val;
778 break;
779 case FTR_LOWER_SAFE:
780 ret = min(new, cur);
781 break;
782 case FTR_HIGHER_OR_ZERO_SAFE:
783 if (!cur || !new)
784 break;
785 fallthrough;
786 case FTR_HIGHER_SAFE:
787 ret = max(new, cur);
788 break;
789 default:
790 BUG();
791 }
792
793 return ret;
794 }
795
sort_ftr_regs(void)796 static void __init sort_ftr_regs(void)
797 {
798 unsigned int i;
799
800 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
801 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
802 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
803 unsigned int j = 0;
804
805 /*
806 * Features here must be sorted in descending order with respect
807 * to their shift values and should not overlap with each other.
808 */
809 for (; ftr_bits->width != 0; ftr_bits++, j++) {
810 unsigned int width = ftr_reg->ftr_bits[j].width;
811 unsigned int shift = ftr_reg->ftr_bits[j].shift;
812 unsigned int prev_shift;
813
814 WARN((shift + width) > 64,
815 "%s has invalid feature at shift %d\n",
816 ftr_reg->name, shift);
817
818 /*
819 * Skip the first feature. There is nothing to
820 * compare against for now.
821 */
822 if (j == 0)
823 continue;
824
825 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
826 WARN((shift + width) > prev_shift,
827 "%s has feature overlap at shift %d\n",
828 ftr_reg->name, shift);
829 }
830
831 /*
832 * Skip the first register. There is nothing to
833 * compare against for now.
834 */
835 if (i == 0)
836 continue;
837 /*
838 * Registers here must be sorted in ascending order with respect
839 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
840 * to work correctly.
841 */
842 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
843 }
844 }
845
846 /*
847 * Initialise the CPU feature register from Boot CPU values.
848 * Also initiliases the strict_mask for the register.
849 * Any bits that are not covered by an arm64_ftr_bits entry are considered
850 * RES0 for the system-wide value, and must strictly match.
851 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)852 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
853 {
854 u64 val = 0;
855 u64 strict_mask = ~0x0ULL;
856 u64 user_mask = 0;
857 u64 valid_mask = 0;
858
859 const struct arm64_ftr_bits *ftrp;
860 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
861
862 if (!reg)
863 return;
864
865 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
866 u64 ftr_mask = arm64_ftr_mask(ftrp);
867 s64 ftr_new = arm64_ftr_value(ftrp, new);
868 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
869
870 if ((ftr_mask & reg->override->mask) == ftr_mask) {
871 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
872 char *str = NULL;
873
874 if (ftr_ovr != tmp) {
875 /* Unsafe, remove the override */
876 reg->override->mask &= ~ftr_mask;
877 reg->override->val &= ~ftr_mask;
878 tmp = ftr_ovr;
879 str = "ignoring override";
880 } else if (ftr_new != tmp) {
881 /* Override was valid */
882 ftr_new = tmp;
883 str = "forced";
884 } else if (ftr_ovr == tmp) {
885 /* Override was the safe value */
886 str = "already set";
887 }
888
889 if (str)
890 pr_warn("%s[%d:%d]: %s to %llx\n",
891 reg->name,
892 ftrp->shift + ftrp->width - 1,
893 ftrp->shift, str, tmp);
894 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
895 reg->override->val &= ~ftr_mask;
896 pr_warn("%s[%d:%d]: impossible override, ignored\n",
897 reg->name,
898 ftrp->shift + ftrp->width - 1,
899 ftrp->shift);
900 }
901
902 val = arm64_ftr_set_value(ftrp, val, ftr_new);
903
904 valid_mask |= ftr_mask;
905 if (!ftrp->strict)
906 strict_mask &= ~ftr_mask;
907 if (ftrp->visible)
908 user_mask |= ftr_mask;
909 else
910 reg->user_val = arm64_ftr_set_value(ftrp,
911 reg->user_val,
912 ftrp->safe_val);
913 }
914
915 val &= valid_mask;
916
917 reg->sys_val = val;
918 reg->strict_mask = strict_mask;
919 reg->user_mask = user_mask;
920 }
921
922 extern const struct arm64_cpu_capabilities arm64_errata[];
923 static const struct arm64_cpu_capabilities arm64_features[];
924
925 static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)926 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
927 {
928 for (; caps->matches; caps++) {
929 if (WARN(caps->capability >= ARM64_NCAPS,
930 "Invalid capability %d\n", caps->capability))
931 continue;
932 if (WARN(cpu_hwcaps_ptrs[caps->capability],
933 "Duplicate entry for capability %d\n",
934 caps->capability))
935 continue;
936 cpu_hwcaps_ptrs[caps->capability] = caps;
937 }
938 }
939
init_cpu_hwcaps_indirect_list(void)940 static void __init init_cpu_hwcaps_indirect_list(void)
941 {
942 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
943 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
944 }
945
946 static void __init setup_boot_cpu_capabilities(void);
947
init_32bit_cpu_features(struct cpuinfo_32bit * info)948 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
949 {
950 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
951 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
952 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
953 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
954 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
955 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
956 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
957 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
958 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
959 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
960 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
961 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
962 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
963 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
964 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
965 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
966 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
967 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
968 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
969 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
970 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
971 }
972
init_cpu_features(struct cpuinfo_arm64 * info)973 void __init init_cpu_features(struct cpuinfo_arm64 *info)
974 {
975 /* Before we start using the tables, make sure it is sorted */
976 sort_ftr_regs();
977
978 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
979 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
980 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
981 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
982 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
983 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
984 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
985 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
986 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
987 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
988 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
989 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
990 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
991 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
992 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
993
994 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
995 init_32bit_cpu_features(&info->aarch32);
996
997 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
998 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
999 vec_init_vq_map(ARM64_VEC_SVE);
1000 }
1001
1002 if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1003 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1004 if (IS_ENABLED(CONFIG_ARM64_SME))
1005 vec_init_vq_map(ARM64_VEC_SME);
1006 }
1007
1008 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1009 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1010
1011 /*
1012 * Initialize the indirect array of CPU hwcaps capabilities pointers
1013 * before we handle the boot CPU below.
1014 */
1015 init_cpu_hwcaps_indirect_list();
1016
1017 /*
1018 * Detect and enable early CPU capabilities based on the boot CPU,
1019 * after we have initialised the CPU feature infrastructure.
1020 */
1021 setup_boot_cpu_capabilities();
1022 }
1023
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)1024 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1025 {
1026 const struct arm64_ftr_bits *ftrp;
1027
1028 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1029 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1030 s64 ftr_new = arm64_ftr_value(ftrp, new);
1031
1032 if (ftr_cur == ftr_new)
1033 continue;
1034 /* Find a safe value */
1035 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1036 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1037 }
1038
1039 }
1040
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)1041 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1042 {
1043 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1044
1045 if (!regp)
1046 return 0;
1047
1048 update_cpu_ftr_reg(regp, val);
1049 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1050 return 0;
1051 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1052 regp->name, boot, cpu, val);
1053 return 1;
1054 }
1055
relax_cpu_ftr_reg(u32 sys_id,int field)1056 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1057 {
1058 const struct arm64_ftr_bits *ftrp;
1059 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1060
1061 if (!regp)
1062 return;
1063
1064 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1065 if (ftrp->shift == field) {
1066 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1067 break;
1068 }
1069 }
1070
1071 /* Bogus field? */
1072 WARN_ON(!ftrp->width);
1073 }
1074
lazy_init_32bit_cpu_features(struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1075 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1076 struct cpuinfo_arm64 *boot)
1077 {
1078 static bool boot_cpu_32bit_regs_overridden = false;
1079
1080 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1081 return;
1082
1083 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1084 return;
1085
1086 boot->aarch32 = info->aarch32;
1087 init_32bit_cpu_features(&boot->aarch32);
1088 boot_cpu_32bit_regs_overridden = true;
1089 }
1090
update_32bit_cpu_features(int cpu,struct cpuinfo_32bit * info,struct cpuinfo_32bit * boot)1091 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1092 struct cpuinfo_32bit *boot)
1093 {
1094 int taint = 0;
1095 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1096
1097 /*
1098 * If we don't have AArch32 at EL1, then relax the strictness of
1099 * EL1-dependent register fields to avoid spurious sanity check fails.
1100 */
1101 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1102 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
1103 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
1104 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
1105 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
1106 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
1107 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
1108 }
1109
1110 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1111 info->reg_id_dfr0, boot->reg_id_dfr0);
1112 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1113 info->reg_id_dfr1, boot->reg_id_dfr1);
1114 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1115 info->reg_id_isar0, boot->reg_id_isar0);
1116 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1117 info->reg_id_isar1, boot->reg_id_isar1);
1118 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1119 info->reg_id_isar2, boot->reg_id_isar2);
1120 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1121 info->reg_id_isar3, boot->reg_id_isar3);
1122 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1123 info->reg_id_isar4, boot->reg_id_isar4);
1124 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1125 info->reg_id_isar5, boot->reg_id_isar5);
1126 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1127 info->reg_id_isar6, boot->reg_id_isar6);
1128
1129 /*
1130 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1131 * ACTLR formats could differ across CPUs and therefore would have to
1132 * be trapped for virtualization anyway.
1133 */
1134 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1135 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1136 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1137 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1138 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1139 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1140 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1141 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1142 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1143 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1144 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1145 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1146 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1147 info->reg_id_pfr0, boot->reg_id_pfr0);
1148 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1149 info->reg_id_pfr1, boot->reg_id_pfr1);
1150 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1151 info->reg_id_pfr2, boot->reg_id_pfr2);
1152 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1153 info->reg_mvfr0, boot->reg_mvfr0);
1154 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1155 info->reg_mvfr1, boot->reg_mvfr1);
1156 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1157 info->reg_mvfr2, boot->reg_mvfr2);
1158
1159 return taint;
1160 }
1161
1162 /*
1163 * Update system wide CPU feature registers with the values from a
1164 * non-boot CPU. Also performs SANITY checks to make sure that there
1165 * aren't any insane variations from that of the boot CPU.
1166 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1167 void update_cpu_features(int cpu,
1168 struct cpuinfo_arm64 *info,
1169 struct cpuinfo_arm64 *boot)
1170 {
1171 int taint = 0;
1172
1173 /*
1174 * The kernel can handle differing I-cache policies, but otherwise
1175 * caches should look identical. Userspace JITs will make use of
1176 * *minLine.
1177 */
1178 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1179 info->reg_ctr, boot->reg_ctr);
1180
1181 /*
1182 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1183 * could result in too much or too little memory being zeroed if a
1184 * process is preempted and migrated between CPUs.
1185 */
1186 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1187 info->reg_dczid, boot->reg_dczid);
1188
1189 /* If different, timekeeping will be broken (especially with KVM) */
1190 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1191 info->reg_cntfrq, boot->reg_cntfrq);
1192
1193 /*
1194 * The kernel uses self-hosted debug features and expects CPUs to
1195 * support identical debug features. We presently need CTX_CMPs, WRPs,
1196 * and BRPs to be identical.
1197 * ID_AA64DFR1 is currently RES0.
1198 */
1199 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1200 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1201 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1202 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1203 /*
1204 * Even in big.LITTLE, processors should be identical instruction-set
1205 * wise.
1206 */
1207 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1208 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1209 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1210 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1211 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1212 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1213
1214 /*
1215 * Differing PARange support is fine as long as all peripherals and
1216 * memory are mapped within the minimum PARange of all CPUs.
1217 * Linux should not care about secure memory.
1218 */
1219 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1220 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1221 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1222 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1223 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1224 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1225
1226 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1227 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1228 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1229 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1230
1231 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1232 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1233
1234 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1235 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1236
1237 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1238 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1239 info->reg_zcr, boot->reg_zcr);
1240
1241 /* Probe vector lengths, unless we already gave up on SVE */
1242 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1243 !system_capabilities_finalized())
1244 vec_update_vq_map(ARM64_VEC_SVE);
1245 }
1246
1247 if (id_aa64pfr1_sme(info->reg_id_aa64pfr1)) {
1248 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1249 info->reg_smcr, boot->reg_smcr);
1250
1251 /* Probe vector lengths, unless we already gave up on SME */
1252 if (id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1)) &&
1253 !system_capabilities_finalized())
1254 vec_update_vq_map(ARM64_VEC_SME);
1255 }
1256
1257 /*
1258 * The kernel uses the LDGM/STGM instructions and the number of tags
1259 * they read/write depends on the GMID_EL1.BS field. Check that the
1260 * value is the same on all CPUs.
1261 */
1262 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1263 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1264 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1265 info->reg_gmid, boot->reg_gmid);
1266 }
1267
1268 /*
1269 * If we don't have AArch32 at all then skip the checks entirely
1270 * as the register values may be UNKNOWN and we're not going to be
1271 * using them for anything.
1272 *
1273 * This relies on a sanitised view of the AArch64 ID registers
1274 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1275 */
1276 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1277 lazy_init_32bit_cpu_features(info, boot);
1278 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1279 &boot->aarch32);
1280 }
1281
1282 /*
1283 * Mismatched CPU features are a recipe for disaster. Don't even
1284 * pretend to support them.
1285 */
1286 if (taint) {
1287 pr_warn_once("Unsupported CPU feature variation detected.\n");
1288 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1289 }
1290 }
1291
read_sanitised_ftr_reg(u32 id)1292 u64 read_sanitised_ftr_reg(u32 id)
1293 {
1294 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1295
1296 if (!regp)
1297 return 0;
1298 return regp->sys_val;
1299 }
1300 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1301
1302 #define read_sysreg_case(r) \
1303 case r: val = read_sysreg_s(r); break;
1304
1305 /*
1306 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1307 * Read the system register on the current CPU
1308 */
__read_sysreg_by_encoding(u32 sys_id)1309 u64 __read_sysreg_by_encoding(u32 sys_id)
1310 {
1311 struct arm64_ftr_reg *regp;
1312 u64 val;
1313
1314 switch (sys_id) {
1315 read_sysreg_case(SYS_ID_PFR0_EL1);
1316 read_sysreg_case(SYS_ID_PFR1_EL1);
1317 read_sysreg_case(SYS_ID_PFR2_EL1);
1318 read_sysreg_case(SYS_ID_DFR0_EL1);
1319 read_sysreg_case(SYS_ID_DFR1_EL1);
1320 read_sysreg_case(SYS_ID_MMFR0_EL1);
1321 read_sysreg_case(SYS_ID_MMFR1_EL1);
1322 read_sysreg_case(SYS_ID_MMFR2_EL1);
1323 read_sysreg_case(SYS_ID_MMFR3_EL1);
1324 read_sysreg_case(SYS_ID_MMFR4_EL1);
1325 read_sysreg_case(SYS_ID_MMFR5_EL1);
1326 read_sysreg_case(SYS_ID_ISAR0_EL1);
1327 read_sysreg_case(SYS_ID_ISAR1_EL1);
1328 read_sysreg_case(SYS_ID_ISAR2_EL1);
1329 read_sysreg_case(SYS_ID_ISAR3_EL1);
1330 read_sysreg_case(SYS_ID_ISAR4_EL1);
1331 read_sysreg_case(SYS_ID_ISAR5_EL1);
1332 read_sysreg_case(SYS_ID_ISAR6_EL1);
1333 read_sysreg_case(SYS_MVFR0_EL1);
1334 read_sysreg_case(SYS_MVFR1_EL1);
1335 read_sysreg_case(SYS_MVFR2_EL1);
1336
1337 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1338 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1339 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1340 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1341 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1342 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1343 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1344 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1345 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1346 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1347 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1348 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1349
1350 read_sysreg_case(SYS_CNTFRQ_EL0);
1351 read_sysreg_case(SYS_CTR_EL0);
1352 read_sysreg_case(SYS_DCZID_EL0);
1353
1354 default:
1355 BUG();
1356 return 0;
1357 }
1358
1359 regp = get_arm64_ftr_reg(sys_id);
1360 if (regp) {
1361 val &= ~regp->override->mask;
1362 val |= (regp->override->val & regp->override->mask);
1363 }
1364
1365 return val;
1366 }
1367
1368 #include <linux/irqchip/arm-gic-v3.h>
1369
1370 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1371 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1372 {
1373 int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1374 entry->field_width,
1375 entry->sign);
1376
1377 return val >= entry->min_field_value;
1378 }
1379
1380 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1381 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1382 {
1383 u64 val;
1384
1385 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1386 if (scope == SCOPE_SYSTEM)
1387 val = read_sanitised_ftr_reg(entry->sys_reg);
1388 else
1389 val = __read_sysreg_by_encoding(entry->sys_reg);
1390
1391 return feature_matches(val, entry);
1392 }
1393
system_32bit_el0_cpumask(void)1394 const struct cpumask *system_32bit_el0_cpumask(void)
1395 {
1396 if (!system_supports_32bit_el0())
1397 return cpu_none_mask;
1398
1399 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1400 return cpu_32bit_el0_mask;
1401
1402 return cpu_possible_mask;
1403 }
1404
parse_32bit_el0_param(char * str)1405 static int __init parse_32bit_el0_param(char *str)
1406 {
1407 allow_mismatched_32bit_el0 = true;
1408 return 0;
1409 }
1410 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1411
aarch32_el0_show(struct device * dev,struct device_attribute * attr,char * buf)1412 static ssize_t aarch32_el0_show(struct device *dev,
1413 struct device_attribute *attr, char *buf)
1414 {
1415 const struct cpumask *mask = system_32bit_el0_cpumask();
1416
1417 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1418 }
1419 static const DEVICE_ATTR_RO(aarch32_el0);
1420
aarch32_el0_sysfs_init(void)1421 static int __init aarch32_el0_sysfs_init(void)
1422 {
1423 if (!allow_mismatched_32bit_el0)
1424 return 0;
1425
1426 return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0);
1427 }
1428 device_initcall(aarch32_el0_sysfs_init);
1429
has_32bit_el0(const struct arm64_cpu_capabilities * entry,int scope)1430 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1431 {
1432 if (!has_cpuid_feature(entry, scope))
1433 return allow_mismatched_32bit_el0;
1434
1435 if (scope == SCOPE_SYSTEM)
1436 pr_info("detected: 32-bit EL0 Support\n");
1437
1438 return true;
1439 }
1440
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1441 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1442 {
1443 bool has_sre;
1444
1445 if (!has_cpuid_feature(entry, scope))
1446 return false;
1447
1448 has_sre = gic_enable_sre();
1449 if (!has_sre)
1450 pr_warn_once("%s present but disabled by higher exception level\n",
1451 entry->desc);
1452
1453 return has_sre;
1454 }
1455
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry,int __unused)1456 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1457 {
1458 u32 midr = read_cpuid_id();
1459
1460 /* Cavium ThunderX pass 1.x and 2.x */
1461 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1462 MIDR_CPU_VAR_REV(0, 0),
1463 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1464 }
1465
has_no_fpsimd(const struct arm64_cpu_capabilities * entry,int __unused)1466 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1467 {
1468 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1469
1470 return cpuid_feature_extract_signed_field(pfr0,
1471 ID_AA64PFR0_FP_SHIFT) < 0;
1472 }
1473
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1474 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1475 int scope)
1476 {
1477 u64 ctr;
1478
1479 if (scope == SCOPE_SYSTEM)
1480 ctr = arm64_ftr_reg_ctrel0.sys_val;
1481 else
1482 ctr = read_cpuid_effective_cachetype();
1483
1484 return ctr & BIT(CTR_IDC_SHIFT);
1485 }
1486
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1487 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1488 {
1489 /*
1490 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1491 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1492 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1493 * value.
1494 */
1495 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1496 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1497 }
1498
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1499 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1500 int scope)
1501 {
1502 u64 ctr;
1503
1504 if (scope == SCOPE_SYSTEM)
1505 ctr = arm64_ftr_reg_ctrel0.sys_val;
1506 else
1507 ctr = read_cpuid_cachetype();
1508
1509 return ctr & BIT(CTR_DIC_SHIFT);
1510 }
1511
1512 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1513 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1514 {
1515 /*
1516 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1517 * may share TLB entries with a CPU stuck in the crashed
1518 * kernel.
1519 */
1520 if (is_kdump_kernel())
1521 return false;
1522
1523 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1524 return false;
1525
1526 return has_cpuid_feature(entry, scope);
1527 }
1528
1529 /*
1530 * This check is triggered during the early boot before the cpufeature
1531 * is initialised. Checking the status on the local CPU allows the boot
1532 * CPU to detect the need for non-global mappings and thus avoiding a
1533 * pagetable re-write after all the CPUs are booted. This check will be
1534 * anyway run on individual CPUs, allowing us to get the consistent
1535 * state once the SMP CPUs are up and thus make the switch to non-global
1536 * mappings if required.
1537 */
kaslr_requires_kpti(void)1538 bool kaslr_requires_kpti(void)
1539 {
1540 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1541 return false;
1542
1543 /*
1544 * E0PD does a similar job to KPTI so can be used instead
1545 * where available.
1546 */
1547 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1548 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1549 if (cpuid_feature_extract_unsigned_field(mmfr2,
1550 ID_AA64MMFR2_E0PD_SHIFT))
1551 return false;
1552 }
1553
1554 /*
1555 * Systems affected by Cavium erratum 24756 are incompatible
1556 * with KPTI.
1557 */
1558 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1559 extern const struct midr_range cavium_erratum_27456_cpus[];
1560
1561 if (is_midr_in_range_list(read_cpuid_id(),
1562 cavium_erratum_27456_cpus))
1563 return false;
1564 }
1565
1566 return kaslr_offset() > 0;
1567 }
1568
1569 static bool __meltdown_safe = true;
1570 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1571
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1572 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1573 int scope)
1574 {
1575 /* List of CPUs that are not vulnerable and don't need KPTI */
1576 static const struct midr_range kpti_safe_list[] = {
1577 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1578 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1579 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1580 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1581 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1582 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1583 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1584 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1585 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1586 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1587 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1588 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1589 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1590 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1591 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1592 { /* sentinel */ }
1593 };
1594 char const *str = "kpti command line option";
1595 bool meltdown_safe;
1596
1597 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1598
1599 /* Defer to CPU feature registers */
1600 if (has_cpuid_feature(entry, scope))
1601 meltdown_safe = true;
1602
1603 if (!meltdown_safe)
1604 __meltdown_safe = false;
1605
1606 /*
1607 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1608 * ThunderX leads to apparent I-cache corruption of kernel text, which
1609 * ends as well as you might imagine. Don't even try. We cannot rely
1610 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1611 * because cpucap detection order may change. However, since we know
1612 * affected CPUs are always in a homogeneous configuration, it is
1613 * safe to rely on this_cpu_has_cap() here.
1614 */
1615 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1616 str = "ARM64_WORKAROUND_CAVIUM_27456";
1617 __kpti_forced = -1;
1618 }
1619
1620 /* Useful for KASLR robustness */
1621 if (kaslr_requires_kpti()) {
1622 if (!__kpti_forced) {
1623 str = "KASLR";
1624 __kpti_forced = 1;
1625 }
1626 }
1627
1628 if (cpu_mitigations_off() && !__kpti_forced) {
1629 str = "mitigations=off";
1630 __kpti_forced = -1;
1631 }
1632
1633 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1634 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1635 return false;
1636 }
1637
1638 /* Forced? */
1639 if (__kpti_forced) {
1640 pr_info_once("kernel page table isolation forced %s by %s\n",
1641 __kpti_forced > 0 ? "ON" : "OFF", str);
1642 return __kpti_forced > 0;
1643 }
1644
1645 return !meltdown_safe;
1646 }
1647
1648 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1649 static void __nocfi
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1650 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1651 {
1652 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1653 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1654 kpti_remap_fn *remap_fn;
1655
1656 int cpu = smp_processor_id();
1657
1658 if (__this_cpu_read(this_cpu_vector) == vectors) {
1659 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1660
1661 __this_cpu_write(this_cpu_vector, v);
1662 }
1663
1664 /*
1665 * We don't need to rewrite the page-tables if either we've done
1666 * it already or we have KASLR enabled and therefore have not
1667 * created any global mappings at all.
1668 */
1669 if (arm64_use_ng_mappings)
1670 return;
1671
1672 remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings));
1673
1674 cpu_install_idmap();
1675 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1676 cpu_uninstall_idmap();
1677
1678 if (!cpu)
1679 arm64_use_ng_mappings = true;
1680 }
1681 #else
1682 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1683 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1684 {
1685 }
1686 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1687
parse_kpti(char * str)1688 static int __init parse_kpti(char *str)
1689 {
1690 bool enabled;
1691 int ret = strtobool(str, &enabled);
1692
1693 if (ret)
1694 return ret;
1695
1696 __kpti_forced = enabled ? 1 : -1;
1697 return 0;
1698 }
1699 early_param("kpti", parse_kpti);
1700
1701 #ifdef CONFIG_ARM64_HW_AFDBM
__cpu_enable_hw_dbm(void)1702 static inline void __cpu_enable_hw_dbm(void)
1703 {
1704 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1705
1706 write_sysreg(tcr, tcr_el1);
1707 isb();
1708 local_flush_tlb_all();
1709 }
1710
cpu_has_broken_dbm(void)1711 static bool cpu_has_broken_dbm(void)
1712 {
1713 /* List of CPUs which have broken DBM support. */
1714 static const struct midr_range cpus[] = {
1715 #ifdef CONFIG_ARM64_ERRATUM_1024718
1716 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1717 /* Kryo4xx Silver (rdpe => r1p0) */
1718 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1719 #endif
1720 #ifdef CONFIG_ARM64_ERRATUM_2051678
1721 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1722 #endif
1723 {},
1724 };
1725
1726 return is_midr_in_range_list(read_cpuid_id(), cpus);
1727 }
1728
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1729 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1730 {
1731 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1732 !cpu_has_broken_dbm();
1733 }
1734
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)1735 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1736 {
1737 if (cpu_can_use_dbm(cap))
1738 __cpu_enable_hw_dbm();
1739 }
1740
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)1741 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1742 int __unused)
1743 {
1744 static bool detected = false;
1745 /*
1746 * DBM is a non-conflicting feature. i.e, the kernel can safely
1747 * run a mix of CPUs with and without the feature. So, we
1748 * unconditionally enable the capability to allow any late CPU
1749 * to use the feature. We only enable the control bits on the
1750 * CPU, if it actually supports.
1751 *
1752 * We have to make sure we print the "feature" detection only
1753 * when at least one CPU actually uses it. So check if this CPU
1754 * can actually use it and print the message exactly once.
1755 *
1756 * This is safe as all CPUs (including secondary CPUs - due to the
1757 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1758 * goes through the "matches" check exactly once. Also if a CPU
1759 * matches the criteria, it is guaranteed that the CPU will turn
1760 * the DBM on, as the capability is unconditionally enabled.
1761 */
1762 if (!detected && cpu_can_use_dbm(cap)) {
1763 detected = true;
1764 pr_info("detected: Hardware dirty bit management\n");
1765 }
1766
1767 return true;
1768 }
1769
1770 #endif
1771
1772 #ifdef CONFIG_ARM64_AMU_EXTN
1773
1774 /*
1775 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1776 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1777 * information regarding all the events that it supports. When a CPU bit is
1778 * set in the cpumask, the user of this feature can only rely on the presence
1779 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1780 * counters are enabled or access to these counters is enabled by code
1781 * executed at higher exception levels (firmware).
1782 */
1783 static struct cpumask amu_cpus __read_mostly;
1784
cpu_has_amu_feat(int cpu)1785 bool cpu_has_amu_feat(int cpu)
1786 {
1787 return cpumask_test_cpu(cpu, &amu_cpus);
1788 }
1789
get_cpu_with_amu_feat(void)1790 int get_cpu_with_amu_feat(void)
1791 {
1792 return cpumask_any(&amu_cpus);
1793 }
1794
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)1795 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1796 {
1797 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1798 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1799 smp_processor_id());
1800 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1801
1802 /* 0 reference values signal broken/disabled counters */
1803 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1804 update_freq_counters_refs();
1805 }
1806 }
1807
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)1808 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1809 int __unused)
1810 {
1811 /*
1812 * The AMU extension is a non-conflicting feature: the kernel can
1813 * safely run a mix of CPUs with and without support for the
1814 * activity monitors extension. Therefore, unconditionally enable
1815 * the capability to allow any late CPU to use the feature.
1816 *
1817 * With this feature unconditionally enabled, the cpu_enable
1818 * function will be called for all CPUs that match the criteria,
1819 * including secondary and hotplugged, marking this feature as
1820 * present on that respective CPU. The enable function will also
1821 * print a detection message.
1822 */
1823
1824 return true;
1825 }
1826 #else
get_cpu_with_amu_feat(void)1827 int get_cpu_with_amu_feat(void)
1828 {
1829 return nr_cpu_ids;
1830 }
1831 #endif
1832
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)1833 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1834 {
1835 return is_kernel_in_hyp_mode();
1836 }
1837
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)1838 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1839 {
1840 /*
1841 * Copy register values that aren't redirected by hardware.
1842 *
1843 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1844 * this value to tpidr_el2 before we patch the code. Once we've done
1845 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1846 * do anything here.
1847 */
1848 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1849 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1850 }
1851
1852 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)1853 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1854 {
1855 /*
1856 * We modify PSTATE. This won't work from irq context as the PSTATE
1857 * is discarded once we return from the exception.
1858 */
1859 WARN_ON_ONCE(in_interrupt());
1860
1861 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1862 set_pstate_pan(1);
1863 }
1864 #endif /* CONFIG_ARM64_PAN */
1865
1866 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)1867 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1868 {
1869 /* Firmware may have left a deferred SError in this register. */
1870 write_sysreg_s(0, SYS_DISR_EL1);
1871 }
1872 #endif /* CONFIG_ARM64_RAS_EXTN */
1873
1874 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)1875 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1876 {
1877 int boot_val, sec_val;
1878
1879 /* We don't expect to be called with SCOPE_SYSTEM */
1880 WARN_ON(scope == SCOPE_SYSTEM);
1881 /*
1882 * The ptr-auth feature levels are not intercompatible with lower
1883 * levels. Hence we must match ptr-auth feature level of the secondary
1884 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1885 * from the sanitised register whereas direct register read is done for
1886 * the secondary CPUs.
1887 * The sanitised feature state is guaranteed to match that of the
1888 * boot CPU as a mismatched secondary CPU is parked before it gets
1889 * a chance to update the state, with the capability.
1890 */
1891 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1892 entry->field_pos, entry->sign);
1893 if (scope & SCOPE_BOOT_CPU)
1894 return boot_val >= entry->min_field_value;
1895 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1896 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1897 entry->field_pos, entry->sign);
1898 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
1899 }
1900
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)1901 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1902 int scope)
1903 {
1904 bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1905 bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
1906 bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
1907
1908 return apa || apa3 || api;
1909 }
1910
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)1911 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1912 int __unused)
1913 {
1914 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1915 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
1916 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
1917
1918 return gpa || gpa3 || gpi;
1919 }
1920 #endif /* CONFIG_ARM64_PTR_AUTH */
1921
1922 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)1923 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1924 {
1925 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1926 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1927 }
1928 #endif /* CONFIG_ARM64_E0PD */
1929
1930 #ifdef CONFIG_ARM64_PSEUDO_NMI
1931 static bool enable_pseudo_nmi;
1932
early_enable_pseudo_nmi(char * p)1933 static int __init early_enable_pseudo_nmi(char *p)
1934 {
1935 return strtobool(p, &enable_pseudo_nmi);
1936 }
1937 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1938
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)1939 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1940 int scope)
1941 {
1942 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1943 }
1944 #endif
1945
1946 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)1947 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1948 {
1949 /*
1950 * Use of X16/X17 for tail-calls and trampolines that jump to
1951 * function entry points using BR is a requirement for
1952 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1953 * So, be strict and forbid other BRs using other registers to
1954 * jump onto a PACIxSP instruction:
1955 */
1956 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1957 isb();
1958 }
1959 #endif /* CONFIG_ARM64_BTI */
1960
1961 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)1962 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1963 {
1964 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
1965 isb();
1966
1967 /*
1968 * Clear the tags in the zero page. This needs to be done via the
1969 * linear map which has the Tagged attribute.
1970 */
1971 if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1972 mte_clear_page_tags(lm_alias(empty_zero_page));
1973
1974 kasan_init_hw_tags_cpu();
1975 }
1976 #endif /* CONFIG_ARM64_MTE */
1977
elf_hwcap_fixup(void)1978 static void elf_hwcap_fixup(void)
1979 {
1980 #ifdef CONFIG_ARM64_ERRATUM_1742098
1981 if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
1982 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
1983 #endif /* ARM64_ERRATUM_1742098 */
1984 }
1985
1986 #ifdef CONFIG_KVM
is_kvm_protected_mode(const struct arm64_cpu_capabilities * entry,int __unused)1987 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1988 {
1989 return kvm_get_mode() == KVM_MODE_PROTECTED;
1990 }
1991 #endif /* CONFIG_KVM */
1992
1993 /* Internal helper functions to match cpu capability type */
1994 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)1995 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1996 {
1997 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1998 }
1999
2000 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)2001 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2002 {
2003 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2004 }
2005
2006 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)2007 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2008 {
2009 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2010 }
2011
2012 static const struct arm64_cpu_capabilities arm64_features[] = {
2013 {
2014 .desc = "GIC system register CPU interface",
2015 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
2016 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2017 .matches = has_useable_gicv3_cpuif,
2018 .sys_reg = SYS_ID_AA64PFR0_EL1,
2019 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2020 .field_width = 4,
2021 .sign = FTR_UNSIGNED,
2022 .min_field_value = 1,
2023 },
2024 {
2025 .desc = "Enhanced Counter Virtualization",
2026 .capability = ARM64_HAS_ECV,
2027 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2028 .matches = has_cpuid_feature,
2029 .sys_reg = SYS_ID_AA64MMFR0_EL1,
2030 .field_pos = ID_AA64MMFR0_ECV_SHIFT,
2031 .field_width = 4,
2032 .sign = FTR_UNSIGNED,
2033 .min_field_value = 1,
2034 },
2035 #ifdef CONFIG_ARM64_PAN
2036 {
2037 .desc = "Privileged Access Never",
2038 .capability = ARM64_HAS_PAN,
2039 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2040 .matches = has_cpuid_feature,
2041 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2042 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2043 .field_width = 4,
2044 .sign = FTR_UNSIGNED,
2045 .min_field_value = 1,
2046 .cpu_enable = cpu_enable_pan,
2047 },
2048 #endif /* CONFIG_ARM64_PAN */
2049 #ifdef CONFIG_ARM64_EPAN
2050 {
2051 .desc = "Enhanced Privileged Access Never",
2052 .capability = ARM64_HAS_EPAN,
2053 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2054 .matches = has_cpuid_feature,
2055 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2056 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
2057 .field_width = 4,
2058 .sign = FTR_UNSIGNED,
2059 .min_field_value = 3,
2060 },
2061 #endif /* CONFIG_ARM64_EPAN */
2062 #ifdef CONFIG_ARM64_LSE_ATOMICS
2063 {
2064 .desc = "LSE atomic instructions",
2065 .capability = ARM64_HAS_LSE_ATOMICS,
2066 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2067 .matches = has_cpuid_feature,
2068 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2069 .field_pos = ID_AA64ISAR0_EL1_ATOMIC_SHIFT,
2070 .field_width = 4,
2071 .sign = FTR_UNSIGNED,
2072 .min_field_value = 2,
2073 },
2074 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2075 {
2076 .desc = "Software prefetching using PRFM",
2077 .capability = ARM64_HAS_NO_HW_PREFETCH,
2078 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2079 .matches = has_no_hw_prefetch,
2080 },
2081 {
2082 .desc = "Virtualization Host Extensions",
2083 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2084 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2085 .matches = runs_at_el2,
2086 .cpu_enable = cpu_copy_el2regs,
2087 },
2088 {
2089 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2090 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2091 .matches = has_32bit_el0,
2092 .sys_reg = SYS_ID_AA64PFR0_EL1,
2093 .sign = FTR_UNSIGNED,
2094 .field_pos = ID_AA64PFR0_EL0_SHIFT,
2095 .field_width = 4,
2096 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2097 },
2098 #ifdef CONFIG_KVM
2099 {
2100 .desc = "32-bit EL1 Support",
2101 .capability = ARM64_HAS_32BIT_EL1,
2102 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2103 .matches = has_cpuid_feature,
2104 .sys_reg = SYS_ID_AA64PFR0_EL1,
2105 .sign = FTR_UNSIGNED,
2106 .field_pos = ID_AA64PFR0_EL1_SHIFT,
2107 .field_width = 4,
2108 .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT,
2109 },
2110 {
2111 .desc = "Protected KVM",
2112 .capability = ARM64_KVM_PROTECTED_MODE,
2113 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2114 .matches = is_kvm_protected_mode,
2115 },
2116 #endif
2117 {
2118 .desc = "Kernel page table isolation (KPTI)",
2119 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2120 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2121 /*
2122 * The ID feature fields below are used to indicate that
2123 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2124 * more details.
2125 */
2126 .sys_reg = SYS_ID_AA64PFR0_EL1,
2127 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
2128 .field_width = 4,
2129 .min_field_value = 1,
2130 .matches = unmap_kernel_at_el0,
2131 .cpu_enable = kpti_install_ng_mappings,
2132 },
2133 {
2134 /* FP/SIMD is not implemented */
2135 .capability = ARM64_HAS_NO_FPSIMD,
2136 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2137 .min_field_value = 0,
2138 .matches = has_no_fpsimd,
2139 },
2140 #ifdef CONFIG_ARM64_PMEM
2141 {
2142 .desc = "Data cache clean to Point of Persistence",
2143 .capability = ARM64_HAS_DCPOP,
2144 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2145 .matches = has_cpuid_feature,
2146 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2147 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2148 .field_width = 4,
2149 .min_field_value = 1,
2150 },
2151 {
2152 .desc = "Data cache clean to Point of Deep Persistence",
2153 .capability = ARM64_HAS_DCPODP,
2154 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2155 .matches = has_cpuid_feature,
2156 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2157 .sign = FTR_UNSIGNED,
2158 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
2159 .field_width = 4,
2160 .min_field_value = 2,
2161 },
2162 #endif
2163 #ifdef CONFIG_ARM64_SVE
2164 {
2165 .desc = "Scalable Vector Extension",
2166 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2167 .capability = ARM64_SVE,
2168 .sys_reg = SYS_ID_AA64PFR0_EL1,
2169 .sign = FTR_UNSIGNED,
2170 .field_pos = ID_AA64PFR0_SVE_SHIFT,
2171 .field_width = 4,
2172 .min_field_value = ID_AA64PFR0_SVE,
2173 .matches = has_cpuid_feature,
2174 .cpu_enable = sve_kernel_enable,
2175 },
2176 #endif /* CONFIG_ARM64_SVE */
2177 #ifdef CONFIG_ARM64_RAS_EXTN
2178 {
2179 .desc = "RAS Extension Support",
2180 .capability = ARM64_HAS_RAS_EXTN,
2181 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2182 .matches = has_cpuid_feature,
2183 .sys_reg = SYS_ID_AA64PFR0_EL1,
2184 .sign = FTR_UNSIGNED,
2185 .field_pos = ID_AA64PFR0_RAS_SHIFT,
2186 .field_width = 4,
2187 .min_field_value = ID_AA64PFR0_RAS_V1,
2188 .cpu_enable = cpu_clear_disr,
2189 },
2190 #endif /* CONFIG_ARM64_RAS_EXTN */
2191 #ifdef CONFIG_ARM64_AMU_EXTN
2192 {
2193 /*
2194 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2195 * Therefore, don't provide .desc as we don't want the detection
2196 * message to be shown until at least one CPU is detected to
2197 * support the feature.
2198 */
2199 .capability = ARM64_HAS_AMU_EXTN,
2200 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2201 .matches = has_amu,
2202 .sys_reg = SYS_ID_AA64PFR0_EL1,
2203 .sign = FTR_UNSIGNED,
2204 .field_pos = ID_AA64PFR0_AMU_SHIFT,
2205 .field_width = 4,
2206 .min_field_value = ID_AA64PFR0_AMU,
2207 .cpu_enable = cpu_amu_enable,
2208 },
2209 #endif /* CONFIG_ARM64_AMU_EXTN */
2210 {
2211 .desc = "Data cache clean to the PoU not required for I/D coherence",
2212 .capability = ARM64_HAS_CACHE_IDC,
2213 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2214 .matches = has_cache_idc,
2215 .cpu_enable = cpu_emulate_effective_ctr,
2216 },
2217 {
2218 .desc = "Instruction cache invalidation not required for I/D coherence",
2219 .capability = ARM64_HAS_CACHE_DIC,
2220 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2221 .matches = has_cache_dic,
2222 },
2223 {
2224 .desc = "Stage-2 Force Write-Back",
2225 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2226 .capability = ARM64_HAS_STAGE2_FWB,
2227 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2228 .sign = FTR_UNSIGNED,
2229 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
2230 .field_width = 4,
2231 .min_field_value = 1,
2232 .matches = has_cpuid_feature,
2233 },
2234 {
2235 .desc = "ARMv8.4 Translation Table Level",
2236 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2237 .capability = ARM64_HAS_ARMv8_4_TTL,
2238 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2239 .sign = FTR_UNSIGNED,
2240 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
2241 .field_width = 4,
2242 .min_field_value = 1,
2243 .matches = has_cpuid_feature,
2244 },
2245 {
2246 .desc = "TLB range maintenance instructions",
2247 .capability = ARM64_HAS_TLB_RANGE,
2248 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2249 .matches = has_cpuid_feature,
2250 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2251 .field_pos = ID_AA64ISAR0_EL1_TLB_SHIFT,
2252 .field_width = 4,
2253 .sign = FTR_UNSIGNED,
2254 .min_field_value = ID_AA64ISAR0_EL1_TLB_RANGE,
2255 },
2256 #ifdef CONFIG_ARM64_HW_AFDBM
2257 {
2258 /*
2259 * Since we turn this on always, we don't want the user to
2260 * think that the feature is available when it may not be.
2261 * So hide the description.
2262 *
2263 * .desc = "Hardware pagetable Dirty Bit Management",
2264 *
2265 */
2266 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2267 .capability = ARM64_HW_DBM,
2268 .sys_reg = SYS_ID_AA64MMFR1_EL1,
2269 .sign = FTR_UNSIGNED,
2270 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
2271 .field_width = 4,
2272 .min_field_value = 2,
2273 .matches = has_hw_dbm,
2274 .cpu_enable = cpu_enable_hw_dbm,
2275 },
2276 #endif
2277 {
2278 .desc = "CRC32 instructions",
2279 .capability = ARM64_HAS_CRC32,
2280 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2281 .matches = has_cpuid_feature,
2282 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2283 .field_pos = ID_AA64ISAR0_EL1_CRC32_SHIFT,
2284 .field_width = 4,
2285 .min_field_value = 1,
2286 },
2287 {
2288 .desc = "Speculative Store Bypassing Safe (SSBS)",
2289 .capability = ARM64_SSBS,
2290 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2291 .matches = has_cpuid_feature,
2292 .sys_reg = SYS_ID_AA64PFR1_EL1,
2293 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
2294 .field_width = 4,
2295 .sign = FTR_UNSIGNED,
2296 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
2297 },
2298 #ifdef CONFIG_ARM64_CNP
2299 {
2300 .desc = "Common not Private translations",
2301 .capability = ARM64_HAS_CNP,
2302 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303 .matches = has_useable_cnp,
2304 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2305 .sign = FTR_UNSIGNED,
2306 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2307 .field_width = 4,
2308 .min_field_value = 1,
2309 .cpu_enable = cpu_enable_cnp,
2310 },
2311 #endif
2312 {
2313 .desc = "Speculation barrier (SB)",
2314 .capability = ARM64_HAS_SB,
2315 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2316 .matches = has_cpuid_feature,
2317 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2318 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2319 .field_width = 4,
2320 .sign = FTR_UNSIGNED,
2321 .min_field_value = 1,
2322 },
2323 #ifdef CONFIG_ARM64_PTR_AUTH
2324 {
2325 .desc = "Address authentication (architected QARMA5 algorithm)",
2326 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2327 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2328 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2329 .sign = FTR_UNSIGNED,
2330 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2331 .field_width = 4,
2332 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2333 .matches = has_address_auth_cpucap,
2334 },
2335 {
2336 .desc = "Address authentication (architected QARMA3 algorithm)",
2337 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2338 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2339 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2340 .sign = FTR_UNSIGNED,
2341 .field_pos = ID_AA64ISAR2_APA3_SHIFT,
2342 .field_width = 4,
2343 .min_field_value = ID_AA64ISAR2_APA3_ARCHITECTED,
2344 .matches = has_address_auth_cpucap,
2345 },
2346 {
2347 .desc = "Address authentication (IMP DEF algorithm)",
2348 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2349 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2350 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2351 .sign = FTR_UNSIGNED,
2352 .field_pos = ID_AA64ISAR1_API_SHIFT,
2353 .field_width = 4,
2354 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2355 .matches = has_address_auth_cpucap,
2356 },
2357 {
2358 .capability = ARM64_HAS_ADDRESS_AUTH,
2359 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2360 .matches = has_address_auth_metacap,
2361 },
2362 {
2363 .desc = "Generic authentication (architected QARMA5 algorithm)",
2364 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2365 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2366 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2367 .sign = FTR_UNSIGNED,
2368 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2369 .field_width = 4,
2370 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2371 .matches = has_cpuid_feature,
2372 },
2373 {
2374 .desc = "Generic authentication (architected QARMA3 algorithm)",
2375 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2376 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2377 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2378 .sign = FTR_UNSIGNED,
2379 .field_pos = ID_AA64ISAR2_GPA3_SHIFT,
2380 .field_width = 4,
2381 .min_field_value = ID_AA64ISAR2_GPA3_ARCHITECTED,
2382 .matches = has_cpuid_feature,
2383 },
2384 {
2385 .desc = "Generic authentication (IMP DEF algorithm)",
2386 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2387 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2388 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2389 .sign = FTR_UNSIGNED,
2390 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2391 .field_width = 4,
2392 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2393 .matches = has_cpuid_feature,
2394 },
2395 {
2396 .capability = ARM64_HAS_GENERIC_AUTH,
2397 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2398 .matches = has_generic_auth,
2399 },
2400 #endif /* CONFIG_ARM64_PTR_AUTH */
2401 #ifdef CONFIG_ARM64_PSEUDO_NMI
2402 {
2403 /*
2404 * Depends on having GICv3
2405 */
2406 .desc = "IRQ priority masking",
2407 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2408 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2409 .matches = can_use_gic_priorities,
2410 .sys_reg = SYS_ID_AA64PFR0_EL1,
2411 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2412 .field_width = 4,
2413 .sign = FTR_UNSIGNED,
2414 .min_field_value = 1,
2415 },
2416 #endif
2417 #ifdef CONFIG_ARM64_E0PD
2418 {
2419 .desc = "E0PD",
2420 .capability = ARM64_HAS_E0PD,
2421 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2422 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2423 .sign = FTR_UNSIGNED,
2424 .field_width = 4,
2425 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2426 .matches = has_cpuid_feature,
2427 .min_field_value = 1,
2428 .cpu_enable = cpu_enable_e0pd,
2429 },
2430 #endif
2431 #ifdef CONFIG_ARCH_RANDOM
2432 {
2433 .desc = "Random Number Generator",
2434 .capability = ARM64_HAS_RNG,
2435 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2436 .matches = has_cpuid_feature,
2437 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2438 .field_pos = ID_AA64ISAR0_EL1_RNDR_SHIFT,
2439 .field_width = 4,
2440 .sign = FTR_UNSIGNED,
2441 .min_field_value = 1,
2442 },
2443 #endif
2444 #ifdef CONFIG_ARM64_BTI
2445 {
2446 .desc = "Branch Target Identification",
2447 .capability = ARM64_BTI,
2448 #ifdef CONFIG_ARM64_BTI_KERNEL
2449 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2450 #else
2451 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2452 #endif
2453 .matches = has_cpuid_feature,
2454 .cpu_enable = bti_enable,
2455 .sys_reg = SYS_ID_AA64PFR1_EL1,
2456 .field_pos = ID_AA64PFR1_BT_SHIFT,
2457 .field_width = 4,
2458 .min_field_value = ID_AA64PFR1_BT_BTI,
2459 .sign = FTR_UNSIGNED,
2460 },
2461 #endif
2462 #ifdef CONFIG_ARM64_MTE
2463 {
2464 .desc = "Memory Tagging Extension",
2465 .capability = ARM64_MTE,
2466 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2467 .matches = has_cpuid_feature,
2468 .sys_reg = SYS_ID_AA64PFR1_EL1,
2469 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2470 .field_width = 4,
2471 .min_field_value = ID_AA64PFR1_MTE,
2472 .sign = FTR_UNSIGNED,
2473 .cpu_enable = cpu_enable_mte,
2474 },
2475 {
2476 .desc = "Asymmetric MTE Tag Check Fault",
2477 .capability = ARM64_MTE_ASYMM,
2478 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2479 .matches = has_cpuid_feature,
2480 .sys_reg = SYS_ID_AA64PFR1_EL1,
2481 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2482 .field_width = 4,
2483 .min_field_value = ID_AA64PFR1_MTE_ASYMM,
2484 .sign = FTR_UNSIGNED,
2485 },
2486 #endif /* CONFIG_ARM64_MTE */
2487 {
2488 .desc = "RCpc load-acquire (LDAPR)",
2489 .capability = ARM64_HAS_LDAPR,
2490 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2491 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2492 .sign = FTR_UNSIGNED,
2493 .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2494 .field_width = 4,
2495 .matches = has_cpuid_feature,
2496 .min_field_value = 1,
2497 },
2498 #ifdef CONFIG_ARM64_SME
2499 {
2500 .desc = "Scalable Matrix Extension",
2501 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2502 .capability = ARM64_SME,
2503 .sys_reg = SYS_ID_AA64PFR1_EL1,
2504 .sign = FTR_UNSIGNED,
2505 .field_pos = ID_AA64PFR1_SME_SHIFT,
2506 .field_width = 4,
2507 .min_field_value = ID_AA64PFR1_SME,
2508 .matches = has_cpuid_feature,
2509 .cpu_enable = sme_kernel_enable,
2510 },
2511 /* FA64 should be sorted after the base SME capability */
2512 {
2513 .desc = "FA64",
2514 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2515 .capability = ARM64_SME_FA64,
2516 .sys_reg = SYS_ID_AA64SMFR0_EL1,
2517 .sign = FTR_UNSIGNED,
2518 .field_pos = ID_AA64SMFR0_FA64_SHIFT,
2519 .field_width = 1,
2520 .min_field_value = ID_AA64SMFR0_FA64,
2521 .matches = has_cpuid_feature,
2522 .cpu_enable = fa64_kernel_enable,
2523 },
2524 #endif /* CONFIG_ARM64_SME */
2525 {
2526 .desc = "WFx with timeout",
2527 .capability = ARM64_HAS_WFXT,
2528 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2529 .sys_reg = SYS_ID_AA64ISAR2_EL1,
2530 .sign = FTR_UNSIGNED,
2531 .field_pos = ID_AA64ISAR2_WFXT_SHIFT,
2532 .field_width = 4,
2533 .matches = has_cpuid_feature,
2534 .min_field_value = ID_AA64ISAR2_WFXT_SUPPORTED,
2535 },
2536 {},
2537 };
2538
2539 #define HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \
2540 .matches = has_cpuid_feature, \
2541 .sys_reg = reg, \
2542 .field_pos = field, \
2543 .field_width = width, \
2544 .sign = s, \
2545 .min_field_value = min_value,
2546
2547 #define __HWCAP_CAP(name, cap_type, cap) \
2548 .desc = name, \
2549 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2550 .hwcap_type = cap_type, \
2551 .hwcap = cap, \
2552
2553 #define HWCAP_CAP(reg, field, width, s, min_value, cap_type, cap) \
2554 { \
2555 __HWCAP_CAP(#cap, cap_type, cap) \
2556 HWCAP_CPUID_MATCH(reg, field, width, s, min_value) \
2557 }
2558
2559 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2560 { \
2561 __HWCAP_CAP(#cap, cap_type, cap) \
2562 .matches = cpucap_multi_entry_cap_matches, \
2563 .match_list = list, \
2564 }
2565
2566 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2567 { \
2568 __HWCAP_CAP(#cap, cap_type, cap) \
2569 .matches = match, \
2570 }
2571
2572 #ifdef CONFIG_ARM64_PTR_AUTH
2573 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2574 {
2575 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2576 4, FTR_UNSIGNED,
2577 ID_AA64ISAR1_APA_ARCHITECTED)
2578 },
2579 {
2580 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_APA3_SHIFT,
2581 4, FTR_UNSIGNED, ID_AA64ISAR2_APA3_ARCHITECTED)
2582 },
2583 {
2584 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2585 4, FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2586 },
2587 {},
2588 };
2589
2590 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2591 {
2592 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2593 4, FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2594 },
2595 {
2596 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_GPA3_SHIFT,
2597 4, FTR_UNSIGNED, ID_AA64ISAR2_GPA3_ARCHITECTED)
2598 },
2599 {
2600 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2601 4, FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2602 },
2603 {},
2604 };
2605 #endif
2606
2607 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2608 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2609 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2610 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2611 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2612 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2613 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2614 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2615 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2616 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2617 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2618 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2619 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_DP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2620 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2621 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2622 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_TS_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2623 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2624 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2625 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2626 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2627 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2628 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, 4, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2629 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2630 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2631 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2632 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2633 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2634 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, 4, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2635 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2636 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2637 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2638 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2639 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2640 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2641 #ifdef CONFIG_ARM64_SVE
2642 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2643 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2644 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2645 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2646 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2647 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2648 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2649 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2650 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2651 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2652 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, 4, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2653 #endif
2654 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2655 #ifdef CONFIG_ARM64_BTI
2656 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2657 #endif
2658 #ifdef CONFIG_ARM64_PTR_AUTH
2659 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2660 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2661 #endif
2662 #ifdef CONFIG_ARM64_MTE
2663 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2664 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_MTE_ASYMM, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2665 #endif /* CONFIG_ARM64_MTE */
2666 HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV),
2667 HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP),
2668 HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2669 HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_WFXT_SHIFT, 4, FTR_UNSIGNED, ID_AA64ISAR2_WFXT_SUPPORTED, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2670 #ifdef CONFIG_ARM64_SME
2671 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SME_SHIFT, 4, FTR_UNSIGNED, ID_AA64PFR1_SME, CAP_HWCAP, KERNEL_HWCAP_SME),
2672 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_FA64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_FA64, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2673 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I16I64_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I16I64, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2674 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F64F64_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F64F64, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2675 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_I8I32_SHIFT, 4, FTR_UNSIGNED, ID_AA64SMFR0_I8I32, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2676 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F16F32, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2677 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_B16F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_B16F32, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2678 HWCAP_CAP(SYS_ID_AA64SMFR0_EL1, ID_AA64SMFR0_F32F32_SHIFT, 1, FTR_UNSIGNED, ID_AA64SMFR0_F32F32, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2679 #endif /* CONFIG_ARM64_SME */
2680 {},
2681 };
2682
2683 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)2684 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2685 {
2686 /*
2687 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2688 * in line with that of arm32 as in vfp_init(). We make sure that the
2689 * check is future proof, by making sure value is non-zero.
2690 */
2691 u32 mvfr1;
2692
2693 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2694 if (scope == SCOPE_SYSTEM)
2695 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2696 else
2697 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2698
2699 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2700 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2701 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2702 }
2703 #endif
2704
2705 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2706 #ifdef CONFIG_COMPAT
2707 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2708 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2709 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2710 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2711 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2712 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2713 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2714 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2715 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2716 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 4, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2717 #endif
2718 {},
2719 };
2720
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)2721 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2722 {
2723 switch (cap->hwcap_type) {
2724 case CAP_HWCAP:
2725 cpu_set_feature(cap->hwcap);
2726 break;
2727 #ifdef CONFIG_COMPAT
2728 case CAP_COMPAT_HWCAP:
2729 compat_elf_hwcap |= (u32)cap->hwcap;
2730 break;
2731 case CAP_COMPAT_HWCAP2:
2732 compat_elf_hwcap2 |= (u32)cap->hwcap;
2733 break;
2734 #endif
2735 default:
2736 WARN_ON(1);
2737 break;
2738 }
2739 }
2740
2741 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)2742 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2743 {
2744 bool rc;
2745
2746 switch (cap->hwcap_type) {
2747 case CAP_HWCAP:
2748 rc = cpu_have_feature(cap->hwcap);
2749 break;
2750 #ifdef CONFIG_COMPAT
2751 case CAP_COMPAT_HWCAP:
2752 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2753 break;
2754 case CAP_COMPAT_HWCAP2:
2755 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2756 break;
2757 #endif
2758 default:
2759 WARN_ON(1);
2760 rc = false;
2761 }
2762
2763 return rc;
2764 }
2765
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)2766 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2767 {
2768 /* We support emulation of accesses to CPU ID feature registers */
2769 cpu_set_named_feature(CPUID);
2770 for (; hwcaps->matches; hwcaps++)
2771 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2772 cap_set_elf_hwcap(hwcaps);
2773 }
2774
update_cpu_capabilities(u16 scope_mask)2775 static void update_cpu_capabilities(u16 scope_mask)
2776 {
2777 int i;
2778 const struct arm64_cpu_capabilities *caps;
2779
2780 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2781 for (i = 0; i < ARM64_NCAPS; i++) {
2782 caps = cpu_hwcaps_ptrs[i];
2783 if (!caps || !(caps->type & scope_mask) ||
2784 cpus_have_cap(caps->capability) ||
2785 !caps->matches(caps, cpucap_default_scope(caps)))
2786 continue;
2787
2788 if (caps->desc)
2789 pr_info("detected: %s\n", caps->desc);
2790 cpus_set_cap(caps->capability);
2791
2792 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2793 set_bit(caps->capability, boot_capabilities);
2794 }
2795 }
2796
2797 /*
2798 * Enable all the available capabilities on this CPU. The capabilities
2799 * with BOOT_CPU scope are handled separately and hence skipped here.
2800 */
cpu_enable_non_boot_scope_capabilities(void * __unused)2801 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2802 {
2803 int i;
2804 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2805
2806 for_each_available_cap(i) {
2807 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2808
2809 if (WARN_ON(!cap))
2810 continue;
2811
2812 if (!(cap->type & non_boot_scope))
2813 continue;
2814
2815 if (cap->cpu_enable)
2816 cap->cpu_enable(cap);
2817 }
2818 return 0;
2819 }
2820
2821 /*
2822 * Run through the enabled capabilities and enable() it on all active
2823 * CPUs
2824 */
enable_cpu_capabilities(u16 scope_mask)2825 static void __init enable_cpu_capabilities(u16 scope_mask)
2826 {
2827 int i;
2828 const struct arm64_cpu_capabilities *caps;
2829 bool boot_scope;
2830
2831 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2832 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2833
2834 for (i = 0; i < ARM64_NCAPS; i++) {
2835 unsigned int num;
2836
2837 caps = cpu_hwcaps_ptrs[i];
2838 if (!caps || !(caps->type & scope_mask))
2839 continue;
2840 num = caps->capability;
2841 if (!cpus_have_cap(num))
2842 continue;
2843
2844 /* Ensure cpus_have_const_cap(num) works */
2845 static_branch_enable(&cpu_hwcap_keys[num]);
2846
2847 if (boot_scope && caps->cpu_enable)
2848 /*
2849 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2850 * before any secondary CPU boots. Thus, each secondary
2851 * will enable the capability as appropriate via
2852 * check_local_cpu_capabilities(). The only exception is
2853 * the boot CPU, for which the capability must be
2854 * enabled here. This approach avoids costly
2855 * stop_machine() calls for this case.
2856 */
2857 caps->cpu_enable(caps);
2858 }
2859
2860 /*
2861 * For all non-boot scope capabilities, use stop_machine()
2862 * as it schedules the work allowing us to modify PSTATE,
2863 * instead of on_each_cpu() which uses an IPI, giving us a
2864 * PSTATE that disappears when we return.
2865 */
2866 if (!boot_scope)
2867 stop_machine(cpu_enable_non_boot_scope_capabilities,
2868 NULL, cpu_online_mask);
2869 }
2870
2871 /*
2872 * Run through the list of capabilities to check for conflicts.
2873 * If the system has already detected a capability, take necessary
2874 * action on this CPU.
2875 */
verify_local_cpu_caps(u16 scope_mask)2876 static void verify_local_cpu_caps(u16 scope_mask)
2877 {
2878 int i;
2879 bool cpu_has_cap, system_has_cap;
2880 const struct arm64_cpu_capabilities *caps;
2881
2882 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2883
2884 for (i = 0; i < ARM64_NCAPS; i++) {
2885 caps = cpu_hwcaps_ptrs[i];
2886 if (!caps || !(caps->type & scope_mask))
2887 continue;
2888
2889 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2890 system_has_cap = cpus_have_cap(caps->capability);
2891
2892 if (system_has_cap) {
2893 /*
2894 * Check if the new CPU misses an advertised feature,
2895 * which is not safe to miss.
2896 */
2897 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2898 break;
2899 /*
2900 * We have to issue cpu_enable() irrespective of
2901 * whether the CPU has it or not, as it is enabeld
2902 * system wide. It is upto the call back to take
2903 * appropriate action on this CPU.
2904 */
2905 if (caps->cpu_enable)
2906 caps->cpu_enable(caps);
2907 } else {
2908 /*
2909 * Check if the CPU has this capability if it isn't
2910 * safe to have when the system doesn't.
2911 */
2912 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2913 break;
2914 }
2915 }
2916
2917 if (i < ARM64_NCAPS) {
2918 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2919 smp_processor_id(), caps->capability,
2920 caps->desc, system_has_cap, cpu_has_cap);
2921
2922 if (cpucap_panic_on_conflict(caps))
2923 cpu_panic_kernel();
2924 else
2925 cpu_die_early();
2926 }
2927 }
2928
2929 /*
2930 * Check for CPU features that are used in early boot
2931 * based on the Boot CPU value.
2932 */
check_early_cpu_features(void)2933 static void check_early_cpu_features(void)
2934 {
2935 verify_cpu_asid_bits();
2936
2937 verify_local_cpu_caps(SCOPE_BOOT_CPU);
2938 }
2939
2940 static void
__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)2941 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2942 {
2943
2944 for (; caps->matches; caps++)
2945 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2946 pr_crit("CPU%d: missing HWCAP: %s\n",
2947 smp_processor_id(), caps->desc);
2948 cpu_die_early();
2949 }
2950 }
2951
verify_local_elf_hwcaps(void)2952 static void verify_local_elf_hwcaps(void)
2953 {
2954 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
2955
2956 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
2957 __verify_local_elf_hwcaps(compat_elf_hwcaps);
2958 }
2959
verify_sve_features(void)2960 static void verify_sve_features(void)
2961 {
2962 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2963 u64 zcr = read_zcr_features();
2964
2965 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2966 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2967
2968 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
2969 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2970 smp_processor_id());
2971 cpu_die_early();
2972 }
2973
2974 /* Add checks on other ZCR bits here if necessary */
2975 }
2976
verify_sme_features(void)2977 static void verify_sme_features(void)
2978 {
2979 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
2980 u64 smcr = read_smcr_features();
2981
2982 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
2983 unsigned int len = smcr & SMCR_ELx_LEN_MASK;
2984
2985 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
2986 pr_crit("CPU%d: SME: vector length support mismatch\n",
2987 smp_processor_id());
2988 cpu_die_early();
2989 }
2990
2991 /* Add checks on other SMCR bits here if necessary */
2992 }
2993
verify_hyp_capabilities(void)2994 static void verify_hyp_capabilities(void)
2995 {
2996 u64 safe_mmfr1, mmfr0, mmfr1;
2997 int parange, ipa_max;
2998 unsigned int safe_vmid_bits, vmid_bits;
2999
3000 if (!IS_ENABLED(CONFIG_KVM))
3001 return;
3002
3003 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3004 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3005 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3006
3007 /* Verify VMID bits */
3008 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3009 vmid_bits = get_vmid_bits(mmfr1);
3010 if (vmid_bits < safe_vmid_bits) {
3011 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3012 cpu_die_early();
3013 }
3014
3015 /* Verify IPA range */
3016 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3017 ID_AA64MMFR0_PARANGE_SHIFT);
3018 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3019 if (ipa_max < get_kvm_ipa_limit()) {
3020 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3021 cpu_die_early();
3022 }
3023 }
3024
3025 /*
3026 * Run through the enabled system capabilities and enable() it on this CPU.
3027 * The capabilities were decided based on the available CPUs at the boot time.
3028 * Any new CPU should match the system wide status of the capability. If the
3029 * new CPU doesn't have a capability which the system now has enabled, we
3030 * cannot do anything to fix it up and could cause unexpected failures. So
3031 * we park the CPU.
3032 */
verify_local_cpu_capabilities(void)3033 static void verify_local_cpu_capabilities(void)
3034 {
3035 /*
3036 * The capabilities with SCOPE_BOOT_CPU are checked from
3037 * check_early_cpu_features(), as they need to be verified
3038 * on all secondary CPUs.
3039 */
3040 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3041 verify_local_elf_hwcaps();
3042
3043 if (system_supports_sve())
3044 verify_sve_features();
3045
3046 if (system_supports_sme())
3047 verify_sme_features();
3048
3049 if (is_hyp_mode_available())
3050 verify_hyp_capabilities();
3051 }
3052
check_local_cpu_capabilities(void)3053 void check_local_cpu_capabilities(void)
3054 {
3055 /*
3056 * All secondary CPUs should conform to the early CPU features
3057 * in use by the kernel based on boot CPU.
3058 */
3059 check_early_cpu_features();
3060
3061 /*
3062 * If we haven't finalised the system capabilities, this CPU gets
3063 * a chance to update the errata work arounds and local features.
3064 * Otherwise, this CPU should verify that it has all the system
3065 * advertised capabilities.
3066 */
3067 if (!system_capabilities_finalized())
3068 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3069 else
3070 verify_local_cpu_capabilities();
3071 }
3072
setup_boot_cpu_capabilities(void)3073 static void __init setup_boot_cpu_capabilities(void)
3074 {
3075 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3076 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3077 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3078 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3079 }
3080
this_cpu_has_cap(unsigned int n)3081 bool this_cpu_has_cap(unsigned int n)
3082 {
3083 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3084 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3085
3086 if (cap)
3087 return cap->matches(cap, SCOPE_LOCAL_CPU);
3088 }
3089
3090 return false;
3091 }
3092 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3093
3094 /*
3095 * This helper function is used in a narrow window when,
3096 * - The system wide safe registers are set with all the SMP CPUs and,
3097 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3098 * In all other cases cpus_have_{const_}cap() should be used.
3099 */
__system_matches_cap(unsigned int n)3100 static bool __maybe_unused __system_matches_cap(unsigned int n)
3101 {
3102 if (n < ARM64_NCAPS) {
3103 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3104
3105 if (cap)
3106 return cap->matches(cap, SCOPE_SYSTEM);
3107 }
3108 return false;
3109 }
3110
cpu_set_feature(unsigned int num)3111 void cpu_set_feature(unsigned int num)
3112 {
3113 WARN_ON(num >= MAX_CPU_FEATURES);
3114 elf_hwcap |= BIT(num);
3115 }
3116
cpu_have_feature(unsigned int num)3117 bool cpu_have_feature(unsigned int num)
3118 {
3119 WARN_ON(num >= MAX_CPU_FEATURES);
3120 return elf_hwcap & BIT(num);
3121 }
3122 EXPORT_SYMBOL_GPL(cpu_have_feature);
3123
cpu_get_elf_hwcap(void)3124 unsigned long cpu_get_elf_hwcap(void)
3125 {
3126 /*
3127 * We currently only populate the first 32 bits of AT_HWCAP. Please
3128 * note that for userspace compatibility we guarantee that bits 62
3129 * and 63 will always be returned as 0.
3130 */
3131 return lower_32_bits(elf_hwcap);
3132 }
3133
cpu_get_elf_hwcap2(void)3134 unsigned long cpu_get_elf_hwcap2(void)
3135 {
3136 return upper_32_bits(elf_hwcap);
3137 }
3138
setup_system_capabilities(void)3139 static void __init setup_system_capabilities(void)
3140 {
3141 /*
3142 * We have finalised the system-wide safe feature
3143 * registers, finalise the capabilities that depend
3144 * on it. Also enable all the available capabilities,
3145 * that are not enabled already.
3146 */
3147 update_cpu_capabilities(SCOPE_SYSTEM);
3148 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3149 }
3150
setup_cpu_features(void)3151 void __init setup_cpu_features(void)
3152 {
3153 u32 cwg;
3154
3155 setup_system_capabilities();
3156 setup_elf_hwcaps(arm64_elf_hwcaps);
3157
3158 if (system_supports_32bit_el0()) {
3159 setup_elf_hwcaps(compat_elf_hwcaps);
3160 elf_hwcap_fixup();
3161 }
3162
3163 if (system_uses_ttbr0_pan())
3164 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3165
3166 sve_setup();
3167 sme_setup();
3168 minsigstksz_setup();
3169
3170 /* Advertise that we have computed the system capabilities */
3171 finalize_system_capabilities();
3172
3173 /*
3174 * Check for sane CTR_EL0.CWG value.
3175 */
3176 cwg = cache_type_cwg();
3177 if (!cwg)
3178 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3179 ARCH_DMA_MINALIGN);
3180 }
3181
enable_mismatched_32bit_el0(unsigned int cpu)3182 static int enable_mismatched_32bit_el0(unsigned int cpu)
3183 {
3184 /*
3185 * The first 32-bit-capable CPU we detected and so can no longer
3186 * be offlined by userspace. -1 indicates we haven't yet onlined
3187 * a 32-bit-capable CPU.
3188 */
3189 static int lucky_winner = -1;
3190
3191 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3192 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3193
3194 if (cpu_32bit) {
3195 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3196 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3197 }
3198
3199 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3200 return 0;
3201
3202 if (lucky_winner >= 0)
3203 return 0;
3204
3205 /*
3206 * We've detected a mismatch. We need to keep one of our CPUs with
3207 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3208 * every CPU in the system for a 32-bit task.
3209 */
3210 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3211 cpu_active_mask);
3212 get_cpu_device(lucky_winner)->offline_disabled = true;
3213 setup_elf_hwcaps(compat_elf_hwcaps);
3214 elf_hwcap_fixup();
3215 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3216 cpu, lucky_winner);
3217 return 0;
3218 }
3219
init_32bit_el0_mask(void)3220 static int __init init_32bit_el0_mask(void)
3221 {
3222 if (!allow_mismatched_32bit_el0)
3223 return 0;
3224
3225 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3226 return -ENOMEM;
3227
3228 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3229 "arm64/mismatched_32bit_el0:online",
3230 enable_mismatched_32bit_el0, NULL);
3231 }
3232 subsys_initcall_sync(init_32bit_el0_mask);
3233
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)3234 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3235 {
3236 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
3237 }
3238
3239 /*
3240 * We emulate only the following system register space.
3241 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
3242 * See Table C5-6 System instruction encodings for System register accesses,
3243 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3244 */
is_emulated(u32 id)3245 static inline bool __attribute_const__ is_emulated(u32 id)
3246 {
3247 return (sys_reg_Op0(id) == 0x3 &&
3248 sys_reg_CRn(id) == 0x0 &&
3249 sys_reg_Op1(id) == 0x0 &&
3250 (sys_reg_CRm(id) == 0 ||
3251 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
3252 }
3253
3254 /*
3255 * With CRm == 0, reg should be one of :
3256 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3257 */
emulate_id_reg(u32 id,u64 * valp)3258 static inline int emulate_id_reg(u32 id, u64 *valp)
3259 {
3260 switch (id) {
3261 case SYS_MIDR_EL1:
3262 *valp = read_cpuid_id();
3263 break;
3264 case SYS_MPIDR_EL1:
3265 *valp = SYS_MPIDR_SAFE_VAL;
3266 break;
3267 case SYS_REVIDR_EL1:
3268 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3269 *valp = 0;
3270 break;
3271 default:
3272 return -EINVAL;
3273 }
3274
3275 return 0;
3276 }
3277
emulate_sys_reg(u32 id,u64 * valp)3278 static int emulate_sys_reg(u32 id, u64 *valp)
3279 {
3280 struct arm64_ftr_reg *regp;
3281
3282 if (!is_emulated(id))
3283 return -EINVAL;
3284
3285 if (sys_reg_CRm(id) == 0)
3286 return emulate_id_reg(id, valp);
3287
3288 regp = get_arm64_ftr_reg_nowarn(id);
3289 if (regp)
3290 *valp = arm64_ftr_reg_user_value(regp);
3291 else
3292 /*
3293 * The untracked registers are either IMPLEMENTATION DEFINED
3294 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3295 */
3296 *valp = 0;
3297 return 0;
3298 }
3299
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)3300 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3301 {
3302 int rc;
3303 u64 val;
3304
3305 rc = emulate_sys_reg(sys_reg, &val);
3306 if (!rc) {
3307 pt_regs_write_reg(regs, rt, val);
3308 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3309 }
3310 return rc;
3311 }
3312
emulate_mrs(struct pt_regs * regs,u32 insn)3313 static int emulate_mrs(struct pt_regs *regs, u32 insn)
3314 {
3315 u32 sys_reg, rt;
3316
3317 /*
3318 * sys_reg values are defined as used in mrs/msr instruction.
3319 * shift the imm value to get the encoding.
3320 */
3321 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3322 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3323 return do_emulate_mrs(regs, sys_reg, rt);
3324 }
3325
3326 static struct undef_hook mrs_hook = {
3327 .instr_mask = 0xffff0000,
3328 .instr_val = 0xd5380000,
3329 .pstate_mask = PSR_AA32_MODE_MASK,
3330 .pstate_val = PSR_MODE_EL0t,
3331 .fn = emulate_mrs,
3332 };
3333
enable_mrs_emulation(void)3334 static int __init enable_mrs_emulation(void)
3335 {
3336 register_undef_hook(&mrs_hook);
3337 return 0;
3338 }
3339
3340 core_initcall(enable_mrs_emulation);
3341
arm64_get_meltdown_state(void)3342 enum mitigation_state arm64_get_meltdown_state(void)
3343 {
3344 if (__meltdown_safe)
3345 return SPECTRE_UNAFFECTED;
3346
3347 if (arm64_kernel_unmapped_at_el0())
3348 return SPECTRE_MITIGATED;
3349
3350 return SPECTRE_VULNERABLE;
3351 }
3352
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3353 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3354 char *buf)
3355 {
3356 switch (arm64_get_meltdown_state()) {
3357 case SPECTRE_UNAFFECTED:
3358 return sprintf(buf, "Not affected\n");
3359
3360 case SPECTRE_MITIGATED:
3361 return sprintf(buf, "Mitigation: PTI\n");
3362
3363 default:
3364 return sprintf(buf, "Vulnerable\n");
3365 }
3366 }
3367