1 /*
2 * Copyright (c) 2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "ar9003_phy.h"
19
ar9003_paprd_enable(struct ath_hw * ah,bool val)20 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
21 {
22 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
23 struct ath9k_channel *chan = ah->curchan;
24
25 if (val) {
26 ah->paprd_table_write_done = true;
27
28 ah->eep_ops->set_txpower(ah, chan,
29 ath9k_regd_get_ctl(regulatory, chan),
30 chan->chan->max_antenna_gain * 2,
31 chan->chan->max_power * 2,
32 min((u32) MAX_RATE_POWER,
33 (u32) regulatory->power_limit), false);
34 }
35
36 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
37 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
38 if (ah->caps.tx_chainmask & BIT(1))
39 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
40 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
41 if (ah->caps.tx_chainmask & BIT(2))
42 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
43 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
44 }
45 EXPORT_SYMBOL(ar9003_paprd_enable);
46
ar9003_get_training_power_2g(struct ath_hw * ah)47 static int ar9003_get_training_power_2g(struct ath_hw *ah)
48 {
49 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
50 struct ar9300_modal_eep_header *hdr = &eep->modalHeader2G;
51 unsigned int power, scale, delta;
52
53 scale = MS(le32_to_cpu(hdr->papdRateMaskHt20), AR9300_PAPRD_SCALE_1);
54 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
55 AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
56
57 delta = abs((int) ah->paprd_target_power - (int) power);
58 if (delta > scale)
59 return -1;
60
61 if (delta < 4)
62 power -= 4 - delta;
63
64 return power;
65 }
66
ar9003_get_training_power_5g(struct ath_hw * ah)67 static int ar9003_get_training_power_5g(struct ath_hw *ah)
68 {
69 struct ath_common *common = ath9k_hw_common(ah);
70 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
71 struct ar9300_modal_eep_header *hdr = &eep->modalHeader5G;
72 struct ath9k_channel *chan = ah->curchan;
73 unsigned int power, scale, delta;
74
75 if (chan->channel >= 5700)
76 scale = MS(le32_to_cpu(hdr->papdRateMaskHt20),
77 AR9300_PAPRD_SCALE_1);
78 else if (chan->channel >= 5400)
79 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40),
80 AR9300_PAPRD_SCALE_2);
81 else
82 scale = MS(le32_to_cpu(hdr->papdRateMaskHt40),
83 AR9300_PAPRD_SCALE_1);
84
85 if (IS_CHAN_HT40(chan))
86 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
87 AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
88 else
89 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
90 AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
91
92 power += scale;
93 delta = abs((int) ah->paprd_target_power - (int) power);
94 if (delta > scale)
95 return -1;
96
97 power += 2 * get_streams(common->tx_chainmask);
98 return power;
99 }
100
ar9003_paprd_setup_single_table(struct ath_hw * ah)101 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
102 {
103 struct ath_common *common = ath9k_hw_common(ah);
104 static const u32 ctrl0[3] = {
105 AR_PHY_PAPRD_CTRL0_B0,
106 AR_PHY_PAPRD_CTRL0_B1,
107 AR_PHY_PAPRD_CTRL0_B2
108 };
109 static const u32 ctrl1[3] = {
110 AR_PHY_PAPRD_CTRL1_B0,
111 AR_PHY_PAPRD_CTRL1_B1,
112 AR_PHY_PAPRD_CTRL1_B2
113 };
114 int training_power;
115 int i;
116
117 if (IS_CHAN_2GHZ(ah->curchan))
118 training_power = ar9003_get_training_power_2g(ah);
119 else
120 training_power = ar9003_get_training_power_5g(ah);
121
122 if (training_power < 0) {
123 ath_dbg(common, ATH_DBG_CALIBRATE,
124 "PAPRD target power delta out of range");
125 return -ERANGE;
126 }
127 ah->paprd_training_power = training_power;
128 ath_dbg(common, ATH_DBG_CALIBRATE,
129 "Training power: %d, Target power: %d\n",
130 ah->paprd_training_power, ah->paprd_target_power);
131
132 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
133 ah->paprd_ratemask);
134 REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
135 ah->paprd_ratemask);
136 REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
137 ah->paprd_ratemask_ht40);
138
139 for (i = 0; i < ah->caps.max_txchains; i++) {
140 REG_RMW_FIELD(ah, ctrl0[i],
141 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
142 REG_RMW_FIELD(ah, ctrl1[i],
143 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
144 REG_RMW_FIELD(ah, ctrl1[i],
145 AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
146 REG_RMW_FIELD(ah, ctrl1[i],
147 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
148 REG_RMW_FIELD(ah, ctrl1[i],
149 AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
150 REG_RMW_FIELD(ah, ctrl1[i],
151 AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
152 REG_RMW_FIELD(ah, ctrl1[i],
153 AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
154 REG_RMW_FIELD(ah, ctrl0[i],
155 AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
156 }
157
158 ar9003_paprd_enable(ah, false);
159
160 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
161 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
162 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
163 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
164 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
165 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
166 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
167 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
168 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
169 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
170 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
171 AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
172 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
173 AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
174 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
175 AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, 147);
176 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
177 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
178 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
179 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
180 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
181 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
182 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
183 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
184 if (AR_SREV_9485(ah))
185 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
186 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
187 -3);
188 else
189 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
190 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
191 -6);
192 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
193 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
194 -15);
195 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
196 AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
197 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
198 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
199 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
200 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
201 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
202 AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
203 100);
204 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
205 AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
206 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
207 AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
208 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
209 AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
210 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
211 AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
212 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
213 AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
214 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
215 AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
216 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
217 AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
218 REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
219 AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
220 return 0;
221 }
222
ar9003_paprd_get_gain_table(struct ath_hw * ah)223 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
224 {
225 u32 *entry = ah->paprd_gain_table_entries;
226 u8 *index = ah->paprd_gain_table_index;
227 u32 reg = AR_PHY_TXGAIN_TABLE;
228 int i;
229
230 memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
231 memset(index, 0, sizeof(ah->paprd_gain_table_index));
232
233 for (i = 0; i < 32; i++) {
234 entry[i] = REG_READ(ah, reg);
235 index[i] = (entry[i] >> 24) & 0xff;
236 reg += 4;
237 }
238 }
239
ar9003_get_desired_gain(struct ath_hw * ah,int chain,int target_power)240 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
241 int target_power)
242 {
243 int olpc_gain_delta = 0;
244 int alpha_therm, alpha_volt;
245 int therm_cal_value, volt_cal_value;
246 int therm_value, volt_value;
247 int thermal_gain_corr, voltage_gain_corr;
248 int desired_scale, desired_gain = 0;
249 u32 reg;
250
251 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
252 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
253 desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
254 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
255 alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
256 AR_PHY_TPC_19_ALPHA_THERM);
257 alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
258 AR_PHY_TPC_19_ALPHA_VOLT);
259 therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
260 AR_PHY_TPC_18_THERM_CAL_VALUE);
261 volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
262 AR_PHY_TPC_18_VOLT_CAL_VALUE);
263 therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
264 AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
265 volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
266 AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
267
268 if (chain == 0)
269 reg = AR_PHY_TPC_11_B0;
270 else if (chain == 1)
271 reg = AR_PHY_TPC_11_B1;
272 else
273 reg = AR_PHY_TPC_11_B2;
274
275 olpc_gain_delta = REG_READ_FIELD(ah, reg,
276 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
277
278 if (olpc_gain_delta >= 128)
279 olpc_gain_delta = olpc_gain_delta - 256;
280
281 thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
282 (256 / 2)) / 256;
283 voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
284 (128 / 2)) / 128;
285 desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
286 voltage_gain_corr + desired_scale;
287
288 return desired_gain;
289 }
290
ar9003_tx_force_gain(struct ath_hw * ah,unsigned int gain_index)291 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
292 {
293 int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
294 int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
295 u32 *gain_table_entries = ah->paprd_gain_table_entries;
296
297 selected_gain_entry = gain_table_entries[gain_index];
298 txbb1dbgain = selected_gain_entry & 0x7;
299 txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
300 txmxrgain = (selected_gain_entry >> 5) & 0xf;
301 padrvgnA = (selected_gain_entry >> 9) & 0xf;
302 padrvgnB = (selected_gain_entry >> 13) & 0xf;
303 padrvgnC = (selected_gain_entry >> 17) & 0xf;
304 padrvgnD = (selected_gain_entry >> 21) & 0x3;
305
306 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
307 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
308 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
309 AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
310 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
311 AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
312 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
313 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
314 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
315 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
316 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
317 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
318 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
319 AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
320 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
321 AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
322 REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
323 AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
324 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
325 REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
326 }
327
find_expn(int num)328 static inline int find_expn(int num)
329 {
330 return fls(num) - 1;
331 }
332
find_proper_scale(int expn,int N)333 static inline int find_proper_scale(int expn, int N)
334 {
335 return (expn > N) ? expn - 10 : 0;
336 }
337
338 #define NUM_BIN 23
339
create_pa_curve(u32 * data_L,u32 * data_U,u32 * pa_table,u16 * gain)340 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
341 {
342 unsigned int thresh_accum_cnt;
343 int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
344 int PA_in[NUM_BIN + 1];
345 int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
346 unsigned int B1_abs_max, B2_abs_max;
347 int max_index, scale_factor;
348 int y_est[NUM_BIN + 1];
349 int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
350 unsigned int x_tilde_abs;
351 int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
352 int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
353 int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
354 int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
355 int y5, y3, tmp;
356 int theta_low_bin = 0;
357 int i;
358
359 /* disregard any bin that contains <= 16 samples */
360 thresh_accum_cnt = 16;
361 scale_factor = 5;
362 max_index = 0;
363 memset(theta, 0, sizeof(theta));
364 memset(x_est, 0, sizeof(x_est));
365 memset(Y, 0, sizeof(Y));
366 memset(y_est, 0, sizeof(y_est));
367 memset(x_tilde, 0, sizeof(x_tilde));
368
369 for (i = 0; i < NUM_BIN; i++) {
370 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
371
372 /* number of samples */
373 accum_cnt = data_L[i] & 0xffff;
374
375 if (accum_cnt <= thresh_accum_cnt)
376 continue;
377
378 /* sum(tx amplitude) */
379 accum_tx = ((data_L[i] >> 16) & 0xffff) |
380 ((data_U[i] & 0x7ff) << 16);
381
382 /* sum(rx amplitude distance to lower bin edge) */
383 accum_rx = ((data_U[i] >> 11) & 0x1f) |
384 ((data_L[i + 23] & 0xffff) << 5);
385
386 /* sum(angles) */
387 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
388 ((data_U[i + 23] & 0x7ff) << 16);
389
390 accum_tx <<= scale_factor;
391 accum_rx <<= scale_factor;
392 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
393 scale_factor;
394
395 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
396 scale_factor) +
397 (1 << scale_factor) * max_index + 16;
398
399 if (accum_ang >= (1 << 26))
400 accum_ang -= 1 << 27;
401
402 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
403 accum_cnt;
404
405 max_index++;
406 }
407
408 /*
409 * Find average theta of first 5 bin and all of those to same value.
410 * Curve is linear at that range.
411 */
412 for (i = 1; i < 6; i++)
413 theta_low_bin += theta[i];
414
415 theta_low_bin = theta_low_bin / 5;
416 for (i = 1; i < 6; i++)
417 theta[i] = theta_low_bin;
418
419 /* Set values at origin */
420 theta[0] = theta_low_bin;
421 for (i = 0; i <= max_index; i++)
422 theta[i] -= theta_low_bin;
423
424 x_est[0] = 0;
425 Y[0] = 0;
426 scale_factor = 8;
427
428 /* low signal gain */
429 if (x_est[6] == x_est[3])
430 return false;
431
432 G_fxp =
433 (((Y[6] - Y[3]) * 1 << scale_factor) +
434 (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
435
436 /* prevent division by zero */
437 if (G_fxp == 0)
438 return false;
439
440 Y_intercept =
441 (G_fxp * (x_est[0] - x_est[3]) +
442 (1 << scale_factor)) / (1 << scale_factor) + Y[3];
443
444 for (i = 0; i <= max_index; i++)
445 y_est[i] = Y[i] - Y_intercept;
446
447 for (i = 0; i <= 3; i++) {
448 y_est[i] = i * 32;
449 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
450 }
451
452 if (y_est[max_index] == 0)
453 return false;
454
455 x_est_fxp1_nonlin =
456 x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
457 G_fxp) / G_fxp;
458
459 order_x_by_y =
460 (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
461
462 if (order_x_by_y == 0)
463 M = 10;
464 else if (order_x_by_y == 1)
465 M = 9;
466 else
467 M = 8;
468
469 I = (max_index > 15) ? 7 : max_index >> 1;
470 L = max_index - I;
471 scale_factor = 8;
472 sum_y_sqr = 0;
473 sum_y_quad = 0;
474 x_tilde_abs = 0;
475
476 for (i = 0; i <= L; i++) {
477 unsigned int y_sqr;
478 unsigned int y_quad;
479 unsigned int tmp_abs;
480
481 /* prevent division by zero */
482 if (y_est[i + I] == 0)
483 return false;
484
485 x_est_fxp1_nonlin =
486 x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
487 G_fxp) / G_fxp;
488
489 x_tilde[i] =
490 (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
491 I];
492 x_tilde[i] =
493 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
494 x_tilde[i] =
495 (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
496 y_sqr =
497 (y_est[i + I] * y_est[i + I] +
498 (scale_factor * scale_factor)) / (scale_factor *
499 scale_factor);
500 tmp_abs = abs(x_tilde[i]);
501 if (tmp_abs > x_tilde_abs)
502 x_tilde_abs = tmp_abs;
503
504 y_quad = y_sqr * y_sqr;
505 sum_y_sqr = sum_y_sqr + y_sqr;
506 sum_y_quad = sum_y_quad + y_quad;
507 B1_tmp[i] = y_sqr * (L + 1);
508 B2_tmp[i] = y_sqr;
509 }
510
511 B1_abs_max = 0;
512 B2_abs_max = 0;
513 for (i = 0; i <= L; i++) {
514 int abs_val;
515
516 B1_tmp[i] -= sum_y_sqr;
517 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
518
519 abs_val = abs(B1_tmp[i]);
520 if (abs_val > B1_abs_max)
521 B1_abs_max = abs_val;
522
523 abs_val = abs(B2_tmp[i]);
524 if (abs_val > B2_abs_max)
525 B2_abs_max = abs_val;
526 }
527
528 Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
529 Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
530 Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
531
532 beta_raw = 0;
533 alpha_raw = 0;
534 for (i = 0; i <= L; i++) {
535 x_tilde[i] = x_tilde[i] / (1 << Q_x);
536 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
537 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
538 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
539 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
540 }
541
542 scale_B =
543 ((sum_y_quad / scale_factor) * (L + 1) -
544 (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
545
546 Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
547 scale_B = scale_B / (1 << Q_scale_B);
548 if (scale_B == 0)
549 return false;
550 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
551 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
552 beta_raw = beta_raw / (1 << Q_beta);
553 alpha_raw = alpha_raw / (1 << Q_alpha);
554 alpha = (alpha_raw << 10) / scale_B;
555 beta = (beta_raw << 10) / scale_B;
556 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
557 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
558 order1_5x = order_1 / 5;
559 order2_3x = order_2 / 3;
560 order1_5x_rem = order_1 - 5 * order1_5x;
561 order2_3x_rem = order_2 - 3 * order2_3x;
562
563 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
564 tmp = i * 32;
565 y5 = ((beta * tmp) >> 6) >> order1_5x;
566 y5 = (y5 * tmp) >> order1_5x;
567 y5 = (y5 * tmp) >> order1_5x;
568 y5 = (y5 * tmp) >> order1_5x;
569 y5 = (y5 * tmp) >> order1_5x;
570 y5 = y5 >> order1_5x_rem;
571 y3 = (alpha * tmp) >> order2_3x;
572 y3 = (y3 * tmp) >> order2_3x;
573 y3 = (y3 * tmp) >> order2_3x;
574 y3 = y3 >> order2_3x_rem;
575 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
576
577 if (i >= 2) {
578 tmp = PA_in[i] - PA_in[i - 1];
579 if (tmp < 0)
580 PA_in[i] =
581 PA_in[i - 1] + (PA_in[i - 1] -
582 PA_in[i - 2]);
583 }
584
585 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
586 }
587
588 beta_raw = 0;
589 alpha_raw = 0;
590
591 for (i = 0; i <= L; i++) {
592 int theta_tilde =
593 ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
594 theta_tilde =
595 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
596 theta_tilde =
597 ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
598 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
599 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
600 }
601
602 Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
603 Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
604 beta_raw = beta_raw / (1 << Q_beta);
605 alpha_raw = alpha_raw / (1 << Q_alpha);
606
607 alpha = (alpha_raw << 10) / scale_B;
608 beta = (beta_raw << 10) / scale_B;
609 order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
610 order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
611 order1_5x = order_1 / 5;
612 order2_3x = order_2 / 3;
613 order1_5x_rem = order_1 - 5 * order1_5x;
614 order2_3x_rem = order_2 - 3 * order2_3x;
615
616 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
617 int PA_angle;
618
619 /* pa_table[4] is calculated from PA_angle for i=5 */
620 if (i == 4)
621 continue;
622
623 tmp = i * 32;
624 if (beta > 0)
625 y5 = (((beta * tmp - 64) >> 6) -
626 (1 << order1_5x)) / (1 << order1_5x);
627 else
628 y5 = ((((beta * tmp - 64) >> 6) +
629 (1 << order1_5x)) / (1 << order1_5x));
630
631 y5 = (y5 * tmp) / (1 << order1_5x);
632 y5 = (y5 * tmp) / (1 << order1_5x);
633 y5 = (y5 * tmp) / (1 << order1_5x);
634 y5 = (y5 * tmp) / (1 << order1_5x);
635 y5 = y5 / (1 << order1_5x_rem);
636
637 if (beta > 0)
638 y3 = (alpha * tmp -
639 (1 << order2_3x)) / (1 << order2_3x);
640 else
641 y3 = (alpha * tmp +
642 (1 << order2_3x)) / (1 << order2_3x);
643 y3 = (y3 * tmp) / (1 << order2_3x);
644 y3 = (y3 * tmp) / (1 << order2_3x);
645 y3 = y3 / (1 << order2_3x_rem);
646
647 if (i < 4) {
648 PA_angle = 0;
649 } else {
650 PA_angle = y5 + y3;
651 if (PA_angle < -150)
652 PA_angle = -150;
653 else if (PA_angle > 150)
654 PA_angle = 150;
655 }
656
657 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
658 if (i == 5) {
659 PA_angle = (PA_angle + 2) >> 1;
660 pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
661 (PA_angle & 0x7ff);
662 }
663 }
664
665 *gain = G_fxp;
666 return true;
667 }
668
ar9003_paprd_populate_single_table(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)669 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
670 struct ath9k_hw_cal_data *caldata,
671 int chain)
672 {
673 u32 *paprd_table_val = caldata->pa_table[chain];
674 u32 small_signal_gain = caldata->small_signal_gain[chain];
675 u32 training_power = ah->paprd_training_power;
676 u32 reg = 0;
677 int i;
678
679 if (chain == 0)
680 reg = AR_PHY_PAPRD_MEM_TAB_B0;
681 else if (chain == 1)
682 reg = AR_PHY_PAPRD_MEM_TAB_B1;
683 else if (chain == 2)
684 reg = AR_PHY_PAPRD_MEM_TAB_B2;
685
686 for (i = 0; i < PAPRD_TABLE_SZ; i++) {
687 REG_WRITE(ah, reg, paprd_table_val[i]);
688 reg = reg + 4;
689 }
690
691 if (chain == 0)
692 reg = AR_PHY_PA_GAIN123_B0;
693 else if (chain == 1)
694 reg = AR_PHY_PA_GAIN123_B1;
695 else
696 reg = AR_PHY_PA_GAIN123_B2;
697
698 REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
699
700 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
701 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
702 training_power);
703
704 if (ah->caps.tx_chainmask & BIT(1))
705 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
706 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
707 training_power);
708
709 if (ah->caps.tx_chainmask & BIT(2))
710 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
711 AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
712 training_power);
713 }
714 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
715
ar9003_paprd_setup_gain_table(struct ath_hw * ah,int chain)716 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
717 {
718 unsigned int i, desired_gain, gain_index;
719 unsigned int train_power = ah->paprd_training_power;
720
721 desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
722
723 gain_index = 0;
724 for (i = 0; i < 32; i++) {
725 if (ah->paprd_gain_table_index[i] >= desired_gain)
726 break;
727 gain_index++;
728 }
729
730 ar9003_tx_force_gain(ah, gain_index);
731
732 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
733 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
734
735 return 0;
736 }
737 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
738
ar9003_paprd_create_curve(struct ath_hw * ah,struct ath9k_hw_cal_data * caldata,int chain)739 int ar9003_paprd_create_curve(struct ath_hw *ah,
740 struct ath9k_hw_cal_data *caldata, int chain)
741 {
742 u16 *small_signal_gain = &caldata->small_signal_gain[chain];
743 u32 *pa_table = caldata->pa_table[chain];
744 u32 *data_L, *data_U;
745 int i, status = 0;
746 u32 *buf;
747 u32 reg;
748
749 memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
750
751 buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
752 if (!buf)
753 return -ENOMEM;
754
755 data_L = &buf[0];
756 data_U = &buf[48];
757
758 REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
759 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
760
761 reg = AR_PHY_CHAN_INFO_TAB_0;
762 for (i = 0; i < 48; i++)
763 data_L[i] = REG_READ(ah, reg + (i << 2));
764
765 REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
766 AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
767
768 for (i = 0; i < 48; i++)
769 data_U[i] = REG_READ(ah, reg + (i << 2));
770
771 if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
772 status = -2;
773
774 REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
775 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
776
777 kfree(buf);
778
779 return status;
780 }
781 EXPORT_SYMBOL(ar9003_paprd_create_curve);
782
ar9003_paprd_init_table(struct ath_hw * ah)783 int ar9003_paprd_init_table(struct ath_hw *ah)
784 {
785 int ret;
786
787 ret = ar9003_paprd_setup_single_table(ah);
788 if (ret < 0)
789 return ret;
790
791 ar9003_paprd_get_gain_table(ah);
792 return 0;
793 }
794 EXPORT_SYMBOL(ar9003_paprd_init_table);
795
ar9003_paprd_is_done(struct ath_hw * ah)796 bool ar9003_paprd_is_done(struct ath_hw *ah)
797 {
798 return !!REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
799 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
800 }
801 EXPORT_SYMBOL(ar9003_paprd_is_done);
802