1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
disable_randmaps(char * s)105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
init_zero_pfn(void)118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
sync_mm_rss(struct mm_struct * mm)128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139 }
140
add_mm_counter_fast(struct mm_struct * mm,int member,int val)141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
check_sync_rss_stat(struct task_struct * task)167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
tlb_next_batch(struct mmu_gather * tlb)175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
186 return 0;
187
188 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
189 if (!batch)
190 return 0;
191
192 tlb->batch_count++;
193 batch->next = NULL;
194 batch->nr = 0;
195 batch->max = MAX_GATHER_BATCH;
196
197 tlb->active->next = batch;
198 tlb->active = batch;
199
200 return 1;
201 }
202
203 /* tlb_gather_mmu
204 * Called to initialize an (on-stack) mmu_gather structure for page-table
205 * tear-down from @mm. The @fullmm argument is used when @mm is without
206 * users and we're going to destroy the full address space (exit/execve).
207 */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,bool fullmm)208 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
209 {
210 tlb->mm = mm;
211
212 tlb->fullmm = fullmm;
213 tlb->need_flush = 0;
214 tlb->fast_mode = (num_possible_cpus() == 1);
215 tlb->local.next = NULL;
216 tlb->local.nr = 0;
217 tlb->local.max = ARRAY_SIZE(tlb->__pages);
218 tlb->active = &tlb->local;
219 tlb->batch_count = 0;
220
221 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
222 tlb->batch = NULL;
223 #endif
224 }
225
tlb_flush_mmu(struct mmu_gather * tlb)226 void tlb_flush_mmu(struct mmu_gather *tlb)
227 {
228 struct mmu_gather_batch *batch;
229
230 if (!tlb->need_flush)
231 return;
232 tlb->need_flush = 0;
233 tlb_flush(tlb);
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb_table_flush(tlb);
236 #endif
237
238 if (tlb_fast_mode(tlb))
239 return;
240
241 for (batch = &tlb->local; batch; batch = batch->next) {
242 free_pages_and_swap_cache(batch->pages, batch->nr);
243 batch->nr = 0;
244 }
245 tlb->active = &tlb->local;
246 }
247
248 /* tlb_finish_mmu
249 * Called at the end of the shootdown operation to free up any resources
250 * that were required.
251 */
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)252 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
253 {
254 struct mmu_gather_batch *batch, *next;
255
256 tlb_flush_mmu(tlb);
257
258 /* keep the page table cache within bounds */
259 check_pgt_cache();
260
261 for (batch = tlb->local.next; batch; batch = next) {
262 next = batch->next;
263 free_pages((unsigned long)batch, 0);
264 }
265 tlb->local.next = NULL;
266 }
267
268 /* __tlb_remove_page
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
273 */
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)274 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 {
276 struct mmu_gather_batch *batch;
277
278 VM_BUG_ON(!tlb->need_flush);
279
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
283 }
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
291 }
292 VM_BUG_ON(batch->nr > batch->max);
293
294 return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302 * See the comment near struct mmu_table_batch.
303 */
304
tlb_remove_table_smp_sync(void * arg)305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 /* Simply deliver the interrupt */
308 }
309
tlb_remove_table_one(void * table)310 static void tlb_remove_table_one(void *table)
311 {
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321 }
322
tlb_remove_table_rcu(struct rcu_head * head)323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334 }
335
tlb_table_flush(struct mmu_gather * tlb)336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344 }
345
tlb_remove_table(struct mmu_gather * tlb,void * table)346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
380 */
381
pgd_clear_bad(pgd_t * pgd)382 void pgd_clear_bad(pgd_t *pgd)
383 {
384 pgd_ERROR(*pgd);
385 pgd_clear(pgd);
386 }
387
pud_clear_bad(pud_t * pud)388 void pud_clear_bad(pud_t *pud)
389 {
390 pud_ERROR(*pud);
391 pud_clear(pud);
392 }
393
pmd_clear_bad(pmd_t * pmd)394 void pmd_clear_bad(pmd_t *pmd)
395 {
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398 }
399
400 /*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
406 {
407 pgtable_t token = pmd_pgtable(*pmd);
408 pmd_clear(pmd);
409 pte_free_tlb(tlb, token, addr);
410 tlb->mm->nr_ptes--;
411 }
412
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
416 {
417 pmd_t *pmd;
418 unsigned long next;
419 unsigned long start;
420
421 start = addr;
422 pmd = pmd_offset(pud, addr);
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
427 free_pte_range(tlb, pmd, addr);
428 } while (pmd++, addr = next, addr != end);
429
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
437 }
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
443 pmd_free_tlb(tlb, pmd, start);
444 }
445
free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
449 {
450 pud_t *pud;
451 unsigned long next;
452 unsigned long start;
453
454 start = addr;
455 pud = pud_offset(pgd, addr);
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
462
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
470 }
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
476 pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480 * This function frees user-level page tables of a process.
481 *
482 * Must be called with pagetable lock held.
483 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)484 void free_pgd_range(struct mmu_gather *tlb,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487 {
488 pgd_t *pgd;
489 unsigned long next;
490
491 /*
492 * The next few lines have given us lots of grief...
493 *
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
497 *
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
505 *
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
510 *
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
515 */
516
517 addr &= PMD_MASK;
518 if (addr < floor) {
519 addr += PMD_SIZE;
520 if (!addr)
521 return;
522 }
523 if (ceiling) {
524 ceiling &= PMD_MASK;
525 if (!ceiling)
526 return;
527 }
528 if (end - 1 > ceiling - 1)
529 end -= PMD_SIZE;
530 if (addr > end - 1)
531 return;
532
533 pgd = pgd_offset(tlb->mm, addr);
534 do {
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
537 continue;
538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 } while (pgd++, addr = next, addr != end);
540 }
541
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 unsigned long floor, unsigned long ceiling)
544 {
545 while (vma) {
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
548
549 /*
550 * Hide vma from rmap and truncate_pagecache before freeing
551 * pgtables
552 */
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555
556 if (is_vm_hugetlb_page(vma)) {
557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 } else {
560 /*
561 * Optimization: gather nearby vmas into one call down
562 */
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 && !is_vm_hugetlb_page(next)) {
565 vma = next;
566 next = vma->vm_next;
567 unlink_anon_vmas(vma);
568 unlink_file_vma(vma);
569 }
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
572 }
573 vma = next;
574 }
575 }
576
__pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,unsigned long address)577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
579 {
580 pgtable_t new = pte_alloc_one(mm, address);
581 int wait_split_huge_page;
582 if (!new)
583 return -ENOMEM;
584
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600 spin_lock(&mm->page_table_lock);
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 mm->nr_ptes++;
604 pmd_populate(mm, pmd, new);
605 new = NULL;
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
608 spin_unlock(&mm->page_table_lock);
609 if (new)
610 pte_free(mm, new);
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
613 return 0;
614 }
615
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 if (!new)
620 return -ENOMEM;
621
622 smp_wmb(); /* See comment in __pte_alloc */
623
624 spin_lock(&init_mm.page_table_lock);
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 pmd_populate_kernel(&init_mm, pmd, new);
627 new = NULL;
628 } else
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
630 spin_unlock(&init_mm.page_table_lock);
631 if (new)
632 pte_free_kernel(&init_mm, new);
633 return 0;
634 }
635
init_rss_vec(int * rss)636 static inline void init_rss_vec(int *rss)
637 {
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640
add_mm_rss_vec(struct mm_struct * mm,int * rss)641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643 int i;
644
645 if (current->mm == mm)
646 sync_mm_rss(mm);
647 for (i = 0; i < NR_MM_COUNTERS; i++)
648 if (rss[i])
649 add_mm_counter(mm, i, rss[i]);
650 }
651
652 /*
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
656 *
657 * The calling function must still handle the error.
658 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
661 {
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
666 pgoff_t index;
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
670
671 /*
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
674 */
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
677 nr_unshown++;
678 return;
679 }
680 if (nr_unshown) {
681 printk(KERN_ALERT
682 "BUG: Bad page map: %lu messages suppressed\n",
683 nr_unshown);
684 nr_unshown = 0;
685 }
686 nr_shown = 0;
687 }
688 if (nr_shown++ == 0)
689 resume = jiffies + 60 * HZ;
690
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
693
694 printk(KERN_ALERT
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 current->comm,
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
698 if (page)
699 dump_page(page);
700 printk(KERN_ALERT
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 /*
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 */
706 if (vma->vm_ops)
707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 (unsigned long)vma->vm_file->f_op->mmap);
712 dump_stack();
713 add_taint(TAINT_BAD_PAGE);
714 }
715
is_cow_mapping(vm_flags_t flags)716 static inline int is_cow_mapping(vm_flags_t flags)
717 {
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720
721 #ifndef is_zero_pfn
is_zero_pfn(unsigned long pfn)722 static inline int is_zero_pfn(unsigned long pfn)
723 {
724 return pfn == zero_pfn;
725 }
726 #endif
727
728 #ifndef my_zero_pfn
my_zero_pfn(unsigned long addr)729 static inline unsigned long my_zero_pfn(unsigned long addr)
730 {
731 return zero_pfn;
732 }
733 #endif
734
735 /*
736 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 *
738 * "Special" mappings do not wish to be associated with a "struct page" (either
739 * it doesn't exist, or it exists but they don't want to touch it). In this
740 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 *
742 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743 * pte bit, in which case this function is trivial. Secondly, an architecture
744 * may not have a spare pte bit, which requires a more complicated scheme,
745 * described below.
746 *
747 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748 * special mapping (even if there are underlying and valid "struct pages").
749 * COWed pages of a VM_PFNMAP are always normal.
750 *
751 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
753 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754 * mapping will always honor the rule
755 *
756 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 *
758 * And for normal mappings this is false.
759 *
760 * This restricts such mappings to be a linear translation from virtual address
761 * to pfn. To get around this restriction, we allow arbitrary mappings so long
762 * as the vma is not a COW mapping; in that case, we know that all ptes are
763 * special (because none can have been COWed).
764 *
765 *
766 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 *
768 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769 * page" backing, however the difference is that _all_ pages with a struct
770 * page (that is, those where pfn_valid is true) are refcounted and considered
771 * normal pages by the VM. The disadvantage is that pages are refcounted
772 * (which can be slower and simply not an option for some PFNMAP users). The
773 * advantage is that we don't have to follow the strict linearity rule of
774 * PFNMAP mappings in order to support COWable mappings.
775 *
776 */
777 #ifdef __HAVE_ARCH_PTE_SPECIAL
778 # define HAVE_PTE_SPECIAL 1
779 #else
780 # define HAVE_PTE_SPECIAL 0
781 #endif
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)782 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
783 pte_t pte)
784 {
785 unsigned long pfn = pte_pfn(pte);
786
787 if (HAVE_PTE_SPECIAL) {
788 if (likely(!pte_special(pte)))
789 goto check_pfn;
790 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 return NULL;
792 if (!is_zero_pfn(pfn))
793 print_bad_pte(vma, addr, pte, NULL);
794 return NULL;
795 }
796
797 /* !HAVE_PTE_SPECIAL case follows: */
798
799 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 if (vma->vm_flags & VM_MIXEDMAP) {
801 if (!pfn_valid(pfn))
802 return NULL;
803 goto out;
804 } else {
805 unsigned long off;
806 off = (addr - vma->vm_start) >> PAGE_SHIFT;
807 if (pfn == vma->vm_pgoff + off)
808 return NULL;
809 if (!is_cow_mapping(vma->vm_flags))
810 return NULL;
811 }
812 }
813
814 if (is_zero_pfn(pfn))
815 return NULL;
816 check_pfn:
817 if (unlikely(pfn > highest_memmap_pfn)) {
818 print_bad_pte(vma, addr, pte, NULL);
819 return NULL;
820 }
821
822 /*
823 * NOTE! We still have PageReserved() pages in the page tables.
824 * eg. VDSO mappings can cause them to exist.
825 */
826 out:
827 return pfn_to_page(pfn);
828 }
829
830 /*
831 * copy one vm_area from one task to the other. Assumes the page tables
832 * already present in the new task to be cleared in the whole range
833 * covered by this vma.
834 */
835
836 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)837 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
839 unsigned long addr, int *rss)
840 {
841 unsigned long vm_flags = vma->vm_flags;
842 pte_t pte = *src_pte;
843 struct page *page;
844
845 /* pte contains position in swap or file, so copy. */
846 if (unlikely(!pte_present(pte))) {
847 if (!pte_file(pte)) {
848 swp_entry_t entry = pte_to_swp_entry(pte);
849
850 if (swap_duplicate(entry) < 0)
851 return entry.val;
852
853 /* make sure dst_mm is on swapoff's mmlist. */
854 if (unlikely(list_empty(&dst_mm->mmlist))) {
855 spin_lock(&mmlist_lock);
856 if (list_empty(&dst_mm->mmlist))
857 list_add(&dst_mm->mmlist,
858 &src_mm->mmlist);
859 spin_unlock(&mmlist_lock);
860 }
861 if (likely(!non_swap_entry(entry)))
862 rss[MM_SWAPENTS]++;
863 else if (is_migration_entry(entry)) {
864 page = migration_entry_to_page(entry);
865
866 if (PageAnon(page))
867 rss[MM_ANONPAGES]++;
868 else
869 rss[MM_FILEPAGES]++;
870
871 if (is_write_migration_entry(entry) &&
872 is_cow_mapping(vm_flags)) {
873 /*
874 * COW mappings require pages in both
875 * parent and child to be set to read.
876 */
877 make_migration_entry_read(&entry);
878 pte = swp_entry_to_pte(entry);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
881 }
882 }
883 goto out_set_pte;
884 }
885
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
906 page_dup_rmap(page);
907 if (PageAnon(page))
908 rss[MM_ANONPAGES]++;
909 else
910 rss[MM_FILEPAGES]++;
911 }
912
913 out_set_pte:
914 set_pte_at(dst_mm, addr, dst_pte, pte);
915 return 0;
916 }
917
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)918 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 unsigned long addr, unsigned long end)
921 {
922 pte_t *orig_src_pte, *orig_dst_pte;
923 pte_t *src_pte, *dst_pte;
924 spinlock_t *src_ptl, *dst_ptl;
925 int progress = 0;
926 int rss[NR_MM_COUNTERS];
927 swp_entry_t entry = (swp_entry_t){0};
928
929 again:
930 init_rss_vec(rss);
931
932 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
933 if (!dst_pte)
934 return -ENOMEM;
935 src_pte = pte_offset_map(src_pmd, addr);
936 src_ptl = pte_lockptr(src_mm, src_pmd);
937 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 orig_src_pte = src_pte;
939 orig_dst_pte = dst_pte;
940 arch_enter_lazy_mmu_mode();
941
942 do {
943 /*
944 * We are holding two locks at this point - either of them
945 * could generate latencies in another task on another CPU.
946 */
947 if (progress >= 32) {
948 progress = 0;
949 if (need_resched() ||
950 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
951 break;
952 }
953 if (pte_none(*src_pte)) {
954 progress++;
955 continue;
956 }
957 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
958 vma, addr, rss);
959 if (entry.val)
960 break;
961 progress += 8;
962 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963
964 arch_leave_lazy_mmu_mode();
965 spin_unlock(src_ptl);
966 pte_unmap(orig_src_pte);
967 add_mm_rss_vec(dst_mm, rss);
968 pte_unmap_unlock(orig_dst_pte, dst_ptl);
969 cond_resched();
970
971 if (entry.val) {
972 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
973 return -ENOMEM;
974 progress = 0;
975 }
976 if (addr != end)
977 goto again;
978 return 0;
979 }
980
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)981 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 unsigned long addr, unsigned long end)
984 {
985 pmd_t *src_pmd, *dst_pmd;
986 unsigned long next;
987
988 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
989 if (!dst_pmd)
990 return -ENOMEM;
991 src_pmd = pmd_offset(src_pud, addr);
992 do {
993 next = pmd_addr_end(addr, end);
994 if (pmd_trans_huge(*src_pmd)) {
995 int err;
996 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
997 err = copy_huge_pmd(dst_mm, src_mm,
998 dst_pmd, src_pmd, addr, vma);
999 if (err == -ENOMEM)
1000 return -ENOMEM;
1001 if (!err)
1002 continue;
1003 /* fall through */
1004 }
1005 if (pmd_none_or_clear_bad(src_pmd))
1006 continue;
1007 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1008 vma, addr, next))
1009 return -ENOMEM;
1010 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1011 return 0;
1012 }
1013
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1014 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 unsigned long addr, unsigned long end)
1017 {
1018 pud_t *src_pud, *dst_pud;
1019 unsigned long next;
1020
1021 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1022 if (!dst_pud)
1023 return -ENOMEM;
1024 src_pud = pud_offset(src_pgd, addr);
1025 do {
1026 next = pud_addr_end(addr, end);
1027 if (pud_none_or_clear_bad(src_pud))
1028 continue;
1029 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1030 vma, addr, next))
1031 return -ENOMEM;
1032 } while (dst_pud++, src_pud++, addr = next, addr != end);
1033 return 0;
1034 }
1035
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1036 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 struct vm_area_struct *vma)
1038 {
1039 pgd_t *src_pgd, *dst_pgd;
1040 unsigned long next;
1041 unsigned long addr = vma->vm_start;
1042 unsigned long end = vma->vm_end;
1043 int ret;
1044
1045 /*
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1050 */
1051 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1052 if (!vma->anon_vma)
1053 return 0;
1054 }
1055
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
1059 if (unlikely(is_pfn_mapping(vma))) {
1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
1064 ret = track_pfn_vma_copy(vma);
1065 if (ret)
1066 return ret;
1067 }
1068
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
1075 if (is_cow_mapping(vma->vm_flags))
1076 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1089 }
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091
1092 if (is_cow_mapping(vma->vm_flags))
1093 mmu_notifier_invalidate_range_end(src_mm,
1094 vma->vm_start, end);
1095 return ret;
1096 }
1097
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1098 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 struct zap_details *details)
1102 {
1103 struct mm_struct *mm = tlb->mm;
1104 int force_flush = 0;
1105 int rss[NR_MM_COUNTERS];
1106 spinlock_t *ptl;
1107 pte_t *start_pte;
1108 pte_t *pte;
1109
1110 again:
1111 init_rss_vec(rss);
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 pte = start_pte;
1114 arch_enter_lazy_mmu_mode();
1115 do {
1116 pte_t ptent = *pte;
1117 if (pte_none(ptent)) {
1118 continue;
1119 }
1120
1121 if (pte_present(ptent)) {
1122 struct page *page;
1123
1124 page = vm_normal_page(vma, addr, ptent);
1125 if (unlikely(details) && page) {
1126 /*
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1130 */
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1133 continue;
1134 /*
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1137 */
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1141 continue;
1142 }
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 tlb->fullmm);
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
1151 set_pte_at(mm, addr, pte,
1152 pgoff_to_pte(page->index));
1153 if (PageAnon(page))
1154 rss[MM_ANONPAGES]--;
1155 else {
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
1160 mark_page_accessed(page);
1161 rss[MM_FILEPAGES]--;
1162 }
1163 page_remove_rmap(page);
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
1166 force_flush = !__tlb_remove_page(tlb, page);
1167 if (force_flush)
1168 break;
1169 continue;
1170 }
1171 /*
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1174 */
1175 if (unlikely(details))
1176 continue;
1177 if (pte_file(ptent)) {
1178 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1180 } else {
1181 swp_entry_t entry = pte_to_swp_entry(ptent);
1182
1183 if (!non_swap_entry(entry))
1184 rss[MM_SWAPENTS]--;
1185 else if (is_migration_entry(entry)) {
1186 struct page *page;
1187
1188 page = migration_entry_to_page(entry);
1189
1190 if (PageAnon(page))
1191 rss[MM_ANONPAGES]--;
1192 else
1193 rss[MM_FILEPAGES]--;
1194 }
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1197 }
1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 } while (pte++, addr += PAGE_SIZE, addr != end);
1200
1201 add_mm_rss_vec(mm, rss);
1202 arch_leave_lazy_mmu_mode();
1203 pte_unmap_unlock(start_pte, ptl);
1204
1205 /*
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1209 */
1210 if (force_flush) {
1211 force_flush = 0;
1212 tlb_flush_mmu(tlb);
1213 if (addr != end)
1214 goto again;
1215 }
1216
1217 return addr;
1218 }
1219
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 struct vm_area_struct *vma, pud_t *pud,
1222 unsigned long addr, unsigned long end,
1223 struct zap_details *details)
1224 {
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_trans_huge(*pmd)) {
1232 if (next - addr != HPAGE_PMD_SIZE) {
1233 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1234 split_huge_page_pmd(vma->vm_mm, pmd);
1235 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1236 goto next;
1237 /* fall through */
1238 }
1239 /*
1240 * Here there can be other concurrent MADV_DONTNEED or
1241 * trans huge page faults running, and if the pmd is
1242 * none or trans huge it can change under us. This is
1243 * because MADV_DONTNEED holds the mmap_sem in read
1244 * mode.
1245 */
1246 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1247 goto next;
1248 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1249 next:
1250 cond_resched();
1251 } while (pmd++, addr = next, addr != end);
1252
1253 return addr;
1254 }
1255
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, pgd_t *pgd,
1258 unsigned long addr, unsigned long end,
1259 struct zap_details *details)
1260 {
1261 pud_t *pud;
1262 unsigned long next;
1263
1264 pud = pud_offset(pgd, addr);
1265 do {
1266 next = pud_addr_end(addr, end);
1267 if (pud_none_or_clear_bad(pud))
1268 continue;
1269 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 } while (pud++, addr = next, addr != end);
1271
1272 return addr;
1273 }
1274
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1275 static void unmap_page_range(struct mmu_gather *tlb,
1276 struct vm_area_struct *vma,
1277 unsigned long addr, unsigned long end,
1278 struct zap_details *details)
1279 {
1280 pgd_t *pgd;
1281 unsigned long next;
1282
1283 if (details && !details->check_mapping && !details->nonlinear_vma)
1284 details = NULL;
1285
1286 BUG_ON(addr >= end);
1287 mem_cgroup_uncharge_start();
1288 tlb_start_vma(tlb, vma);
1289 pgd = pgd_offset(vma->vm_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(pgd))
1293 continue;
1294 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1295 } while (pgd++, addr = next, addr != end);
1296 tlb_end_vma(tlb, vma);
1297 mem_cgroup_uncharge_end();
1298 }
1299
1300
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)1301 static void unmap_single_vma(struct mmu_gather *tlb,
1302 struct vm_area_struct *vma, unsigned long start_addr,
1303 unsigned long end_addr, unsigned long *nr_accounted,
1304 struct zap_details *details)
1305 {
1306 unsigned long start = max(vma->vm_start, start_addr);
1307 unsigned long end;
1308
1309 if (start >= vma->vm_end)
1310 return;
1311 end = min(vma->vm_end, end_addr);
1312 if (end <= vma->vm_start)
1313 return;
1314
1315 if (vma->vm_flags & VM_ACCOUNT)
1316 *nr_accounted += (end - start) >> PAGE_SHIFT;
1317
1318 if (unlikely(is_pfn_mapping(vma)))
1319 untrack_pfn_vma(vma, 0, 0);
1320
1321 if (start != end) {
1322 if (unlikely(is_vm_hugetlb_page(vma))) {
1323 /*
1324 * It is undesirable to test vma->vm_file as it
1325 * should be non-null for valid hugetlb area.
1326 * However, vm_file will be NULL in the error
1327 * cleanup path of do_mmap_pgoff. When
1328 * hugetlbfs ->mmap method fails,
1329 * do_mmap_pgoff() nullifies vma->vm_file
1330 * before calling this function to clean up.
1331 * Since no pte has actually been setup, it is
1332 * safe to do nothing in this case.
1333 */
1334 if (vma->vm_file)
1335 unmap_hugepage_range(vma, start, end, NULL);
1336 } else
1337 unmap_page_range(tlb, vma, start, end, details);
1338 }
1339 }
1340
1341 /**
1342 * unmap_vmas - unmap a range of memory covered by a list of vma's
1343 * @tlb: address of the caller's struct mmu_gather
1344 * @vma: the starting vma
1345 * @start_addr: virtual address at which to start unmapping
1346 * @end_addr: virtual address at which to end unmapping
1347 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1348 * @details: details of nonlinear truncation or shared cache invalidation
1349 *
1350 * Unmap all pages in the vma list.
1351 *
1352 * Only addresses between `start' and `end' will be unmapped.
1353 *
1354 * The VMA list must be sorted in ascending virtual address order.
1355 *
1356 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1357 * range after unmap_vmas() returns. So the only responsibility here is to
1358 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1359 * drops the lock and schedules.
1360 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)1361 void unmap_vmas(struct mmu_gather *tlb,
1362 struct vm_area_struct *vma, unsigned long start_addr,
1363 unsigned long end_addr, unsigned long *nr_accounted,
1364 struct zap_details *details)
1365 {
1366 struct mm_struct *mm = vma->vm_mm;
1367
1368 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370 unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1371 details);
1372 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1373 }
1374
1375 /**
1376 * zap_page_range - remove user pages in a given range
1377 * @vma: vm_area_struct holding the applicable pages
1378 * @address: starting address of pages to zap
1379 * @size: number of bytes to zap
1380 * @details: details of nonlinear truncation or shared cache invalidation
1381 *
1382 * Caller must protect the VMA list
1383 */
zap_page_range(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1384 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1385 unsigned long size, struct zap_details *details)
1386 {
1387 struct mm_struct *mm = vma->vm_mm;
1388 struct mmu_gather tlb;
1389 unsigned long end = address + size;
1390 unsigned long nr_accounted = 0;
1391
1392 lru_add_drain();
1393 tlb_gather_mmu(&tlb, mm, 0);
1394 update_hiwater_rss(mm);
1395 unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1396 tlb_finish_mmu(&tlb, address, end);
1397 }
1398
1399 /**
1400 * zap_page_range_single - remove user pages in a given range
1401 * @vma: vm_area_struct holding the applicable pages
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 * @details: details of nonlinear truncation or shared cache invalidation
1405 *
1406 * The range must fit into one VMA.
1407 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1408 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size, struct zap_details *details)
1410 {
1411 struct mm_struct *mm = vma->vm_mm;
1412 struct mmu_gather tlb;
1413 unsigned long end = address + size;
1414 unsigned long nr_accounted = 0;
1415
1416 lru_add_drain();
1417 tlb_gather_mmu(&tlb, mm, 0);
1418 update_hiwater_rss(mm);
1419 mmu_notifier_invalidate_range_start(mm, address, end);
1420 unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1421 mmu_notifier_invalidate_range_end(mm, address, end);
1422 tlb_finish_mmu(&tlb, address, end);
1423 }
1424
1425 /**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438 unsigned long size)
1439 {
1440 if (address < vma->vm_start || address + size > vma->vm_end ||
1441 !(vma->vm_flags & VM_PFNMAP))
1442 return -1;
1443 zap_page_range_single(vma, address, size, NULL);
1444 return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448 /**
1449 * follow_page - look up a page descriptor from a user-virtual address
1450 * @vma: vm_area_struct mapping @address
1451 * @address: virtual address to look up
1452 * @flags: flags modifying lookup behaviour
1453 *
1454 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455 *
1456 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457 * an error pointer if there is a mapping to something not represented
1458 * by a page descriptor (see also vm_normal_page()).
1459 */
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1460 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461 unsigned int flags)
1462 {
1463 pgd_t *pgd;
1464 pud_t *pud;
1465 pmd_t *pmd;
1466 pte_t *ptep, pte;
1467 spinlock_t *ptl;
1468 struct page *page;
1469 struct mm_struct *mm = vma->vm_mm;
1470
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1475 }
1476
1477 page = NULL;
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table;
1481
1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud))
1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 BUG_ON(flags & FOLL_GET);
1487 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488 goto out;
1489 }
1490 if (unlikely(pud_bad(*pud)))
1491 goto no_page_table;
1492
1493 pmd = pmd_offset(pud, address);
1494 if (pmd_none(*pmd))
1495 goto no_page_table;
1496 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497 BUG_ON(flags & FOLL_GET);
1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 goto out;
1500 }
1501 if (pmd_trans_huge(*pmd)) {
1502 if (flags & FOLL_SPLIT) {
1503 split_huge_page_pmd(mm, pmd);
1504 goto split_fallthrough;
1505 }
1506 spin_lock(&mm->page_table_lock);
1507 if (likely(pmd_trans_huge(*pmd))) {
1508 if (unlikely(pmd_trans_splitting(*pmd))) {
1509 spin_unlock(&mm->page_table_lock);
1510 wait_split_huge_page(vma->anon_vma, pmd);
1511 } else {
1512 page = follow_trans_huge_pmd(mm, address,
1513 pmd, flags);
1514 spin_unlock(&mm->page_table_lock);
1515 goto out;
1516 }
1517 } else
1518 spin_unlock(&mm->page_table_lock);
1519 /* fall through */
1520 }
1521 split_fallthrough:
1522 if (unlikely(pmd_bad(*pmd)))
1523 goto no_page_table;
1524
1525 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526
1527 pte = *ptep;
1528 if (!pte_present(pte))
1529 goto no_page;
1530 if ((flags & FOLL_WRITE) && !pte_write(pte))
1531 goto unlock;
1532
1533 page = vm_normal_page(vma, address, pte);
1534 if (unlikely(!page)) {
1535 if ((flags & FOLL_DUMP) ||
1536 !is_zero_pfn(pte_pfn(pte)))
1537 goto bad_page;
1538 page = pte_page(pte);
1539 }
1540
1541 if (flags & FOLL_GET)
1542 get_page_foll(page);
1543 if (flags & FOLL_TOUCH) {
1544 if ((flags & FOLL_WRITE) &&
1545 !pte_dirty(pte) && !PageDirty(page))
1546 set_page_dirty(page);
1547 /*
1548 * pte_mkyoung() would be more correct here, but atomic care
1549 * is needed to avoid losing the dirty bit: it is easier to use
1550 * mark_page_accessed().
1551 */
1552 mark_page_accessed(page);
1553 }
1554 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555 /*
1556 * The preliminary mapping check is mainly to avoid the
1557 * pointless overhead of lock_page on the ZERO_PAGE
1558 * which might bounce very badly if there is contention.
1559 *
1560 * If the page is already locked, we don't need to
1561 * handle it now - vmscan will handle it later if and
1562 * when it attempts to reclaim the page.
1563 */
1564 if (page->mapping && trylock_page(page)) {
1565 lru_add_drain(); /* push cached pages to LRU */
1566 /*
1567 * Because we lock page here and migration is
1568 * blocked by the pte's page reference, we need
1569 * only check for file-cache page truncation.
1570 */
1571 if (page->mapping)
1572 mlock_vma_page(page);
1573 unlock_page(page);
1574 }
1575 }
1576 unlock:
1577 pte_unmap_unlock(ptep, ptl);
1578 out:
1579 return page;
1580
1581 bad_page:
1582 pte_unmap_unlock(ptep, ptl);
1583 return ERR_PTR(-EFAULT);
1584
1585 no_page:
1586 pte_unmap_unlock(ptep, ptl);
1587 if (!pte_none(pte))
1588 return page;
1589
1590 no_page_table:
1591 /*
1592 * When core dumping an enormous anonymous area that nobody
1593 * has touched so far, we don't want to allocate unnecessary pages or
1594 * page tables. Return error instead of NULL to skip handle_mm_fault,
1595 * then get_dump_page() will return NULL to leave a hole in the dump.
1596 * But we can only make this optimization where a hole would surely
1597 * be zero-filled if handle_mm_fault() actually did handle it.
1598 */
1599 if ((flags & FOLL_DUMP) &&
1600 (!vma->vm_ops || !vma->vm_ops->fault))
1601 return ERR_PTR(-EFAULT);
1602 return page;
1603 }
1604
stack_guard_page(struct vm_area_struct * vma,unsigned long addr)1605 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606 {
1607 return stack_guard_page_start(vma, addr) ||
1608 stack_guard_page_end(vma, addr+PAGE_SIZE);
1609 }
1610
1611 /**
1612 * __get_user_pages() - pin user pages in memory
1613 * @tsk: task_struct of target task
1614 * @mm: mm_struct of target mm
1615 * @start: starting user address
1616 * @nr_pages: number of pages from start to pin
1617 * @gup_flags: flags modifying pin behaviour
1618 * @pages: array that receives pointers to the pages pinned.
1619 * Should be at least nr_pages long. Or NULL, if caller
1620 * only intends to ensure the pages are faulted in.
1621 * @vmas: array of pointers to vmas corresponding to each page.
1622 * Or NULL if the caller does not require them.
1623 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624 *
1625 * Returns number of pages pinned. This may be fewer than the number
1626 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627 * were pinned, returns -errno. Each page returned must be released
1628 * with a put_page() call when it is finished with. vmas will only
1629 * remain valid while mmap_sem is held.
1630 *
1631 * Must be called with mmap_sem held for read or write.
1632 *
1633 * __get_user_pages walks a process's page tables and takes a reference to
1634 * each struct page that each user address corresponds to at a given
1635 * instant. That is, it takes the page that would be accessed if a user
1636 * thread accesses the given user virtual address at that instant.
1637 *
1638 * This does not guarantee that the page exists in the user mappings when
1639 * __get_user_pages returns, and there may even be a completely different
1640 * page there in some cases (eg. if mmapped pagecache has been invalidated
1641 * and subsequently re faulted). However it does guarantee that the page
1642 * won't be freed completely. And mostly callers simply care that the page
1643 * contains data that was valid *at some point in time*. Typically, an IO
1644 * or similar operation cannot guarantee anything stronger anyway because
1645 * locks can't be held over the syscall boundary.
1646 *
1647 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649 * appropriate) must be called after the page is finished with, and
1650 * before put_page is called.
1651 *
1652 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653 * or mmap_sem contention, and if waiting is needed to pin all pages,
1654 * *@nonblocking will be set to 0.
1655 *
1656 * In most cases, get_user_pages or get_user_pages_fast should be used
1657 * instead of __get_user_pages. __get_user_pages should be used only if
1658 * you need some special @gup_flags.
1659 */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)1660 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661 unsigned long start, int nr_pages, unsigned int gup_flags,
1662 struct page **pages, struct vm_area_struct **vmas,
1663 int *nonblocking)
1664 {
1665 int i;
1666 unsigned long vm_flags;
1667
1668 if (nr_pages <= 0)
1669 return 0;
1670
1671 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672
1673 /*
1674 * Require read or write permissions.
1675 * If FOLL_FORCE is set, we only require the "MAY" flags.
1676 */
1677 vm_flags = (gup_flags & FOLL_WRITE) ?
1678 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679 vm_flags &= (gup_flags & FOLL_FORCE) ?
1680 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681 i = 0;
1682
1683 do {
1684 struct vm_area_struct *vma;
1685
1686 vma = find_extend_vma(mm, start);
1687 if (!vma && in_gate_area(mm, start)) {
1688 unsigned long pg = start & PAGE_MASK;
1689 pgd_t *pgd;
1690 pud_t *pud;
1691 pmd_t *pmd;
1692 pte_t *pte;
1693
1694 /* user gate pages are read-only */
1695 if (gup_flags & FOLL_WRITE)
1696 return i ? : -EFAULT;
1697 if (pg > TASK_SIZE)
1698 pgd = pgd_offset_k(pg);
1699 else
1700 pgd = pgd_offset_gate(mm, pg);
1701 BUG_ON(pgd_none(*pgd));
1702 pud = pud_offset(pgd, pg);
1703 BUG_ON(pud_none(*pud));
1704 pmd = pmd_offset(pud, pg);
1705 if (pmd_none(*pmd))
1706 return i ? : -EFAULT;
1707 VM_BUG_ON(pmd_trans_huge(*pmd));
1708 pte = pte_offset_map(pmd, pg);
1709 if (pte_none(*pte)) {
1710 pte_unmap(pte);
1711 return i ? : -EFAULT;
1712 }
1713 vma = get_gate_vma(mm);
1714 if (pages) {
1715 struct page *page;
1716
1717 page = vm_normal_page(vma, start, *pte);
1718 if (!page) {
1719 if (!(gup_flags & FOLL_DUMP) &&
1720 is_zero_pfn(pte_pfn(*pte)))
1721 page = pte_page(*pte);
1722 else {
1723 pte_unmap(pte);
1724 return i ? : -EFAULT;
1725 }
1726 }
1727 pages[i] = page;
1728 get_page(page);
1729 }
1730 pte_unmap(pte);
1731 goto next_page;
1732 }
1733
1734 if (!vma ||
1735 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736 !(vm_flags & vma->vm_flags))
1737 return i ? : -EFAULT;
1738
1739 if (is_vm_hugetlb_page(vma)) {
1740 i = follow_hugetlb_page(mm, vma, pages, vmas,
1741 &start, &nr_pages, i, gup_flags);
1742 continue;
1743 }
1744
1745 do {
1746 struct page *page;
1747 unsigned int foll_flags = gup_flags;
1748
1749 /*
1750 * If we have a pending SIGKILL, don't keep faulting
1751 * pages and potentially allocating memory.
1752 */
1753 if (unlikely(fatal_signal_pending(current)))
1754 return i ? i : -ERESTARTSYS;
1755
1756 cond_resched();
1757 while (!(page = follow_page(vma, start, foll_flags))) {
1758 int ret;
1759 unsigned int fault_flags = 0;
1760
1761 /* For mlock, just skip the stack guard page. */
1762 if (foll_flags & FOLL_MLOCK) {
1763 if (stack_guard_page(vma, start))
1764 goto next_page;
1765 }
1766 if (foll_flags & FOLL_WRITE)
1767 fault_flags |= FAULT_FLAG_WRITE;
1768 if (nonblocking)
1769 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770 if (foll_flags & FOLL_NOWAIT)
1771 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772
1773 ret = handle_mm_fault(mm, vma, start,
1774 fault_flags);
1775
1776 if (ret & VM_FAULT_ERROR) {
1777 if (ret & VM_FAULT_OOM)
1778 return i ? i : -ENOMEM;
1779 if (ret & (VM_FAULT_HWPOISON |
1780 VM_FAULT_HWPOISON_LARGE)) {
1781 if (i)
1782 return i;
1783 else if (gup_flags & FOLL_HWPOISON)
1784 return -EHWPOISON;
1785 else
1786 return -EFAULT;
1787 }
1788 if (ret & VM_FAULT_SIGBUS)
1789 return i ? i : -EFAULT;
1790 BUG();
1791 }
1792
1793 if (tsk) {
1794 if (ret & VM_FAULT_MAJOR)
1795 tsk->maj_flt++;
1796 else
1797 tsk->min_flt++;
1798 }
1799
1800 if (ret & VM_FAULT_RETRY) {
1801 if (nonblocking)
1802 *nonblocking = 0;
1803 return i;
1804 }
1805
1806 /*
1807 * The VM_FAULT_WRITE bit tells us that
1808 * do_wp_page has broken COW when necessary,
1809 * even if maybe_mkwrite decided not to set
1810 * pte_write. We can thus safely do subsequent
1811 * page lookups as if they were reads. But only
1812 * do so when looping for pte_write is futile:
1813 * in some cases userspace may also be wanting
1814 * to write to the gotten user page, which a
1815 * read fault here might prevent (a readonly
1816 * page might get reCOWed by userspace write).
1817 */
1818 if ((ret & VM_FAULT_WRITE) &&
1819 !(vma->vm_flags & VM_WRITE))
1820 foll_flags &= ~FOLL_WRITE;
1821
1822 cond_resched();
1823 }
1824 if (IS_ERR(page))
1825 return i ? i : PTR_ERR(page);
1826 if (pages) {
1827 pages[i] = page;
1828
1829 flush_anon_page(vma, page, start);
1830 flush_dcache_page(page);
1831 }
1832 next_page:
1833 if (vmas)
1834 vmas[i] = vma;
1835 i++;
1836 start += PAGE_SIZE;
1837 nr_pages--;
1838 } while (nr_pages && start < vma->vm_end);
1839 } while (nr_pages);
1840 return i;
1841 }
1842 EXPORT_SYMBOL(__get_user_pages);
1843
1844 /*
1845 * fixup_user_fault() - manually resolve a user page fault
1846 * @tsk: the task_struct to use for page fault accounting, or
1847 * NULL if faults are not to be recorded.
1848 * @mm: mm_struct of target mm
1849 * @address: user address
1850 * @fault_flags:flags to pass down to handle_mm_fault()
1851 *
1852 * This is meant to be called in the specific scenario where for locking reasons
1853 * we try to access user memory in atomic context (within a pagefault_disable()
1854 * section), this returns -EFAULT, and we want to resolve the user fault before
1855 * trying again.
1856 *
1857 * Typically this is meant to be used by the futex code.
1858 *
1859 * The main difference with get_user_pages() is that this function will
1860 * unconditionally call handle_mm_fault() which will in turn perform all the
1861 * necessary SW fixup of the dirty and young bits in the PTE, while
1862 * handle_mm_fault() only guarantees to update these in the struct page.
1863 *
1864 * This is important for some architectures where those bits also gate the
1865 * access permission to the page because they are maintained in software. On
1866 * such architectures, gup() will not be enough to make a subsequent access
1867 * succeed.
1868 *
1869 * This should be called with the mm_sem held for read.
1870 */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1871 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872 unsigned long address, unsigned int fault_flags)
1873 {
1874 struct vm_area_struct *vma;
1875 vm_flags_t vm_flags;
1876 int ret;
1877
1878 vma = find_extend_vma(mm, address);
1879 if (!vma || address < vma->vm_start)
1880 return -EFAULT;
1881
1882 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1883 if (!(vm_flags & vma->vm_flags))
1884 return -EFAULT;
1885
1886 ret = handle_mm_fault(mm, vma, address, fault_flags);
1887 if (ret & VM_FAULT_ERROR) {
1888 if (ret & VM_FAULT_OOM)
1889 return -ENOMEM;
1890 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1891 return -EHWPOISON;
1892 if (ret & VM_FAULT_SIGBUS)
1893 return -EFAULT;
1894 BUG();
1895 }
1896 if (tsk) {
1897 if (ret & VM_FAULT_MAJOR)
1898 tsk->maj_flt++;
1899 else
1900 tsk->min_flt++;
1901 }
1902 return 0;
1903 }
1904
1905 /*
1906 * get_user_pages() - pin user pages in memory
1907 * @tsk: the task_struct to use for page fault accounting, or
1908 * NULL if faults are not to be recorded.
1909 * @mm: mm_struct of target mm
1910 * @start: starting user address
1911 * @nr_pages: number of pages from start to pin
1912 * @write: whether pages will be written to by the caller
1913 * @force: whether to force write access even if user mapping is
1914 * readonly. This will result in the page being COWed even
1915 * in MAP_SHARED mappings. You do not want this.
1916 * @pages: array that receives pointers to the pages pinned.
1917 * Should be at least nr_pages long. Or NULL, if caller
1918 * only intends to ensure the pages are faulted in.
1919 * @vmas: array of pointers to vmas corresponding to each page.
1920 * Or NULL if the caller does not require them.
1921 *
1922 * Returns number of pages pinned. This may be fewer than the number
1923 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1924 * were pinned, returns -errno. Each page returned must be released
1925 * with a put_page() call when it is finished with. vmas will only
1926 * remain valid while mmap_sem is held.
1927 *
1928 * Must be called with mmap_sem held for read or write.
1929 *
1930 * get_user_pages walks a process's page tables and takes a reference to
1931 * each struct page that each user address corresponds to at a given
1932 * instant. That is, it takes the page that would be accessed if a user
1933 * thread accesses the given user virtual address at that instant.
1934 *
1935 * This does not guarantee that the page exists in the user mappings when
1936 * get_user_pages returns, and there may even be a completely different
1937 * page there in some cases (eg. if mmapped pagecache has been invalidated
1938 * and subsequently re faulted). However it does guarantee that the page
1939 * won't be freed completely. And mostly callers simply care that the page
1940 * contains data that was valid *at some point in time*. Typically, an IO
1941 * or similar operation cannot guarantee anything stronger anyway because
1942 * locks can't be held over the syscall boundary.
1943 *
1944 * If write=0, the page must not be written to. If the page is written to,
1945 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1946 * after the page is finished with, and before put_page is called.
1947 *
1948 * get_user_pages is typically used for fewer-copy IO operations, to get a
1949 * handle on the memory by some means other than accesses via the user virtual
1950 * addresses. The pages may be submitted for DMA to devices or accessed via
1951 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1952 * use the correct cache flushing APIs.
1953 *
1954 * See also get_user_pages_fast, for performance critical applications.
1955 */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)1956 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1957 unsigned long start, int nr_pages, int write, int force,
1958 struct page **pages, struct vm_area_struct **vmas)
1959 {
1960 int flags = FOLL_TOUCH;
1961
1962 if (pages)
1963 flags |= FOLL_GET;
1964 if (write)
1965 flags |= FOLL_WRITE;
1966 if (force)
1967 flags |= FOLL_FORCE;
1968
1969 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1970 NULL);
1971 }
1972 EXPORT_SYMBOL(get_user_pages);
1973
1974 /**
1975 * get_dump_page() - pin user page in memory while writing it to core dump
1976 * @addr: user address
1977 *
1978 * Returns struct page pointer of user page pinned for dump,
1979 * to be freed afterwards by page_cache_release() or put_page().
1980 *
1981 * Returns NULL on any kind of failure - a hole must then be inserted into
1982 * the corefile, to preserve alignment with its headers; and also returns
1983 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1984 * allowing a hole to be left in the corefile to save diskspace.
1985 *
1986 * Called without mmap_sem, but after all other threads have been killed.
1987 */
1988 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1989 struct page *get_dump_page(unsigned long addr)
1990 {
1991 struct vm_area_struct *vma;
1992 struct page *page;
1993
1994 if (__get_user_pages(current, current->mm, addr, 1,
1995 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1996 NULL) < 1)
1997 return NULL;
1998 flush_cache_page(vma, addr, page_to_pfn(page));
1999 return page;
2000 }
2001 #endif /* CONFIG_ELF_CORE */
2002
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2003 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 spinlock_t **ptl)
2005 {
2006 pgd_t * pgd = pgd_offset(mm, addr);
2007 pud_t * pud = pud_alloc(mm, pgd, addr);
2008 if (pud) {
2009 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2010 if (pmd) {
2011 VM_BUG_ON(pmd_trans_huge(*pmd));
2012 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2013 }
2014 }
2015 return NULL;
2016 }
2017
2018 /*
2019 * This is the old fallback for page remapping.
2020 *
2021 * For historical reasons, it only allows reserved pages. Only
2022 * old drivers should use this, and they needed to mark their
2023 * pages reserved for the old functions anyway.
2024 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2025 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 struct page *page, pgprot_t prot)
2027 {
2028 struct mm_struct *mm = vma->vm_mm;
2029 int retval;
2030 pte_t *pte;
2031 spinlock_t *ptl;
2032
2033 retval = -EINVAL;
2034 if (PageAnon(page))
2035 goto out;
2036 retval = -ENOMEM;
2037 flush_dcache_page(page);
2038 pte = get_locked_pte(mm, addr, &ptl);
2039 if (!pte)
2040 goto out;
2041 retval = -EBUSY;
2042 if (!pte_none(*pte))
2043 goto out_unlock;
2044
2045 /* Ok, finally just insert the thing.. */
2046 get_page(page);
2047 inc_mm_counter_fast(mm, MM_FILEPAGES);
2048 page_add_file_rmap(page);
2049 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2050
2051 retval = 0;
2052 pte_unmap_unlock(pte, ptl);
2053 return retval;
2054 out_unlock:
2055 pte_unmap_unlock(pte, ptl);
2056 out:
2057 return retval;
2058 }
2059
2060 /**
2061 * vm_insert_page - insert single page into user vma
2062 * @vma: user vma to map to
2063 * @addr: target user address of this page
2064 * @page: source kernel page
2065 *
2066 * This allows drivers to insert individual pages they've allocated
2067 * into a user vma.
2068 *
2069 * The page has to be a nice clean _individual_ kernel allocation.
2070 * If you allocate a compound page, you need to have marked it as
2071 * such (__GFP_COMP), or manually just split the page up yourself
2072 * (see split_page()).
2073 *
2074 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2075 * took an arbitrary page protection parameter. This doesn't allow
2076 * that. Your vma protection will have to be set up correctly, which
2077 * means that if you want a shared writable mapping, you'd better
2078 * ask for a shared writable mapping!
2079 *
2080 * The page does not need to be reserved.
2081 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2082 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2083 struct page *page)
2084 {
2085 if (addr < vma->vm_start || addr >= vma->vm_end)
2086 return -EFAULT;
2087 if (!page_count(page))
2088 return -EINVAL;
2089 vma->vm_flags |= VM_INSERTPAGE;
2090 return insert_page(vma, addr, page, vma->vm_page_prot);
2091 }
2092 EXPORT_SYMBOL(vm_insert_page);
2093
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)2094 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2095 unsigned long pfn, pgprot_t prot)
2096 {
2097 struct mm_struct *mm = vma->vm_mm;
2098 int retval;
2099 pte_t *pte, entry;
2100 spinlock_t *ptl;
2101
2102 retval = -ENOMEM;
2103 pte = get_locked_pte(mm, addr, &ptl);
2104 if (!pte)
2105 goto out;
2106 retval = -EBUSY;
2107 if (!pte_none(*pte))
2108 goto out_unlock;
2109
2110 /* Ok, finally just insert the thing.. */
2111 entry = pte_mkspecial(pfn_pte(pfn, prot));
2112 set_pte_at(mm, addr, pte, entry);
2113 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2114
2115 retval = 0;
2116 out_unlock:
2117 pte_unmap_unlock(pte, ptl);
2118 out:
2119 return retval;
2120 }
2121
2122 /**
2123 * vm_insert_pfn - insert single pfn into user vma
2124 * @vma: user vma to map to
2125 * @addr: target user address of this page
2126 * @pfn: source kernel pfn
2127 *
2128 * Similar to vm_inert_page, this allows drivers to insert individual pages
2129 * they've allocated into a user vma. Same comments apply.
2130 *
2131 * This function should only be called from a vm_ops->fault handler, and
2132 * in that case the handler should return NULL.
2133 *
2134 * vma cannot be a COW mapping.
2135 *
2136 * As this is called only for pages that do not currently exist, we
2137 * do not need to flush old virtual caches or the TLB.
2138 */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2139 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 unsigned long pfn)
2141 {
2142 int ret;
2143 pgprot_t pgprot = vma->vm_page_prot;
2144 /*
2145 * Technically, architectures with pte_special can avoid all these
2146 * restrictions (same for remap_pfn_range). However we would like
2147 * consistency in testing and feature parity among all, so we should
2148 * try to keep these invariants in place for everybody.
2149 */
2150 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2151 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2152 (VM_PFNMAP|VM_MIXEDMAP));
2153 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2154 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2155
2156 if (addr < vma->vm_start || addr >= vma->vm_end)
2157 return -EFAULT;
2158 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2159 return -EINVAL;
2160
2161 ret = insert_pfn(vma, addr, pfn, pgprot);
2162
2163 if (ret)
2164 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2165
2166 return ret;
2167 }
2168 EXPORT_SYMBOL(vm_insert_pfn);
2169
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2170 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2171 unsigned long pfn)
2172 {
2173 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2174
2175 if (addr < vma->vm_start || addr >= vma->vm_end)
2176 return -EFAULT;
2177
2178 /*
2179 * If we don't have pte special, then we have to use the pfn_valid()
2180 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2181 * refcount the page if pfn_valid is true (hence insert_page rather
2182 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2183 * without pte special, it would there be refcounted as a normal page.
2184 */
2185 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2186 struct page *page;
2187
2188 page = pfn_to_page(pfn);
2189 return insert_page(vma, addr, page, vma->vm_page_prot);
2190 }
2191 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2192 }
2193 EXPORT_SYMBOL(vm_insert_mixed);
2194
2195 /*
2196 * maps a range of physical memory into the requested pages. the old
2197 * mappings are removed. any references to nonexistent pages results
2198 * in null mappings (currently treated as "copy-on-access")
2199 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2200 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2201 unsigned long addr, unsigned long end,
2202 unsigned long pfn, pgprot_t prot)
2203 {
2204 pte_t *pte;
2205 spinlock_t *ptl;
2206
2207 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2208 if (!pte)
2209 return -ENOMEM;
2210 arch_enter_lazy_mmu_mode();
2211 do {
2212 BUG_ON(!pte_none(*pte));
2213 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2214 pfn++;
2215 } while (pte++, addr += PAGE_SIZE, addr != end);
2216 arch_leave_lazy_mmu_mode();
2217 pte_unmap_unlock(pte - 1, ptl);
2218 return 0;
2219 }
2220
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2221 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2222 unsigned long addr, unsigned long end,
2223 unsigned long pfn, pgprot_t prot)
2224 {
2225 pmd_t *pmd;
2226 unsigned long next;
2227
2228 pfn -= addr >> PAGE_SHIFT;
2229 pmd = pmd_alloc(mm, pud, addr);
2230 if (!pmd)
2231 return -ENOMEM;
2232 VM_BUG_ON(pmd_trans_huge(*pmd));
2233 do {
2234 next = pmd_addr_end(addr, end);
2235 if (remap_pte_range(mm, pmd, addr, next,
2236 pfn + (addr >> PAGE_SHIFT), prot))
2237 return -ENOMEM;
2238 } while (pmd++, addr = next, addr != end);
2239 return 0;
2240 }
2241
remap_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2242 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2243 unsigned long addr, unsigned long end,
2244 unsigned long pfn, pgprot_t prot)
2245 {
2246 pud_t *pud;
2247 unsigned long next;
2248
2249 pfn -= addr >> PAGE_SHIFT;
2250 pud = pud_alloc(mm, pgd, addr);
2251 if (!pud)
2252 return -ENOMEM;
2253 do {
2254 next = pud_addr_end(addr, end);
2255 if (remap_pmd_range(mm, pud, addr, next,
2256 pfn + (addr >> PAGE_SHIFT), prot))
2257 return -ENOMEM;
2258 } while (pud++, addr = next, addr != end);
2259 return 0;
2260 }
2261
2262 /**
2263 * remap_pfn_range - remap kernel memory to userspace
2264 * @vma: user vma to map to
2265 * @addr: target user address to start at
2266 * @pfn: physical address of kernel memory
2267 * @size: size of map area
2268 * @prot: page protection flags for this mapping
2269 *
2270 * Note: this is only safe if the mm semaphore is held when called.
2271 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2272 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2273 unsigned long pfn, unsigned long size, pgprot_t prot)
2274 {
2275 pgd_t *pgd;
2276 unsigned long next;
2277 unsigned long end = addr + PAGE_ALIGN(size);
2278 struct mm_struct *mm = vma->vm_mm;
2279 int err;
2280
2281 /*
2282 * Physically remapped pages are special. Tell the
2283 * rest of the world about it:
2284 * VM_IO tells people not to look at these pages
2285 * (accesses can have side effects).
2286 * VM_RESERVED is specified all over the place, because
2287 * in 2.4 it kept swapout's vma scan off this vma; but
2288 * in 2.6 the LRU scan won't even find its pages, so this
2289 * flag means no more than count its pages in reserved_vm,
2290 * and omit it from core dump, even when VM_IO turned off.
2291 * VM_PFNMAP tells the core MM that the base pages are just
2292 * raw PFN mappings, and do not have a "struct page" associated
2293 * with them.
2294 *
2295 * There's a horrible special case to handle copy-on-write
2296 * behaviour that some programs depend on. We mark the "original"
2297 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2298 */
2299 if (addr == vma->vm_start && end == vma->vm_end) {
2300 vma->vm_pgoff = pfn;
2301 vma->vm_flags |= VM_PFN_AT_MMAP;
2302 } else if (is_cow_mapping(vma->vm_flags))
2303 return -EINVAL;
2304
2305 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2306
2307 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2308 if (err) {
2309 /*
2310 * To indicate that track_pfn related cleanup is not
2311 * needed from higher level routine calling unmap_vmas
2312 */
2313 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2314 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2315 return -EINVAL;
2316 }
2317
2318 BUG_ON(addr >= end);
2319 pfn -= addr >> PAGE_SHIFT;
2320 pgd = pgd_offset(mm, addr);
2321 flush_cache_range(vma, addr, end);
2322 do {
2323 next = pgd_addr_end(addr, end);
2324 err = remap_pud_range(mm, pgd, addr, next,
2325 pfn + (addr >> PAGE_SHIFT), prot);
2326 if (err)
2327 break;
2328 } while (pgd++, addr = next, addr != end);
2329
2330 if (err)
2331 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2332
2333 return err;
2334 }
2335 EXPORT_SYMBOL(remap_pfn_range);
2336
2337 /**
2338 * vm_iomap_memory - remap memory to userspace
2339 * @vma: user vma to map to
2340 * @start: start of area
2341 * @len: size of area
2342 *
2343 * This is a simplified io_remap_pfn_range() for common driver use. The
2344 * driver just needs to give us the physical memory range to be mapped,
2345 * we'll figure out the rest from the vma information.
2346 *
2347 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348 * whatever write-combining details or similar.
2349 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2350 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2351 {
2352 unsigned long vm_len, pfn, pages;
2353
2354 /* Check that the physical memory area passed in looks valid */
2355 if (start + len < start)
2356 return -EINVAL;
2357 /*
2358 * You *really* shouldn't map things that aren't page-aligned,
2359 * but we've historically allowed it because IO memory might
2360 * just have smaller alignment.
2361 */
2362 len += start & ~PAGE_MASK;
2363 pfn = start >> PAGE_SHIFT;
2364 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2365 if (pfn + pages < pfn)
2366 return -EINVAL;
2367
2368 /* We start the mapping 'vm_pgoff' pages into the area */
2369 if (vma->vm_pgoff > pages)
2370 return -EINVAL;
2371 pfn += vma->vm_pgoff;
2372 pages -= vma->vm_pgoff;
2373
2374 /* Can we fit all of the mapping? */
2375 vm_len = vma->vm_end - vma->vm_start;
2376 if (vm_len >> PAGE_SHIFT > pages)
2377 return -EINVAL;
2378
2379 /* Ok, let it rip */
2380 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2381 }
2382 EXPORT_SYMBOL(vm_iomap_memory);
2383
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2384 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2385 unsigned long addr, unsigned long end,
2386 pte_fn_t fn, void *data)
2387 {
2388 pte_t *pte;
2389 int err;
2390 pgtable_t token;
2391 spinlock_t *uninitialized_var(ptl);
2392
2393 pte = (mm == &init_mm) ?
2394 pte_alloc_kernel(pmd, addr) :
2395 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2396 if (!pte)
2397 return -ENOMEM;
2398
2399 BUG_ON(pmd_huge(*pmd));
2400
2401 arch_enter_lazy_mmu_mode();
2402
2403 token = pmd_pgtable(*pmd);
2404
2405 do {
2406 err = fn(pte++, token, addr, data);
2407 if (err)
2408 break;
2409 } while (addr += PAGE_SIZE, addr != end);
2410
2411 arch_leave_lazy_mmu_mode();
2412
2413 if (mm != &init_mm)
2414 pte_unmap_unlock(pte-1, ptl);
2415 return err;
2416 }
2417
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2418 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2419 unsigned long addr, unsigned long end,
2420 pte_fn_t fn, void *data)
2421 {
2422 pmd_t *pmd;
2423 unsigned long next;
2424 int err;
2425
2426 BUG_ON(pud_huge(*pud));
2427
2428 pmd = pmd_alloc(mm, pud, addr);
2429 if (!pmd)
2430 return -ENOMEM;
2431 do {
2432 next = pmd_addr_end(addr, end);
2433 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2434 if (err)
2435 break;
2436 } while (pmd++, addr = next, addr != end);
2437 return err;
2438 }
2439
apply_to_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2440 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2441 unsigned long addr, unsigned long end,
2442 pte_fn_t fn, void *data)
2443 {
2444 pud_t *pud;
2445 unsigned long next;
2446 int err;
2447
2448 pud = pud_alloc(mm, pgd, addr);
2449 if (!pud)
2450 return -ENOMEM;
2451 do {
2452 next = pud_addr_end(addr, end);
2453 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2454 if (err)
2455 break;
2456 } while (pud++, addr = next, addr != end);
2457 return err;
2458 }
2459
2460 /*
2461 * Scan a region of virtual memory, filling in page tables as necessary
2462 * and calling a provided function on each leaf page table.
2463 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2464 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2465 unsigned long size, pte_fn_t fn, void *data)
2466 {
2467 pgd_t *pgd;
2468 unsigned long next;
2469 unsigned long end = addr + size;
2470 int err;
2471
2472 BUG_ON(addr >= end);
2473 pgd = pgd_offset(mm, addr);
2474 do {
2475 next = pgd_addr_end(addr, end);
2476 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2477 if (err)
2478 break;
2479 } while (pgd++, addr = next, addr != end);
2480
2481 return err;
2482 }
2483 EXPORT_SYMBOL_GPL(apply_to_page_range);
2484
2485 /*
2486 * handle_pte_fault chooses page fault handler according to an entry
2487 * which was read non-atomically. Before making any commitment, on
2488 * those architectures or configurations (e.g. i386 with PAE) which
2489 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2490 * must check under lock before unmapping the pte and proceeding
2491 * (but do_wp_page is only called after already making such a check;
2492 * and do_anonymous_page can safely check later on).
2493 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2494 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2495 pte_t *page_table, pte_t orig_pte)
2496 {
2497 int same = 1;
2498 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2499 if (sizeof(pte_t) > sizeof(unsigned long)) {
2500 spinlock_t *ptl = pte_lockptr(mm, pmd);
2501 spin_lock(ptl);
2502 same = pte_same(*page_table, orig_pte);
2503 spin_unlock(ptl);
2504 }
2505 #endif
2506 pte_unmap(page_table);
2507 return same;
2508 }
2509
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2510 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2511 {
2512 /*
2513 * If the source page was a PFN mapping, we don't have
2514 * a "struct page" for it. We do a best-effort copy by
2515 * just copying from the original user address. If that
2516 * fails, we just zero-fill it. Live with it.
2517 */
2518 if (unlikely(!src)) {
2519 void *kaddr = kmap_atomic(dst);
2520 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2521
2522 /*
2523 * This really shouldn't fail, because the page is there
2524 * in the page tables. But it might just be unreadable,
2525 * in which case we just give up and fill the result with
2526 * zeroes.
2527 */
2528 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2529 clear_page(kaddr);
2530 kunmap_atomic(kaddr);
2531 flush_dcache_page(dst);
2532 } else
2533 copy_user_highpage(dst, src, va, vma);
2534 }
2535
2536 /*
2537 * This routine handles present pages, when users try to write
2538 * to a shared page. It is done by copying the page to a new address
2539 * and decrementing the shared-page counter for the old page.
2540 *
2541 * Note that this routine assumes that the protection checks have been
2542 * done by the caller (the low-level page fault routine in most cases).
2543 * Thus we can safely just mark it writable once we've done any necessary
2544 * COW.
2545 *
2546 * We also mark the page dirty at this point even though the page will
2547 * change only once the write actually happens. This avoids a few races,
2548 * and potentially makes it more efficient.
2549 *
2550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2551 * but allow concurrent faults), with pte both mapped and locked.
2552 * We return with mmap_sem still held, but pte unmapped and unlocked.
2553 */
do_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte)2554 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2555 unsigned long address, pte_t *page_table, pmd_t *pmd,
2556 spinlock_t *ptl, pte_t orig_pte)
2557 __releases(ptl)
2558 {
2559 struct page *old_page, *new_page;
2560 pte_t entry;
2561 int ret = 0;
2562 int page_mkwrite = 0;
2563 struct page *dirty_page = NULL;
2564
2565 old_page = vm_normal_page(vma, address, orig_pte);
2566 if (!old_page) {
2567 /*
2568 * VM_MIXEDMAP !pfn_valid() case
2569 *
2570 * We should not cow pages in a shared writeable mapping.
2571 * Just mark the pages writable as we can't do any dirty
2572 * accounting on raw pfn maps.
2573 */
2574 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2575 (VM_WRITE|VM_SHARED))
2576 goto reuse;
2577 goto gotten;
2578 }
2579
2580 /*
2581 * Take out anonymous pages first, anonymous shared vmas are
2582 * not dirty accountable.
2583 */
2584 if (PageAnon(old_page) && !PageKsm(old_page)) {
2585 if (!trylock_page(old_page)) {
2586 page_cache_get(old_page);
2587 pte_unmap_unlock(page_table, ptl);
2588 lock_page(old_page);
2589 page_table = pte_offset_map_lock(mm, pmd, address,
2590 &ptl);
2591 if (!pte_same(*page_table, orig_pte)) {
2592 unlock_page(old_page);
2593 goto unlock;
2594 }
2595 page_cache_release(old_page);
2596 }
2597 if (reuse_swap_page(old_page)) {
2598 /*
2599 * The page is all ours. Move it to our anon_vma so
2600 * the rmap code will not search our parent or siblings.
2601 * Protected against the rmap code by the page lock.
2602 */
2603 page_move_anon_rmap(old_page, vma, address);
2604 unlock_page(old_page);
2605 goto reuse;
2606 }
2607 unlock_page(old_page);
2608 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609 (VM_WRITE|VM_SHARED))) {
2610 /*
2611 * Only catch write-faults on shared writable pages,
2612 * read-only shared pages can get COWed by
2613 * get_user_pages(.write=1, .force=1).
2614 */
2615 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2616 struct vm_fault vmf;
2617 int tmp;
2618
2619 vmf.virtual_address = (void __user *)(address &
2620 PAGE_MASK);
2621 vmf.pgoff = old_page->index;
2622 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2623 vmf.page = old_page;
2624
2625 /*
2626 * Notify the address space that the page is about to
2627 * become writable so that it can prohibit this or wait
2628 * for the page to get into an appropriate state.
2629 *
2630 * We do this without the lock held, so that it can
2631 * sleep if it needs to.
2632 */
2633 page_cache_get(old_page);
2634 pte_unmap_unlock(page_table, ptl);
2635
2636 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2637 if (unlikely(tmp &
2638 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2639 ret = tmp;
2640 goto unwritable_page;
2641 }
2642 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2643 lock_page(old_page);
2644 if (!old_page->mapping) {
2645 ret = 0; /* retry the fault */
2646 unlock_page(old_page);
2647 goto unwritable_page;
2648 }
2649 } else
2650 VM_BUG_ON(!PageLocked(old_page));
2651
2652 /*
2653 * Since we dropped the lock we need to revalidate
2654 * the PTE as someone else may have changed it. If
2655 * they did, we just return, as we can count on the
2656 * MMU to tell us if they didn't also make it writable.
2657 */
2658 page_table = pte_offset_map_lock(mm, pmd, address,
2659 &ptl);
2660 if (!pte_same(*page_table, orig_pte)) {
2661 unlock_page(old_page);
2662 goto unlock;
2663 }
2664
2665 page_mkwrite = 1;
2666 }
2667 dirty_page = old_page;
2668 get_page(dirty_page);
2669
2670 reuse:
2671 flush_cache_page(vma, address, pte_pfn(orig_pte));
2672 entry = pte_mkyoung(orig_pte);
2673 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2674 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2675 update_mmu_cache(vma, address, page_table);
2676 pte_unmap_unlock(page_table, ptl);
2677 ret |= VM_FAULT_WRITE;
2678
2679 if (!dirty_page)
2680 return ret;
2681
2682 /*
2683 * Yes, Virginia, this is actually required to prevent a race
2684 * with clear_page_dirty_for_io() from clearing the page dirty
2685 * bit after it clear all dirty ptes, but before a racing
2686 * do_wp_page installs a dirty pte.
2687 *
2688 * __do_fault is protected similarly.
2689 */
2690 if (!page_mkwrite) {
2691 wait_on_page_locked(dirty_page);
2692 set_page_dirty_balance(dirty_page, page_mkwrite);
2693 }
2694 put_page(dirty_page);
2695 if (page_mkwrite) {
2696 struct address_space *mapping = dirty_page->mapping;
2697
2698 set_page_dirty(dirty_page);
2699 unlock_page(dirty_page);
2700 page_cache_release(dirty_page);
2701 if (mapping) {
2702 /*
2703 * Some device drivers do not set page.mapping
2704 * but still dirty their pages
2705 */
2706 balance_dirty_pages_ratelimited(mapping);
2707 }
2708 }
2709
2710 /* file_update_time outside page_lock */
2711 if (vma->vm_file)
2712 file_update_time(vma->vm_file);
2713
2714 return ret;
2715 }
2716
2717 /*
2718 * Ok, we need to copy. Oh, well..
2719 */
2720 page_cache_get(old_page);
2721 gotten:
2722 pte_unmap_unlock(page_table, ptl);
2723
2724 if (unlikely(anon_vma_prepare(vma)))
2725 goto oom;
2726
2727 if (is_zero_pfn(pte_pfn(orig_pte))) {
2728 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2729 if (!new_page)
2730 goto oom;
2731 } else {
2732 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2733 if (!new_page)
2734 goto oom;
2735 cow_user_page(new_page, old_page, address, vma);
2736 }
2737 __SetPageUptodate(new_page);
2738
2739 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2740 goto oom_free_new;
2741
2742 /*
2743 * Re-check the pte - we dropped the lock
2744 */
2745 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2746 if (likely(pte_same(*page_table, orig_pte))) {
2747 if (old_page) {
2748 if (!PageAnon(old_page)) {
2749 dec_mm_counter_fast(mm, MM_FILEPAGES);
2750 inc_mm_counter_fast(mm, MM_ANONPAGES);
2751 }
2752 } else
2753 inc_mm_counter_fast(mm, MM_ANONPAGES);
2754 flush_cache_page(vma, address, pte_pfn(orig_pte));
2755 entry = mk_pte(new_page, vma->vm_page_prot);
2756 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757 /*
2758 * Clear the pte entry and flush it first, before updating the
2759 * pte with the new entry. This will avoid a race condition
2760 * seen in the presence of one thread doing SMC and another
2761 * thread doing COW.
2762 */
2763 ptep_clear_flush(vma, address, page_table);
2764 page_add_new_anon_rmap(new_page, vma, address);
2765 /*
2766 * We call the notify macro here because, when using secondary
2767 * mmu page tables (such as kvm shadow page tables), we want the
2768 * new page to be mapped directly into the secondary page table.
2769 */
2770 set_pte_at_notify(mm, address, page_table, entry);
2771 update_mmu_cache(vma, address, page_table);
2772 if (old_page) {
2773 /*
2774 * Only after switching the pte to the new page may
2775 * we remove the mapcount here. Otherwise another
2776 * process may come and find the rmap count decremented
2777 * before the pte is switched to the new page, and
2778 * "reuse" the old page writing into it while our pte
2779 * here still points into it and can be read by other
2780 * threads.
2781 *
2782 * The critical issue is to order this
2783 * page_remove_rmap with the ptp_clear_flush above.
2784 * Those stores are ordered by (if nothing else,)
2785 * the barrier present in the atomic_add_negative
2786 * in page_remove_rmap.
2787 *
2788 * Then the TLB flush in ptep_clear_flush ensures that
2789 * no process can access the old page before the
2790 * decremented mapcount is visible. And the old page
2791 * cannot be reused until after the decremented
2792 * mapcount is visible. So transitively, TLBs to
2793 * old page will be flushed before it can be reused.
2794 */
2795 page_remove_rmap(old_page);
2796 }
2797
2798 /* Free the old page.. */
2799 new_page = old_page;
2800 ret |= VM_FAULT_WRITE;
2801 } else
2802 mem_cgroup_uncharge_page(new_page);
2803
2804 if (new_page)
2805 page_cache_release(new_page);
2806 unlock:
2807 pte_unmap_unlock(page_table, ptl);
2808 if (old_page) {
2809 /*
2810 * Don't let another task, with possibly unlocked vma,
2811 * keep the mlocked page.
2812 */
2813 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2814 lock_page(old_page); /* LRU manipulation */
2815 munlock_vma_page(old_page);
2816 unlock_page(old_page);
2817 }
2818 page_cache_release(old_page);
2819 }
2820 return ret;
2821 oom_free_new:
2822 page_cache_release(new_page);
2823 oom:
2824 if (old_page) {
2825 if (page_mkwrite) {
2826 unlock_page(old_page);
2827 page_cache_release(old_page);
2828 }
2829 page_cache_release(old_page);
2830 }
2831 return VM_FAULT_OOM;
2832
2833 unwritable_page:
2834 page_cache_release(old_page);
2835 return ret;
2836 }
2837
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2838 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2839 unsigned long start_addr, unsigned long end_addr,
2840 struct zap_details *details)
2841 {
2842 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2843 }
2844
unmap_mapping_range_tree(struct prio_tree_root * root,struct zap_details * details)2845 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2846 struct zap_details *details)
2847 {
2848 struct vm_area_struct *vma;
2849 struct prio_tree_iter iter;
2850 pgoff_t vba, vea, zba, zea;
2851
2852 vma_prio_tree_foreach(vma, &iter, root,
2853 details->first_index, details->last_index) {
2854
2855 vba = vma->vm_pgoff;
2856 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2857 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2858 zba = details->first_index;
2859 if (zba < vba)
2860 zba = vba;
2861 zea = details->last_index;
2862 if (zea > vea)
2863 zea = vea;
2864
2865 unmap_mapping_range_vma(vma,
2866 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2867 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2868 details);
2869 }
2870 }
2871
unmap_mapping_range_list(struct list_head * head,struct zap_details * details)2872 static inline void unmap_mapping_range_list(struct list_head *head,
2873 struct zap_details *details)
2874 {
2875 struct vm_area_struct *vma;
2876
2877 /*
2878 * In nonlinear VMAs there is no correspondence between virtual address
2879 * offset and file offset. So we must perform an exhaustive search
2880 * across *all* the pages in each nonlinear VMA, not just the pages
2881 * whose virtual address lies outside the file truncation point.
2882 */
2883 list_for_each_entry(vma, head, shared.vm_set.list) {
2884 details->nonlinear_vma = vma;
2885 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2886 }
2887 }
2888
2889 /**
2890 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2891 * @mapping: the address space containing mmaps to be unmapped.
2892 * @holebegin: byte in first page to unmap, relative to the start of
2893 * the underlying file. This will be rounded down to a PAGE_SIZE
2894 * boundary. Note that this is different from truncate_pagecache(), which
2895 * must keep the partial page. In contrast, we must get rid of
2896 * partial pages.
2897 * @holelen: size of prospective hole in bytes. This will be rounded
2898 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2899 * end of the file.
2900 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2901 * but 0 when invalidating pagecache, don't throw away private data.
2902 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2903 void unmap_mapping_range(struct address_space *mapping,
2904 loff_t const holebegin, loff_t const holelen, int even_cows)
2905 {
2906 struct zap_details details;
2907 pgoff_t hba = holebegin >> PAGE_SHIFT;
2908 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2909
2910 /* Check for overflow. */
2911 if (sizeof(holelen) > sizeof(hlen)) {
2912 long long holeend =
2913 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2914 if (holeend & ~(long long)ULONG_MAX)
2915 hlen = ULONG_MAX - hba + 1;
2916 }
2917
2918 details.check_mapping = even_cows? NULL: mapping;
2919 details.nonlinear_vma = NULL;
2920 details.first_index = hba;
2921 details.last_index = hba + hlen - 1;
2922 if (details.last_index < details.first_index)
2923 details.last_index = ULONG_MAX;
2924
2925
2926 mutex_lock(&mapping->i_mmap_mutex);
2927 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2928 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2929 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2930 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2931 mutex_unlock(&mapping->i_mmap_mutex);
2932 }
2933 EXPORT_SYMBOL(unmap_mapping_range);
2934
2935 /*
2936 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2937 * but allow concurrent faults), and pte mapped but not yet locked.
2938 * We return with mmap_sem still held, but pte unmapped and unlocked.
2939 */
do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)2940 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2941 unsigned long address, pte_t *page_table, pmd_t *pmd,
2942 unsigned int flags, pte_t orig_pte)
2943 {
2944 spinlock_t *ptl;
2945 struct page *page, *swapcache = NULL;
2946 swp_entry_t entry;
2947 pte_t pte;
2948 int locked;
2949 struct mem_cgroup *ptr;
2950 int exclusive = 0;
2951 int ret = 0;
2952
2953 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2954 goto out;
2955
2956 entry = pte_to_swp_entry(orig_pte);
2957 if (unlikely(non_swap_entry(entry))) {
2958 if (is_migration_entry(entry)) {
2959 migration_entry_wait(mm, pmd, address);
2960 } else if (is_hwpoison_entry(entry)) {
2961 ret = VM_FAULT_HWPOISON;
2962 } else {
2963 print_bad_pte(vma, address, orig_pte, NULL);
2964 ret = VM_FAULT_SIGBUS;
2965 }
2966 goto out;
2967 }
2968 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2969 page = lookup_swap_cache(entry);
2970 if (!page) {
2971 grab_swap_token(mm); /* Contend for token _before_ read-in */
2972 page = swapin_readahead(entry,
2973 GFP_HIGHUSER_MOVABLE, vma, address);
2974 if (!page) {
2975 /*
2976 * Back out if somebody else faulted in this pte
2977 * while we released the pte lock.
2978 */
2979 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2980 if (likely(pte_same(*page_table, orig_pte)))
2981 ret = VM_FAULT_OOM;
2982 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2983 goto unlock;
2984 }
2985
2986 /* Had to read the page from swap area: Major fault */
2987 ret = VM_FAULT_MAJOR;
2988 count_vm_event(PGMAJFAULT);
2989 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2990 } else if (PageHWPoison(page)) {
2991 /*
2992 * hwpoisoned dirty swapcache pages are kept for killing
2993 * owner processes (which may be unknown at hwpoison time)
2994 */
2995 ret = VM_FAULT_HWPOISON;
2996 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2997 goto out_release;
2998 }
2999
3000 locked = lock_page_or_retry(page, mm, flags);
3001 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3002 if (!locked) {
3003 ret |= VM_FAULT_RETRY;
3004 goto out_release;
3005 }
3006
3007 /*
3008 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3009 * release the swapcache from under us. The page pin, and pte_same
3010 * test below, are not enough to exclude that. Even if it is still
3011 * swapcache, we need to check that the page's swap has not changed.
3012 */
3013 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3014 goto out_page;
3015
3016 if (ksm_might_need_to_copy(page, vma, address)) {
3017 swapcache = page;
3018 page = ksm_does_need_to_copy(page, vma, address);
3019
3020 if (unlikely(!page)) {
3021 ret = VM_FAULT_OOM;
3022 page = swapcache;
3023 swapcache = NULL;
3024 goto out_page;
3025 }
3026 }
3027
3028 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3029 ret = VM_FAULT_OOM;
3030 goto out_page;
3031 }
3032
3033 /*
3034 * Back out if somebody else already faulted in this pte.
3035 */
3036 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3037 if (unlikely(!pte_same(*page_table, orig_pte)))
3038 goto out_nomap;
3039
3040 if (unlikely(!PageUptodate(page))) {
3041 ret = VM_FAULT_SIGBUS;
3042 goto out_nomap;
3043 }
3044
3045 /*
3046 * The page isn't present yet, go ahead with the fault.
3047 *
3048 * Be careful about the sequence of operations here.
3049 * To get its accounting right, reuse_swap_page() must be called
3050 * while the page is counted on swap but not yet in mapcount i.e.
3051 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3052 * must be called after the swap_free(), or it will never succeed.
3053 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3054 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3055 * in page->private. In this case, a record in swap_cgroup is silently
3056 * discarded at swap_free().
3057 */
3058
3059 inc_mm_counter_fast(mm, MM_ANONPAGES);
3060 dec_mm_counter_fast(mm, MM_SWAPENTS);
3061 pte = mk_pte(page, vma->vm_page_prot);
3062 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3063 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3064 flags &= ~FAULT_FLAG_WRITE;
3065 ret |= VM_FAULT_WRITE;
3066 exclusive = 1;
3067 }
3068 flush_icache_page(vma, page);
3069 set_pte_at(mm, address, page_table, pte);
3070 do_page_add_anon_rmap(page, vma, address, exclusive);
3071 /* It's better to call commit-charge after rmap is established */
3072 mem_cgroup_commit_charge_swapin(page, ptr);
3073
3074 swap_free(entry);
3075 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3076 try_to_free_swap(page);
3077 unlock_page(page);
3078 if (swapcache) {
3079 /*
3080 * Hold the lock to avoid the swap entry to be reused
3081 * until we take the PT lock for the pte_same() check
3082 * (to avoid false positives from pte_same). For
3083 * further safety release the lock after the swap_free
3084 * so that the swap count won't change under a
3085 * parallel locked swapcache.
3086 */
3087 unlock_page(swapcache);
3088 page_cache_release(swapcache);
3089 }
3090
3091 if (flags & FAULT_FLAG_WRITE) {
3092 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3093 if (ret & VM_FAULT_ERROR)
3094 ret &= VM_FAULT_ERROR;
3095 goto out;
3096 }
3097
3098 /* No need to invalidate - it was non-present before */
3099 update_mmu_cache(vma, address, page_table);
3100 unlock:
3101 pte_unmap_unlock(page_table, ptl);
3102 out:
3103 return ret;
3104 out_nomap:
3105 mem_cgroup_cancel_charge_swapin(ptr);
3106 pte_unmap_unlock(page_table, ptl);
3107 out_page:
3108 unlock_page(page);
3109 out_release:
3110 page_cache_release(page);
3111 if (swapcache) {
3112 unlock_page(swapcache);
3113 page_cache_release(swapcache);
3114 }
3115 return ret;
3116 }
3117
3118 /*
3119 * This is like a special single-page "expand_{down|up}wards()",
3120 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3121 * doesn't hit another vma.
3122 */
check_stack_guard_page(struct vm_area_struct * vma,unsigned long address)3123 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3124 {
3125 address &= PAGE_MASK;
3126 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3127 struct vm_area_struct *prev = vma->vm_prev;
3128
3129 /*
3130 * Is there a mapping abutting this one below?
3131 *
3132 * That's only ok if it's the same stack mapping
3133 * that has gotten split..
3134 */
3135 if (prev && prev->vm_end == address)
3136 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3137
3138 expand_downwards(vma, address - PAGE_SIZE);
3139 }
3140 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3141 struct vm_area_struct *next = vma->vm_next;
3142
3143 /* As VM_GROWSDOWN but s/below/above/ */
3144 if (next && next->vm_start == address + PAGE_SIZE)
3145 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3146
3147 expand_upwards(vma, address + PAGE_SIZE);
3148 }
3149 return 0;
3150 }
3151
3152 /*
3153 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3154 * but allow concurrent faults), and pte mapped but not yet locked.
3155 * We return with mmap_sem still held, but pte unmapped and unlocked.
3156 */
do_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags)3157 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3158 unsigned long address, pte_t *page_table, pmd_t *pmd,
3159 unsigned int flags)
3160 {
3161 struct page *page;
3162 spinlock_t *ptl;
3163 pte_t entry;
3164
3165 pte_unmap(page_table);
3166
3167 /* Check if we need to add a guard page to the stack */
3168 if (check_stack_guard_page(vma, address) < 0)
3169 return VM_FAULT_SIGBUS;
3170
3171 /* Use the zero-page for reads */
3172 if (!(flags & FAULT_FLAG_WRITE)) {
3173 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3174 vma->vm_page_prot));
3175 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3176 if (!pte_none(*page_table))
3177 goto unlock;
3178 goto setpte;
3179 }
3180
3181 /* Allocate our own private page. */
3182 if (unlikely(anon_vma_prepare(vma)))
3183 goto oom;
3184 page = alloc_zeroed_user_highpage_movable(vma, address);
3185 if (!page)
3186 goto oom;
3187 __SetPageUptodate(page);
3188
3189 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3190 goto oom_free_page;
3191
3192 entry = mk_pte(page, vma->vm_page_prot);
3193 if (vma->vm_flags & VM_WRITE)
3194 entry = pte_mkwrite(pte_mkdirty(entry));
3195
3196 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3197 if (!pte_none(*page_table))
3198 goto release;
3199
3200 inc_mm_counter_fast(mm, MM_ANONPAGES);
3201 page_add_new_anon_rmap(page, vma, address);
3202 setpte:
3203 set_pte_at(mm, address, page_table, entry);
3204
3205 /* No need to invalidate - it was non-present before */
3206 update_mmu_cache(vma, address, page_table);
3207 unlock:
3208 pte_unmap_unlock(page_table, ptl);
3209 return 0;
3210 release:
3211 mem_cgroup_uncharge_page(page);
3212 page_cache_release(page);
3213 goto unlock;
3214 oom_free_page:
3215 page_cache_release(page);
3216 oom:
3217 return VM_FAULT_OOM;
3218 }
3219
3220 /*
3221 * __do_fault() tries to create a new page mapping. It aggressively
3222 * tries to share with existing pages, but makes a separate copy if
3223 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3224 * the next page fault.
3225 *
3226 * As this is called only for pages that do not currently exist, we
3227 * do not need to flush old virtual caches or the TLB.
3228 *
3229 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3230 * but allow concurrent faults), and pte neither mapped nor locked.
3231 * We return with mmap_sem still held, but pte unmapped and unlocked.
3232 */
__do_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)3233 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3234 unsigned long address, pmd_t *pmd,
3235 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3236 {
3237 pte_t *page_table;
3238 spinlock_t *ptl;
3239 struct page *page;
3240 struct page *cow_page;
3241 pte_t entry;
3242 int anon = 0;
3243 struct page *dirty_page = NULL;
3244 struct vm_fault vmf;
3245 int ret;
3246 int page_mkwrite = 0;
3247
3248 /*
3249 * If we do COW later, allocate page befor taking lock_page()
3250 * on the file cache page. This will reduce lock holding time.
3251 */
3252 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3253
3254 if (unlikely(anon_vma_prepare(vma)))
3255 return VM_FAULT_OOM;
3256
3257 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3258 if (!cow_page)
3259 return VM_FAULT_OOM;
3260
3261 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3262 page_cache_release(cow_page);
3263 return VM_FAULT_OOM;
3264 }
3265 } else
3266 cow_page = NULL;
3267
3268 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3269 vmf.pgoff = pgoff;
3270 vmf.flags = flags;
3271 vmf.page = NULL;
3272
3273 ret = vma->vm_ops->fault(vma, &vmf);
3274 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3275 VM_FAULT_RETRY)))
3276 goto uncharge_out;
3277
3278 if (unlikely(PageHWPoison(vmf.page))) {
3279 if (ret & VM_FAULT_LOCKED)
3280 unlock_page(vmf.page);
3281 ret = VM_FAULT_HWPOISON;
3282 goto uncharge_out;
3283 }
3284
3285 /*
3286 * For consistency in subsequent calls, make the faulted page always
3287 * locked.
3288 */
3289 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3290 lock_page(vmf.page);
3291 else
3292 VM_BUG_ON(!PageLocked(vmf.page));
3293
3294 /*
3295 * Should we do an early C-O-W break?
3296 */
3297 page = vmf.page;
3298 if (flags & FAULT_FLAG_WRITE) {
3299 if (!(vma->vm_flags & VM_SHARED)) {
3300 page = cow_page;
3301 anon = 1;
3302 copy_user_highpage(page, vmf.page, address, vma);
3303 __SetPageUptodate(page);
3304 } else {
3305 /*
3306 * If the page will be shareable, see if the backing
3307 * address space wants to know that the page is about
3308 * to become writable
3309 */
3310 if (vma->vm_ops->page_mkwrite) {
3311 int tmp;
3312
3313 unlock_page(page);
3314 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3315 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3316 if (unlikely(tmp &
3317 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 ret = tmp;
3319 goto unwritable_page;
3320 }
3321 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3322 lock_page(page);
3323 if (!page->mapping) {
3324 ret = 0; /* retry the fault */
3325 unlock_page(page);
3326 goto unwritable_page;
3327 }
3328 } else
3329 VM_BUG_ON(!PageLocked(page));
3330 page_mkwrite = 1;
3331 }
3332 }
3333
3334 }
3335
3336 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3337
3338 /*
3339 * This silly early PAGE_DIRTY setting removes a race
3340 * due to the bad i386 page protection. But it's valid
3341 * for other architectures too.
3342 *
3343 * Note that if FAULT_FLAG_WRITE is set, we either now have
3344 * an exclusive copy of the page, or this is a shared mapping,
3345 * so we can make it writable and dirty to avoid having to
3346 * handle that later.
3347 */
3348 /* Only go through if we didn't race with anybody else... */
3349 if (likely(pte_same(*page_table, orig_pte))) {
3350 flush_icache_page(vma, page);
3351 entry = mk_pte(page, vma->vm_page_prot);
3352 if (flags & FAULT_FLAG_WRITE)
3353 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3354 if (anon) {
3355 inc_mm_counter_fast(mm, MM_ANONPAGES);
3356 page_add_new_anon_rmap(page, vma, address);
3357 } else {
3358 inc_mm_counter_fast(mm, MM_FILEPAGES);
3359 page_add_file_rmap(page);
3360 if (flags & FAULT_FLAG_WRITE) {
3361 dirty_page = page;
3362 get_page(dirty_page);
3363 }
3364 }
3365 set_pte_at(mm, address, page_table, entry);
3366
3367 /* no need to invalidate: a not-present page won't be cached */
3368 update_mmu_cache(vma, address, page_table);
3369 } else {
3370 if (cow_page)
3371 mem_cgroup_uncharge_page(cow_page);
3372 if (anon)
3373 page_cache_release(page);
3374 else
3375 anon = 1; /* no anon but release faulted_page */
3376 }
3377
3378 pte_unmap_unlock(page_table, ptl);
3379
3380 if (dirty_page) {
3381 struct address_space *mapping = page->mapping;
3382
3383 if (set_page_dirty(dirty_page))
3384 page_mkwrite = 1;
3385 unlock_page(dirty_page);
3386 put_page(dirty_page);
3387 if (page_mkwrite && mapping) {
3388 /*
3389 * Some device drivers do not set page.mapping but still
3390 * dirty their pages
3391 */
3392 balance_dirty_pages_ratelimited(mapping);
3393 }
3394
3395 /* file_update_time outside page_lock */
3396 if (vma->vm_file)
3397 file_update_time(vma->vm_file);
3398 } else {
3399 unlock_page(vmf.page);
3400 if (anon)
3401 page_cache_release(vmf.page);
3402 }
3403
3404 return ret;
3405
3406 unwritable_page:
3407 page_cache_release(page);
3408 return ret;
3409 uncharge_out:
3410 /* fs's fault handler get error */
3411 if (cow_page) {
3412 mem_cgroup_uncharge_page(cow_page);
3413 page_cache_release(cow_page);
3414 }
3415 return ret;
3416 }
3417
do_linear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3418 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3419 unsigned long address, pte_t *page_table, pmd_t *pmd,
3420 unsigned int flags, pte_t orig_pte)
3421 {
3422 pgoff_t pgoff = (((address & PAGE_MASK)
3423 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3424
3425 pte_unmap(page_table);
3426 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3427 }
3428
3429 /*
3430 * Fault of a previously existing named mapping. Repopulate the pte
3431 * from the encoded file_pte if possible. This enables swappable
3432 * nonlinear vmas.
3433 *
3434 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3435 * but allow concurrent faults), and pte mapped but not yet locked.
3436 * We return with mmap_sem still held, but pte unmapped and unlocked.
3437 */
do_nonlinear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3438 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3439 unsigned long address, pte_t *page_table, pmd_t *pmd,
3440 unsigned int flags, pte_t orig_pte)
3441 {
3442 pgoff_t pgoff;
3443
3444 flags |= FAULT_FLAG_NONLINEAR;
3445
3446 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3447 return 0;
3448
3449 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3450 /*
3451 * Page table corrupted: show pte and kill process.
3452 */
3453 print_bad_pte(vma, address, orig_pte, NULL);
3454 return VM_FAULT_SIGBUS;
3455 }
3456
3457 pgoff = pte_to_pgoff(orig_pte);
3458 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3459 }
3460
3461 /*
3462 * These routines also need to handle stuff like marking pages dirty
3463 * and/or accessed for architectures that don't do it in hardware (most
3464 * RISC architectures). The early dirtying is also good on the i386.
3465 *
3466 * There is also a hook called "update_mmu_cache()" that architectures
3467 * with external mmu caches can use to update those (ie the Sparc or
3468 * PowerPC hashed page tables that act as extended TLBs).
3469 *
3470 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3471 * but allow concurrent faults), and pte mapped but not yet locked.
3472 * We return with mmap_sem still held, but pte unmapped and unlocked.
3473 */
handle_pte_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * pte,pmd_t * pmd,unsigned int flags)3474 int handle_pte_fault(struct mm_struct *mm,
3475 struct vm_area_struct *vma, unsigned long address,
3476 pte_t *pte, pmd_t *pmd, unsigned int flags)
3477 {
3478 pte_t entry;
3479 spinlock_t *ptl;
3480
3481 entry = *pte;
3482 if (!pte_present(entry)) {
3483 if (pte_none(entry)) {
3484 if (vma->vm_ops) {
3485 if (likely(vma->vm_ops->fault))
3486 return do_linear_fault(mm, vma, address,
3487 pte, pmd, flags, entry);
3488 }
3489 return do_anonymous_page(mm, vma, address,
3490 pte, pmd, flags);
3491 }
3492 if (pte_file(entry))
3493 return do_nonlinear_fault(mm, vma, address,
3494 pte, pmd, flags, entry);
3495 return do_swap_page(mm, vma, address,
3496 pte, pmd, flags, entry);
3497 }
3498
3499 ptl = pte_lockptr(mm, pmd);
3500 spin_lock(ptl);
3501 if (unlikely(!pte_same(*pte, entry)))
3502 goto unlock;
3503 if (flags & FAULT_FLAG_WRITE) {
3504 if (!pte_write(entry))
3505 return do_wp_page(mm, vma, address,
3506 pte, pmd, ptl, entry);
3507 entry = pte_mkdirty(entry);
3508 }
3509 entry = pte_mkyoung(entry);
3510 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3511 update_mmu_cache(vma, address, pte);
3512 } else {
3513 /*
3514 * This is needed only for protection faults but the arch code
3515 * is not yet telling us if this is a protection fault or not.
3516 * This still avoids useless tlb flushes for .text page faults
3517 * with threads.
3518 */
3519 if (flags & FAULT_FLAG_WRITE)
3520 flush_tlb_fix_spurious_fault(vma, address);
3521 }
3522 unlock:
3523 pte_unmap_unlock(pte, ptl);
3524 return 0;
3525 }
3526
3527 /*
3528 * By the time we get here, we already hold the mm semaphore
3529 */
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3530 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3531 unsigned long address, unsigned int flags)
3532 {
3533 pgd_t *pgd;
3534 pud_t *pud;
3535 pmd_t *pmd;
3536 pte_t *pte;
3537
3538 __set_current_state(TASK_RUNNING);
3539
3540 count_vm_event(PGFAULT);
3541 mem_cgroup_count_vm_event(mm, PGFAULT);
3542
3543 /* do counter updates before entering really critical section. */
3544 check_sync_rss_stat(current);
3545
3546 if (unlikely(is_vm_hugetlb_page(vma)))
3547 return hugetlb_fault(mm, vma, address, flags);
3548
3549 retry:
3550 pgd = pgd_offset(mm, address);
3551 pud = pud_alloc(mm, pgd, address);
3552 if (!pud)
3553 return VM_FAULT_OOM;
3554 pmd = pmd_alloc(mm, pud, address);
3555 if (!pmd)
3556 return VM_FAULT_OOM;
3557 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3558 if (!vma->vm_ops)
3559 return do_huge_pmd_anonymous_page(mm, vma, address,
3560 pmd, flags);
3561 } else {
3562 pmd_t orig_pmd = *pmd;
3563 int ret;
3564
3565 barrier();
3566 if (pmd_trans_huge(orig_pmd)) {
3567 if (flags & FAULT_FLAG_WRITE &&
3568 !pmd_write(orig_pmd) &&
3569 !pmd_trans_splitting(orig_pmd)) {
3570 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3571 orig_pmd);
3572 /*
3573 * If COW results in an oom, the huge pmd will
3574 * have been split, so retry the fault on the
3575 * pte for a smaller charge.
3576 */
3577 if (unlikely(ret & VM_FAULT_OOM))
3578 goto retry;
3579 return ret;
3580 }
3581 return 0;
3582 }
3583 }
3584
3585 /*
3586 * Use __pte_alloc instead of pte_alloc_map, because we can't
3587 * run pte_offset_map on the pmd, if an huge pmd could
3588 * materialize from under us from a different thread.
3589 */
3590 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3591 return VM_FAULT_OOM;
3592 /* if an huge pmd materialized from under us just retry later */
3593 if (unlikely(pmd_trans_huge(*pmd)))
3594 return 0;
3595 /*
3596 * A regular pmd is established and it can't morph into a huge pmd
3597 * from under us anymore at this point because we hold the mmap_sem
3598 * read mode and khugepaged takes it in write mode. So now it's
3599 * safe to run pte_offset_map().
3600 */
3601 pte = pte_offset_map(pmd, address);
3602
3603 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3604 }
3605
3606 #ifndef __PAGETABLE_PUD_FOLDED
3607 /*
3608 * Allocate page upper directory.
3609 * We've already handled the fast-path in-line.
3610 */
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3611 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3612 {
3613 pud_t *new = pud_alloc_one(mm, address);
3614 if (!new)
3615 return -ENOMEM;
3616
3617 smp_wmb(); /* See comment in __pte_alloc */
3618
3619 spin_lock(&mm->page_table_lock);
3620 if (pgd_present(*pgd)) /* Another has populated it */
3621 pud_free(mm, new);
3622 else
3623 pgd_populate(mm, pgd, new);
3624 spin_unlock(&mm->page_table_lock);
3625 return 0;
3626 }
3627 #endif /* __PAGETABLE_PUD_FOLDED */
3628
3629 #ifndef __PAGETABLE_PMD_FOLDED
3630 /*
3631 * Allocate page middle directory.
3632 * We've already handled the fast-path in-line.
3633 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3634 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3635 {
3636 pmd_t *new = pmd_alloc_one(mm, address);
3637 if (!new)
3638 return -ENOMEM;
3639
3640 smp_wmb(); /* See comment in __pte_alloc */
3641
3642 spin_lock(&mm->page_table_lock);
3643 #ifndef __ARCH_HAS_4LEVEL_HACK
3644 if (pud_present(*pud)) /* Another has populated it */
3645 pmd_free(mm, new);
3646 else
3647 pud_populate(mm, pud, new);
3648 #else
3649 if (pgd_present(*pud)) /* Another has populated it */
3650 pmd_free(mm, new);
3651 else
3652 pgd_populate(mm, pud, new);
3653 #endif /* __ARCH_HAS_4LEVEL_HACK */
3654 spin_unlock(&mm->page_table_lock);
3655 return 0;
3656 }
3657 #endif /* __PAGETABLE_PMD_FOLDED */
3658
make_pages_present(unsigned long addr,unsigned long end)3659 int make_pages_present(unsigned long addr, unsigned long end)
3660 {
3661 int ret, len, write;
3662 struct vm_area_struct * vma;
3663
3664 vma = find_vma(current->mm, addr);
3665 if (!vma)
3666 return -ENOMEM;
3667 /*
3668 * We want to touch writable mappings with a write fault in order
3669 * to break COW, except for shared mappings because these don't COW
3670 * and we would not want to dirty them for nothing.
3671 */
3672 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3673 BUG_ON(addr >= end);
3674 BUG_ON(end > vma->vm_end);
3675 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3676 ret = get_user_pages(current, current->mm, addr,
3677 len, write, 0, NULL, NULL);
3678 if (ret < 0)
3679 return ret;
3680 return ret == len ? 0 : -EFAULT;
3681 }
3682
3683 #if !defined(__HAVE_ARCH_GATE_AREA)
3684
3685 #if defined(AT_SYSINFO_EHDR)
3686 static struct vm_area_struct gate_vma;
3687
gate_vma_init(void)3688 static int __init gate_vma_init(void)
3689 {
3690 gate_vma.vm_mm = NULL;
3691 gate_vma.vm_start = FIXADDR_USER_START;
3692 gate_vma.vm_end = FIXADDR_USER_END;
3693 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3694 gate_vma.vm_page_prot = __P101;
3695
3696 return 0;
3697 }
3698 __initcall(gate_vma_init);
3699 #endif
3700
get_gate_vma(struct mm_struct * mm)3701 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3702 {
3703 #ifdef AT_SYSINFO_EHDR
3704 return &gate_vma;
3705 #else
3706 return NULL;
3707 #endif
3708 }
3709
in_gate_area_no_mm(unsigned long addr)3710 int in_gate_area_no_mm(unsigned long addr)
3711 {
3712 #ifdef AT_SYSINFO_EHDR
3713 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3714 return 1;
3715 #endif
3716 return 0;
3717 }
3718
3719 #endif /* __HAVE_ARCH_GATE_AREA */
3720
__follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3721 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3722 pte_t **ptepp, spinlock_t **ptlp)
3723 {
3724 pgd_t *pgd;
3725 pud_t *pud;
3726 pmd_t *pmd;
3727 pte_t *ptep;
3728
3729 pgd = pgd_offset(mm, address);
3730 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3731 goto out;
3732
3733 pud = pud_offset(pgd, address);
3734 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3735 goto out;
3736
3737 pmd = pmd_offset(pud, address);
3738 VM_BUG_ON(pmd_trans_huge(*pmd));
3739 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3740 goto out;
3741
3742 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3743 if (pmd_huge(*pmd))
3744 goto out;
3745
3746 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3747 if (!ptep)
3748 goto out;
3749 if (!pte_present(*ptep))
3750 goto unlock;
3751 *ptepp = ptep;
3752 return 0;
3753 unlock:
3754 pte_unmap_unlock(ptep, *ptlp);
3755 out:
3756 return -EINVAL;
3757 }
3758
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3759 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3760 pte_t **ptepp, spinlock_t **ptlp)
3761 {
3762 int res;
3763
3764 /* (void) is needed to make gcc happy */
3765 (void) __cond_lock(*ptlp,
3766 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3767 return res;
3768 }
3769
3770 /**
3771 * follow_pfn - look up PFN at a user virtual address
3772 * @vma: memory mapping
3773 * @address: user virtual address
3774 * @pfn: location to store found PFN
3775 *
3776 * Only IO mappings and raw PFN mappings are allowed.
3777 *
3778 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3779 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)3780 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3781 unsigned long *pfn)
3782 {
3783 int ret = -EINVAL;
3784 spinlock_t *ptl;
3785 pte_t *ptep;
3786
3787 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3788 return ret;
3789
3790 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3791 if (ret)
3792 return ret;
3793 *pfn = pte_pfn(*ptep);
3794 pte_unmap_unlock(ptep, ptl);
3795 return 0;
3796 }
3797 EXPORT_SYMBOL(follow_pfn);
3798
3799 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)3800 int follow_phys(struct vm_area_struct *vma,
3801 unsigned long address, unsigned int flags,
3802 unsigned long *prot, resource_size_t *phys)
3803 {
3804 int ret = -EINVAL;
3805 pte_t *ptep, pte;
3806 spinlock_t *ptl;
3807
3808 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3809 goto out;
3810
3811 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3812 goto out;
3813 pte = *ptep;
3814
3815 if ((flags & FOLL_WRITE) && !pte_write(pte))
3816 goto unlock;
3817
3818 *prot = pgprot_val(pte_pgprot(pte));
3819 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3820
3821 ret = 0;
3822 unlock:
3823 pte_unmap_unlock(ptep, ptl);
3824 out:
3825 return ret;
3826 }
3827
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)3828 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3829 void *buf, int len, int write)
3830 {
3831 resource_size_t phys_addr;
3832 unsigned long prot = 0;
3833 void __iomem *maddr;
3834 int offset = addr & (PAGE_SIZE-1);
3835
3836 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3837 return -EINVAL;
3838
3839 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3840 if (write)
3841 memcpy_toio(maddr + offset, buf, len);
3842 else
3843 memcpy_fromio(buf, maddr + offset, len);
3844 iounmap(maddr);
3845
3846 return len;
3847 }
3848 #endif
3849
3850 /*
3851 * Access another process' address space as given in mm. If non-NULL, use the
3852 * given task for page fault accounting.
3853 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3854 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3855 unsigned long addr, void *buf, int len, int write)
3856 {
3857 struct vm_area_struct *vma;
3858 void *old_buf = buf;
3859
3860 down_read(&mm->mmap_sem);
3861 /* ignore errors, just check how much was successfully transferred */
3862 while (len) {
3863 int bytes, ret, offset;
3864 void *maddr;
3865 struct page *page = NULL;
3866
3867 ret = get_user_pages(tsk, mm, addr, 1,
3868 write, 1, &page, &vma);
3869 if (ret <= 0) {
3870 /*
3871 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3872 * we can access using slightly different code.
3873 */
3874 #ifdef CONFIG_HAVE_IOREMAP_PROT
3875 vma = find_vma(mm, addr);
3876 if (!vma || vma->vm_start > addr)
3877 break;
3878 if (vma->vm_ops && vma->vm_ops->access)
3879 ret = vma->vm_ops->access(vma, addr, buf,
3880 len, write);
3881 if (ret <= 0)
3882 #endif
3883 break;
3884 bytes = ret;
3885 } else {
3886 bytes = len;
3887 offset = addr & (PAGE_SIZE-1);
3888 if (bytes > PAGE_SIZE-offset)
3889 bytes = PAGE_SIZE-offset;
3890
3891 maddr = kmap(page);
3892 if (write) {
3893 copy_to_user_page(vma, page, addr,
3894 maddr + offset, buf, bytes);
3895 set_page_dirty_lock(page);
3896 } else {
3897 copy_from_user_page(vma, page, addr,
3898 buf, maddr + offset, bytes);
3899 }
3900 kunmap(page);
3901 page_cache_release(page);
3902 }
3903 len -= bytes;
3904 buf += bytes;
3905 addr += bytes;
3906 }
3907 up_read(&mm->mmap_sem);
3908
3909 return buf - old_buf;
3910 }
3911
3912 /**
3913 * access_remote_vm - access another process' address space
3914 * @mm: the mm_struct of the target address space
3915 * @addr: start address to access
3916 * @buf: source or destination buffer
3917 * @len: number of bytes to transfer
3918 * @write: whether the access is a write
3919 *
3920 * The caller must hold a reference on @mm.
3921 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3922 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3923 void *buf, int len, int write)
3924 {
3925 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3926 }
3927
3928 /*
3929 * Access another process' address space.
3930 * Source/target buffer must be kernel space,
3931 * Do not walk the page table directly, use get_user_pages
3932 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)3933 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3934 void *buf, int len, int write)
3935 {
3936 struct mm_struct *mm;
3937 int ret;
3938
3939 mm = get_task_mm(tsk);
3940 if (!mm)
3941 return 0;
3942
3943 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3944 mmput(mm);
3945
3946 return ret;
3947 }
3948
3949 /*
3950 * Print the name of a VMA.
3951 */
print_vma_addr(char * prefix,unsigned long ip)3952 void print_vma_addr(char *prefix, unsigned long ip)
3953 {
3954 struct mm_struct *mm = current->mm;
3955 struct vm_area_struct *vma;
3956
3957 /*
3958 * Do not print if we are in atomic
3959 * contexts (in exception stacks, etc.):
3960 */
3961 if (preempt_count())
3962 return;
3963
3964 down_read(&mm->mmap_sem);
3965 vma = find_vma(mm, ip);
3966 if (vma && vma->vm_file) {
3967 struct file *f = vma->vm_file;
3968 char *buf = (char *)__get_free_page(GFP_KERNEL);
3969 if (buf) {
3970 char *p, *s;
3971
3972 p = d_path(&f->f_path, buf, PAGE_SIZE);
3973 if (IS_ERR(p))
3974 p = "?";
3975 s = strrchr(p, '/');
3976 if (s)
3977 p = s+1;
3978 printk("%s%s[%lx+%lx]", prefix, p,
3979 vma->vm_start,
3980 vma->vm_end - vma->vm_start);
3981 free_page((unsigned long)buf);
3982 }
3983 }
3984 up_read(¤t->mm->mmap_sem);
3985 }
3986
3987 #ifdef CONFIG_PROVE_LOCKING
might_fault(void)3988 void might_fault(void)
3989 {
3990 /*
3991 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3992 * holding the mmap_sem, this is safe because kernel memory doesn't
3993 * get paged out, therefore we'll never actually fault, and the
3994 * below annotations will generate false positives.
3995 */
3996 if (segment_eq(get_fs(), KERNEL_DS))
3997 return;
3998
3999 might_sleep();
4000 /*
4001 * it would be nicer only to annotate paths which are not under
4002 * pagefault_disable, however that requires a larger audit and
4003 * providing helpers like get_user_atomic.
4004 */
4005 if (!in_atomic() && current->mm)
4006 might_lock_read(¤t->mm->mmap_sem);
4007 }
4008 EXPORT_SYMBOL(might_fault);
4009 #endif
4010
4011 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4012 static void clear_gigantic_page(struct page *page,
4013 unsigned long addr,
4014 unsigned int pages_per_huge_page)
4015 {
4016 int i;
4017 struct page *p = page;
4018
4019 might_sleep();
4020 for (i = 0; i < pages_per_huge_page;
4021 i++, p = mem_map_next(p, page, i)) {
4022 cond_resched();
4023 clear_user_highpage(p, addr + i * PAGE_SIZE);
4024 }
4025 }
clear_huge_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4026 void clear_huge_page(struct page *page,
4027 unsigned long addr, unsigned int pages_per_huge_page)
4028 {
4029 int i;
4030
4031 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4032 clear_gigantic_page(page, addr, pages_per_huge_page);
4033 return;
4034 }
4035
4036 might_sleep();
4037 for (i = 0; i < pages_per_huge_page; i++) {
4038 cond_resched();
4039 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4040 }
4041 }
4042
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4043 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4044 unsigned long addr,
4045 struct vm_area_struct *vma,
4046 unsigned int pages_per_huge_page)
4047 {
4048 int i;
4049 struct page *dst_base = dst;
4050 struct page *src_base = src;
4051
4052 for (i = 0; i < pages_per_huge_page; ) {
4053 cond_resched();
4054 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4055
4056 i++;
4057 dst = mem_map_next(dst, dst_base, i);
4058 src = mem_map_next(src, src_base, i);
4059 }
4060 }
4061
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4062 void copy_user_huge_page(struct page *dst, struct page *src,
4063 unsigned long addr, struct vm_area_struct *vma,
4064 unsigned int pages_per_huge_page)
4065 {
4066 int i;
4067
4068 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4069 copy_user_gigantic_page(dst, src, addr, vma,
4070 pages_per_huge_page);
4071 return;
4072 }
4073
4074 might_sleep();
4075 for (i = 0; i < pages_per_huge_page; i++) {
4076 cond_resched();
4077 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4078 }
4079 }
4080 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4081