1 /* SPDX-License-Identifier: LGPL-2.1-or-later */
2 
3 #include <ctype.h>
4 #include <errno.h>
5 #include <limits.h>
6 #include <linux/oom.h>
7 #include <pthread.h>
8 #include <stdbool.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <sys/mman.h>
12 #include <sys/mount.h>
13 #include <sys/personality.h>
14 #include <sys/prctl.h>
15 #include <sys/types.h>
16 #include <sys/wait.h>
17 #include <syslog.h>
18 #include <unistd.h>
19 #if HAVE_VALGRIND_VALGRIND_H
20 #include <valgrind/valgrind.h>
21 #endif
22 
23 #include "alloc-util.h"
24 #include "architecture.h"
25 #include "env-util.h"
26 #include "errno-util.h"
27 #include "escape.h"
28 #include "fd-util.h"
29 #include "fileio.h"
30 #include "fs-util.h"
31 #include "locale-util.h"
32 #include "log.h"
33 #include "macro.h"
34 #include "memory-util.h"
35 #include "missing_sched.h"
36 #include "missing_syscall.h"
37 #include "namespace-util.h"
38 #include "path-util.h"
39 #include "process-util.h"
40 #include "raw-clone.h"
41 #include "rlimit-util.h"
42 #include "signal-util.h"
43 #include "stat-util.h"
44 #include "stdio-util.h"
45 #include "string-table.h"
46 #include "string-util.h"
47 #include "terminal-util.h"
48 #include "user-util.h"
49 #include "utf8.h"
50 
51 /* The kernel limits userspace processes to TASK_COMM_LEN (16 bytes), but allows higher values for its own
52  * workers, e.g. "kworker/u9:3-kcryptd/253:0". Let's pick a fixed smallish limit that will work for the kernel.
53  */
54 #define COMM_MAX_LEN 128
55 
get_process_state(pid_t pid)56 static int get_process_state(pid_t pid) {
57         _cleanup_free_ char *line = NULL;
58         const char *p;
59         char state;
60         int r;
61 
62         assert(pid >= 0);
63 
64         /* Shortcut: if we are enquired about our own state, we are obviously running */
65         if (pid == 0 || pid == getpid_cached())
66                 return (unsigned char) 'R';
67 
68         p = procfs_file_alloca(pid, "stat");
69 
70         r = read_one_line_file(p, &line);
71         if (r == -ENOENT)
72                 return -ESRCH;
73         if (r < 0)
74                 return r;
75 
76         p = strrchr(line, ')');
77         if (!p)
78                 return -EIO;
79 
80         p++;
81 
82         if (sscanf(p, " %c", &state) != 1)
83                 return -EIO;
84 
85         return (unsigned char) state;
86 }
87 
get_process_comm(pid_t pid,char ** ret)88 int get_process_comm(pid_t pid, char **ret) {
89         _cleanup_free_ char *escaped = NULL, *comm = NULL;
90         int r;
91 
92         assert(ret);
93         assert(pid >= 0);
94 
95         if (pid == 0 || pid == getpid_cached()) {
96                 comm = new0(char, TASK_COMM_LEN + 1); /* Must fit in 16 byte according to prctl(2) */
97                 if (!comm)
98                         return -ENOMEM;
99 
100                 if (prctl(PR_GET_NAME, comm) < 0)
101                         return -errno;
102         } else {
103                 const char *p;
104 
105                 p = procfs_file_alloca(pid, "comm");
106 
107                 /* Note that process names of kernel threads can be much longer than TASK_COMM_LEN */
108                 r = read_one_line_file(p, &comm);
109                 if (r == -ENOENT)
110                         return -ESRCH;
111                 if (r < 0)
112                         return r;
113         }
114 
115         escaped = new(char, COMM_MAX_LEN);
116         if (!escaped)
117                 return -ENOMEM;
118 
119         /* Escape unprintable characters, just in case, but don't grow the string beyond the underlying size */
120         cellescape(escaped, COMM_MAX_LEN, comm);
121 
122         *ret = TAKE_PTR(escaped);
123         return 0;
124 }
125 
get_process_cmdline_nulstr(pid_t pid,size_t max_size,ProcessCmdlineFlags flags,char ** ret,size_t * ret_size)126 static int get_process_cmdline_nulstr(
127                 pid_t pid,
128                 size_t max_size,
129                 ProcessCmdlineFlags flags,
130                 char **ret,
131                 size_t *ret_size) {
132 
133         const char *p;
134         char *t;
135         size_t k;
136         int r;
137 
138         /* Retrieves a process' command line as a "sized nulstr", i.e. possibly without the last NUL, but
139          * with a specified size.
140          *
141          * If PROCESS_CMDLINE_COMM_FALLBACK is specified in flags and the process has no command line set
142          * (the case for kernel threads), or has a command line that resolves to the empty string, will
143          * return the "comm" name of the process instead. This will use at most _SC_ARG_MAX bytes of input
144          * data.
145          *
146          * Returns an error, 0 if output was read but is truncated, 1 otherwise.
147          */
148 
149         p = procfs_file_alloca(pid, "cmdline");
150         r = read_virtual_file(p, max_size, &t, &k); /* Let's assume that each input byte results in >= 1
151                                                      * columns of output. We ignore zero-width codepoints. */
152         if (r == -ENOENT)
153                 return -ESRCH;
154         if (r < 0)
155                 return r;
156 
157         if (k == 0) {
158                 t = mfree(t);
159 
160                 if (!(flags & PROCESS_CMDLINE_COMM_FALLBACK))
161                         return -ENOENT;
162 
163                 /* Kernel threads have no argv[] */
164                 _cleanup_free_ char *comm = NULL;
165 
166                 r = get_process_comm(pid, &comm);
167                 if (r < 0)
168                         return r;
169 
170                 t = strjoin("[", comm, "]");
171                 if (!t)
172                         return -ENOMEM;
173 
174                 k = strlen(t);
175                 r = k <= max_size;
176                 if (r == 0) /* truncation */
177                         t[max_size] = '\0';
178         }
179 
180         *ret = t;
181         *ret_size = k;
182         return r;
183 }
184 
get_process_cmdline(pid_t pid,size_t max_columns,ProcessCmdlineFlags flags,char ** ret)185 int get_process_cmdline(pid_t pid, size_t max_columns, ProcessCmdlineFlags flags, char **ret) {
186         _cleanup_free_ char *t = NULL;
187         size_t k;
188         char *ans;
189 
190         assert(pid >= 0);
191         assert(ret);
192 
193         /* Retrieve and format a commandline. See above for discussion of retrieval options.
194          *
195          * There are two main formatting modes:
196          *
197          * - when PROCESS_CMDLINE_QUOTE is specified, output is quoted in C/Python style. If no shell special
198          *   characters are present, this output can be copy-pasted into the terminal to execute. UTF-8
199          *   output is assumed.
200          *
201          * - otherwise, a compact non-roundtrippable form is returned. Non-UTF8 bytes are replaced by �. The
202          *   returned string is of the specified console width at most, abbreviated with an ellipsis.
203          *
204          * Returns -ESRCH if the process doesn't exist, and -ENOENT if the process has no command line (and
205          * PROCESS_CMDLINE_COMM_FALLBACK is not specified). Returns 0 and sets *line otherwise. */
206 
207         int full = get_process_cmdline_nulstr(pid, max_columns, flags, &t, &k);
208         if (full < 0)
209                 return full;
210 
211         if (flags & (PROCESS_CMDLINE_QUOTE | PROCESS_CMDLINE_QUOTE_POSIX)) {
212                 ShellEscapeFlags shflags = SHELL_ESCAPE_EMPTY |
213                         FLAGS_SET(flags, PROCESS_CMDLINE_QUOTE_POSIX) * SHELL_ESCAPE_POSIX;
214 
215                 assert(!(flags & PROCESS_CMDLINE_USE_LOCALE));
216 
217                 _cleanup_strv_free_ char **args = NULL;
218 
219                 args = strv_parse_nulstr(t, k);
220                 if (!args)
221                         return -ENOMEM;
222 
223                 /* Drop trailing empty strings. See issue #21186. */
224                 STRV_FOREACH_BACKWARDS(p, args) {
225                         if (!isempty(*p))
226                                 break;
227 
228                         *p = mfree(*p);
229                 }
230 
231                 ans = quote_command_line(args, shflags);
232                 if (!ans)
233                         return -ENOMEM;
234         } else {
235                 /* Arguments are separated by NULs. Let's replace those with spaces. */
236                 for (size_t i = 0; i < k - 1; i++)
237                         if (t[i] == '\0')
238                                 t[i] = ' ';
239 
240                 delete_trailing_chars(t, WHITESPACE);
241 
242                 bool eight_bit = (flags & PROCESS_CMDLINE_USE_LOCALE) && !is_locale_utf8();
243 
244                 ans = escape_non_printable_full(t, max_columns,
245                                                 eight_bit * XESCAPE_8_BIT | !full * XESCAPE_FORCE_ELLIPSIS);
246                 if (!ans)
247                         return -ENOMEM;
248 
249                 ans = str_realloc(ans);
250         }
251 
252         *ret = ans;
253         return 0;
254 }
255 
update_argv(const char name[],size_t l)256 static int update_argv(const char name[], size_t l) {
257         static int can_do = -1;
258 
259         if (can_do == 0)
260                 return 0;
261         can_do = false; /* We'll set it to true only if the whole process works */
262 
263         /* Let's not bother with this if we don't have euid == 0. Strictly speaking we should check for the
264          * CAP_SYS_RESOURCE capability which is independent of the euid. In our own code the capability generally is
265          * present only for euid == 0, hence let's use this as quick bypass check, to avoid calling mmap() if
266          * PR_SET_MM_ARG_{START,END} fails with EPERM later on anyway. After all geteuid() is dead cheap to call, but
267          * mmap() is not. */
268         if (geteuid() != 0)
269                 return log_debug_errno(SYNTHETIC_ERRNO(EPERM),
270                                        "Skipping PR_SET_MM, as we don't have privileges.");
271 
272         static size_t mm_size = 0;
273         static char *mm = NULL;
274         int r;
275 
276         if (mm_size < l+1) {
277                 size_t nn_size;
278                 char *nn;
279 
280                 nn_size = PAGE_ALIGN(l+1);
281                 nn = mmap(NULL, nn_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
282                 if (nn == MAP_FAILED)
283                         return log_debug_errno(errno, "mmap() failed: %m");
284 
285                 strncpy(nn, name, nn_size);
286 
287                 /* Now, let's tell the kernel about this new memory */
288                 if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0) {
289                         if (ERRNO_IS_PRIVILEGE(errno))
290                                 return log_debug_errno(errno, "PR_SET_MM_ARG_START failed: %m");
291 
292                         /* HACK: prctl() API is kind of dumb on this point.  The existing end address may already be
293                          * below the desired start address, in which case the kernel may have kicked this back due
294                          * to a range-check failure (see linux/kernel/sys.c:validate_prctl_map() to see this in
295                          * action).  The proper solution would be to have a prctl() API that could set both start+end
296                          * simultaneously, or at least let us query the existing address to anticipate this condition
297                          * and respond accordingly.  For now, we can only guess at the cause of this failure and try
298                          * a workaround--which will briefly expand the arg space to something potentially huge before
299                          * resizing it to what we want. */
300                         log_debug_errno(errno, "PR_SET_MM_ARG_START failed, attempting PR_SET_MM_ARG_END hack: %m");
301 
302                         if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0) {
303                                 r = log_debug_errno(errno, "PR_SET_MM_ARG_END hack failed, proceeding without: %m");
304                                 (void) munmap(nn, nn_size);
305                                 return r;
306                         }
307 
308                         if (prctl(PR_SET_MM, PR_SET_MM_ARG_START, (unsigned long) nn, 0, 0) < 0)
309                                 return log_debug_errno(errno, "PR_SET_MM_ARG_START still failed, proceeding without: %m");
310                 } else {
311                         /* And update the end pointer to the new end, too. If this fails, we don't really know what
312                          * to do, it's pretty unlikely that we can rollback, hence we'll just accept the failure,
313                          * and continue. */
314                         if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) nn + l + 1, 0, 0) < 0)
315                                 log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
316                 }
317 
318                 if (mm)
319                         (void) munmap(mm, mm_size);
320 
321                 mm = nn;
322                 mm_size = nn_size;
323         } else {
324                 strncpy(mm, name, mm_size);
325 
326                 /* Update the end pointer, continuing regardless of any failure. */
327                 if (prctl(PR_SET_MM, PR_SET_MM_ARG_END, (unsigned long) mm + l + 1, 0, 0) < 0)
328                         log_debug_errno(errno, "PR_SET_MM_ARG_END failed, proceeding without: %m");
329         }
330 
331         can_do = true;
332         return 0;
333 }
334 
rename_process(const char name[])335 int rename_process(const char name[]) {
336         bool truncated = false;
337 
338         /* This is a like a poor man's setproctitle(). It changes the comm field, argv[0], and also the glibc's
339          * internally used name of the process. For the first one a limit of 16 chars applies; to the second one in
340          * many cases one of 10 (i.e. length of "/sbin/init") — however if we have CAP_SYS_RESOURCES it is unbounded;
341          * to the third one 7 (i.e. the length of "systemd". If you pass a longer string it will likely be
342          * truncated.
343          *
344          * Returns 0 if a name was set but truncated, > 0 if it was set but not truncated. */
345 
346         if (isempty(name))
347                 return -EINVAL; /* let's not confuse users unnecessarily with an empty name */
348 
349         if (!is_main_thread())
350                 return -EPERM; /* Let's not allow setting the process name from other threads than the main one, as we
351                                 * cache things without locking, and we make assumptions that PR_SET_NAME sets the
352                                 * process name that isn't correct on any other threads */
353 
354         size_t l = strlen(name);
355 
356         /* First step, change the comm field. The main thread's comm is identical to the process comm. This means we
357          * can use PR_SET_NAME, which sets the thread name for the calling thread. */
358         if (prctl(PR_SET_NAME, name) < 0)
359                 log_debug_errno(errno, "PR_SET_NAME failed: %m");
360         if (l >= TASK_COMM_LEN) /* Linux userspace process names can be 15 chars at max */
361                 truncated = true;
362 
363         /* Second step, change glibc's ID of the process name. */
364         if (program_invocation_name) {
365                 size_t k;
366 
367                 k = strlen(program_invocation_name);
368                 strncpy(program_invocation_name, name, k);
369                 if (l > k)
370                         truncated = true;
371         }
372 
373         /* Third step, completely replace the argv[] array the kernel maintains for us. This requires privileges, but
374          * has the advantage that the argv[] array is exactly what we want it to be, and not filled up with zeros at
375          * the end. This is the best option for changing /proc/self/cmdline. */
376         (void) update_argv(name, l);
377 
378         /* Fourth step: in all cases we'll also update the original argv[], so that our own code gets it right too if
379          * it still looks here */
380         if (saved_argc > 0) {
381                 if (saved_argv[0]) {
382                         size_t k;
383 
384                         k = strlen(saved_argv[0]);
385                         strncpy(saved_argv[0], name, k);
386                         if (l > k)
387                                 truncated = true;
388                 }
389 
390                 for (int i = 1; i < saved_argc; i++) {
391                         if (!saved_argv[i])
392                                 break;
393 
394                         memzero(saved_argv[i], strlen(saved_argv[i]));
395                 }
396         }
397 
398         return !truncated;
399 }
400 
is_kernel_thread(pid_t pid)401 int is_kernel_thread(pid_t pid) {
402         _cleanup_free_ char *line = NULL;
403         unsigned long long flags;
404         size_t l, i;
405         const char *p;
406         char *q;
407         int r;
408 
409         if (IN_SET(pid, 0, 1) || pid == getpid_cached()) /* pid 1, and we ourselves certainly aren't a kernel thread */
410                 return 0;
411         if (!pid_is_valid(pid))
412                 return -EINVAL;
413 
414         p = procfs_file_alloca(pid, "stat");
415         r = read_one_line_file(p, &line);
416         if (r == -ENOENT)
417                 return -ESRCH;
418         if (r < 0)
419                 return r;
420 
421         /* Skip past the comm field */
422         q = strrchr(line, ')');
423         if (!q)
424                 return -EINVAL;
425         q++;
426 
427         /* Skip 6 fields to reach the flags field */
428         for (i = 0; i < 6; i++) {
429                 l = strspn(q, WHITESPACE);
430                 if (l < 1)
431                         return -EINVAL;
432                 q += l;
433 
434                 l = strcspn(q, WHITESPACE);
435                 if (l < 1)
436                         return -EINVAL;
437                 q += l;
438         }
439 
440         /* Skip preceding whitespace */
441         l = strspn(q, WHITESPACE);
442         if (l < 1)
443                 return -EINVAL;
444         q += l;
445 
446         /* Truncate the rest */
447         l = strcspn(q, WHITESPACE);
448         if (l < 1)
449                 return -EINVAL;
450         q[l] = 0;
451 
452         r = safe_atollu(q, &flags);
453         if (r < 0)
454                 return r;
455 
456         return !!(flags & PF_KTHREAD);
457 }
458 
get_process_capeff(pid_t pid,char ** ret)459 int get_process_capeff(pid_t pid, char **ret) {
460         const char *p;
461         int r;
462 
463         assert(pid >= 0);
464         assert(ret);
465 
466         p = procfs_file_alloca(pid, "status");
467 
468         r = get_proc_field(p, "CapEff", WHITESPACE, ret);
469         if (r == -ENOENT)
470                 return -ESRCH;
471 
472         return r;
473 }
474 
get_process_link_contents(pid_t pid,const char * proc_file,char ** ret)475 static int get_process_link_contents(pid_t pid, const char *proc_file, char **ret) {
476         const char *p;
477         int r;
478 
479         assert(proc_file);
480 
481         p = procfs_file_alloca(pid, proc_file);
482 
483         r = readlink_malloc(p, ret);
484         return r == -ENOENT ? -ESRCH : r;
485 }
486 
get_process_exe(pid_t pid,char ** ret)487 int get_process_exe(pid_t pid, char **ret) {
488         char *d;
489         int r;
490 
491         assert(pid >= 0);
492 
493         r = get_process_link_contents(pid, "exe", ret);
494         if (r < 0)
495                 return r;
496 
497         if (ret) {
498                 d = endswith(*ret, " (deleted)");
499                 if (d)
500                         *d = '\0';
501         }
502 
503         return 0;
504 }
505 
get_process_id(pid_t pid,const char * field,uid_t * ret)506 static int get_process_id(pid_t pid, const char *field, uid_t *ret) {
507         _cleanup_fclose_ FILE *f = NULL;
508         const char *p;
509         int r;
510 
511         assert(field);
512         assert(ret);
513 
514         if (pid < 0)
515                 return -EINVAL;
516 
517         p = procfs_file_alloca(pid, "status");
518         r = fopen_unlocked(p, "re", &f);
519         if (r == -ENOENT)
520                 return -ESRCH;
521         if (r < 0)
522                 return r;
523 
524         for (;;) {
525                 _cleanup_free_ char *line = NULL;
526                 char *l;
527 
528                 r = read_line(f, LONG_LINE_MAX, &line);
529                 if (r < 0)
530                         return r;
531                 if (r == 0)
532                         break;
533 
534                 l = strstrip(line);
535 
536                 if (startswith(l, field)) {
537                         l += strlen(field);
538                         l += strspn(l, WHITESPACE);
539 
540                         l[strcspn(l, WHITESPACE)] = 0;
541 
542                         return parse_uid(l, ret);
543                 }
544         }
545 
546         return -EIO;
547 }
548 
get_process_uid(pid_t pid,uid_t * ret)549 int get_process_uid(pid_t pid, uid_t *ret) {
550 
551         if (pid == 0 || pid == getpid_cached()) {
552                 *ret = getuid();
553                 return 0;
554         }
555 
556         return get_process_id(pid, "Uid:", ret);
557 }
558 
get_process_gid(pid_t pid,gid_t * ret)559 int get_process_gid(pid_t pid, gid_t *ret) {
560 
561         if (pid == 0 || pid == getpid_cached()) {
562                 *ret = getgid();
563                 return 0;
564         }
565 
566         assert_cc(sizeof(uid_t) == sizeof(gid_t));
567         return get_process_id(pid, "Gid:", ret);
568 }
569 
get_process_cwd(pid_t pid,char ** ret)570 int get_process_cwd(pid_t pid, char **ret) {
571         assert(pid >= 0);
572 
573         if (pid == 0 || pid == getpid_cached())
574                 return safe_getcwd(ret);
575 
576         return get_process_link_contents(pid, "cwd", ret);
577 }
578 
get_process_root(pid_t pid,char ** ret)579 int get_process_root(pid_t pid, char **ret) {
580         assert(pid >= 0);
581         return get_process_link_contents(pid, "root", ret);
582 }
583 
584 #define ENVIRONMENT_BLOCK_MAX (5U*1024U*1024U)
585 
get_process_environ(pid_t pid,char ** ret)586 int get_process_environ(pid_t pid, char **ret) {
587         _cleanup_fclose_ FILE *f = NULL;
588         _cleanup_free_ char *outcome = NULL;
589         size_t sz = 0;
590         const char *p;
591         int r;
592 
593         assert(pid >= 0);
594         assert(ret);
595 
596         p = procfs_file_alloca(pid, "environ");
597 
598         r = fopen_unlocked(p, "re", &f);
599         if (r == -ENOENT)
600                 return -ESRCH;
601         if (r < 0)
602                 return r;
603 
604         for (;;) {
605                 char c;
606 
607                 if (sz >= ENVIRONMENT_BLOCK_MAX)
608                         return -ENOBUFS;
609 
610                 if (!GREEDY_REALLOC(outcome, sz + 5))
611                         return -ENOMEM;
612 
613                 r = safe_fgetc(f, &c);
614                 if (r < 0)
615                         return r;
616                 if (r == 0)
617                         break;
618 
619                 if (c == '\0')
620                         outcome[sz++] = '\n';
621                 else
622                         sz += cescape_char(c, outcome + sz);
623         }
624 
625         outcome[sz] = '\0';
626         *ret = TAKE_PTR(outcome);
627 
628         return 0;
629 }
630 
get_process_ppid(pid_t pid,pid_t * ret)631 int get_process_ppid(pid_t pid, pid_t *ret) {
632         _cleanup_free_ char *line = NULL;
633         unsigned long ppid;
634         const char *p;
635         int r;
636 
637         assert(pid >= 0);
638 
639         if (pid == 0 || pid == getpid_cached()) {
640                 if (ret)
641                         *ret = getppid();
642                 return 0;
643         }
644 
645         if (pid == 1) /* PID 1 has no parent, shortcut this case */
646                 return -EADDRNOTAVAIL;
647 
648         p = procfs_file_alloca(pid, "stat");
649         r = read_one_line_file(p, &line);
650         if (r == -ENOENT)
651                 return -ESRCH;
652         if (r < 0)
653                 return r;
654 
655         /* Let's skip the pid and comm fields. The latter is enclosed in () but does not escape any () in its
656          * value, so let's skip over it manually */
657 
658         p = strrchr(line, ')');
659         if (!p)
660                 return -EIO;
661 
662         p++;
663 
664         if (sscanf(p, " "
665                    "%*c "  /* state */
666                    "%lu ", /* ppid */
667                    &ppid) != 1)
668                 return -EIO;
669 
670         /* If ppid is zero the process has no parent. Which might be the case for PID 1 but also for
671          * processes originating in other namespaces that are inserted into a pidns. Return a recognizable
672          * error in this case. */
673         if (ppid == 0)
674                 return -EADDRNOTAVAIL;
675 
676         if ((pid_t) ppid < 0 || (unsigned long) (pid_t) ppid != ppid)
677                 return -ERANGE;
678 
679         if (ret)
680                 *ret = (pid_t) ppid;
681 
682         return 0;
683 }
684 
get_process_umask(pid_t pid,mode_t * ret)685 int get_process_umask(pid_t pid, mode_t *ret) {
686         _cleanup_free_ char *m = NULL;
687         const char *p;
688         int r;
689 
690         assert(pid >= 0);
691         assert(ret);
692 
693         p = procfs_file_alloca(pid, "status");
694 
695         r = get_proc_field(p, "Umask", WHITESPACE, &m);
696         if (r == -ENOENT)
697                 return -ESRCH;
698 
699         return parse_mode(m, ret);
700 }
701 
wait_for_terminate(pid_t pid,siginfo_t * status)702 int wait_for_terminate(pid_t pid, siginfo_t *status) {
703         siginfo_t dummy;
704 
705         assert(pid >= 1);
706 
707         if (!status)
708                 status = &dummy;
709 
710         for (;;) {
711                 zero(*status);
712 
713                 if (waitid(P_PID, pid, status, WEXITED) < 0) {
714 
715                         if (errno == EINTR)
716                                 continue;
717 
718                         return negative_errno();
719                 }
720 
721                 return 0;
722         }
723 }
724 
725 /*
726  * Return values:
727  * < 0 : wait_for_terminate() failed to get the state of the
728  *       process, the process was terminated by a signal, or
729  *       failed for an unknown reason.
730  * >=0 : The process terminated normally, and its exit code is
731  *       returned.
732  *
733  * That is, success is indicated by a return value of zero, and an
734  * error is indicated by a non-zero value.
735  *
736  * A warning is emitted if the process terminates abnormally,
737  * and also if it returns non-zero unless check_exit_code is true.
738  */
wait_for_terminate_and_check(const char * name,pid_t pid,WaitFlags flags)739 int wait_for_terminate_and_check(const char *name, pid_t pid, WaitFlags flags) {
740         _cleanup_free_ char *buffer = NULL;
741         siginfo_t status;
742         int r, prio;
743 
744         assert(pid > 1);
745 
746         if (!name) {
747                 r = get_process_comm(pid, &buffer);
748                 if (r < 0)
749                         log_debug_errno(r, "Failed to acquire process name of " PID_FMT ", ignoring: %m", pid);
750                 else
751                         name = buffer;
752         }
753 
754         prio = flags & WAIT_LOG_ABNORMAL ? LOG_ERR : LOG_DEBUG;
755 
756         r = wait_for_terminate(pid, &status);
757         if (r < 0)
758                 return log_full_errno(prio, r, "Failed to wait for %s: %m", strna(name));
759 
760         if (status.si_code == CLD_EXITED) {
761                 if (status.si_status != EXIT_SUCCESS)
762                         log_full(flags & WAIT_LOG_NON_ZERO_EXIT_STATUS ? LOG_ERR : LOG_DEBUG,
763                                  "%s failed with exit status %i.", strna(name), status.si_status);
764                 else
765                         log_debug("%s succeeded.", name);
766 
767                 return status.si_status;
768 
769         } else if (IN_SET(status.si_code, CLD_KILLED, CLD_DUMPED)) {
770 
771                 log_full(prio, "%s terminated by signal %s.", strna(name), signal_to_string(status.si_status));
772                 return -EPROTO;
773         }
774 
775         log_full(prio, "%s failed due to unknown reason.", strna(name));
776         return -EPROTO;
777 }
778 
779 /*
780  * Return values:
781  *
782  * < 0 : wait_for_terminate_with_timeout() failed to get the state of the process, the process timed out, the process
783  *       was terminated by a signal, or failed for an unknown reason.
784  *
785  * >=0 : The process terminated normally with no failures.
786  *
787  * Success is indicated by a return value of zero, a timeout is indicated by ETIMEDOUT, and all other child failure
788  * states are indicated by error is indicated by a non-zero value.
789  *
790  * This call assumes SIGCHLD has been blocked already, in particular before the child to wait for has been forked off
791  * to remain entirely race-free.
792  */
wait_for_terminate_with_timeout(pid_t pid,usec_t timeout)793 int wait_for_terminate_with_timeout(pid_t pid, usec_t timeout) {
794         sigset_t mask;
795         int r;
796         usec_t until;
797 
798         assert_se(sigemptyset(&mask) == 0);
799         assert_se(sigaddset(&mask, SIGCHLD) == 0);
800 
801         /* Drop into a sigtimewait-based timeout. Waiting for the
802          * pid to exit. */
803         until = usec_add(now(CLOCK_MONOTONIC), timeout);
804         for (;;) {
805                 usec_t n;
806                 siginfo_t status = {};
807 
808                 n = now(CLOCK_MONOTONIC);
809                 if (n >= until)
810                         break;
811 
812                 r = RET_NERRNO(sigtimedwait(&mask, NULL, TIMESPEC_STORE(until - n)));
813                 /* Assuming we woke due to the child exiting. */
814                 if (waitid(P_PID, pid, &status, WEXITED|WNOHANG) == 0) {
815                         if (status.si_pid == pid) {
816                                 /* This is the correct child. */
817                                 if (status.si_code == CLD_EXITED)
818                                         return (status.si_status == 0) ? 0 : -EPROTO;
819                                 else
820                                         return -EPROTO;
821                         }
822                 }
823                 /* Not the child, check for errors and proceed appropriately */
824                 if (r < 0) {
825                         switch (r) {
826                         case -EAGAIN:
827                                 /* Timed out, child is likely hung. */
828                                 return -ETIMEDOUT;
829                         case -EINTR:
830                                 /* Received a different signal and should retry */
831                                 continue;
832                         default:
833                                 /* Return any unexpected errors */
834                                 return r;
835                         }
836                 }
837         }
838 
839         return -EPROTO;
840 }
841 
sigkill_wait(pid_t pid)842 void sigkill_wait(pid_t pid) {
843         assert(pid > 1);
844 
845         (void) kill(pid, SIGKILL);
846         (void) wait_for_terminate(pid, NULL);
847 }
848 
sigkill_waitp(pid_t * pid)849 void sigkill_waitp(pid_t *pid) {
850         PROTECT_ERRNO;
851 
852         if (!pid)
853                 return;
854         if (*pid <= 1)
855                 return;
856 
857         sigkill_wait(*pid);
858 }
859 
sigterm_wait(pid_t pid)860 void sigterm_wait(pid_t pid) {
861         assert(pid > 1);
862 
863         (void) kill_and_sigcont(pid, SIGTERM);
864         (void) wait_for_terminate(pid, NULL);
865 }
866 
kill_and_sigcont(pid_t pid,int sig)867 int kill_and_sigcont(pid_t pid, int sig) {
868         int r;
869 
870         r = RET_NERRNO(kill(pid, sig));
871 
872         /* If this worked, also send SIGCONT, unless we already just sent a SIGCONT, or SIGKILL was sent which isn't
873          * affected by a process being suspended anyway. */
874         if (r >= 0 && !IN_SET(sig, SIGCONT, SIGKILL))
875                 (void) kill(pid, SIGCONT);
876 
877         return r;
878 }
879 
getenv_for_pid(pid_t pid,const char * field,char ** ret)880 int getenv_for_pid(pid_t pid, const char *field, char **ret) {
881         _cleanup_fclose_ FILE *f = NULL;
882         char *value = NULL;
883         const char *path;
884         size_t l, sum = 0;
885         int r;
886 
887         assert(pid >= 0);
888         assert(field);
889         assert(ret);
890 
891         if (pid == 0 || pid == getpid_cached()) {
892                 const char *e;
893 
894                 e = getenv(field);
895                 if (!e) {
896                         *ret = NULL;
897                         return 0;
898                 }
899 
900                 value = strdup(e);
901                 if (!value)
902                         return -ENOMEM;
903 
904                 *ret = value;
905                 return 1;
906         }
907 
908         if (!pid_is_valid(pid))
909                 return -EINVAL;
910 
911         path = procfs_file_alloca(pid, "environ");
912 
913         r = fopen_unlocked(path, "re", &f);
914         if (r == -ENOENT)
915                 return -ESRCH;
916         if (r < 0)
917                 return r;
918 
919         l = strlen(field);
920         for (;;) {
921                 _cleanup_free_ char *line = NULL;
922 
923                 if (sum > ENVIRONMENT_BLOCK_MAX) /* Give up searching eventually */
924                         return -ENOBUFS;
925 
926                 r = read_nul_string(f, LONG_LINE_MAX, &line);
927                 if (r < 0)
928                         return r;
929                 if (r == 0)  /* EOF */
930                         break;
931 
932                 sum += r;
933 
934                 if (strneq(line, field, l) && line[l] == '=') {
935                         value = strdup(line + l + 1);
936                         if (!value)
937                                 return -ENOMEM;
938 
939                         *ret = value;
940                         return 1;
941                 }
942         }
943 
944         *ret = NULL;
945         return 0;
946 }
947 
pid_is_my_child(pid_t pid)948 int pid_is_my_child(pid_t pid) {
949         pid_t ppid;
950         int r;
951 
952         if (pid <= 1)
953                 return false;
954 
955         r = get_process_ppid(pid, &ppid);
956         if (r < 0)
957                 return r;
958 
959         return ppid == getpid_cached();
960 }
961 
pid_is_unwaited(pid_t pid)962 bool pid_is_unwaited(pid_t pid) {
963         /* Checks whether a PID is still valid at all, including a zombie */
964 
965         if (pid < 0)
966                 return false;
967 
968         if (pid <= 1) /* If we or PID 1 would be dead and have been waited for, this code would not be running */
969                 return true;
970 
971         if (pid == getpid_cached())
972                 return true;
973 
974         if (kill(pid, 0) >= 0)
975                 return true;
976 
977         return errno != ESRCH;
978 }
979 
pid_is_alive(pid_t pid)980 bool pid_is_alive(pid_t pid) {
981         int r;
982 
983         /* Checks whether a PID is still valid and not a zombie */
984 
985         if (pid < 0)
986                 return false;
987 
988         if (pid <= 1) /* If we or PID 1 would be a zombie, this code would not be running */
989                 return true;
990 
991         if (pid == getpid_cached())
992                 return true;
993 
994         r = get_process_state(pid);
995         if (IN_SET(r, -ESRCH, 'Z'))
996                 return false;
997 
998         return true;
999 }
1000 
pid_from_same_root_fs(pid_t pid)1001 int pid_from_same_root_fs(pid_t pid) {
1002         const char *root;
1003 
1004         if (pid < 0)
1005                 return false;
1006 
1007         if (pid == 0 || pid == getpid_cached())
1008                 return true;
1009 
1010         root = procfs_file_alloca(pid, "root");
1011 
1012         return files_same(root, "/proc/1/root", 0);
1013 }
1014 
is_main_thread(void)1015 bool is_main_thread(void) {
1016         static thread_local int cached = 0;
1017 
1018         if (_unlikely_(cached == 0))
1019                 cached = getpid_cached() == gettid() ? 1 : -1;
1020 
1021         return cached > 0;
1022 }
1023 
oom_score_adjust_is_valid(int oa)1024 bool oom_score_adjust_is_valid(int oa) {
1025         return oa >= OOM_SCORE_ADJ_MIN && oa <= OOM_SCORE_ADJ_MAX;
1026 }
1027 
personality_from_string(const char * p)1028 unsigned long personality_from_string(const char *p) {
1029         Architecture architecture;
1030 
1031         if (!p)
1032                 return PERSONALITY_INVALID;
1033 
1034         /* Parse a personality specifier. We use our own identifiers that indicate specific ABIs, rather than just
1035          * hints regarding the register size, since we want to keep things open for multiple locally supported ABIs for
1036          * the same register size. */
1037 
1038         architecture = architecture_from_string(p);
1039         if (architecture < 0)
1040                 return PERSONALITY_INVALID;
1041 
1042         if (architecture == native_architecture())
1043                 return PER_LINUX;
1044 #ifdef ARCHITECTURE_SECONDARY
1045         if (architecture == ARCHITECTURE_SECONDARY)
1046                 return PER_LINUX32;
1047 #endif
1048 
1049         return PERSONALITY_INVALID;
1050 }
1051 
personality_to_string(unsigned long p)1052 const char* personality_to_string(unsigned long p) {
1053         Architecture architecture = _ARCHITECTURE_INVALID;
1054 
1055         if (p == PER_LINUX)
1056                 architecture = native_architecture();
1057 #ifdef ARCHITECTURE_SECONDARY
1058         else if (p == PER_LINUX32)
1059                 architecture = ARCHITECTURE_SECONDARY;
1060 #endif
1061 
1062         if (architecture < 0)
1063                 return NULL;
1064 
1065         return architecture_to_string(architecture);
1066 }
1067 
safe_personality(unsigned long p)1068 int safe_personality(unsigned long p) {
1069         int ret;
1070 
1071         /* So here's the deal, personality() is weirdly defined by glibc. In some cases it returns a failure via errno,
1072          * and in others as negative return value containing an errno-like value. Let's work around this: this is a
1073          * wrapper that uses errno if it is set, and uses the return value otherwise. And then it sets both errno and
1074          * the return value indicating the same issue, so that we are definitely on the safe side.
1075          *
1076          * See https://github.com/systemd/systemd/issues/6737 */
1077 
1078         errno = 0;
1079         ret = personality(p);
1080         if (ret < 0) {
1081                 if (errno != 0)
1082                         return -errno;
1083 
1084                 errno = -ret;
1085         }
1086 
1087         return ret;
1088 }
1089 
opinionated_personality(unsigned long * ret)1090 int opinionated_personality(unsigned long *ret) {
1091         int current;
1092 
1093         /* Returns the current personality, or PERSONALITY_INVALID if we can't determine it. This function is a bit
1094          * opinionated though, and ignores all the finer-grained bits and exotic personalities, only distinguishing the
1095          * two most relevant personalities: PER_LINUX and PER_LINUX32. */
1096 
1097         current = safe_personality(PERSONALITY_INVALID);
1098         if (current < 0)
1099                 return current;
1100 
1101         if (((unsigned long) current & 0xffff) == PER_LINUX32)
1102                 *ret = PER_LINUX32;
1103         else
1104                 *ret = PER_LINUX;
1105 
1106         return 0;
1107 }
1108 
valgrind_summary_hack(void)1109 void valgrind_summary_hack(void) {
1110 #if HAVE_VALGRIND_VALGRIND_H
1111         if (getpid_cached() == 1 && RUNNING_ON_VALGRIND) {
1112                 pid_t pid;
1113                 pid = raw_clone(SIGCHLD);
1114                 if (pid < 0)
1115                         log_emergency_errno(errno, "Failed to fork off valgrind helper: %m");
1116                 else if (pid == 0)
1117                         exit(EXIT_SUCCESS);
1118                 else {
1119                         log_info("Spawned valgrind helper as PID "PID_FMT".", pid);
1120                         (void) wait_for_terminate(pid, NULL);
1121                 }
1122         }
1123 #endif
1124 }
1125 
pid_compare_func(const pid_t * a,const pid_t * b)1126 int pid_compare_func(const pid_t *a, const pid_t *b) {
1127         /* Suitable for usage in qsort() */
1128         return CMP(*a, *b);
1129 }
1130 
1131 /* The cached PID, possible values:
1132  *
1133  *     == UNSET [0]  → cache not initialized yet
1134  *     == BUSY [-1]  → some thread is initializing it at the moment
1135  *     any other     → the cached PID
1136  */
1137 
1138 #define CACHED_PID_UNSET ((pid_t) 0)
1139 #define CACHED_PID_BUSY ((pid_t) -1)
1140 
1141 static pid_t cached_pid = CACHED_PID_UNSET;
1142 
reset_cached_pid(void)1143 void reset_cached_pid(void) {
1144         /* Invoked in the child after a fork(), i.e. at the first moment the PID changed */
1145         cached_pid = CACHED_PID_UNSET;
1146 }
1147 
getpid_cached(void)1148 pid_t getpid_cached(void) {
1149         static bool installed = false;
1150         pid_t current_value;
1151 
1152         /* getpid_cached() is much like getpid(), but caches the value in local memory, to avoid having to invoke a
1153          * system call each time. This restores glibc behaviour from before 2.24, when getpid() was unconditionally
1154          * cached. Starting with 2.24 getpid() started to become prohibitively expensive when used for detecting when
1155          * objects were used across fork()s. With this caching the old behaviour is somewhat restored.
1156          *
1157          * https://bugzilla.redhat.com/show_bug.cgi?id=1443976
1158          * https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=c579f48edba88380635ab98cb612030e3ed8691e
1159          */
1160 
1161         current_value = __sync_val_compare_and_swap(&cached_pid, CACHED_PID_UNSET, CACHED_PID_BUSY);
1162 
1163         switch (current_value) {
1164 
1165         case CACHED_PID_UNSET: { /* Not initialized yet, then do so now */
1166                 pid_t new_pid;
1167 
1168                 new_pid = raw_getpid();
1169 
1170                 if (!installed) {
1171                         /* __register_atfork() either returns 0 or -ENOMEM, in its glibc implementation. Since it's
1172                          * only half-documented (glibc doesn't document it but LSB does — though only superficially)
1173                          * we'll check for errors only in the most generic fashion possible. */
1174 
1175                         if (pthread_atfork(NULL, NULL, reset_cached_pid) != 0) {
1176                                 /* OOM? Let's try again later */
1177                                 cached_pid = CACHED_PID_UNSET;
1178                                 return new_pid;
1179                         }
1180 
1181                         installed = true;
1182                 }
1183 
1184                 cached_pid = new_pid;
1185                 return new_pid;
1186         }
1187 
1188         case CACHED_PID_BUSY: /* Somebody else is currently initializing */
1189                 return raw_getpid();
1190 
1191         default: /* Properly initialized */
1192                 return current_value;
1193         }
1194 }
1195 
must_be_root(void)1196 int must_be_root(void) {
1197 
1198         if (geteuid() == 0)
1199                 return 0;
1200 
1201         return log_error_errno(SYNTHETIC_ERRNO(EPERM), "Need to be root.");
1202 }
1203 
restore_sigsetp(sigset_t ** ssp)1204 static void restore_sigsetp(sigset_t **ssp) {
1205         if (*ssp)
1206                 (void) sigprocmask(SIG_SETMASK, *ssp, NULL);
1207 }
1208 
safe_fork_full(const char * name,const int except_fds[],size_t n_except_fds,ForkFlags flags,pid_t * ret_pid)1209 int safe_fork_full(
1210                 const char *name,
1211                 const int except_fds[],
1212                 size_t n_except_fds,
1213                 ForkFlags flags,
1214                 pid_t *ret_pid) {
1215 
1216         pid_t original_pid, pid;
1217         sigset_t saved_ss, ss;
1218         _unused_ _cleanup_(restore_sigsetp) sigset_t *saved_ssp = NULL;
1219         bool block_signals = false, block_all = false;
1220         int prio, r;
1221 
1222         /* A wrapper around fork(), that does a couple of important initializations in addition to mere forking. Always
1223          * returns the child's PID in *ret_pid. Returns == 0 in the child, and > 0 in the parent. */
1224 
1225         prio = flags & FORK_LOG ? LOG_ERR : LOG_DEBUG;
1226 
1227         original_pid = getpid_cached();
1228 
1229         if (flags & FORK_FLUSH_STDIO) {
1230                 fflush(stdout);
1231                 fflush(stderr); /* This one shouldn't be necessary, stderr should be unbuffered anyway, but let's better be safe than sorry */
1232         }
1233 
1234         if (flags & (FORK_RESET_SIGNALS|FORK_DEATHSIG)) {
1235                 /* We temporarily block all signals, so that the new child has them blocked initially. This way, we can
1236                  * be sure that SIGTERMs are not lost we might send to the child. */
1237 
1238                 assert_se(sigfillset(&ss) >= 0);
1239                 block_signals = block_all = true;
1240 
1241         } else if (flags & FORK_WAIT) {
1242                 /* Let's block SIGCHLD at least, so that we can safely watch for the child process */
1243 
1244                 assert_se(sigemptyset(&ss) >= 0);
1245                 assert_se(sigaddset(&ss, SIGCHLD) >= 0);
1246                 block_signals = true;
1247         }
1248 
1249         if (block_signals) {
1250                 if (sigprocmask(SIG_SETMASK, &ss, &saved_ss) < 0)
1251                         return log_full_errno(prio, errno, "Failed to set signal mask: %m");
1252                 saved_ssp = &saved_ss;
1253         }
1254 
1255         if ((flags & (FORK_NEW_MOUNTNS|FORK_NEW_USERNS)) != 0)
1256                 pid = raw_clone(SIGCHLD|
1257                                 (FLAGS_SET(flags, FORK_NEW_MOUNTNS) ? CLONE_NEWNS : 0) |
1258                                 (FLAGS_SET(flags, FORK_NEW_USERNS) ? CLONE_NEWUSER : 0));
1259         else
1260                 pid = fork();
1261         if (pid < 0)
1262                 return log_full_errno(prio, errno, "Failed to fork: %m");
1263         if (pid > 0) {
1264                 /* We are in the parent process */
1265 
1266                 log_debug("Successfully forked off '%s' as PID " PID_FMT ".", strna(name), pid);
1267 
1268                 if (flags & FORK_WAIT) {
1269                         if (block_all) {
1270                                 /* undo everything except SIGCHLD */
1271                                 ss = saved_ss;
1272                                 assert_se(sigaddset(&ss, SIGCHLD) >= 0);
1273                                 (void) sigprocmask(SIG_SETMASK, &ss, NULL);
1274                         }
1275 
1276                         r = wait_for_terminate_and_check(name, pid, (flags & FORK_LOG ? WAIT_LOG : 0));
1277                         if (r < 0)
1278                                 return r;
1279                         if (r != EXIT_SUCCESS) /* exit status > 0 should be treated as failure, too */
1280                                 return -EPROTO;
1281                 }
1282 
1283                 if (ret_pid)
1284                         *ret_pid = pid;
1285 
1286                 return 1;
1287         }
1288 
1289         /* We are in the child process */
1290 
1291         /* Restore signal mask manually */
1292         saved_ssp = NULL;
1293 
1294         if (flags & FORK_REOPEN_LOG) {
1295                 /* Close the logs if requested, before we log anything. And make sure we reopen it if needed. */
1296                 log_close();
1297                 log_set_open_when_needed(true);
1298         }
1299 
1300         if (name) {
1301                 r = rename_process(name);
1302                 if (r < 0)
1303                         log_full_errno(flags & FORK_LOG ? LOG_WARNING : LOG_DEBUG,
1304                                        r, "Failed to rename process, ignoring: %m");
1305         }
1306 
1307         if (flags & (FORK_DEATHSIG|FORK_DEATHSIG_SIGINT))
1308                 if (prctl(PR_SET_PDEATHSIG, (flags & FORK_DEATHSIG_SIGINT) ? SIGINT : SIGTERM) < 0) {
1309                         log_full_errno(prio, errno, "Failed to set death signal: %m");
1310                         _exit(EXIT_FAILURE);
1311                 }
1312 
1313         if (flags & FORK_RESET_SIGNALS) {
1314                 r = reset_all_signal_handlers();
1315                 if (r < 0) {
1316                         log_full_errno(prio, r, "Failed to reset signal handlers: %m");
1317                         _exit(EXIT_FAILURE);
1318                 }
1319 
1320                 /* This implicitly undoes the signal mask stuff we did before the fork()ing above */
1321                 r = reset_signal_mask();
1322                 if (r < 0) {
1323                         log_full_errno(prio, r, "Failed to reset signal mask: %m");
1324                         _exit(EXIT_FAILURE);
1325                 }
1326         } else if (block_signals) { /* undo what we did above */
1327                 if (sigprocmask(SIG_SETMASK, &saved_ss, NULL) < 0) {
1328                         log_full_errno(prio, errno, "Failed to restore signal mask: %m");
1329                         _exit(EXIT_FAILURE);
1330                 }
1331         }
1332 
1333         if (flags & FORK_DEATHSIG) {
1334                 pid_t ppid;
1335                 /* Let's see if the parent PID is still the one we started from? If not, then the parent
1336                  * already died by the time we set PR_SET_PDEATHSIG, hence let's emulate the effect */
1337 
1338                 ppid = getppid();
1339                 if (ppid == 0)
1340                         /* Parent is in a different PID namespace. */;
1341                 else if (ppid != original_pid) {
1342                         log_debug("Parent died early, raising SIGTERM.");
1343                         (void) raise(SIGTERM);
1344                         _exit(EXIT_FAILURE);
1345                 }
1346         }
1347 
1348         if (FLAGS_SET(flags, FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE)) {
1349 
1350                 /* Optionally, make sure we never propagate mounts to the host. */
1351 
1352                 if (mount(NULL, "/", NULL, MS_SLAVE | MS_REC, NULL) < 0) {
1353                         log_full_errno(prio, errno, "Failed to remount root directory as MS_SLAVE: %m");
1354                         _exit(EXIT_FAILURE);
1355                 }
1356         }
1357 
1358         if (flags & FORK_CLOSE_ALL_FDS) {
1359                 /* Close the logs here in case it got reopened above, as close_all_fds() would close them for us */
1360                 log_close();
1361 
1362                 r = close_all_fds(except_fds, n_except_fds);
1363                 if (r < 0) {
1364                         log_full_errno(prio, r, "Failed to close all file descriptors: %m");
1365                         _exit(EXIT_FAILURE);
1366                 }
1367         }
1368 
1369         /* When we were asked to reopen the logs, do so again now */
1370         if (flags & FORK_REOPEN_LOG) {
1371                 log_open();
1372                 log_set_open_when_needed(false);
1373         }
1374 
1375         if (flags & FORK_NULL_STDIO) {
1376                 r = make_null_stdio();
1377                 if (r < 0) {
1378                         log_full_errno(prio, r, "Failed to connect stdin/stdout to /dev/null: %m");
1379                         _exit(EXIT_FAILURE);
1380                 }
1381 
1382         } else if (flags & FORK_STDOUT_TO_STDERR) {
1383                 if (dup2(STDERR_FILENO, STDOUT_FILENO) < 0) {
1384                         log_full_errno(prio, errno, "Failed to connect stdout to stderr: %m");
1385                         _exit(EXIT_FAILURE);
1386                 }
1387         }
1388 
1389         if (flags & FORK_RLIMIT_NOFILE_SAFE) {
1390                 r = rlimit_nofile_safe();
1391                 if (r < 0) {
1392                         log_full_errno(prio, r, "Failed to lower RLIMIT_NOFILE's soft limit to 1K: %m");
1393                         _exit(EXIT_FAILURE);
1394                 }
1395         }
1396 
1397         if (ret_pid)
1398                 *ret_pid = getpid_cached();
1399 
1400         return 0;
1401 }
1402 
namespace_fork(const char * outer_name,const char * inner_name,const int except_fds[],size_t n_except_fds,ForkFlags flags,int pidns_fd,int mntns_fd,int netns_fd,int userns_fd,int root_fd,pid_t * ret_pid)1403 int namespace_fork(
1404                 const char *outer_name,
1405                 const char *inner_name,
1406                 const int except_fds[],
1407                 size_t n_except_fds,
1408                 ForkFlags flags,
1409                 int pidns_fd,
1410                 int mntns_fd,
1411                 int netns_fd,
1412                 int userns_fd,
1413                 int root_fd,
1414                 pid_t *ret_pid) {
1415 
1416         int r;
1417 
1418         /* This is much like safe_fork(), but forks twice, and joins the specified namespaces in the middle
1419          * process. This ensures that we are fully a member of the destination namespace, with pidns an all, so that
1420          * /proc/self/fd works correctly. */
1421 
1422         r = safe_fork_full(outer_name, except_fds, n_except_fds, (flags|FORK_DEATHSIG) & ~(FORK_REOPEN_LOG|FORK_NEW_MOUNTNS|FORK_MOUNTNS_SLAVE), ret_pid);
1423         if (r < 0)
1424                 return r;
1425         if (r == 0) {
1426                 pid_t pid;
1427 
1428                 /* Child */
1429 
1430                 r = namespace_enter(pidns_fd, mntns_fd, netns_fd, userns_fd, root_fd);
1431                 if (r < 0) {
1432                         log_full_errno(FLAGS_SET(flags, FORK_LOG) ? LOG_ERR : LOG_DEBUG, r, "Failed to join namespace: %m");
1433                         _exit(EXIT_FAILURE);
1434                 }
1435 
1436                 /* We mask a few flags here that either make no sense for the grandchild, or that we don't have to do again */
1437                 r = safe_fork_full(inner_name, except_fds, n_except_fds, flags & ~(FORK_WAIT|FORK_RESET_SIGNALS|FORK_CLOSE_ALL_FDS|FORK_NULL_STDIO), &pid);
1438                 if (r < 0)
1439                         _exit(EXIT_FAILURE);
1440                 if (r == 0) {
1441                         /* Child */
1442                         if (ret_pid)
1443                                 *ret_pid = pid;
1444                         return 0;
1445                 }
1446 
1447                 r = wait_for_terminate_and_check(inner_name, pid, FLAGS_SET(flags, FORK_LOG) ? WAIT_LOG : 0);
1448                 if (r < 0)
1449                         _exit(EXIT_FAILURE);
1450 
1451                 _exit(r);
1452         }
1453 
1454         return 1;
1455 }
1456 
set_oom_score_adjust(int value)1457 int set_oom_score_adjust(int value) {
1458         char t[DECIMAL_STR_MAX(int)];
1459 
1460         xsprintf(t, "%i", value);
1461 
1462         return write_string_file("/proc/self/oom_score_adj", t,
1463                                  WRITE_STRING_FILE_VERIFY_ON_FAILURE|WRITE_STRING_FILE_DISABLE_BUFFER);
1464 }
1465 
get_oom_score_adjust(int * ret)1466 int get_oom_score_adjust(int *ret) {
1467         _cleanup_free_ char *t = NULL;
1468         int r, a;
1469 
1470         r = read_virtual_file("/proc/self/oom_score_adj", SIZE_MAX, &t, NULL);
1471         if (r < 0)
1472                 return r;
1473 
1474         delete_trailing_chars(t, WHITESPACE);
1475 
1476         assert_se(safe_atoi(t, &a) >= 0);
1477         assert_se(oom_score_adjust_is_valid(a));
1478 
1479         if (ret)
1480                 *ret = a;
1481         return 0;
1482 }
1483 
pidfd_get_pid(int fd,pid_t * ret)1484 int pidfd_get_pid(int fd, pid_t *ret) {
1485         char path[STRLEN("/proc/self/fdinfo/") + DECIMAL_STR_MAX(int)];
1486         _cleanup_free_ char *fdinfo = NULL;
1487         char *p;
1488         int r;
1489 
1490         if (fd < 0)
1491                 return -EBADF;
1492 
1493         xsprintf(path, "/proc/self/fdinfo/%i", fd);
1494 
1495         r = read_full_virtual_file(path, &fdinfo, NULL);
1496         if (r == -ENOENT) /* if fdinfo doesn't exist we assume the process does not exist */
1497                 return -ESRCH;
1498         if (r < 0)
1499                 return r;
1500 
1501         p = startswith(fdinfo, "Pid:");
1502         if (!p) {
1503                 p = strstr(fdinfo, "\nPid:");
1504                 if (!p)
1505                         return -ENOTTY; /* not a pidfd? */
1506 
1507                 p += 5;
1508         }
1509 
1510         p += strspn(p, WHITESPACE);
1511         p[strcspn(p, WHITESPACE)] = 0;
1512 
1513         return parse_pid(p, ret);
1514 }
1515 
rlimit_to_nice(rlim_t limit)1516 static int rlimit_to_nice(rlim_t limit) {
1517         if (limit <= 1)
1518                 return PRIO_MAX-1; /* i.e. 19 */
1519 
1520         if (limit >= -PRIO_MIN + PRIO_MAX)
1521                 return PRIO_MIN; /* i.e. -20 */
1522 
1523         return PRIO_MAX - (int) limit;
1524 }
1525 
setpriority_closest(int priority)1526 int setpriority_closest(int priority) {
1527         int current, limit, saved_errno;
1528         struct rlimit highest;
1529 
1530         /* Try to set requested nice level */
1531         if (setpriority(PRIO_PROCESS, 0, priority) >= 0)
1532                 return 1;
1533 
1534         /* Permission failed */
1535         saved_errno = -errno;
1536         if (!ERRNO_IS_PRIVILEGE(saved_errno))
1537                 return saved_errno;
1538 
1539         errno = 0;
1540         current = getpriority(PRIO_PROCESS, 0);
1541         if (errno != 0)
1542                 return -errno;
1543 
1544         if (priority == current)
1545                 return 1;
1546 
1547        /* Hmm, we'd expect that raising the nice level from our status quo would always work. If it doesn't,
1548         * then the whole setpriority() system call is blocked to us, hence let's propagate the error
1549         * right-away */
1550         if (priority > current)
1551                 return saved_errno;
1552 
1553         if (getrlimit(RLIMIT_NICE, &highest) < 0)
1554                 return -errno;
1555 
1556         limit = rlimit_to_nice(highest.rlim_cur);
1557 
1558         /* We are already less nice than limit allows us */
1559         if (current < limit) {
1560                 log_debug("Cannot raise nice level, permissions and the resource limit do not allow it.");
1561                 return 0;
1562         }
1563 
1564         /* Push to the allowed limit */
1565         if (setpriority(PRIO_PROCESS, 0, limit) < 0)
1566                 return -errno;
1567 
1568         log_debug("Cannot set requested nice level (%i), used next best (%i).", priority, limit);
1569         return 0;
1570 }
1571 
invoked_as(char * argv[],const char * token)1572 bool invoked_as(char *argv[], const char *token) {
1573         if (!argv || isempty(argv[0]))
1574                 return false;
1575 
1576         if (isempty(token))
1577                 return false;
1578 
1579         return strstr(last_path_component(argv[0]), token);
1580 }
1581 
freeze(void)1582 _noreturn_ void freeze(void) {
1583         log_close();
1584 
1585         /* Make sure nobody waits for us (i.e. on one of our sockets) anymore. Note that we use
1586          * close_all_fds_without_malloc() instead of plain close_all_fds() here, since we want this function
1587          * to be compatible with being called from signal handlers. */
1588         (void) close_all_fds_without_malloc(NULL, 0);
1589 
1590         /* Let's not freeze right away, but keep reaping zombies. */
1591         for (;;) {
1592                 siginfo_t si = {};
1593 
1594                 if (waitid(P_ALL, 0, &si, WEXITED) < 0 && errno != EINTR)
1595                         break;
1596         }
1597 
1598         /* waitid() failed with an unexpected error, things are really borked. Freeze now! */
1599         for (;;)
1600                 pause();
1601 }
1602 
argv_looks_like_help(int argc,char ** argv)1603 bool argv_looks_like_help(int argc, char **argv) {
1604         char **l;
1605 
1606         /* Scans the command line for indications the user asks for help. This is supposed to be called by
1607          * tools that do not implement getopt() style command line parsing because they are not primarily
1608          * user-facing. Detects four ways of asking for help:
1609          *
1610          * 1. Passing zero arguments
1611          * 2. Passing "help" as first argument
1612          * 3. Passing --help as any argument
1613          * 4. Passing -h as any argument
1614          */
1615 
1616         if (argc <= 1)
1617                 return true;
1618 
1619         if (streq_ptr(argv[1], "help"))
1620                 return true;
1621 
1622         l = strv_skip(argv, 1);
1623 
1624         return strv_contains(l, "--help") ||
1625                 strv_contains(l, "-h");
1626 }
1627 
1628 static const char *const sigchld_code_table[] = {
1629         [CLD_EXITED] = "exited",
1630         [CLD_KILLED] = "killed",
1631         [CLD_DUMPED] = "dumped",
1632         [CLD_TRAPPED] = "trapped",
1633         [CLD_STOPPED] = "stopped",
1634         [CLD_CONTINUED] = "continued",
1635 };
1636 
1637 DEFINE_STRING_TABLE_LOOKUP(sigchld_code, int);
1638 
1639 static const char* const sched_policy_table[] = {
1640         [SCHED_OTHER] = "other",
1641         [SCHED_BATCH] = "batch",
1642         [SCHED_IDLE] = "idle",
1643         [SCHED_FIFO] = "fifo",
1644         [SCHED_RR] = "rr",
1645 };
1646 
1647 DEFINE_STRING_TABLE_LOOKUP_WITH_FALLBACK(sched_policy, int, INT_MAX);
1648