1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21
22 /* All code below is for AR5008, AR9001, AR9002 */
23
24 #define AR5008_OFDM_RATES 8
25 #define AR5008_HT_SS_RATES 8
26 #define AR5008_HT_DS_RATES 8
27
28 #define AR5008_HT20_SHIFT 16
29 #define AR5008_HT40_SHIFT 24
30
31 #define AR5008_11NA_OFDM_SHIFT 0
32 #define AR5008_11NA_HT_SS_SHIFT 8
33 #define AR5008_11NA_HT_DS_SHIFT 16
34
35 #define AR5008_11NG_OFDM_SHIFT 4
36 #define AR5008_11NG_HT_SS_SHIFT 12
37 #define AR5008_11NG_HT_DS_SHIFT 20
38
39 /*
40 * register values to turn OFDM weak signal detection OFF
41 */
42 static const int m1ThreshLow_off = 127;
43 static const int m2ThreshLow_off = 127;
44 static const int m1Thresh_off = 127;
45 static const int m2Thresh_off = 127;
46 static const int m2CountThr_off = 31;
47 static const int m2CountThrLow_off = 63;
48 static const int m1ThreshLowExt_off = 127;
49 static const int m2ThreshLowExt_off = 127;
50 static const int m1ThreshExt_off = 127;
51 static const int m2ThreshExt_off = 127;
52
53 static const u32 ar5416Bank0[][2] = {
54 /* Addr allmodes */
55 {0x000098b0, 0x1e5795e5},
56 {0x000098e0, 0x02008020},
57 };
58
59 static const u32 ar5416Bank1[][2] = {
60 /* Addr allmodes */
61 {0x000098b0, 0x02108421},
62 {0x000098ec, 0x00000008},
63 };
64
65 static const u32 ar5416Bank2[][2] = {
66 /* Addr allmodes */
67 {0x000098b0, 0x0e73ff17},
68 {0x000098e0, 0x00000420},
69 };
70
71 static const u32 ar5416Bank3[][3] = {
72 /* Addr 5G 2G */
73 {0x000098f0, 0x01400018, 0x01c00018},
74 };
75
76 static const u32 ar5416Bank7[][2] = {
77 /* Addr allmodes */
78 {0x0000989c, 0x00000500},
79 {0x0000989c, 0x00000800},
80 {0x000098cc, 0x0000000e},
81 };
82
83 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
84 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
85 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
86 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
87 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
88
ar5008_write_bank6(struct ath_hw * ah,unsigned int * writecnt)89 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
90 {
91 struct ar5416IniArray *array = &ah->iniBank6;
92 u32 *data = ah->analogBank6Data;
93 int r;
94
95 ENABLE_REGWRITE_BUFFER(ah);
96
97 for (r = 0; r < array->ia_rows; r++) {
98 REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
99 DO_DELAY(*writecnt);
100 }
101
102 REGWRITE_BUFFER_FLUSH(ah);
103 }
104
105 /*
106 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
107 *
108 * Performs analog "swizzling" of parameters into their location.
109 * Used on external AR2133/AR5133 radios.
110 */
ar5008_hw_phy_modify_rx_buffer(u32 * rfBuf,u32 reg32,u32 numBits,u32 firstBit,u32 column)111 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
112 u32 numBits, u32 firstBit,
113 u32 column)
114 {
115 u32 tmp32, mask, arrayEntry, lastBit;
116 int32_t bitPosition, bitsLeft;
117
118 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
119 arrayEntry = (firstBit - 1) / 8;
120 bitPosition = (firstBit - 1) % 8;
121 bitsLeft = numBits;
122 while (bitsLeft > 0) {
123 lastBit = (bitPosition + bitsLeft > 8) ?
124 8 : bitPosition + bitsLeft;
125 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
126 (column * 8);
127 rfBuf[arrayEntry] &= ~mask;
128 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
129 (column * 8)) & mask;
130 bitsLeft -= 8 - bitPosition;
131 tmp32 = tmp32 >> (8 - bitPosition);
132 bitPosition = 0;
133 arrayEntry++;
134 }
135 }
136
137 /*
138 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
139 * rf_pwd_icsyndiv.
140 *
141 * Theoretical Rules:
142 * if 2 GHz band
143 * if forceBiasAuto
144 * if synth_freq < 2412
145 * bias = 0
146 * else if 2412 <= synth_freq <= 2422
147 * bias = 1
148 * else // synth_freq > 2422
149 * bias = 2
150 * else if forceBias > 0
151 * bias = forceBias & 7
152 * else
153 * no change, use value from ini file
154 * else
155 * no change, invalid band
156 *
157 * 1st Mod:
158 * 2422 also uses value of 2
159 * <approved>
160 *
161 * 2nd Mod:
162 * Less than 2412 uses value of 0, 2412 and above uses value of 2
163 */
ar5008_hw_force_bias(struct ath_hw * ah,u16 synth_freq)164 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
165 {
166 struct ath_common *common = ath9k_hw_common(ah);
167 u32 tmp_reg;
168 int reg_writes = 0;
169 u32 new_bias = 0;
170
171 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
172 return;
173
174 BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
175
176 if (synth_freq < 2412)
177 new_bias = 0;
178 else if (synth_freq < 2422)
179 new_bias = 1;
180 else
181 new_bias = 2;
182
183 /* pre-reverse this field */
184 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
185
186 ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
187 new_bias, synth_freq);
188
189 /* swizzle rf_pwd_icsyndiv */
190 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
191
192 /* write Bank 6 with new params */
193 ar5008_write_bank6(ah, ®_writes);
194 }
195
196 /*
197 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
198 *
199 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
200 * the channel value. Assumes writes enabled to analog bus and bank6 register
201 * cache in ah->analogBank6Data.
202 */
ar5008_hw_set_channel(struct ath_hw * ah,struct ath9k_channel * chan)203 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
204 {
205 struct ath_common *common = ath9k_hw_common(ah);
206 u32 channelSel = 0;
207 u32 bModeSynth = 0;
208 u32 aModeRefSel = 0;
209 u32 reg32 = 0;
210 u16 freq;
211 struct chan_centers centers;
212
213 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
214 freq = centers.synth_center;
215
216 if (freq < 4800) {
217 u32 txctl;
218
219 if (((freq - 2192) % 5) == 0) {
220 channelSel = ((freq - 672) * 2 - 3040) / 10;
221 bModeSynth = 0;
222 } else if (((freq - 2224) % 5) == 0) {
223 channelSel = ((freq - 704) * 2 - 3040) / 10;
224 bModeSynth = 1;
225 } else {
226 ath_err(common, "Invalid channel %u MHz\n", freq);
227 return -EINVAL;
228 }
229
230 channelSel = (channelSel << 2) & 0xff;
231 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
232
233 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
234 if (freq == 2484) {
235
236 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
237 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
238 } else {
239 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
240 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
241 }
242
243 } else if ((freq % 20) == 0 && freq >= 5120) {
244 channelSel =
245 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
246 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
247 } else if ((freq % 10) == 0) {
248 channelSel =
249 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
250 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
251 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
252 else
253 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
254 } else if ((freq % 5) == 0) {
255 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
256 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
257 } else {
258 ath_err(common, "Invalid channel %u MHz\n", freq);
259 return -EINVAL;
260 }
261
262 ar5008_hw_force_bias(ah, freq);
263
264 reg32 =
265 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
266 (1 << 5) | 0x1;
267
268 REG_WRITE(ah, AR_PHY(0x37), reg32);
269
270 ah->curchan = chan;
271
272 return 0;
273 }
274
ar5008_hw_cmn_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan,int bin)275 void ar5008_hw_cmn_spur_mitigate(struct ath_hw *ah,
276 struct ath9k_channel *chan, int bin)
277 {
278 int cur_bin;
279 int upper, lower, cur_vit_mask;
280 int i;
281 int8_t mask_m[123] = {0};
282 int8_t mask_p[123] = {0};
283 int8_t mask_amt;
284 int tmp_mask;
285 static const int pilot_mask_reg[4] = {
286 AR_PHY_TIMING7, AR_PHY_TIMING8,
287 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
288 };
289 static const int chan_mask_reg[4] = {
290 AR_PHY_TIMING9, AR_PHY_TIMING10,
291 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
292 };
293 static const int inc[4] = { 0, 100, 0, 0 };
294
295 cur_bin = -6000;
296 upper = bin + 100;
297 lower = bin - 100;
298
299 for (i = 0; i < 4; i++) {
300 int pilot_mask = 0;
301 int chan_mask = 0;
302 int bp = 0;
303
304 for (bp = 0; bp < 30; bp++) {
305 if ((cur_bin > lower) && (cur_bin < upper)) {
306 pilot_mask = pilot_mask | 0x1 << bp;
307 chan_mask = chan_mask | 0x1 << bp;
308 }
309 cur_bin += 100;
310 }
311 cur_bin += inc[i];
312 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
313 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
314 }
315
316 cur_vit_mask = 6100;
317 upper = bin + 120;
318 lower = bin - 120;
319
320 for (i = 0; i < ARRAY_SIZE(mask_m); i++) {
321 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
322 /* workaround for gcc bug #37014 */
323 volatile int tmp_v = abs(cur_vit_mask - bin);
324
325 if (tmp_v < 75)
326 mask_amt = 1;
327 else
328 mask_amt = 0;
329 if (cur_vit_mask < 0)
330 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
331 else
332 mask_p[cur_vit_mask / 100] = mask_amt;
333 }
334 cur_vit_mask -= 100;
335 }
336
337 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
338 | (mask_m[48] << 26) | (mask_m[49] << 24)
339 | (mask_m[50] << 22) | (mask_m[51] << 20)
340 | (mask_m[52] << 18) | (mask_m[53] << 16)
341 | (mask_m[54] << 14) | (mask_m[55] << 12)
342 | (mask_m[56] << 10) | (mask_m[57] << 8)
343 | (mask_m[58] << 6) | (mask_m[59] << 4)
344 | (mask_m[60] << 2) | (mask_m[61] << 0);
345 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
346 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
347
348 tmp_mask = (mask_m[31] << 28)
349 | (mask_m[32] << 26) | (mask_m[33] << 24)
350 | (mask_m[34] << 22) | (mask_m[35] << 20)
351 | (mask_m[36] << 18) | (mask_m[37] << 16)
352 | (mask_m[48] << 14) | (mask_m[39] << 12)
353 | (mask_m[40] << 10) | (mask_m[41] << 8)
354 | (mask_m[42] << 6) | (mask_m[43] << 4)
355 | (mask_m[44] << 2) | (mask_m[45] << 0);
356 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
357 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
358
359 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
360 | (mask_m[18] << 26) | (mask_m[18] << 24)
361 | (mask_m[20] << 22) | (mask_m[20] << 20)
362 | (mask_m[22] << 18) | (mask_m[22] << 16)
363 | (mask_m[24] << 14) | (mask_m[24] << 12)
364 | (mask_m[25] << 10) | (mask_m[26] << 8)
365 | (mask_m[27] << 6) | (mask_m[28] << 4)
366 | (mask_m[29] << 2) | (mask_m[30] << 0);
367 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
368 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
369
370 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
371 | (mask_m[2] << 26) | (mask_m[3] << 24)
372 | (mask_m[4] << 22) | (mask_m[5] << 20)
373 | (mask_m[6] << 18) | (mask_m[7] << 16)
374 | (mask_m[8] << 14) | (mask_m[9] << 12)
375 | (mask_m[10] << 10) | (mask_m[11] << 8)
376 | (mask_m[12] << 6) | (mask_m[13] << 4)
377 | (mask_m[14] << 2) | (mask_m[15] << 0);
378 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
379 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
380
381 tmp_mask = (mask_p[15] << 28)
382 | (mask_p[14] << 26) | (mask_p[13] << 24)
383 | (mask_p[12] << 22) | (mask_p[11] << 20)
384 | (mask_p[10] << 18) | (mask_p[9] << 16)
385 | (mask_p[8] << 14) | (mask_p[7] << 12)
386 | (mask_p[6] << 10) | (mask_p[5] << 8)
387 | (mask_p[4] << 6) | (mask_p[3] << 4)
388 | (mask_p[2] << 2) | (mask_p[1] << 0);
389 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
390 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
391
392 tmp_mask = (mask_p[30] << 28)
393 | (mask_p[29] << 26) | (mask_p[28] << 24)
394 | (mask_p[27] << 22) | (mask_p[26] << 20)
395 | (mask_p[25] << 18) | (mask_p[24] << 16)
396 | (mask_p[23] << 14) | (mask_p[22] << 12)
397 | (mask_p[21] << 10) | (mask_p[20] << 8)
398 | (mask_p[19] << 6) | (mask_p[18] << 4)
399 | (mask_p[17] << 2) | (mask_p[16] << 0);
400 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
401 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
402
403 tmp_mask = (mask_p[45] << 28)
404 | (mask_p[44] << 26) | (mask_p[43] << 24)
405 | (mask_p[42] << 22) | (mask_p[41] << 20)
406 | (mask_p[40] << 18) | (mask_p[39] << 16)
407 | (mask_p[38] << 14) | (mask_p[37] << 12)
408 | (mask_p[36] << 10) | (mask_p[35] << 8)
409 | (mask_p[34] << 6) | (mask_p[33] << 4)
410 | (mask_p[32] << 2) | (mask_p[31] << 0);
411 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
412 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
413
414 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
415 | (mask_p[59] << 26) | (mask_p[58] << 24)
416 | (mask_p[57] << 22) | (mask_p[56] << 20)
417 | (mask_p[55] << 18) | (mask_p[54] << 16)
418 | (mask_p[53] << 14) | (mask_p[52] << 12)
419 | (mask_p[51] << 10) | (mask_p[50] << 8)
420 | (mask_p[49] << 6) | (mask_p[48] << 4)
421 | (mask_p[47] << 2) | (mask_p[46] << 0);
422 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
423 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
424 }
425
426 /*
427 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
428 *
429 * For non single-chip solutions. Converts to baseband spur frequency given the
430 * input channel frequency and compute register settings below.
431 */
ar5008_hw_spur_mitigate(struct ath_hw * ah,struct ath9k_channel * chan)432 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
433 struct ath9k_channel *chan)
434 {
435 int bb_spur = AR_NO_SPUR;
436 int bin;
437 int spur_freq_sd;
438 int spur_delta_phase;
439 int denominator;
440 int tmp, new;
441 int i;
442
443 int cur_bb_spur;
444 bool is2GHz = IS_CHAN_2GHZ(chan);
445
446 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
447 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
448 if (AR_NO_SPUR == cur_bb_spur)
449 break;
450 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
451 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
452 bb_spur = cur_bb_spur;
453 break;
454 }
455 }
456
457 if (AR_NO_SPUR == bb_spur)
458 return;
459
460 bin = bb_spur * 32;
461
462 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
463 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
464 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
465 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
466 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
467
468 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
469
470 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
471 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
472 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
473 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
474 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
475 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
476
477 spur_delta_phase = ((bb_spur * 524288) / 100) &
478 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
479
480 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
481 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
482
483 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
484 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
485 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
486 REG_WRITE(ah, AR_PHY_TIMING11, new);
487
488 ar5008_hw_cmn_spur_mitigate(ah, chan, bin);
489 }
490
491 /**
492 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
493 * @ah: atheros hardware structure
494 *
495 * Only required for older devices with external AR2133/AR5133 radios.
496 */
ar5008_hw_rf_alloc_ext_banks(struct ath_hw * ah)497 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
498 {
499 int size = ah->iniBank6.ia_rows * sizeof(u32);
500
501 if (AR_SREV_9280_20_OR_LATER(ah))
502 return 0;
503
504 ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
505 if (!ah->analogBank6Data)
506 return -ENOMEM;
507
508 return 0;
509 }
510
511
512 /* *
513 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
514 * @ah: atheros hardware structure
515 * @chan:
516 * @modesIndex:
517 *
518 * Used for the external AR2133/AR5133 radios.
519 *
520 * Reads the EEPROM header info from the device structure and programs
521 * all rf registers. This routine requires access to the analog
522 * rf device. This is not required for single-chip devices.
523 */
ar5008_hw_set_rf_regs(struct ath_hw * ah,struct ath9k_channel * chan,u16 modesIndex)524 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
525 struct ath9k_channel *chan,
526 u16 modesIndex)
527 {
528 u32 eepMinorRev;
529 u32 ob5GHz = 0, db5GHz = 0;
530 u32 ob2GHz = 0, db2GHz = 0;
531 int regWrites = 0;
532 int i;
533
534 /*
535 * Software does not need to program bank data
536 * for single chip devices, that is AR9280 or anything
537 * after that.
538 */
539 if (AR_SREV_9280_20_OR_LATER(ah))
540 return true;
541
542 /* Setup rf parameters */
543 eepMinorRev = ah->eep_ops->get_eeprom_rev(ah);
544
545 for (i = 0; i < ah->iniBank6.ia_rows; i++)
546 ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
547
548 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
549 if (eepMinorRev >= 2) {
550 if (IS_CHAN_2GHZ(chan)) {
551 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
552 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
553 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
554 ob2GHz, 3, 197, 0);
555 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
556 db2GHz, 3, 194, 0);
557 } else {
558 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
559 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
560 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
561 ob5GHz, 3, 203, 0);
562 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
563 db5GHz, 3, 200, 0);
564 }
565 }
566
567 /* Write Analog registers */
568 REG_WRITE_ARRAY(&bank0, 1, regWrites);
569 REG_WRITE_ARRAY(&bank1, 1, regWrites);
570 REG_WRITE_ARRAY(&bank2, 1, regWrites);
571 REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
572 ar5008_write_bank6(ah, ®Writes);
573 REG_WRITE_ARRAY(&bank7, 1, regWrites);
574
575 return true;
576 }
577
ar5008_hw_init_bb(struct ath_hw * ah,struct ath9k_channel * chan)578 static void ar5008_hw_init_bb(struct ath_hw *ah,
579 struct ath9k_channel *chan)
580 {
581 u32 synthDelay;
582
583 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
584
585 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
586
587 ath9k_hw_synth_delay(ah, chan, synthDelay);
588 }
589
ar5008_hw_init_chain_masks(struct ath_hw * ah)590 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
591 {
592 int rx_chainmask, tx_chainmask;
593
594 rx_chainmask = ah->rxchainmask;
595 tx_chainmask = ah->txchainmask;
596
597
598 switch (rx_chainmask) {
599 case 0x5:
600 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
601 AR_PHY_SWAP_ALT_CHAIN);
602 fallthrough;
603 case 0x3:
604 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
605 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
606 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
607 break;
608 }
609 fallthrough;
610 case 0x1:
611 case 0x2:
612 case 0x7:
613 ENABLE_REGWRITE_BUFFER(ah);
614 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
615 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
616 break;
617 default:
618 ENABLE_REGWRITE_BUFFER(ah);
619 break;
620 }
621
622 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
623
624 REGWRITE_BUFFER_FLUSH(ah);
625
626 if (tx_chainmask == 0x5) {
627 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
628 AR_PHY_SWAP_ALT_CHAIN);
629 }
630 if (AR_SREV_9100(ah))
631 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
632 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
633 }
634
ar5008_hw_override_ini(struct ath_hw * ah,struct ath9k_channel * chan)635 static void ar5008_hw_override_ini(struct ath_hw *ah,
636 struct ath9k_channel *chan)
637 {
638 u32 val;
639
640 /*
641 * Set the RX_ABORT and RX_DIS and clear if off only after
642 * RXE is set for MAC. This prevents frames with corrupted
643 * descriptor status.
644 */
645 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
646
647 if (AR_SREV_9280_20_OR_LATER(ah)) {
648 /*
649 * For AR9280 and above, there is a new feature that allows
650 * Multicast search based on both MAC Address and Key ID.
651 * By default, this feature is enabled. But since the driver
652 * is not using this feature, we switch it off; otherwise
653 * multicast search based on MAC addr only will fail.
654 */
655 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
656 (~AR_ADHOC_MCAST_KEYID_ENABLE);
657
658 if (!AR_SREV_9271(ah))
659 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
660
661 if (AR_SREV_9287_11_OR_LATER(ah))
662 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
663
664 val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
665
666 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
667 }
668
669 if (AR_SREV_9280_20_OR_LATER(ah))
670 return;
671 /*
672 * Disable BB clock gating
673 * Necessary to avoid issues on AR5416 2.0
674 */
675 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
676
677 /*
678 * Disable RIFS search on some chips to avoid baseband
679 * hang issues.
680 */
681 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
682 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
683 val &= ~AR_PHY_RIFS_INIT_DELAY;
684 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
685 }
686 }
687
ar5008_hw_set_channel_regs(struct ath_hw * ah,struct ath9k_channel * chan)688 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
689 struct ath9k_channel *chan)
690 {
691 u32 phymode;
692 u32 enableDacFifo = 0;
693
694 if (AR_SREV_9285_12_OR_LATER(ah))
695 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
696 AR_PHY_FC_ENABLE_DAC_FIFO);
697
698 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
699 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
700
701 if (IS_CHAN_HT40(chan)) {
702 phymode |= AR_PHY_FC_DYN2040_EN;
703
704 if (IS_CHAN_HT40PLUS(chan))
705 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
706
707 }
708 ENABLE_REGWRITE_BUFFER(ah);
709 REG_WRITE(ah, AR_PHY_TURBO, phymode);
710
711 /* This function do only REG_WRITE, so
712 * we can include it to REGWRITE_BUFFER. */
713 ath9k_hw_set11nmac2040(ah, chan);
714
715 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
716 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
717
718 REGWRITE_BUFFER_FLUSH(ah);
719 }
720
721
ar5008_hw_process_ini(struct ath_hw * ah,struct ath9k_channel * chan)722 static int ar5008_hw_process_ini(struct ath_hw *ah,
723 struct ath9k_channel *chan)
724 {
725 struct ath_common *common = ath9k_hw_common(ah);
726 int i, regWrites = 0;
727 u32 modesIndex, freqIndex;
728
729 if (IS_CHAN_5GHZ(chan)) {
730 freqIndex = 1;
731 modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
732 } else {
733 freqIndex = 2;
734 modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
735 }
736
737 /*
738 * Set correct baseband to analog shift setting to
739 * access analog chips.
740 */
741 REG_WRITE(ah, AR_PHY(0), 0x00000007);
742
743 /* Write ADDAC shifts */
744 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
745 if (ah->eep_ops->set_addac)
746 ah->eep_ops->set_addac(ah, chan);
747
748 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
749 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
750
751 ENABLE_REGWRITE_BUFFER(ah);
752
753 for (i = 0; i < ah->iniModes.ia_rows; i++) {
754 u32 reg = INI_RA(&ah->iniModes, i, 0);
755 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
756
757 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
758 val &= ~AR_AN_TOP2_PWDCLKIND;
759
760 REG_WRITE(ah, reg, val);
761
762 if (reg >= 0x7800 && reg < 0x78a0
763 && ah->config.analog_shiftreg
764 && (common->bus_ops->ath_bus_type != ATH_USB)) {
765 udelay(100);
766 }
767
768 DO_DELAY(regWrites);
769 }
770
771 REGWRITE_BUFFER_FLUSH(ah);
772
773 if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
774 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
775
776 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
777 AR_SREV_9287_11_OR_LATER(ah))
778 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
779
780 if (AR_SREV_9271_10(ah)) {
781 REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
782 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
783 }
784
785 ENABLE_REGWRITE_BUFFER(ah);
786
787 /* Write common array parameters */
788 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
789 u32 reg = INI_RA(&ah->iniCommon, i, 0);
790 u32 val = INI_RA(&ah->iniCommon, i, 1);
791
792 REG_WRITE(ah, reg, val);
793
794 if (reg >= 0x7800 && reg < 0x78a0
795 && ah->config.analog_shiftreg
796 && (common->bus_ops->ath_bus_type != ATH_USB)) {
797 udelay(100);
798 }
799
800 DO_DELAY(regWrites);
801 }
802
803 REGWRITE_BUFFER_FLUSH(ah);
804
805 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
806
807 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
808 REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
809 regWrites);
810
811 ar5008_hw_override_ini(ah, chan);
812 ar5008_hw_set_channel_regs(ah, chan);
813 ar5008_hw_init_chain_masks(ah);
814 ath9k_olc_init(ah);
815 ath9k_hw_apply_txpower(ah, chan, false);
816
817 /* Write analog registers */
818 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
819 ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
820 return -EIO;
821 }
822
823 return 0;
824 }
825
ar5008_hw_set_rfmode(struct ath_hw * ah,struct ath9k_channel * chan)826 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
827 {
828 u32 rfMode = 0;
829
830 if (chan == NULL)
831 return;
832
833 if (IS_CHAN_2GHZ(chan))
834 rfMode |= AR_PHY_MODE_DYNAMIC;
835 else
836 rfMode |= AR_PHY_MODE_OFDM;
837
838 if (!AR_SREV_9280_20_OR_LATER(ah))
839 rfMode |= (IS_CHAN_5GHZ(chan)) ?
840 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
841
842 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
843 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
844
845 REG_WRITE(ah, AR_PHY_MODE, rfMode);
846 }
847
ar5008_hw_mark_phy_inactive(struct ath_hw * ah)848 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
849 {
850 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
851 }
852
ar5008_hw_set_delta_slope(struct ath_hw * ah,struct ath9k_channel * chan)853 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
854 struct ath9k_channel *chan)
855 {
856 u32 coef_scaled, ds_coef_exp, ds_coef_man;
857 u32 clockMhzScaled = 0x64000000;
858 struct chan_centers centers;
859
860 if (IS_CHAN_HALF_RATE(chan))
861 clockMhzScaled = clockMhzScaled >> 1;
862 else if (IS_CHAN_QUARTER_RATE(chan))
863 clockMhzScaled = clockMhzScaled >> 2;
864
865 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
866 coef_scaled = clockMhzScaled / centers.synth_center;
867
868 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
869 &ds_coef_exp);
870
871 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
872 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
873 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
874 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
875
876 coef_scaled = (9 * coef_scaled) / 10;
877
878 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
879 &ds_coef_exp);
880
881 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
882 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
883 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
884 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
885 }
886
ar5008_hw_rfbus_req(struct ath_hw * ah)887 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
888 {
889 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
890 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
891 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
892 }
893
ar5008_hw_rfbus_done(struct ath_hw * ah)894 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
895 {
896 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
897
898 ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
899
900 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
901 }
902
ar5008_restore_chainmask(struct ath_hw * ah)903 static void ar5008_restore_chainmask(struct ath_hw *ah)
904 {
905 int rx_chainmask = ah->rxchainmask;
906
907 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
908 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
909 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
910 }
911 }
912
ar9160_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)913 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
914 struct ath9k_channel *chan)
915 {
916 u32 pll;
917
918 pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
919
920 if (chan && IS_CHAN_HALF_RATE(chan))
921 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
922 else if (chan && IS_CHAN_QUARTER_RATE(chan))
923 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
924
925 if (chan && IS_CHAN_5GHZ(chan))
926 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
927 else
928 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
929
930 return pll;
931 }
932
ar5008_hw_compute_pll_control(struct ath_hw * ah,struct ath9k_channel * chan)933 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
934 struct ath9k_channel *chan)
935 {
936 u32 pll;
937
938 pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
939
940 if (chan && IS_CHAN_HALF_RATE(chan))
941 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
942 else if (chan && IS_CHAN_QUARTER_RATE(chan))
943 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
944
945 if (chan && IS_CHAN_5GHZ(chan))
946 pll |= SM(0xa, AR_RTC_PLL_DIV);
947 else
948 pll |= SM(0xb, AR_RTC_PLL_DIV);
949
950 return pll;
951 }
952
ar5008_hw_ani_control_new(struct ath_hw * ah,enum ath9k_ani_cmd cmd,int param)953 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
954 enum ath9k_ani_cmd cmd,
955 int param)
956 {
957 struct ath_common *common = ath9k_hw_common(ah);
958 struct ath9k_channel *chan = ah->curchan;
959 struct ar5416AniState *aniState = &ah->ani;
960 s32 value;
961
962 switch (cmd & ah->ani_function) {
963 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
964 /*
965 * on == 1 means ofdm weak signal detection is ON
966 * on == 1 is the default, for less noise immunity
967 *
968 * on == 0 means ofdm weak signal detection is OFF
969 * on == 0 means more noise imm
970 */
971 u32 on = param ? 1 : 0;
972 /*
973 * make register setting for default
974 * (weak sig detect ON) come from INI file
975 */
976 int m1ThreshLow = on ?
977 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
978 int m2ThreshLow = on ?
979 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
980 int m1Thresh = on ?
981 aniState->iniDef.m1Thresh : m1Thresh_off;
982 int m2Thresh = on ?
983 aniState->iniDef.m2Thresh : m2Thresh_off;
984 int m2CountThr = on ?
985 aniState->iniDef.m2CountThr : m2CountThr_off;
986 int m2CountThrLow = on ?
987 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
988 int m1ThreshLowExt = on ?
989 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
990 int m2ThreshLowExt = on ?
991 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
992 int m1ThreshExt = on ?
993 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
994 int m2ThreshExt = on ?
995 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
996
997 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
998 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
999 m1ThreshLow);
1000 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1001 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
1002 m2ThreshLow);
1003 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1004 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
1005 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1006 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
1007 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
1008 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
1009 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
1010 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
1011 m2CountThrLow);
1012
1013 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1014 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
1015 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1016 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
1017 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1018 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
1019 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
1020 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
1021
1022 if (on)
1023 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
1024 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1025 else
1026 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
1027 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
1028
1029 if (on != aniState->ofdmWeakSigDetect) {
1030 ath_dbg(common, ANI,
1031 "** ch %d: ofdm weak signal: %s=>%s\n",
1032 chan->channel,
1033 aniState->ofdmWeakSigDetect ?
1034 "on" : "off",
1035 on ? "on" : "off");
1036 if (on)
1037 ah->stats.ast_ani_ofdmon++;
1038 else
1039 ah->stats.ast_ani_ofdmoff++;
1040 aniState->ofdmWeakSigDetect = on;
1041 }
1042 break;
1043 }
1044 case ATH9K_ANI_FIRSTEP_LEVEL:{
1045 u32 level = param;
1046
1047 value = level * 2;
1048 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1049 AR_PHY_FIND_SIG_FIRSTEP, value);
1050 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
1051 AR_PHY_FIND_SIG_FIRSTEP_LOW, value);
1052
1053 if (level != aniState->firstepLevel) {
1054 ath_dbg(common, ANI,
1055 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1056 chan->channel,
1057 aniState->firstepLevel,
1058 level,
1059 ATH9K_ANI_FIRSTEP_LVL,
1060 value,
1061 aniState->iniDef.firstep);
1062 ath_dbg(common, ANI,
1063 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1064 chan->channel,
1065 aniState->firstepLevel,
1066 level,
1067 ATH9K_ANI_FIRSTEP_LVL,
1068 value,
1069 aniState->iniDef.firstepLow);
1070 if (level > aniState->firstepLevel)
1071 ah->stats.ast_ani_stepup++;
1072 else if (level < aniState->firstepLevel)
1073 ah->stats.ast_ani_stepdown++;
1074 aniState->firstepLevel = level;
1075 }
1076 break;
1077 }
1078 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1079 u32 level = param;
1080
1081 value = (level + 1) * 2;
1082 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1083 AR_PHY_TIMING5_CYCPWR_THR1, value);
1084
1085 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1086 AR_PHY_EXT_TIMING5_CYCPWR_THR1, value - 1);
1087
1088 if (level != aniState->spurImmunityLevel) {
1089 ath_dbg(common, ANI,
1090 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1091 chan->channel,
1092 aniState->spurImmunityLevel,
1093 level,
1094 ATH9K_ANI_SPUR_IMMUNE_LVL,
1095 value,
1096 aniState->iniDef.cycpwrThr1);
1097 ath_dbg(common, ANI,
1098 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1099 chan->channel,
1100 aniState->spurImmunityLevel,
1101 level,
1102 ATH9K_ANI_SPUR_IMMUNE_LVL,
1103 value,
1104 aniState->iniDef.cycpwrThr1Ext);
1105 if (level > aniState->spurImmunityLevel)
1106 ah->stats.ast_ani_spurup++;
1107 else if (level < aniState->spurImmunityLevel)
1108 ah->stats.ast_ani_spurdown++;
1109 aniState->spurImmunityLevel = level;
1110 }
1111 break;
1112 }
1113 case ATH9K_ANI_MRC_CCK:
1114 /*
1115 * You should not see this as AR5008, AR9001, AR9002
1116 * does not have hardware support for MRC CCK.
1117 */
1118 WARN_ON(1);
1119 break;
1120 default:
1121 ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1122 return false;
1123 }
1124
1125 ath_dbg(common, ANI,
1126 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1127 aniState->spurImmunityLevel,
1128 aniState->ofdmWeakSigDetect ? "on" : "off",
1129 aniState->firstepLevel,
1130 aniState->mrcCCK ? "on" : "off",
1131 aniState->listenTime,
1132 aniState->ofdmPhyErrCount,
1133 aniState->cckPhyErrCount);
1134 return true;
1135 }
1136
ar5008_hw_do_getnf(struct ath_hw * ah,int16_t nfarray[NUM_NF_READINGS])1137 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1138 int16_t nfarray[NUM_NF_READINGS])
1139 {
1140 int16_t nf;
1141
1142 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1143 nfarray[0] = sign_extend32(nf, 8);
1144
1145 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1146 nfarray[1] = sign_extend32(nf, 8);
1147
1148 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1149 nfarray[2] = sign_extend32(nf, 8);
1150
1151 if (!IS_CHAN_HT40(ah->curchan))
1152 return;
1153
1154 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1155 nfarray[3] = sign_extend32(nf, 8);
1156
1157 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1158 nfarray[4] = sign_extend32(nf, 8);
1159
1160 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1161 nfarray[5] = sign_extend32(nf, 8);
1162 }
1163
1164 /*
1165 * Initialize the ANI register values with default (ini) values.
1166 * This routine is called during a (full) hardware reset after
1167 * all the registers are initialised from the INI.
1168 */
ar5008_hw_ani_cache_ini_regs(struct ath_hw * ah)1169 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1170 {
1171 struct ath_common *common = ath9k_hw_common(ah);
1172 struct ath9k_channel *chan = ah->curchan;
1173 struct ar5416AniState *aniState = &ah->ani;
1174 struct ath9k_ani_default *iniDef;
1175 u32 val;
1176
1177 iniDef = &aniState->iniDef;
1178
1179 ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1180 ah->hw_version.macVersion,
1181 ah->hw_version.macRev,
1182 ah->opmode,
1183 chan->channel);
1184
1185 val = REG_READ(ah, AR_PHY_SFCORR);
1186 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1187 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1188 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1189
1190 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1191 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1192 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1193 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1194
1195 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1196 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1197 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1198 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1199 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1200 iniDef->firstep = REG_READ_FIELD(ah,
1201 AR_PHY_FIND_SIG,
1202 AR_PHY_FIND_SIG_FIRSTEP);
1203 iniDef->firstepLow = REG_READ_FIELD(ah,
1204 AR_PHY_FIND_SIG_LOW,
1205 AR_PHY_FIND_SIG_FIRSTEP_LOW);
1206 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1207 AR_PHY_TIMING5,
1208 AR_PHY_TIMING5_CYCPWR_THR1);
1209 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1210 AR_PHY_EXT_CCA,
1211 AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1212
1213 /* these levels just got reset to defaults by the INI */
1214 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1215 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1216 aniState->ofdmWeakSigDetect = true;
1217 aniState->mrcCCK = false; /* not available on pre AR9003 */
1218 }
1219
ar5008_hw_set_nf_limits(struct ath_hw * ah)1220 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1221 {
1222 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1223 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1224 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1225 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1226 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1227 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1228 }
1229
ar5008_hw_set_radar_params(struct ath_hw * ah,struct ath_hw_radar_conf * conf)1230 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1231 struct ath_hw_radar_conf *conf)
1232 {
1233 u32 radar_0 = 0, radar_1;
1234
1235 if (!conf) {
1236 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1237 return;
1238 }
1239
1240 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1241 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1242 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1243 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1244 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1245 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1246
1247 radar_1 = REG_READ(ah, AR_PHY_RADAR_1);
1248 radar_1 &= ~(AR_PHY_RADAR_1_MAXLEN | AR_PHY_RADAR_1_RELSTEP_THRESH |
1249 AR_PHY_RADAR_1_RELPWR_THRESH);
1250 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1251 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1252 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1253 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1254 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1255
1256 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1257 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1258 if (conf->ext_channel)
1259 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1260 else
1261 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1262 }
1263
ar5008_hw_set_radar_conf(struct ath_hw * ah)1264 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1265 {
1266 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1267
1268 conf->fir_power = -33;
1269 conf->radar_rssi = 20;
1270 conf->pulse_height = 10;
1271 conf->pulse_rssi = 15;
1272 conf->pulse_inband = 15;
1273 conf->pulse_maxlen = 255;
1274 conf->pulse_inband_step = 12;
1275 conf->radar_inband = 8;
1276 }
1277
ar5008_hw_init_txpower_cck(struct ath_hw * ah,int16_t * rate_array)1278 static void ar5008_hw_init_txpower_cck(struct ath_hw *ah, int16_t *rate_array)
1279 {
1280 #define CCK_DELTA(x) ((OLC_FOR_AR9280_20_LATER) ? max((x) - 2, 0) : (x))
1281 ah->tx_power[0] = CCK_DELTA(rate_array[rate1l]);
1282 ah->tx_power[1] = CCK_DELTA(min(rate_array[rate2l],
1283 rate_array[rate2s]));
1284 ah->tx_power[2] = CCK_DELTA(min(rate_array[rate5_5l],
1285 rate_array[rate5_5s]));
1286 ah->tx_power[3] = CCK_DELTA(min(rate_array[rate11l],
1287 rate_array[rate11s]));
1288 #undef CCK_DELTA
1289 }
1290
ar5008_hw_init_txpower_ofdm(struct ath_hw * ah,int16_t * rate_array,int offset)1291 static void ar5008_hw_init_txpower_ofdm(struct ath_hw *ah, int16_t *rate_array,
1292 int offset)
1293 {
1294 int i, idx = 0;
1295
1296 for (i = offset; i < offset + AR5008_OFDM_RATES; i++) {
1297 ah->tx_power[i] = rate_array[idx];
1298 idx++;
1299 }
1300 }
1301
ar5008_hw_init_txpower_ht(struct ath_hw * ah,int16_t * rate_array,int ss_offset,int ds_offset,bool is_40,int ht40_delta)1302 static void ar5008_hw_init_txpower_ht(struct ath_hw *ah, int16_t *rate_array,
1303 int ss_offset, int ds_offset,
1304 bool is_40, int ht40_delta)
1305 {
1306 int i, mcs_idx = (is_40) ? AR5008_HT40_SHIFT : AR5008_HT20_SHIFT;
1307
1308 for (i = ss_offset; i < ss_offset + AR5008_HT_SS_RATES; i++) {
1309 ah->tx_power[i] = rate_array[mcs_idx] + ht40_delta;
1310 mcs_idx++;
1311 }
1312 memcpy(&ah->tx_power[ds_offset], &ah->tx_power[ss_offset],
1313 AR5008_HT_SS_RATES);
1314 }
1315
ar5008_hw_init_rate_txpower(struct ath_hw * ah,int16_t * rate_array,struct ath9k_channel * chan,int ht40_delta)1316 void ar5008_hw_init_rate_txpower(struct ath_hw *ah, int16_t *rate_array,
1317 struct ath9k_channel *chan, int ht40_delta)
1318 {
1319 if (IS_CHAN_5GHZ(chan)) {
1320 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1321 AR5008_11NA_OFDM_SHIFT);
1322 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1323 ar5008_hw_init_txpower_ht(ah, rate_array,
1324 AR5008_11NA_HT_SS_SHIFT,
1325 AR5008_11NA_HT_DS_SHIFT,
1326 IS_CHAN_HT40(chan),
1327 ht40_delta);
1328 }
1329 } else {
1330 ar5008_hw_init_txpower_cck(ah, rate_array);
1331 ar5008_hw_init_txpower_ofdm(ah, rate_array,
1332 AR5008_11NG_OFDM_SHIFT);
1333 if (IS_CHAN_HT20(chan) || IS_CHAN_HT40(chan)) {
1334 ar5008_hw_init_txpower_ht(ah, rate_array,
1335 AR5008_11NG_HT_SS_SHIFT,
1336 AR5008_11NG_HT_DS_SHIFT,
1337 IS_CHAN_HT40(chan),
1338 ht40_delta);
1339 }
1340 }
1341 }
1342
ar5008_hw_attach_phy_ops(struct ath_hw * ah)1343 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1344 {
1345 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1346 static const u32 ar5416_cca_regs[6] = {
1347 AR_PHY_CCA,
1348 AR_PHY_CH1_CCA,
1349 AR_PHY_CH2_CCA,
1350 AR_PHY_EXT_CCA,
1351 AR_PHY_CH1_EXT_CCA,
1352 AR_PHY_CH2_EXT_CCA
1353 };
1354 int ret;
1355
1356 ret = ar5008_hw_rf_alloc_ext_banks(ah);
1357 if (ret)
1358 return ret;
1359
1360 priv_ops->rf_set_freq = ar5008_hw_set_channel;
1361 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1362
1363 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1364 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1365 priv_ops->init_bb = ar5008_hw_init_bb;
1366 priv_ops->process_ini = ar5008_hw_process_ini;
1367 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1368 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1369 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1370 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1371 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1372 priv_ops->restore_chainmask = ar5008_restore_chainmask;
1373 priv_ops->do_getnf = ar5008_hw_do_getnf;
1374 priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1375
1376 priv_ops->ani_control = ar5008_hw_ani_control_new;
1377 priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1378
1379 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1380 priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1381 else
1382 priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1383
1384 ar5008_hw_set_nf_limits(ah);
1385 ar5008_hw_set_radar_conf(ah);
1386 memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1387 return 0;
1388 }
1389