1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
disable_randmaps(char * s)105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
init_zero_pfn(void)118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
sync_mm_rss(struct mm_struct * mm)128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (current->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, current->rss_stat.count[i]);
135 			current->rss_stat.count[i] = 0;
136 		}
137 	}
138 	current->rss_stat.events = 0;
139 }
140 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163 
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166 
check_sync_rss_stat(struct task_struct * task)167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170 
171 #endif /* SPLIT_RSS_COUNTING */
172 
173 #ifdef HAVE_GENERIC_MMU_GATHER
174 
tlb_next_batch(struct mmu_gather * tlb)175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 	struct mmu_gather_batch *batch;
178 
179 	batch = tlb->active;
180 	if (batch->next) {
181 		tlb->active = batch->next;
182 		return 1;
183 	}
184 
185 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
186 		return 0;
187 
188 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
189 	if (!batch)
190 		return 0;
191 
192 	tlb->batch_count++;
193 	batch->next = NULL;
194 	batch->nr   = 0;
195 	batch->max  = MAX_GATHER_BATCH;
196 
197 	tlb->active->next = batch;
198 	tlb->active = batch;
199 
200 	return 1;
201 }
202 
203 /* tlb_gather_mmu
204  *	Called to initialize an (on-stack) mmu_gather structure for page-table
205  *	tear-down from @mm. The @fullmm argument is used when @mm is without
206  *	users and we're going to destroy the full address space (exit/execve).
207  */
tlb_gather_mmu(struct mmu_gather * tlb,struct mm_struct * mm,bool fullmm)208 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
209 {
210 	tlb->mm = mm;
211 
212 	tlb->fullmm     = fullmm;
213 	tlb->need_flush = 0;
214 	tlb->fast_mode  = (num_possible_cpus() == 1);
215 	tlb->local.next = NULL;
216 	tlb->local.nr   = 0;
217 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
218 	tlb->active     = &tlb->local;
219 	tlb->batch_count = 0;
220 
221 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
222 	tlb->batch = NULL;
223 #endif
224 }
225 
tlb_flush_mmu(struct mmu_gather * tlb)226 void tlb_flush_mmu(struct mmu_gather *tlb)
227 {
228 	struct mmu_gather_batch *batch;
229 
230 	if (!tlb->need_flush)
231 		return;
232 	tlb->need_flush = 0;
233 	tlb_flush(tlb);
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	tlb_table_flush(tlb);
236 #endif
237 
238 	if (tlb_fast_mode(tlb))
239 		return;
240 
241 	for (batch = &tlb->local; batch; batch = batch->next) {
242 		free_pages_and_swap_cache(batch->pages, batch->nr);
243 		batch->nr = 0;
244 	}
245 	tlb->active = &tlb->local;
246 }
247 
248 /* tlb_finish_mmu
249  *	Called at the end of the shootdown operation to free up any resources
250  *	that were required.
251  */
tlb_finish_mmu(struct mmu_gather * tlb,unsigned long start,unsigned long end)252 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
253 {
254 	struct mmu_gather_batch *batch, *next;
255 
256 	tlb_flush_mmu(tlb);
257 
258 	/* keep the page table cache within bounds */
259 	check_pgt_cache();
260 
261 	for (batch = tlb->local.next; batch; batch = next) {
262 		next = batch->next;
263 		free_pages((unsigned long)batch, 0);
264 	}
265 	tlb->local.next = NULL;
266 }
267 
268 /* __tlb_remove_page
269  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270  *	handling the additional races in SMP caused by other CPUs caching valid
271  *	mappings in their TLBs. Returns the number of free page slots left.
272  *	When out of page slots we must call tlb_flush_mmu().
273  */
__tlb_remove_page(struct mmu_gather * tlb,struct page * page)274 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 {
276 	struct mmu_gather_batch *batch;
277 
278 	VM_BUG_ON(!tlb->need_flush);
279 
280 	if (tlb_fast_mode(tlb)) {
281 		free_page_and_swap_cache(page);
282 		return 1; /* avoid calling tlb_flush_mmu() */
283 	}
284 
285 	batch = tlb->active;
286 	batch->pages[batch->nr++] = page;
287 	if (batch->nr == batch->max) {
288 		if (!tlb_next_batch(tlb))
289 			return 0;
290 		batch = tlb->active;
291 	}
292 	VM_BUG_ON(batch->nr > batch->max);
293 
294 	return batch->max - batch->nr;
295 }
296 
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298 
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300 
301 /*
302  * See the comment near struct mmu_table_batch.
303  */
304 
tlb_remove_table_smp_sync(void * arg)305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 	/* Simply deliver the interrupt */
308 }
309 
tlb_remove_table_one(void * table)310 static void tlb_remove_table_one(void *table)
311 {
312 	/*
313 	 * This isn't an RCU grace period and hence the page-tables cannot be
314 	 * assumed to be actually RCU-freed.
315 	 *
316 	 * It is however sufficient for software page-table walkers that rely on
317 	 * IRQ disabling. See the comment near struct mmu_table_batch.
318 	 */
319 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 	__tlb_remove_table(table);
321 }
322 
tlb_remove_table_rcu(struct rcu_head * head)323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 	struct mmu_table_batch *batch;
326 	int i;
327 
328 	batch = container_of(head, struct mmu_table_batch, rcu);
329 
330 	for (i = 0; i < batch->nr; i++)
331 		__tlb_remove_table(batch->tables[i]);
332 
333 	free_page((unsigned long)batch);
334 }
335 
tlb_table_flush(struct mmu_gather * tlb)336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 	struct mmu_table_batch **batch = &tlb->batch;
339 
340 	if (*batch) {
341 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 		*batch = NULL;
343 	}
344 }
345 
tlb_remove_table(struct mmu_gather * tlb,void * table)346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 	struct mmu_table_batch **batch = &tlb->batch;
349 
350 	tlb->need_flush = 1;
351 
352 	/*
353 	 * When there's less then two users of this mm there cannot be a
354 	 * concurrent page-table walk.
355 	 */
356 	if (atomic_read(&tlb->mm->mm_users) < 2) {
357 		__tlb_remove_table(table);
358 		return;
359 	}
360 
361 	if (*batch == NULL) {
362 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 		if (*batch == NULL) {
364 			tlb_remove_table_one(table);
365 			return;
366 		}
367 		(*batch)->nr = 0;
368 	}
369 	(*batch)->tables[(*batch)->nr++] = table;
370 	if ((*batch)->nr == MAX_TABLE_BATCH)
371 		tlb_table_flush(tlb);
372 }
373 
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375 
376 /*
377  * If a p?d_bad entry is found while walking page tables, report
378  * the error, before resetting entry to p?d_none.  Usually (but
379  * very seldom) called out from the p?d_none_or_clear_bad macros.
380  */
381 
pgd_clear_bad(pgd_t * pgd)382 void pgd_clear_bad(pgd_t *pgd)
383 {
384 	pgd_ERROR(*pgd);
385 	pgd_clear(pgd);
386 }
387 
pud_clear_bad(pud_t * pud)388 void pud_clear_bad(pud_t *pud)
389 {
390 	pud_ERROR(*pud);
391 	pud_clear(pud);
392 }
393 
pmd_clear_bad(pmd_t * pmd)394 void pmd_clear_bad(pmd_t *pmd)
395 {
396 	pmd_ERROR(*pmd);
397 	pmd_clear(pmd);
398 }
399 
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 			   unsigned long addr)
406 {
407 	pgtable_t token = pmd_pgtable(*pmd);
408 	pmd_clear(pmd);
409 	pte_free_tlb(tlb, token, addr);
410 	tlb->mm->nr_ptes--;
411 }
412 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 				unsigned long addr, unsigned long end,
415 				unsigned long floor, unsigned long ceiling)
416 {
417 	pmd_t *pmd;
418 	unsigned long next;
419 	unsigned long start;
420 
421 	start = addr;
422 	pmd = pmd_offset(pud, addr);
423 	do {
424 		next = pmd_addr_end(addr, end);
425 		if (pmd_none_or_clear_bad(pmd))
426 			continue;
427 		free_pte_range(tlb, pmd, addr);
428 	} while (pmd++, addr = next, addr != end);
429 
430 	start &= PUD_MASK;
431 	if (start < floor)
432 		return;
433 	if (ceiling) {
434 		ceiling &= PUD_MASK;
435 		if (!ceiling)
436 			return;
437 	}
438 	if (end - 1 > ceiling - 1)
439 		return;
440 
441 	pmd = pmd_offset(pud, start);
442 	pud_clear(pud);
443 	pmd_free_tlb(tlb, pmd, start);
444 }
445 
free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 				unsigned long addr, unsigned long end,
448 				unsigned long floor, unsigned long ceiling)
449 {
450 	pud_t *pud;
451 	unsigned long next;
452 	unsigned long start;
453 
454 	start = addr;
455 	pud = pud_offset(pgd, addr);
456 	do {
457 		next = pud_addr_end(addr, end);
458 		if (pud_none_or_clear_bad(pud))
459 			continue;
460 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 	} while (pud++, addr = next, addr != end);
462 
463 	start &= PGDIR_MASK;
464 	if (start < floor)
465 		return;
466 	if (ceiling) {
467 		ceiling &= PGDIR_MASK;
468 		if (!ceiling)
469 			return;
470 	}
471 	if (end - 1 > ceiling - 1)
472 		return;
473 
474 	pud = pud_offset(pgd, start);
475 	pgd_clear(pgd);
476 	pud_free_tlb(tlb, pud, start);
477 }
478 
479 /*
480  * This function frees user-level page tables of a process.
481  *
482  * Must be called with pagetable lock held.
483  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)484 void free_pgd_range(struct mmu_gather *tlb,
485 			unsigned long addr, unsigned long end,
486 			unsigned long floor, unsigned long ceiling)
487 {
488 	pgd_t *pgd;
489 	unsigned long next;
490 
491 	/*
492 	 * The next few lines have given us lots of grief...
493 	 *
494 	 * Why are we testing PMD* at this top level?  Because often
495 	 * there will be no work to do at all, and we'd prefer not to
496 	 * go all the way down to the bottom just to discover that.
497 	 *
498 	 * Why all these "- 1"s?  Because 0 represents both the bottom
499 	 * of the address space and the top of it (using -1 for the
500 	 * top wouldn't help much: the masks would do the wrong thing).
501 	 * The rule is that addr 0 and floor 0 refer to the bottom of
502 	 * the address space, but end 0 and ceiling 0 refer to the top
503 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 	 * that end 0 case should be mythical).
505 	 *
506 	 * Wherever addr is brought up or ceiling brought down, we must
507 	 * be careful to reject "the opposite 0" before it confuses the
508 	 * subsequent tests.  But what about where end is brought down
509 	 * by PMD_SIZE below? no, end can't go down to 0 there.
510 	 *
511 	 * Whereas we round start (addr) and ceiling down, by different
512 	 * masks at different levels, in order to test whether a table
513 	 * now has no other vmas using it, so can be freed, we don't
514 	 * bother to round floor or end up - the tests don't need that.
515 	 */
516 
517 	addr &= PMD_MASK;
518 	if (addr < floor) {
519 		addr += PMD_SIZE;
520 		if (!addr)
521 			return;
522 	}
523 	if (ceiling) {
524 		ceiling &= PMD_MASK;
525 		if (!ceiling)
526 			return;
527 	}
528 	if (end - 1 > ceiling - 1)
529 		end -= PMD_SIZE;
530 	if (addr > end - 1)
531 		return;
532 
533 	pgd = pgd_offset(tlb->mm, addr);
534 	do {
535 		next = pgd_addr_end(addr, end);
536 		if (pgd_none_or_clear_bad(pgd))
537 			continue;
538 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 	} while (pgd++, addr = next, addr != end);
540 }
541 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 		unsigned long floor, unsigned long ceiling)
544 {
545 	while (vma) {
546 		struct vm_area_struct *next = vma->vm_next;
547 		unsigned long addr = vma->vm_start;
548 
549 		/*
550 		 * Hide vma from rmap and truncate_pagecache before freeing
551 		 * pgtables
552 		 */
553 		unlink_anon_vmas(vma);
554 		unlink_file_vma(vma);
555 
556 		if (is_vm_hugetlb_page(vma)) {
557 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 				floor, next? next->vm_start: ceiling);
559 		} else {
560 			/*
561 			 * Optimization: gather nearby vmas into one call down
562 			 */
563 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 			       && !is_vm_hugetlb_page(next)) {
565 				vma = next;
566 				next = vma->vm_next;
567 				unlink_anon_vmas(vma);
568 				unlink_file_vma(vma);
569 			}
570 			free_pgd_range(tlb, addr, vma->vm_end,
571 				floor, next? next->vm_start: ceiling);
572 		}
573 		vma = next;
574 	}
575 }
576 
__pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,pmd_t * pmd,unsigned long address)577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 		pmd_t *pmd, unsigned long address)
579 {
580 	pgtable_t new = pte_alloc_one(mm, address);
581 	int wait_split_huge_page;
582 	if (!new)
583 		return -ENOMEM;
584 
585 	/*
586 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 	 * visible before the pte is made visible to other CPUs by being
588 	 * put into page tables.
589 	 *
590 	 * The other side of the story is the pointer chasing in the page
591 	 * table walking code (when walking the page table without locking;
592 	 * ie. most of the time). Fortunately, these data accesses consist
593 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 	 * being the notable exception) will already guarantee loads are
595 	 * seen in-order. See the alpha page table accessors for the
596 	 * smp_read_barrier_depends() barriers in page table walking code.
597 	 */
598 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 
600 	spin_lock(&mm->page_table_lock);
601 	wait_split_huge_page = 0;
602 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
603 		mm->nr_ptes++;
604 		pmd_populate(mm, pmd, new);
605 		new = NULL;
606 	} else if (unlikely(pmd_trans_splitting(*pmd)))
607 		wait_split_huge_page = 1;
608 	spin_unlock(&mm->page_table_lock);
609 	if (new)
610 		pte_free(mm, new);
611 	if (wait_split_huge_page)
612 		wait_split_huge_page(vma->anon_vma, pmd);
613 	return 0;
614 }
615 
__pte_alloc_kernel(pmd_t * pmd,unsigned long address)616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 	if (!new)
620 		return -ENOMEM;
621 
622 	smp_wmb(); /* See comment in __pte_alloc */
623 
624 	spin_lock(&init_mm.page_table_lock);
625 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
626 		pmd_populate_kernel(&init_mm, pmd, new);
627 		new = NULL;
628 	} else
629 		VM_BUG_ON(pmd_trans_splitting(*pmd));
630 	spin_unlock(&init_mm.page_table_lock);
631 	if (new)
632 		pte_free_kernel(&init_mm, new);
633 	return 0;
634 }
635 
init_rss_vec(int * rss)636 static inline void init_rss_vec(int *rss)
637 {
638 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640 
add_mm_rss_vec(struct mm_struct * mm,int * rss)641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643 	int i;
644 
645 	if (current->mm == mm)
646 		sync_mm_rss(mm);
647 	for (i = 0; i < NR_MM_COUNTERS; i++)
648 		if (rss[i])
649 			add_mm_counter(mm, i, rss[i]);
650 }
651 
652 /*
653  * This function is called to print an error when a bad pte
654  * is found. For example, we might have a PFN-mapped pte in
655  * a region that doesn't allow it.
656  *
657  * The calling function must still handle the error.
658  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 			  pte_t pte, struct page *page)
661 {
662 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 	pud_t *pud = pud_offset(pgd, addr);
664 	pmd_t *pmd = pmd_offset(pud, addr);
665 	struct address_space *mapping;
666 	pgoff_t index;
667 	static unsigned long resume;
668 	static unsigned long nr_shown;
669 	static unsigned long nr_unshown;
670 
671 	/*
672 	 * Allow a burst of 60 reports, then keep quiet for that minute;
673 	 * or allow a steady drip of one report per second.
674 	 */
675 	if (nr_shown == 60) {
676 		if (time_before(jiffies, resume)) {
677 			nr_unshown++;
678 			return;
679 		}
680 		if (nr_unshown) {
681 			printk(KERN_ALERT
682 				"BUG: Bad page map: %lu messages suppressed\n",
683 				nr_unshown);
684 			nr_unshown = 0;
685 		}
686 		nr_shown = 0;
687 	}
688 	if (nr_shown++ == 0)
689 		resume = jiffies + 60 * HZ;
690 
691 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 	index = linear_page_index(vma, addr);
693 
694 	printk(KERN_ALERT
695 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
696 		current->comm,
697 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
698 	if (page)
699 		dump_page(page);
700 	printk(KERN_ALERT
701 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 	/*
704 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 	 */
706 	if (vma->vm_ops)
707 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 				(unsigned long)vma->vm_ops->fault);
709 	if (vma->vm_file && vma->vm_file->f_op)
710 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 				(unsigned long)vma->vm_file->f_op->mmap);
712 	dump_stack();
713 	add_taint(TAINT_BAD_PAGE);
714 }
715 
is_cow_mapping(vm_flags_t flags)716 static inline int is_cow_mapping(vm_flags_t flags)
717 {
718 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720 
721 #ifndef is_zero_pfn
is_zero_pfn(unsigned long pfn)722 static inline int is_zero_pfn(unsigned long pfn)
723 {
724 	return pfn == zero_pfn;
725 }
726 #endif
727 
728 #ifndef my_zero_pfn
my_zero_pfn(unsigned long addr)729 static inline unsigned long my_zero_pfn(unsigned long addr)
730 {
731 	return zero_pfn;
732 }
733 #endif
734 
735 /*
736  * vm_normal_page -- This function gets the "struct page" associated with a pte.
737  *
738  * "Special" mappings do not wish to be associated with a "struct page" (either
739  * it doesn't exist, or it exists but they don't want to touch it). In this
740  * case, NULL is returned here. "Normal" mappings do have a struct page.
741  *
742  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
743  * pte bit, in which case this function is trivial. Secondly, an architecture
744  * may not have a spare pte bit, which requires a more complicated scheme,
745  * described below.
746  *
747  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
748  * special mapping (even if there are underlying and valid "struct pages").
749  * COWed pages of a VM_PFNMAP are always normal.
750  *
751  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
752  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
753  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
754  * mapping will always honor the rule
755  *
756  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757  *
758  * And for normal mappings this is false.
759  *
760  * This restricts such mappings to be a linear translation from virtual address
761  * to pfn. To get around this restriction, we allow arbitrary mappings so long
762  * as the vma is not a COW mapping; in that case, we know that all ptes are
763  * special (because none can have been COWed).
764  *
765  *
766  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767  *
768  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
769  * page" backing, however the difference is that _all_ pages with a struct
770  * page (that is, those where pfn_valid is true) are refcounted and considered
771  * normal pages by the VM. The disadvantage is that pages are refcounted
772  * (which can be slower and simply not an option for some PFNMAP users). The
773  * advantage is that we don't have to follow the strict linearity rule of
774  * PFNMAP mappings in order to support COWable mappings.
775  *
776  */
777 #ifdef __HAVE_ARCH_PTE_SPECIAL
778 # define HAVE_PTE_SPECIAL 1
779 #else
780 # define HAVE_PTE_SPECIAL 0
781 #endif
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)782 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
783 				pte_t pte)
784 {
785 	unsigned long pfn = pte_pfn(pte);
786 
787 	if (HAVE_PTE_SPECIAL) {
788 		if (likely(!pte_special(pte)))
789 			goto check_pfn;
790 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
791 			return NULL;
792 		if (!is_zero_pfn(pfn))
793 			print_bad_pte(vma, addr, pte, NULL);
794 		return NULL;
795 	}
796 
797 	/* !HAVE_PTE_SPECIAL case follows: */
798 
799 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
800 		if (vma->vm_flags & VM_MIXEDMAP) {
801 			if (!pfn_valid(pfn))
802 				return NULL;
803 			goto out;
804 		} else {
805 			unsigned long off;
806 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
807 			if (pfn == vma->vm_pgoff + off)
808 				return NULL;
809 			if (!is_cow_mapping(vma->vm_flags))
810 				return NULL;
811 		}
812 	}
813 
814 	if (is_zero_pfn(pfn))
815 		return NULL;
816 check_pfn:
817 	if (unlikely(pfn > highest_memmap_pfn)) {
818 		print_bad_pte(vma, addr, pte, NULL);
819 		return NULL;
820 	}
821 
822 	/*
823 	 * NOTE! We still have PageReserved() pages in the page tables.
824 	 * eg. VDSO mappings can cause them to exist.
825 	 */
826 out:
827 	return pfn_to_page(pfn);
828 }
829 
830 /*
831  * copy one vm_area from one task to the other. Assumes the page tables
832  * already present in the new task to be cleared in the whole range
833  * covered by this vma.
834  */
835 
836 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)837 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
839 		unsigned long addr, int *rss)
840 {
841 	unsigned long vm_flags = vma->vm_flags;
842 	pte_t pte = *src_pte;
843 	struct page *page;
844 
845 	/* pte contains position in swap or file, so copy. */
846 	if (unlikely(!pte_present(pte))) {
847 		if (!pte_file(pte)) {
848 			swp_entry_t entry = pte_to_swp_entry(pte);
849 
850 			if (swap_duplicate(entry) < 0)
851 				return entry.val;
852 
853 			/* make sure dst_mm is on swapoff's mmlist. */
854 			if (unlikely(list_empty(&dst_mm->mmlist))) {
855 				spin_lock(&mmlist_lock);
856 				if (list_empty(&dst_mm->mmlist))
857 					list_add(&dst_mm->mmlist,
858 						 &src_mm->mmlist);
859 				spin_unlock(&mmlist_lock);
860 			}
861 			if (likely(!non_swap_entry(entry)))
862 				rss[MM_SWAPENTS]++;
863 			else if (is_migration_entry(entry)) {
864 				page = migration_entry_to_page(entry);
865 
866 				if (PageAnon(page))
867 					rss[MM_ANONPAGES]++;
868 				else
869 					rss[MM_FILEPAGES]++;
870 
871 				if (is_write_migration_entry(entry) &&
872 				    is_cow_mapping(vm_flags)) {
873 					/*
874 					 * COW mappings require pages in both
875 					 * parent and child to be set to read.
876 					 */
877 					make_migration_entry_read(&entry);
878 					pte = swp_entry_to_pte(entry);
879 					set_pte_at(src_mm, addr, src_pte, pte);
880 				}
881 			}
882 		}
883 		goto out_set_pte;
884 	}
885 
886 	/*
887 	 * If it's a COW mapping, write protect it both
888 	 * in the parent and the child
889 	 */
890 	if (is_cow_mapping(vm_flags)) {
891 		ptep_set_wrprotect(src_mm, addr, src_pte);
892 		pte = pte_wrprotect(pte);
893 	}
894 
895 	/*
896 	 * If it's a shared mapping, mark it clean in
897 	 * the child
898 	 */
899 	if (vm_flags & VM_SHARED)
900 		pte = pte_mkclean(pte);
901 	pte = pte_mkold(pte);
902 
903 	page = vm_normal_page(vma, addr, pte);
904 	if (page) {
905 		get_page(page);
906 		page_dup_rmap(page);
907 		if (PageAnon(page))
908 			rss[MM_ANONPAGES]++;
909 		else
910 			rss[MM_FILEPAGES]++;
911 	}
912 
913 out_set_pte:
914 	set_pte_at(dst_mm, addr, dst_pte, pte);
915 	return 0;
916 }
917 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)918 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
919 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
920 		   unsigned long addr, unsigned long end)
921 {
922 	pte_t *orig_src_pte, *orig_dst_pte;
923 	pte_t *src_pte, *dst_pte;
924 	spinlock_t *src_ptl, *dst_ptl;
925 	int progress = 0;
926 	int rss[NR_MM_COUNTERS];
927 	swp_entry_t entry = (swp_entry_t){0};
928 
929 again:
930 	init_rss_vec(rss);
931 
932 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
933 	if (!dst_pte)
934 		return -ENOMEM;
935 	src_pte = pte_offset_map(src_pmd, addr);
936 	src_ptl = pte_lockptr(src_mm, src_pmd);
937 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 	orig_src_pte = src_pte;
939 	orig_dst_pte = dst_pte;
940 	arch_enter_lazy_mmu_mode();
941 
942 	do {
943 		/*
944 		 * We are holding two locks at this point - either of them
945 		 * could generate latencies in another task on another CPU.
946 		 */
947 		if (progress >= 32) {
948 			progress = 0;
949 			if (need_resched() ||
950 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
951 				break;
952 		}
953 		if (pte_none(*src_pte)) {
954 			progress++;
955 			continue;
956 		}
957 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
958 							vma, addr, rss);
959 		if (entry.val)
960 			break;
961 		progress += 8;
962 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963 
964 	arch_leave_lazy_mmu_mode();
965 	spin_unlock(src_ptl);
966 	pte_unmap(orig_src_pte);
967 	add_mm_rss_vec(dst_mm, rss);
968 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
969 	cond_resched();
970 
971 	if (entry.val) {
972 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
973 			return -ENOMEM;
974 		progress = 0;
975 	}
976 	if (addr != end)
977 		goto again;
978 	return 0;
979 }
980 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)981 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
983 		unsigned long addr, unsigned long end)
984 {
985 	pmd_t *src_pmd, *dst_pmd;
986 	unsigned long next;
987 
988 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
989 	if (!dst_pmd)
990 		return -ENOMEM;
991 	src_pmd = pmd_offset(src_pud, addr);
992 	do {
993 		next = pmd_addr_end(addr, end);
994 		if (pmd_trans_huge(*src_pmd)) {
995 			int err;
996 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
997 			err = copy_huge_pmd(dst_mm, src_mm,
998 					    dst_pmd, src_pmd, addr, vma);
999 			if (err == -ENOMEM)
1000 				return -ENOMEM;
1001 			if (!err)
1002 				continue;
1003 			/* fall through */
1004 		}
1005 		if (pmd_none_or_clear_bad(src_pmd))
1006 			continue;
1007 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1008 						vma, addr, next))
1009 			return -ENOMEM;
1010 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1011 	return 0;
1012 }
1013 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)1014 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1016 		unsigned long addr, unsigned long end)
1017 {
1018 	pud_t *src_pud, *dst_pud;
1019 	unsigned long next;
1020 
1021 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1022 	if (!dst_pud)
1023 		return -ENOMEM;
1024 	src_pud = pud_offset(src_pgd, addr);
1025 	do {
1026 		next = pud_addr_end(addr, end);
1027 		if (pud_none_or_clear_bad(src_pud))
1028 			continue;
1029 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1030 						vma, addr, next))
1031 			return -ENOMEM;
1032 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1033 	return 0;
1034 }
1035 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)1036 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1037 		struct vm_area_struct *vma)
1038 {
1039 	pgd_t *src_pgd, *dst_pgd;
1040 	unsigned long next;
1041 	unsigned long addr = vma->vm_start;
1042 	unsigned long end = vma->vm_end;
1043 	int ret;
1044 
1045 	/*
1046 	 * Don't copy ptes where a page fault will fill them correctly.
1047 	 * Fork becomes much lighter when there are big shared or private
1048 	 * readonly mappings. The tradeoff is that copy_page_range is more
1049 	 * efficient than faulting.
1050 	 */
1051 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1052 		if (!vma->anon_vma)
1053 			return 0;
1054 	}
1055 
1056 	if (is_vm_hugetlb_page(vma))
1057 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058 
1059 	if (unlikely(is_pfn_mapping(vma))) {
1060 		/*
1061 		 * We do not free on error cases below as remove_vma
1062 		 * gets called on error from higher level routine
1063 		 */
1064 		ret = track_pfn_vma_copy(vma);
1065 		if (ret)
1066 			return ret;
1067 	}
1068 
1069 	/*
1070 	 * We need to invalidate the secondary MMU mappings only when
1071 	 * there could be a permission downgrade on the ptes of the
1072 	 * parent mm. And a permission downgrade will only happen if
1073 	 * is_cow_mapping() returns true.
1074 	 */
1075 	if (is_cow_mapping(vma->vm_flags))
1076 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077 
1078 	ret = 0;
1079 	dst_pgd = pgd_offset(dst_mm, addr);
1080 	src_pgd = pgd_offset(src_mm, addr);
1081 	do {
1082 		next = pgd_addr_end(addr, end);
1083 		if (pgd_none_or_clear_bad(src_pgd))
1084 			continue;
1085 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 					    vma, addr, next))) {
1087 			ret = -ENOMEM;
1088 			break;
1089 		}
1090 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091 
1092 	if (is_cow_mapping(vma->vm_flags))
1093 		mmu_notifier_invalidate_range_end(src_mm,
1094 						  vma->vm_start, end);
1095 	return ret;
1096 }
1097 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1098 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 				struct vm_area_struct *vma, pmd_t *pmd,
1100 				unsigned long addr, unsigned long end,
1101 				struct zap_details *details)
1102 {
1103 	struct mm_struct *mm = tlb->mm;
1104 	int force_flush = 0;
1105 	int rss[NR_MM_COUNTERS];
1106 	spinlock_t *ptl;
1107 	pte_t *start_pte;
1108 	pte_t *pte;
1109 
1110 again:
1111 	init_rss_vec(rss);
1112 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 	pte = start_pte;
1114 	arch_enter_lazy_mmu_mode();
1115 	do {
1116 		pte_t ptent = *pte;
1117 		if (pte_none(ptent)) {
1118 			continue;
1119 		}
1120 
1121 		if (pte_present(ptent)) {
1122 			struct page *page;
1123 
1124 			page = vm_normal_page(vma, addr, ptent);
1125 			if (unlikely(details) && page) {
1126 				/*
1127 				 * unmap_shared_mapping_pages() wants to
1128 				 * invalidate cache without truncating:
1129 				 * unmap shared but keep private pages.
1130 				 */
1131 				if (details->check_mapping &&
1132 				    details->check_mapping != page->mapping)
1133 					continue;
1134 				/*
1135 				 * Each page->index must be checked when
1136 				 * invalidating or truncating nonlinear.
1137 				 */
1138 				if (details->nonlinear_vma &&
1139 				    (page->index < details->first_index ||
1140 				     page->index > details->last_index))
1141 					continue;
1142 			}
1143 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 							tlb->fullmm);
1145 			tlb_remove_tlb_entry(tlb, pte, addr);
1146 			if (unlikely(!page))
1147 				continue;
1148 			if (unlikely(details) && details->nonlinear_vma
1149 			    && linear_page_index(details->nonlinear_vma,
1150 						addr) != page->index)
1151 				set_pte_at(mm, addr, pte,
1152 					   pgoff_to_pte(page->index));
1153 			if (PageAnon(page))
1154 				rss[MM_ANONPAGES]--;
1155 			else {
1156 				if (pte_dirty(ptent))
1157 					set_page_dirty(page);
1158 				if (pte_young(ptent) &&
1159 				    likely(!VM_SequentialReadHint(vma)))
1160 					mark_page_accessed(page);
1161 				rss[MM_FILEPAGES]--;
1162 			}
1163 			page_remove_rmap(page);
1164 			if (unlikely(page_mapcount(page) < 0))
1165 				print_bad_pte(vma, addr, ptent, page);
1166 			force_flush = !__tlb_remove_page(tlb, page);
1167 			if (force_flush)
1168 				break;
1169 			continue;
1170 		}
1171 		/*
1172 		 * If details->check_mapping, we leave swap entries;
1173 		 * if details->nonlinear_vma, we leave file entries.
1174 		 */
1175 		if (unlikely(details))
1176 			continue;
1177 		if (pte_file(ptent)) {
1178 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 				print_bad_pte(vma, addr, ptent, NULL);
1180 		} else {
1181 			swp_entry_t entry = pte_to_swp_entry(ptent);
1182 
1183 			if (!non_swap_entry(entry))
1184 				rss[MM_SWAPENTS]--;
1185 			else if (is_migration_entry(entry)) {
1186 				struct page *page;
1187 
1188 				page = migration_entry_to_page(entry);
1189 
1190 				if (PageAnon(page))
1191 					rss[MM_ANONPAGES]--;
1192 				else
1193 					rss[MM_FILEPAGES]--;
1194 			}
1195 			if (unlikely(!free_swap_and_cache(entry)))
1196 				print_bad_pte(vma, addr, ptent, NULL);
1197 		}
1198 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 	} while (pte++, addr += PAGE_SIZE, addr != end);
1200 
1201 	add_mm_rss_vec(mm, rss);
1202 	arch_leave_lazy_mmu_mode();
1203 	pte_unmap_unlock(start_pte, ptl);
1204 
1205 	/*
1206 	 * mmu_gather ran out of room to batch pages, we break out of
1207 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 	 * and page-free while holding it.
1209 	 */
1210 	if (force_flush) {
1211 		force_flush = 0;
1212 		tlb_flush_mmu(tlb);
1213 		if (addr != end)
1214 			goto again;
1215 	}
1216 
1217 	return addr;
1218 }
1219 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 				struct vm_area_struct *vma, pud_t *pud,
1222 				unsigned long addr, unsigned long end,
1223 				struct zap_details *details)
1224 {
1225 	pmd_t *pmd;
1226 	unsigned long next;
1227 
1228 	pmd = pmd_offset(pud, addr);
1229 	do {
1230 		next = pmd_addr_end(addr, end);
1231 		if (pmd_trans_huge(*pmd)) {
1232 			if (next - addr != HPAGE_PMD_SIZE) {
1233 				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1234 				split_huge_page_pmd(vma->vm_mm, pmd);
1235 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1236 				goto next;
1237 			/* fall through */
1238 		}
1239 		/*
1240 		 * Here there can be other concurrent MADV_DONTNEED or
1241 		 * trans huge page faults running, and if the pmd is
1242 		 * none or trans huge it can change under us. This is
1243 		 * because MADV_DONTNEED holds the mmap_sem in read
1244 		 * mode.
1245 		 */
1246 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1247 			goto next;
1248 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1249 next:
1250 		cond_resched();
1251 	} while (pmd++, addr = next, addr != end);
1252 
1253 	return addr;
1254 }
1255 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1256 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1257 				struct vm_area_struct *vma, pgd_t *pgd,
1258 				unsigned long addr, unsigned long end,
1259 				struct zap_details *details)
1260 {
1261 	pud_t *pud;
1262 	unsigned long next;
1263 
1264 	pud = pud_offset(pgd, addr);
1265 	do {
1266 		next = pud_addr_end(addr, end);
1267 		if (pud_none_or_clear_bad(pud))
1268 			continue;
1269 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1270 	} while (pud++, addr = next, addr != end);
1271 
1272 	return addr;
1273 }
1274 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1275 static void unmap_page_range(struct mmu_gather *tlb,
1276 			     struct vm_area_struct *vma,
1277 			     unsigned long addr, unsigned long end,
1278 			     struct zap_details *details)
1279 {
1280 	pgd_t *pgd;
1281 	unsigned long next;
1282 
1283 	if (details && !details->check_mapping && !details->nonlinear_vma)
1284 		details = NULL;
1285 
1286 	BUG_ON(addr >= end);
1287 	mem_cgroup_uncharge_start();
1288 	tlb_start_vma(tlb, vma);
1289 	pgd = pgd_offset(vma->vm_mm, addr);
1290 	do {
1291 		next = pgd_addr_end(addr, end);
1292 		if (pgd_none_or_clear_bad(pgd))
1293 			continue;
1294 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1295 	} while (pgd++, addr = next, addr != end);
1296 	tlb_end_vma(tlb, vma);
1297 	mem_cgroup_uncharge_end();
1298 }
1299 
1300 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)1301 static void unmap_single_vma(struct mmu_gather *tlb,
1302 		struct vm_area_struct *vma, unsigned long start_addr,
1303 		unsigned long end_addr, unsigned long *nr_accounted,
1304 		struct zap_details *details)
1305 {
1306 	unsigned long start = max(vma->vm_start, start_addr);
1307 	unsigned long end;
1308 
1309 	if (start >= vma->vm_end)
1310 		return;
1311 	end = min(vma->vm_end, end_addr);
1312 	if (end <= vma->vm_start)
1313 		return;
1314 
1315 	if (vma->vm_flags & VM_ACCOUNT)
1316 		*nr_accounted += (end - start) >> PAGE_SHIFT;
1317 
1318 	if (unlikely(is_pfn_mapping(vma)))
1319 		untrack_pfn_vma(vma, 0, 0);
1320 
1321 	if (start != end) {
1322 		if (unlikely(is_vm_hugetlb_page(vma))) {
1323 			/*
1324 			 * It is undesirable to test vma->vm_file as it
1325 			 * should be non-null for valid hugetlb area.
1326 			 * However, vm_file will be NULL in the error
1327 			 * cleanup path of do_mmap_pgoff. When
1328 			 * hugetlbfs ->mmap method fails,
1329 			 * do_mmap_pgoff() nullifies vma->vm_file
1330 			 * before calling this function to clean up.
1331 			 * Since no pte has actually been setup, it is
1332 			 * safe to do nothing in this case.
1333 			 */
1334 			if (vma->vm_file)
1335 				unmap_hugepage_range(vma, start, end, NULL);
1336 		} else
1337 			unmap_page_range(tlb, vma, start, end, details);
1338 	}
1339 }
1340 
1341 /**
1342  * unmap_vmas - unmap a range of memory covered by a list of vma's
1343  * @tlb: address of the caller's struct mmu_gather
1344  * @vma: the starting vma
1345  * @start_addr: virtual address at which to start unmapping
1346  * @end_addr: virtual address at which to end unmapping
1347  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1348  * @details: details of nonlinear truncation or shared cache invalidation
1349  *
1350  * Unmap all pages in the vma list.
1351  *
1352  * Only addresses between `start' and `end' will be unmapped.
1353  *
1354  * The VMA list must be sorted in ascending virtual address order.
1355  *
1356  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1357  * range after unmap_vmas() returns.  So the only responsibility here is to
1358  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1359  * drops the lock and schedules.
1360  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long * nr_accounted,struct zap_details * details)1361 void unmap_vmas(struct mmu_gather *tlb,
1362 		struct vm_area_struct *vma, unsigned long start_addr,
1363 		unsigned long end_addr, unsigned long *nr_accounted,
1364 		struct zap_details *details)
1365 {
1366 	struct mm_struct *mm = vma->vm_mm;
1367 
1368 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370 		unmap_single_vma(tlb, vma, start_addr, end_addr, nr_accounted,
1371 				 details);
1372 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1373 }
1374 
1375 /**
1376  * zap_page_range - remove user pages in a given range
1377  * @vma: vm_area_struct holding the applicable pages
1378  * @address: starting address of pages to zap
1379  * @size: number of bytes to zap
1380  * @details: details of nonlinear truncation or shared cache invalidation
1381  *
1382  * Caller must protect the VMA list
1383  */
zap_page_range(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1384 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1385 		unsigned long size, struct zap_details *details)
1386 {
1387 	struct mm_struct *mm = vma->vm_mm;
1388 	struct mmu_gather tlb;
1389 	unsigned long end = address + size;
1390 	unsigned long nr_accounted = 0;
1391 
1392 	lru_add_drain();
1393 	tlb_gather_mmu(&tlb, mm, 0);
1394 	update_hiwater_rss(mm);
1395 	unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1396 	tlb_finish_mmu(&tlb, address, end);
1397 }
1398 
1399 /**
1400  * zap_page_range_single - remove user pages in a given range
1401  * @vma: vm_area_struct holding the applicable pages
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  * @details: details of nonlinear truncation or shared cache invalidation
1405  *
1406  * The range must fit into one VMA.
1407  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1408 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1409 		unsigned long size, struct zap_details *details)
1410 {
1411 	struct mm_struct *mm = vma->vm_mm;
1412 	struct mmu_gather tlb;
1413 	unsigned long end = address + size;
1414 	unsigned long nr_accounted = 0;
1415 
1416 	lru_add_drain();
1417 	tlb_gather_mmu(&tlb, mm, 0);
1418 	update_hiwater_rss(mm);
1419 	mmu_notifier_invalidate_range_start(mm, address, end);
1420 	unmap_single_vma(&tlb, vma, address, end, &nr_accounted, details);
1421 	mmu_notifier_invalidate_range_end(mm, address, end);
1422 	tlb_finish_mmu(&tlb, address, end);
1423 }
1424 
1425 /**
1426  * zap_vma_ptes - remove ptes mapping the vma
1427  * @vma: vm_area_struct holding ptes to be zapped
1428  * @address: starting address of pages to zap
1429  * @size: number of bytes to zap
1430  *
1431  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432  *
1433  * The entire address range must be fully contained within the vma.
1434  *
1435  * Returns 0 if successful.
1436  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438 		unsigned long size)
1439 {
1440 	if (address < vma->vm_start || address + size > vma->vm_end ||
1441 	    		!(vma->vm_flags & VM_PFNMAP))
1442 		return -1;
1443 	zap_page_range_single(vma, address, size, NULL);
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447 
1448 /**
1449  * follow_page - look up a page descriptor from a user-virtual address
1450  * @vma: vm_area_struct mapping @address
1451  * @address: virtual address to look up
1452  * @flags: flags modifying lookup behaviour
1453  *
1454  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455  *
1456  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457  * an error pointer if there is a mapping to something not represented
1458  * by a page descriptor (see also vm_normal_page()).
1459  */
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1460 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461 			unsigned int flags)
1462 {
1463 	pgd_t *pgd;
1464 	pud_t *pud;
1465 	pmd_t *pmd;
1466 	pte_t *ptep, pte;
1467 	spinlock_t *ptl;
1468 	struct page *page;
1469 	struct mm_struct *mm = vma->vm_mm;
1470 
1471 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 	if (!IS_ERR(page)) {
1473 		BUG_ON(flags & FOLL_GET);
1474 		goto out;
1475 	}
1476 
1477 	page = NULL;
1478 	pgd = pgd_offset(mm, address);
1479 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 		goto no_page_table;
1481 
1482 	pud = pud_offset(pgd, address);
1483 	if (pud_none(*pud))
1484 		goto no_page_table;
1485 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 		BUG_ON(flags & FOLL_GET);
1487 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488 		goto out;
1489 	}
1490 	if (unlikely(pud_bad(*pud)))
1491 		goto no_page_table;
1492 
1493 	pmd = pmd_offset(pud, address);
1494 	if (pmd_none(*pmd))
1495 		goto no_page_table;
1496 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497 		BUG_ON(flags & FOLL_GET);
1498 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 		goto out;
1500 	}
1501 	if (pmd_trans_huge(*pmd)) {
1502 		if (flags & FOLL_SPLIT) {
1503 			split_huge_page_pmd(mm, pmd);
1504 			goto split_fallthrough;
1505 		}
1506 		spin_lock(&mm->page_table_lock);
1507 		if (likely(pmd_trans_huge(*pmd))) {
1508 			if (unlikely(pmd_trans_splitting(*pmd))) {
1509 				spin_unlock(&mm->page_table_lock);
1510 				wait_split_huge_page(vma->anon_vma, pmd);
1511 			} else {
1512 				page = follow_trans_huge_pmd(mm, address,
1513 							     pmd, flags);
1514 				spin_unlock(&mm->page_table_lock);
1515 				goto out;
1516 			}
1517 		} else
1518 			spin_unlock(&mm->page_table_lock);
1519 		/* fall through */
1520 	}
1521 split_fallthrough:
1522 	if (unlikely(pmd_bad(*pmd)))
1523 		goto no_page_table;
1524 
1525 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526 
1527 	pte = *ptep;
1528 	if (!pte_present(pte))
1529 		goto no_page;
1530 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1531 		goto unlock;
1532 
1533 	page = vm_normal_page(vma, address, pte);
1534 	if (unlikely(!page)) {
1535 		if ((flags & FOLL_DUMP) ||
1536 		    !is_zero_pfn(pte_pfn(pte)))
1537 			goto bad_page;
1538 		page = pte_page(pte);
1539 	}
1540 
1541 	if (flags & FOLL_GET)
1542 		get_page_foll(page);
1543 	if (flags & FOLL_TOUCH) {
1544 		if ((flags & FOLL_WRITE) &&
1545 		    !pte_dirty(pte) && !PageDirty(page))
1546 			set_page_dirty(page);
1547 		/*
1548 		 * pte_mkyoung() would be more correct here, but atomic care
1549 		 * is needed to avoid losing the dirty bit: it is easier to use
1550 		 * mark_page_accessed().
1551 		 */
1552 		mark_page_accessed(page);
1553 	}
1554 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555 		/*
1556 		 * The preliminary mapping check is mainly to avoid the
1557 		 * pointless overhead of lock_page on the ZERO_PAGE
1558 		 * which might bounce very badly if there is contention.
1559 		 *
1560 		 * If the page is already locked, we don't need to
1561 		 * handle it now - vmscan will handle it later if and
1562 		 * when it attempts to reclaim the page.
1563 		 */
1564 		if (page->mapping && trylock_page(page)) {
1565 			lru_add_drain();  /* push cached pages to LRU */
1566 			/*
1567 			 * Because we lock page here and migration is
1568 			 * blocked by the pte's page reference, we need
1569 			 * only check for file-cache page truncation.
1570 			 */
1571 			if (page->mapping)
1572 				mlock_vma_page(page);
1573 			unlock_page(page);
1574 		}
1575 	}
1576 unlock:
1577 	pte_unmap_unlock(ptep, ptl);
1578 out:
1579 	return page;
1580 
1581 bad_page:
1582 	pte_unmap_unlock(ptep, ptl);
1583 	return ERR_PTR(-EFAULT);
1584 
1585 no_page:
1586 	pte_unmap_unlock(ptep, ptl);
1587 	if (!pte_none(pte))
1588 		return page;
1589 
1590 no_page_table:
1591 	/*
1592 	 * When core dumping an enormous anonymous area that nobody
1593 	 * has touched so far, we don't want to allocate unnecessary pages or
1594 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1595 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1596 	 * But we can only make this optimization where a hole would surely
1597 	 * be zero-filled if handle_mm_fault() actually did handle it.
1598 	 */
1599 	if ((flags & FOLL_DUMP) &&
1600 	    (!vma->vm_ops || !vma->vm_ops->fault))
1601 		return ERR_PTR(-EFAULT);
1602 	return page;
1603 }
1604 
stack_guard_page(struct vm_area_struct * vma,unsigned long addr)1605 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606 {
1607 	return stack_guard_page_start(vma, addr) ||
1608 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1609 }
1610 
1611 /**
1612  * __get_user_pages() - pin user pages in memory
1613  * @tsk:	task_struct of target task
1614  * @mm:		mm_struct of target mm
1615  * @start:	starting user address
1616  * @nr_pages:	number of pages from start to pin
1617  * @gup_flags:	flags modifying pin behaviour
1618  * @pages:	array that receives pointers to the pages pinned.
1619  *		Should be at least nr_pages long. Or NULL, if caller
1620  *		only intends to ensure the pages are faulted in.
1621  * @vmas:	array of pointers to vmas corresponding to each page.
1622  *		Or NULL if the caller does not require them.
1623  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624  *
1625  * Returns number of pages pinned. This may be fewer than the number
1626  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627  * were pinned, returns -errno. Each page returned must be released
1628  * with a put_page() call when it is finished with. vmas will only
1629  * remain valid while mmap_sem is held.
1630  *
1631  * Must be called with mmap_sem held for read or write.
1632  *
1633  * __get_user_pages walks a process's page tables and takes a reference to
1634  * each struct page that each user address corresponds to at a given
1635  * instant. That is, it takes the page that would be accessed if a user
1636  * thread accesses the given user virtual address at that instant.
1637  *
1638  * This does not guarantee that the page exists in the user mappings when
1639  * __get_user_pages returns, and there may even be a completely different
1640  * page there in some cases (eg. if mmapped pagecache has been invalidated
1641  * and subsequently re faulted). However it does guarantee that the page
1642  * won't be freed completely. And mostly callers simply care that the page
1643  * contains data that was valid *at some point in time*. Typically, an IO
1644  * or similar operation cannot guarantee anything stronger anyway because
1645  * locks can't be held over the syscall boundary.
1646  *
1647  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649  * appropriate) must be called after the page is finished with, and
1650  * before put_page is called.
1651  *
1652  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653  * or mmap_sem contention, and if waiting is needed to pin all pages,
1654  * *@nonblocking will be set to 0.
1655  *
1656  * In most cases, get_user_pages or get_user_pages_fast should be used
1657  * instead of __get_user_pages. __get_user_pages should be used only if
1658  * you need some special @gup_flags.
1659  */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)1660 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1662 		     struct page **pages, struct vm_area_struct **vmas,
1663 		     int *nonblocking)
1664 {
1665 	int i;
1666 	unsigned long vm_flags;
1667 
1668 	if (nr_pages <= 0)
1669 		return 0;
1670 
1671 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672 
1673 	/*
1674 	 * Require read or write permissions.
1675 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1676 	 */
1677 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1678 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1680 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681 	i = 0;
1682 
1683 	do {
1684 		struct vm_area_struct *vma;
1685 
1686 		vma = find_extend_vma(mm, start);
1687 		if (!vma && in_gate_area(mm, start)) {
1688 			unsigned long pg = start & PAGE_MASK;
1689 			pgd_t *pgd;
1690 			pud_t *pud;
1691 			pmd_t *pmd;
1692 			pte_t *pte;
1693 
1694 			/* user gate pages are read-only */
1695 			if (gup_flags & FOLL_WRITE)
1696 				return i ? : -EFAULT;
1697 			if (pg > TASK_SIZE)
1698 				pgd = pgd_offset_k(pg);
1699 			else
1700 				pgd = pgd_offset_gate(mm, pg);
1701 			BUG_ON(pgd_none(*pgd));
1702 			pud = pud_offset(pgd, pg);
1703 			BUG_ON(pud_none(*pud));
1704 			pmd = pmd_offset(pud, pg);
1705 			if (pmd_none(*pmd))
1706 				return i ? : -EFAULT;
1707 			VM_BUG_ON(pmd_trans_huge(*pmd));
1708 			pte = pte_offset_map(pmd, pg);
1709 			if (pte_none(*pte)) {
1710 				pte_unmap(pte);
1711 				return i ? : -EFAULT;
1712 			}
1713 			vma = get_gate_vma(mm);
1714 			if (pages) {
1715 				struct page *page;
1716 
1717 				page = vm_normal_page(vma, start, *pte);
1718 				if (!page) {
1719 					if (!(gup_flags & FOLL_DUMP) &&
1720 					     is_zero_pfn(pte_pfn(*pte)))
1721 						page = pte_page(*pte);
1722 					else {
1723 						pte_unmap(pte);
1724 						return i ? : -EFAULT;
1725 					}
1726 				}
1727 				pages[i] = page;
1728 				get_page(page);
1729 			}
1730 			pte_unmap(pte);
1731 			goto next_page;
1732 		}
1733 
1734 		if (!vma ||
1735 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736 		    !(vm_flags & vma->vm_flags))
1737 			return i ? : -EFAULT;
1738 
1739 		if (is_vm_hugetlb_page(vma)) {
1740 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1741 					&start, &nr_pages, i, gup_flags);
1742 			continue;
1743 		}
1744 
1745 		do {
1746 			struct page *page;
1747 			unsigned int foll_flags = gup_flags;
1748 
1749 			/*
1750 			 * If we have a pending SIGKILL, don't keep faulting
1751 			 * pages and potentially allocating memory.
1752 			 */
1753 			if (unlikely(fatal_signal_pending(current)))
1754 				return i ? i : -ERESTARTSYS;
1755 
1756 			cond_resched();
1757 			while (!(page = follow_page(vma, start, foll_flags))) {
1758 				int ret;
1759 				unsigned int fault_flags = 0;
1760 
1761 				/* For mlock, just skip the stack guard page. */
1762 				if (foll_flags & FOLL_MLOCK) {
1763 					if (stack_guard_page(vma, start))
1764 						goto next_page;
1765 				}
1766 				if (foll_flags & FOLL_WRITE)
1767 					fault_flags |= FAULT_FLAG_WRITE;
1768 				if (nonblocking)
1769 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770 				if (foll_flags & FOLL_NOWAIT)
1771 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772 
1773 				ret = handle_mm_fault(mm, vma, start,
1774 							fault_flags);
1775 
1776 				if (ret & VM_FAULT_ERROR) {
1777 					if (ret & VM_FAULT_OOM)
1778 						return i ? i : -ENOMEM;
1779 					if (ret & (VM_FAULT_HWPOISON |
1780 						   VM_FAULT_HWPOISON_LARGE)) {
1781 						if (i)
1782 							return i;
1783 						else if (gup_flags & FOLL_HWPOISON)
1784 							return -EHWPOISON;
1785 						else
1786 							return -EFAULT;
1787 					}
1788 					if (ret & VM_FAULT_SIGBUS)
1789 						return i ? i : -EFAULT;
1790 					BUG();
1791 				}
1792 
1793 				if (tsk) {
1794 					if (ret & VM_FAULT_MAJOR)
1795 						tsk->maj_flt++;
1796 					else
1797 						tsk->min_flt++;
1798 				}
1799 
1800 				if (ret & VM_FAULT_RETRY) {
1801 					if (nonblocking)
1802 						*nonblocking = 0;
1803 					return i;
1804 				}
1805 
1806 				/*
1807 				 * The VM_FAULT_WRITE bit tells us that
1808 				 * do_wp_page has broken COW when necessary,
1809 				 * even if maybe_mkwrite decided not to set
1810 				 * pte_write. We can thus safely do subsequent
1811 				 * page lookups as if they were reads. But only
1812 				 * do so when looping for pte_write is futile:
1813 				 * in some cases userspace may also be wanting
1814 				 * to write to the gotten user page, which a
1815 				 * read fault here might prevent (a readonly
1816 				 * page might get reCOWed by userspace write).
1817 				 */
1818 				if ((ret & VM_FAULT_WRITE) &&
1819 				    !(vma->vm_flags & VM_WRITE))
1820 					foll_flags &= ~FOLL_WRITE;
1821 
1822 				cond_resched();
1823 			}
1824 			if (IS_ERR(page))
1825 				return i ? i : PTR_ERR(page);
1826 			if (pages) {
1827 				pages[i] = page;
1828 
1829 				flush_anon_page(vma, page, start);
1830 				flush_dcache_page(page);
1831 			}
1832 next_page:
1833 			if (vmas)
1834 				vmas[i] = vma;
1835 			i++;
1836 			start += PAGE_SIZE;
1837 			nr_pages--;
1838 		} while (nr_pages && start < vma->vm_end);
1839 	} while (nr_pages);
1840 	return i;
1841 }
1842 EXPORT_SYMBOL(__get_user_pages);
1843 
1844 /*
1845  * fixup_user_fault() - manually resolve a user page fault
1846  * @tsk:	the task_struct to use for page fault accounting, or
1847  *		NULL if faults are not to be recorded.
1848  * @mm:		mm_struct of target mm
1849  * @address:	user address
1850  * @fault_flags:flags to pass down to handle_mm_fault()
1851  *
1852  * This is meant to be called in the specific scenario where for locking reasons
1853  * we try to access user memory in atomic context (within a pagefault_disable()
1854  * section), this returns -EFAULT, and we want to resolve the user fault before
1855  * trying again.
1856  *
1857  * Typically this is meant to be used by the futex code.
1858  *
1859  * The main difference with get_user_pages() is that this function will
1860  * unconditionally call handle_mm_fault() which will in turn perform all the
1861  * necessary SW fixup of the dirty and young bits in the PTE, while
1862  * handle_mm_fault() only guarantees to update these in the struct page.
1863  *
1864  * This is important for some architectures where those bits also gate the
1865  * access permission to the page because they are maintained in software.  On
1866  * such architectures, gup() will not be enough to make a subsequent access
1867  * succeed.
1868  *
1869  * This should be called with the mm_sem held for read.
1870  */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags)1871 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872 		     unsigned long address, unsigned int fault_flags)
1873 {
1874 	struct vm_area_struct *vma;
1875 	vm_flags_t vm_flags;
1876 	int ret;
1877 
1878 	vma = find_extend_vma(mm, address);
1879 	if (!vma || address < vma->vm_start)
1880 		return -EFAULT;
1881 
1882 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1883 	if (!(vm_flags & vma->vm_flags))
1884 		return -EFAULT;
1885 
1886 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1887 	if (ret & VM_FAULT_ERROR) {
1888 		if (ret & VM_FAULT_OOM)
1889 			return -ENOMEM;
1890 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1891 			return -EHWPOISON;
1892 		if (ret & VM_FAULT_SIGBUS)
1893 			return -EFAULT;
1894 		BUG();
1895 	}
1896 	if (tsk) {
1897 		if (ret & VM_FAULT_MAJOR)
1898 			tsk->maj_flt++;
1899 		else
1900 			tsk->min_flt++;
1901 	}
1902 	return 0;
1903 }
1904 
1905 /*
1906  * get_user_pages() - pin user pages in memory
1907  * @tsk:	the task_struct to use for page fault accounting, or
1908  *		NULL if faults are not to be recorded.
1909  * @mm:		mm_struct of target mm
1910  * @start:	starting user address
1911  * @nr_pages:	number of pages from start to pin
1912  * @write:	whether pages will be written to by the caller
1913  * @force:	whether to force write access even if user mapping is
1914  *		readonly. This will result in the page being COWed even
1915  *		in MAP_SHARED mappings. You do not want this.
1916  * @pages:	array that receives pointers to the pages pinned.
1917  *		Should be at least nr_pages long. Or NULL, if caller
1918  *		only intends to ensure the pages are faulted in.
1919  * @vmas:	array of pointers to vmas corresponding to each page.
1920  *		Or NULL if the caller does not require them.
1921  *
1922  * Returns number of pages pinned. This may be fewer than the number
1923  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1924  * were pinned, returns -errno. Each page returned must be released
1925  * with a put_page() call when it is finished with. vmas will only
1926  * remain valid while mmap_sem is held.
1927  *
1928  * Must be called with mmap_sem held for read or write.
1929  *
1930  * get_user_pages walks a process's page tables and takes a reference to
1931  * each struct page that each user address corresponds to at a given
1932  * instant. That is, it takes the page that would be accessed if a user
1933  * thread accesses the given user virtual address at that instant.
1934  *
1935  * This does not guarantee that the page exists in the user mappings when
1936  * get_user_pages returns, and there may even be a completely different
1937  * page there in some cases (eg. if mmapped pagecache has been invalidated
1938  * and subsequently re faulted). However it does guarantee that the page
1939  * won't be freed completely. And mostly callers simply care that the page
1940  * contains data that was valid *at some point in time*. Typically, an IO
1941  * or similar operation cannot guarantee anything stronger anyway because
1942  * locks can't be held over the syscall boundary.
1943  *
1944  * If write=0, the page must not be written to. If the page is written to,
1945  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1946  * after the page is finished with, and before put_page is called.
1947  *
1948  * get_user_pages is typically used for fewer-copy IO operations, to get a
1949  * handle on the memory by some means other than accesses via the user virtual
1950  * addresses. The pages may be submitted for DMA to devices or accessed via
1951  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1952  * use the correct cache flushing APIs.
1953  *
1954  * See also get_user_pages_fast, for performance critical applications.
1955  */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)1956 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1957 		unsigned long start, int nr_pages, int write, int force,
1958 		struct page **pages, struct vm_area_struct **vmas)
1959 {
1960 	int flags = FOLL_TOUCH;
1961 
1962 	if (pages)
1963 		flags |= FOLL_GET;
1964 	if (write)
1965 		flags |= FOLL_WRITE;
1966 	if (force)
1967 		flags |= FOLL_FORCE;
1968 
1969 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1970 				NULL);
1971 }
1972 EXPORT_SYMBOL(get_user_pages);
1973 
1974 /**
1975  * get_dump_page() - pin user page in memory while writing it to core dump
1976  * @addr: user address
1977  *
1978  * Returns struct page pointer of user page pinned for dump,
1979  * to be freed afterwards by page_cache_release() or put_page().
1980  *
1981  * Returns NULL on any kind of failure - a hole must then be inserted into
1982  * the corefile, to preserve alignment with its headers; and also returns
1983  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1984  * allowing a hole to be left in the corefile to save diskspace.
1985  *
1986  * Called without mmap_sem, but after all other threads have been killed.
1987  */
1988 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1989 struct page *get_dump_page(unsigned long addr)
1990 {
1991 	struct vm_area_struct *vma;
1992 	struct page *page;
1993 
1994 	if (__get_user_pages(current, current->mm, addr, 1,
1995 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1996 			     NULL) < 1)
1997 		return NULL;
1998 	flush_cache_page(vma, addr, page_to_pfn(page));
1999 	return page;
2000 }
2001 #endif /* CONFIG_ELF_CORE */
2002 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2003 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 			spinlock_t **ptl)
2005 {
2006 	pgd_t * pgd = pgd_offset(mm, addr);
2007 	pud_t * pud = pud_alloc(mm, pgd, addr);
2008 	if (pud) {
2009 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2010 		if (pmd) {
2011 			VM_BUG_ON(pmd_trans_huge(*pmd));
2012 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2013 		}
2014 	}
2015 	return NULL;
2016 }
2017 
2018 /*
2019  * This is the old fallback for page remapping.
2020  *
2021  * For historical reasons, it only allows reserved pages. Only
2022  * old drivers should use this, and they needed to mark their
2023  * pages reserved for the old functions anyway.
2024  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2025 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 			struct page *page, pgprot_t prot)
2027 {
2028 	struct mm_struct *mm = vma->vm_mm;
2029 	int retval;
2030 	pte_t *pte;
2031 	spinlock_t *ptl;
2032 
2033 	retval = -EINVAL;
2034 	if (PageAnon(page))
2035 		goto out;
2036 	retval = -ENOMEM;
2037 	flush_dcache_page(page);
2038 	pte = get_locked_pte(mm, addr, &ptl);
2039 	if (!pte)
2040 		goto out;
2041 	retval = -EBUSY;
2042 	if (!pte_none(*pte))
2043 		goto out_unlock;
2044 
2045 	/* Ok, finally just insert the thing.. */
2046 	get_page(page);
2047 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2048 	page_add_file_rmap(page);
2049 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2050 
2051 	retval = 0;
2052 	pte_unmap_unlock(pte, ptl);
2053 	return retval;
2054 out_unlock:
2055 	pte_unmap_unlock(pte, ptl);
2056 out:
2057 	return retval;
2058 }
2059 
2060 /**
2061  * vm_insert_page - insert single page into user vma
2062  * @vma: user vma to map to
2063  * @addr: target user address of this page
2064  * @page: source kernel page
2065  *
2066  * This allows drivers to insert individual pages they've allocated
2067  * into a user vma.
2068  *
2069  * The page has to be a nice clean _individual_ kernel allocation.
2070  * If you allocate a compound page, you need to have marked it as
2071  * such (__GFP_COMP), or manually just split the page up yourself
2072  * (see split_page()).
2073  *
2074  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2075  * took an arbitrary page protection parameter. This doesn't allow
2076  * that. Your vma protection will have to be set up correctly, which
2077  * means that if you want a shared writable mapping, you'd better
2078  * ask for a shared writable mapping!
2079  *
2080  * The page does not need to be reserved.
2081  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2082 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2083 			struct page *page)
2084 {
2085 	if (addr < vma->vm_start || addr >= vma->vm_end)
2086 		return -EFAULT;
2087 	if (!page_count(page))
2088 		return -EINVAL;
2089 	vma->vm_flags |= VM_INSERTPAGE;
2090 	return insert_page(vma, addr, page, vma->vm_page_prot);
2091 }
2092 EXPORT_SYMBOL(vm_insert_page);
2093 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)2094 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2095 			unsigned long pfn, pgprot_t prot)
2096 {
2097 	struct mm_struct *mm = vma->vm_mm;
2098 	int retval;
2099 	pte_t *pte, entry;
2100 	spinlock_t *ptl;
2101 
2102 	retval = -ENOMEM;
2103 	pte = get_locked_pte(mm, addr, &ptl);
2104 	if (!pte)
2105 		goto out;
2106 	retval = -EBUSY;
2107 	if (!pte_none(*pte))
2108 		goto out_unlock;
2109 
2110 	/* Ok, finally just insert the thing.. */
2111 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2112 	set_pte_at(mm, addr, pte, entry);
2113 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2114 
2115 	retval = 0;
2116 out_unlock:
2117 	pte_unmap_unlock(pte, ptl);
2118 out:
2119 	return retval;
2120 }
2121 
2122 /**
2123  * vm_insert_pfn - insert single pfn into user vma
2124  * @vma: user vma to map to
2125  * @addr: target user address of this page
2126  * @pfn: source kernel pfn
2127  *
2128  * Similar to vm_inert_page, this allows drivers to insert individual pages
2129  * they've allocated into a user vma. Same comments apply.
2130  *
2131  * This function should only be called from a vm_ops->fault handler, and
2132  * in that case the handler should return NULL.
2133  *
2134  * vma cannot be a COW mapping.
2135  *
2136  * As this is called only for pages that do not currently exist, we
2137  * do not need to flush old virtual caches or the TLB.
2138  */
vm_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2139 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 			unsigned long pfn)
2141 {
2142 	int ret;
2143 	pgprot_t pgprot = vma->vm_page_prot;
2144 	/*
2145 	 * Technically, architectures with pte_special can avoid all these
2146 	 * restrictions (same for remap_pfn_range).  However we would like
2147 	 * consistency in testing and feature parity among all, so we should
2148 	 * try to keep these invariants in place for everybody.
2149 	 */
2150 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2151 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2152 						(VM_PFNMAP|VM_MIXEDMAP));
2153 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2154 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2155 
2156 	if (addr < vma->vm_start || addr >= vma->vm_end)
2157 		return -EFAULT;
2158 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2159 		return -EINVAL;
2160 
2161 	ret = insert_pfn(vma, addr, pfn, pgprot);
2162 
2163 	if (ret)
2164 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2165 
2166 	return ret;
2167 }
2168 EXPORT_SYMBOL(vm_insert_pfn);
2169 
vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2170 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2171 			unsigned long pfn)
2172 {
2173 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2174 
2175 	if (addr < vma->vm_start || addr >= vma->vm_end)
2176 		return -EFAULT;
2177 
2178 	/*
2179 	 * If we don't have pte special, then we have to use the pfn_valid()
2180 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2181 	 * refcount the page if pfn_valid is true (hence insert_page rather
2182 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2183 	 * without pte special, it would there be refcounted as a normal page.
2184 	 */
2185 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2186 		struct page *page;
2187 
2188 		page = pfn_to_page(pfn);
2189 		return insert_page(vma, addr, page, vma->vm_page_prot);
2190 	}
2191 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2192 }
2193 EXPORT_SYMBOL(vm_insert_mixed);
2194 
2195 /*
2196  * maps a range of physical memory into the requested pages. the old
2197  * mappings are removed. any references to nonexistent pages results
2198  * in null mappings (currently treated as "copy-on-access")
2199  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2200 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2201 			unsigned long addr, unsigned long end,
2202 			unsigned long pfn, pgprot_t prot)
2203 {
2204 	pte_t *pte;
2205 	spinlock_t *ptl;
2206 
2207 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2208 	if (!pte)
2209 		return -ENOMEM;
2210 	arch_enter_lazy_mmu_mode();
2211 	do {
2212 		BUG_ON(!pte_none(*pte));
2213 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2214 		pfn++;
2215 	} while (pte++, addr += PAGE_SIZE, addr != end);
2216 	arch_leave_lazy_mmu_mode();
2217 	pte_unmap_unlock(pte - 1, ptl);
2218 	return 0;
2219 }
2220 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2221 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2222 			unsigned long addr, unsigned long end,
2223 			unsigned long pfn, pgprot_t prot)
2224 {
2225 	pmd_t *pmd;
2226 	unsigned long next;
2227 
2228 	pfn -= addr >> PAGE_SHIFT;
2229 	pmd = pmd_alloc(mm, pud, addr);
2230 	if (!pmd)
2231 		return -ENOMEM;
2232 	VM_BUG_ON(pmd_trans_huge(*pmd));
2233 	do {
2234 		next = pmd_addr_end(addr, end);
2235 		if (remap_pte_range(mm, pmd, addr, next,
2236 				pfn + (addr >> PAGE_SHIFT), prot))
2237 			return -ENOMEM;
2238 	} while (pmd++, addr = next, addr != end);
2239 	return 0;
2240 }
2241 
remap_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2242 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2243 			unsigned long addr, unsigned long end,
2244 			unsigned long pfn, pgprot_t prot)
2245 {
2246 	pud_t *pud;
2247 	unsigned long next;
2248 
2249 	pfn -= addr >> PAGE_SHIFT;
2250 	pud = pud_alloc(mm, pgd, addr);
2251 	if (!pud)
2252 		return -ENOMEM;
2253 	do {
2254 		next = pud_addr_end(addr, end);
2255 		if (remap_pmd_range(mm, pud, addr, next,
2256 				pfn + (addr >> PAGE_SHIFT), prot))
2257 			return -ENOMEM;
2258 	} while (pud++, addr = next, addr != end);
2259 	return 0;
2260 }
2261 
2262 /**
2263  * remap_pfn_range - remap kernel memory to userspace
2264  * @vma: user vma to map to
2265  * @addr: target user address to start at
2266  * @pfn: physical address of kernel memory
2267  * @size: size of map area
2268  * @prot: page protection flags for this mapping
2269  *
2270  *  Note: this is only safe if the mm semaphore is held when called.
2271  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2272 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2273 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2274 {
2275 	pgd_t *pgd;
2276 	unsigned long next;
2277 	unsigned long end = addr + PAGE_ALIGN(size);
2278 	struct mm_struct *mm = vma->vm_mm;
2279 	int err;
2280 
2281 	/*
2282 	 * Physically remapped pages are special. Tell the
2283 	 * rest of the world about it:
2284 	 *   VM_IO tells people not to look at these pages
2285 	 *	(accesses can have side effects).
2286 	 *   VM_RESERVED is specified all over the place, because
2287 	 *	in 2.4 it kept swapout's vma scan off this vma; but
2288 	 *	in 2.6 the LRU scan won't even find its pages, so this
2289 	 *	flag means no more than count its pages in reserved_vm,
2290 	 * 	and omit it from core dump, even when VM_IO turned off.
2291 	 *   VM_PFNMAP tells the core MM that the base pages are just
2292 	 *	raw PFN mappings, and do not have a "struct page" associated
2293 	 *	with them.
2294 	 *
2295 	 * There's a horrible special case to handle copy-on-write
2296 	 * behaviour that some programs depend on. We mark the "original"
2297 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2298 	 */
2299 	if (addr == vma->vm_start && end == vma->vm_end) {
2300 		vma->vm_pgoff = pfn;
2301 		vma->vm_flags |= VM_PFN_AT_MMAP;
2302 	} else if (is_cow_mapping(vma->vm_flags))
2303 		return -EINVAL;
2304 
2305 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2306 
2307 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2308 	if (err) {
2309 		/*
2310 		 * To indicate that track_pfn related cleanup is not
2311 		 * needed from higher level routine calling unmap_vmas
2312 		 */
2313 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2314 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2315 		return -EINVAL;
2316 	}
2317 
2318 	BUG_ON(addr >= end);
2319 	pfn -= addr >> PAGE_SHIFT;
2320 	pgd = pgd_offset(mm, addr);
2321 	flush_cache_range(vma, addr, end);
2322 	do {
2323 		next = pgd_addr_end(addr, end);
2324 		err = remap_pud_range(mm, pgd, addr, next,
2325 				pfn + (addr >> PAGE_SHIFT), prot);
2326 		if (err)
2327 			break;
2328 	} while (pgd++, addr = next, addr != end);
2329 
2330 	if (err)
2331 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2332 
2333 	return err;
2334 }
2335 EXPORT_SYMBOL(remap_pfn_range);
2336 
2337 /**
2338  * vm_iomap_memory - remap memory to userspace
2339  * @vma: user vma to map to
2340  * @start: start of area
2341  * @len: size of area
2342  *
2343  * This is a simplified io_remap_pfn_range() for common driver use. The
2344  * driver just needs to give us the physical memory range to be mapped,
2345  * we'll figure out the rest from the vma information.
2346  *
2347  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348  * whatever write-combining details or similar.
2349  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2350 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2351 {
2352 	unsigned long vm_len, pfn, pages;
2353 
2354 	/* Check that the physical memory area passed in looks valid */
2355 	if (start + len < start)
2356 		return -EINVAL;
2357 	/*
2358 	 * You *really* shouldn't map things that aren't page-aligned,
2359 	 * but we've historically allowed it because IO memory might
2360 	 * just have smaller alignment.
2361 	 */
2362 	len += start & ~PAGE_MASK;
2363 	pfn = start >> PAGE_SHIFT;
2364 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2365 	if (pfn + pages < pfn)
2366 		return -EINVAL;
2367 
2368 	/* We start the mapping 'vm_pgoff' pages into the area */
2369 	if (vma->vm_pgoff > pages)
2370 		return -EINVAL;
2371 	pfn += vma->vm_pgoff;
2372 	pages -= vma->vm_pgoff;
2373 
2374 	/* Can we fit all of the mapping? */
2375 	vm_len = vma->vm_end - vma->vm_start;
2376 	if (vm_len >> PAGE_SHIFT > pages)
2377 		return -EINVAL;
2378 
2379 	/* Ok, let it rip */
2380 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2381 }
2382 EXPORT_SYMBOL(vm_iomap_memory);
2383 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2384 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2385 				     unsigned long addr, unsigned long end,
2386 				     pte_fn_t fn, void *data)
2387 {
2388 	pte_t *pte;
2389 	int err;
2390 	pgtable_t token;
2391 	spinlock_t *uninitialized_var(ptl);
2392 
2393 	pte = (mm == &init_mm) ?
2394 		pte_alloc_kernel(pmd, addr) :
2395 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2396 	if (!pte)
2397 		return -ENOMEM;
2398 
2399 	BUG_ON(pmd_huge(*pmd));
2400 
2401 	arch_enter_lazy_mmu_mode();
2402 
2403 	token = pmd_pgtable(*pmd);
2404 
2405 	do {
2406 		err = fn(pte++, token, addr, data);
2407 		if (err)
2408 			break;
2409 	} while (addr += PAGE_SIZE, addr != end);
2410 
2411 	arch_leave_lazy_mmu_mode();
2412 
2413 	if (mm != &init_mm)
2414 		pte_unmap_unlock(pte-1, ptl);
2415 	return err;
2416 }
2417 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2418 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2419 				     unsigned long addr, unsigned long end,
2420 				     pte_fn_t fn, void *data)
2421 {
2422 	pmd_t *pmd;
2423 	unsigned long next;
2424 	int err;
2425 
2426 	BUG_ON(pud_huge(*pud));
2427 
2428 	pmd = pmd_alloc(mm, pud, addr);
2429 	if (!pmd)
2430 		return -ENOMEM;
2431 	do {
2432 		next = pmd_addr_end(addr, end);
2433 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2434 		if (err)
2435 			break;
2436 	} while (pmd++, addr = next, addr != end);
2437 	return err;
2438 }
2439 
apply_to_pud_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2440 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2441 				     unsigned long addr, unsigned long end,
2442 				     pte_fn_t fn, void *data)
2443 {
2444 	pud_t *pud;
2445 	unsigned long next;
2446 	int err;
2447 
2448 	pud = pud_alloc(mm, pgd, addr);
2449 	if (!pud)
2450 		return -ENOMEM;
2451 	do {
2452 		next = pud_addr_end(addr, end);
2453 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2454 		if (err)
2455 			break;
2456 	} while (pud++, addr = next, addr != end);
2457 	return err;
2458 }
2459 
2460 /*
2461  * Scan a region of virtual memory, filling in page tables as necessary
2462  * and calling a provided function on each leaf page table.
2463  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2464 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2465 			unsigned long size, pte_fn_t fn, void *data)
2466 {
2467 	pgd_t *pgd;
2468 	unsigned long next;
2469 	unsigned long end = addr + size;
2470 	int err;
2471 
2472 	BUG_ON(addr >= end);
2473 	pgd = pgd_offset(mm, addr);
2474 	do {
2475 		next = pgd_addr_end(addr, end);
2476 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2477 		if (err)
2478 			break;
2479 	} while (pgd++, addr = next, addr != end);
2480 
2481 	return err;
2482 }
2483 EXPORT_SYMBOL_GPL(apply_to_page_range);
2484 
2485 /*
2486  * handle_pte_fault chooses page fault handler according to an entry
2487  * which was read non-atomically.  Before making any commitment, on
2488  * those architectures or configurations (e.g. i386 with PAE) which
2489  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2490  * must check under lock before unmapping the pte and proceeding
2491  * (but do_wp_page is only called after already making such a check;
2492  * and do_anonymous_page can safely check later on).
2493  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2494 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2495 				pte_t *page_table, pte_t orig_pte)
2496 {
2497 	int same = 1;
2498 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2499 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2500 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2501 		spin_lock(ptl);
2502 		same = pte_same(*page_table, orig_pte);
2503 		spin_unlock(ptl);
2504 	}
2505 #endif
2506 	pte_unmap(page_table);
2507 	return same;
2508 }
2509 
cow_user_page(struct page * dst,struct page * src,unsigned long va,struct vm_area_struct * vma)2510 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2511 {
2512 	/*
2513 	 * If the source page was a PFN mapping, we don't have
2514 	 * a "struct page" for it. We do a best-effort copy by
2515 	 * just copying from the original user address. If that
2516 	 * fails, we just zero-fill it. Live with it.
2517 	 */
2518 	if (unlikely(!src)) {
2519 		void *kaddr = kmap_atomic(dst);
2520 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2521 
2522 		/*
2523 		 * This really shouldn't fail, because the page is there
2524 		 * in the page tables. But it might just be unreadable,
2525 		 * in which case we just give up and fill the result with
2526 		 * zeroes.
2527 		 */
2528 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2529 			clear_page(kaddr);
2530 		kunmap_atomic(kaddr);
2531 		flush_dcache_page(dst);
2532 	} else
2533 		copy_user_highpage(dst, src, va, vma);
2534 }
2535 
2536 /*
2537  * This routine handles present pages, when users try to write
2538  * to a shared page. It is done by copying the page to a new address
2539  * and decrementing the shared-page counter for the old page.
2540  *
2541  * Note that this routine assumes that the protection checks have been
2542  * done by the caller (the low-level page fault routine in most cases).
2543  * Thus we can safely just mark it writable once we've done any necessary
2544  * COW.
2545  *
2546  * We also mark the page dirty at this point even though the page will
2547  * change only once the write actually happens. This avoids a few races,
2548  * and potentially makes it more efficient.
2549  *
2550  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2551  * but allow concurrent faults), with pte both mapped and locked.
2552  * We return with mmap_sem still held, but pte unmapped and unlocked.
2553  */
do_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,spinlock_t * ptl,pte_t orig_pte)2554 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2555 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2556 		spinlock_t *ptl, pte_t orig_pte)
2557 	__releases(ptl)
2558 {
2559 	struct page *old_page, *new_page;
2560 	pte_t entry;
2561 	int ret = 0;
2562 	int page_mkwrite = 0;
2563 	struct page *dirty_page = NULL;
2564 
2565 	old_page = vm_normal_page(vma, address, orig_pte);
2566 	if (!old_page) {
2567 		/*
2568 		 * VM_MIXEDMAP !pfn_valid() case
2569 		 *
2570 		 * We should not cow pages in a shared writeable mapping.
2571 		 * Just mark the pages writable as we can't do any dirty
2572 		 * accounting on raw pfn maps.
2573 		 */
2574 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2575 				     (VM_WRITE|VM_SHARED))
2576 			goto reuse;
2577 		goto gotten;
2578 	}
2579 
2580 	/*
2581 	 * Take out anonymous pages first, anonymous shared vmas are
2582 	 * not dirty accountable.
2583 	 */
2584 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2585 		if (!trylock_page(old_page)) {
2586 			page_cache_get(old_page);
2587 			pte_unmap_unlock(page_table, ptl);
2588 			lock_page(old_page);
2589 			page_table = pte_offset_map_lock(mm, pmd, address,
2590 							 &ptl);
2591 			if (!pte_same(*page_table, orig_pte)) {
2592 				unlock_page(old_page);
2593 				goto unlock;
2594 			}
2595 			page_cache_release(old_page);
2596 		}
2597 		if (reuse_swap_page(old_page)) {
2598 			/*
2599 			 * The page is all ours.  Move it to our anon_vma so
2600 			 * the rmap code will not search our parent or siblings.
2601 			 * Protected against the rmap code by the page lock.
2602 			 */
2603 			page_move_anon_rmap(old_page, vma, address);
2604 			unlock_page(old_page);
2605 			goto reuse;
2606 		}
2607 		unlock_page(old_page);
2608 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609 					(VM_WRITE|VM_SHARED))) {
2610 		/*
2611 		 * Only catch write-faults on shared writable pages,
2612 		 * read-only shared pages can get COWed by
2613 		 * get_user_pages(.write=1, .force=1).
2614 		 */
2615 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2616 			struct vm_fault vmf;
2617 			int tmp;
2618 
2619 			vmf.virtual_address = (void __user *)(address &
2620 								PAGE_MASK);
2621 			vmf.pgoff = old_page->index;
2622 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2623 			vmf.page = old_page;
2624 
2625 			/*
2626 			 * Notify the address space that the page is about to
2627 			 * become writable so that it can prohibit this or wait
2628 			 * for the page to get into an appropriate state.
2629 			 *
2630 			 * We do this without the lock held, so that it can
2631 			 * sleep if it needs to.
2632 			 */
2633 			page_cache_get(old_page);
2634 			pte_unmap_unlock(page_table, ptl);
2635 
2636 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2637 			if (unlikely(tmp &
2638 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2639 				ret = tmp;
2640 				goto unwritable_page;
2641 			}
2642 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2643 				lock_page(old_page);
2644 				if (!old_page->mapping) {
2645 					ret = 0; /* retry the fault */
2646 					unlock_page(old_page);
2647 					goto unwritable_page;
2648 				}
2649 			} else
2650 				VM_BUG_ON(!PageLocked(old_page));
2651 
2652 			/*
2653 			 * Since we dropped the lock we need to revalidate
2654 			 * the PTE as someone else may have changed it.  If
2655 			 * they did, we just return, as we can count on the
2656 			 * MMU to tell us if they didn't also make it writable.
2657 			 */
2658 			page_table = pte_offset_map_lock(mm, pmd, address,
2659 							 &ptl);
2660 			if (!pte_same(*page_table, orig_pte)) {
2661 				unlock_page(old_page);
2662 				goto unlock;
2663 			}
2664 
2665 			page_mkwrite = 1;
2666 		}
2667 		dirty_page = old_page;
2668 		get_page(dirty_page);
2669 
2670 reuse:
2671 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2672 		entry = pte_mkyoung(orig_pte);
2673 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2674 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2675 			update_mmu_cache(vma, address, page_table);
2676 		pte_unmap_unlock(page_table, ptl);
2677 		ret |= VM_FAULT_WRITE;
2678 
2679 		if (!dirty_page)
2680 			return ret;
2681 
2682 		/*
2683 		 * Yes, Virginia, this is actually required to prevent a race
2684 		 * with clear_page_dirty_for_io() from clearing the page dirty
2685 		 * bit after it clear all dirty ptes, but before a racing
2686 		 * do_wp_page installs a dirty pte.
2687 		 *
2688 		 * __do_fault is protected similarly.
2689 		 */
2690 		if (!page_mkwrite) {
2691 			wait_on_page_locked(dirty_page);
2692 			set_page_dirty_balance(dirty_page, page_mkwrite);
2693 		}
2694 		put_page(dirty_page);
2695 		if (page_mkwrite) {
2696 			struct address_space *mapping = dirty_page->mapping;
2697 
2698 			set_page_dirty(dirty_page);
2699 			unlock_page(dirty_page);
2700 			page_cache_release(dirty_page);
2701 			if (mapping)	{
2702 				/*
2703 				 * Some device drivers do not set page.mapping
2704 				 * but still dirty their pages
2705 				 */
2706 				balance_dirty_pages_ratelimited(mapping);
2707 			}
2708 		}
2709 
2710 		/* file_update_time outside page_lock */
2711 		if (vma->vm_file)
2712 			file_update_time(vma->vm_file);
2713 
2714 		return ret;
2715 	}
2716 
2717 	/*
2718 	 * Ok, we need to copy. Oh, well..
2719 	 */
2720 	page_cache_get(old_page);
2721 gotten:
2722 	pte_unmap_unlock(page_table, ptl);
2723 
2724 	if (unlikely(anon_vma_prepare(vma)))
2725 		goto oom;
2726 
2727 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2728 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2729 		if (!new_page)
2730 			goto oom;
2731 	} else {
2732 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2733 		if (!new_page)
2734 			goto oom;
2735 		cow_user_page(new_page, old_page, address, vma);
2736 	}
2737 	__SetPageUptodate(new_page);
2738 
2739 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2740 		goto oom_free_new;
2741 
2742 	/*
2743 	 * Re-check the pte - we dropped the lock
2744 	 */
2745 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2746 	if (likely(pte_same(*page_table, orig_pte))) {
2747 		if (old_page) {
2748 			if (!PageAnon(old_page)) {
2749 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2750 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2751 			}
2752 		} else
2753 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2754 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2755 		entry = mk_pte(new_page, vma->vm_page_prot);
2756 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757 		/*
2758 		 * Clear the pte entry and flush it first, before updating the
2759 		 * pte with the new entry. This will avoid a race condition
2760 		 * seen in the presence of one thread doing SMC and another
2761 		 * thread doing COW.
2762 		 */
2763 		ptep_clear_flush(vma, address, page_table);
2764 		page_add_new_anon_rmap(new_page, vma, address);
2765 		/*
2766 		 * We call the notify macro here because, when using secondary
2767 		 * mmu page tables (such as kvm shadow page tables), we want the
2768 		 * new page to be mapped directly into the secondary page table.
2769 		 */
2770 		set_pte_at_notify(mm, address, page_table, entry);
2771 		update_mmu_cache(vma, address, page_table);
2772 		if (old_page) {
2773 			/*
2774 			 * Only after switching the pte to the new page may
2775 			 * we remove the mapcount here. Otherwise another
2776 			 * process may come and find the rmap count decremented
2777 			 * before the pte is switched to the new page, and
2778 			 * "reuse" the old page writing into it while our pte
2779 			 * here still points into it and can be read by other
2780 			 * threads.
2781 			 *
2782 			 * The critical issue is to order this
2783 			 * page_remove_rmap with the ptp_clear_flush above.
2784 			 * Those stores are ordered by (if nothing else,)
2785 			 * the barrier present in the atomic_add_negative
2786 			 * in page_remove_rmap.
2787 			 *
2788 			 * Then the TLB flush in ptep_clear_flush ensures that
2789 			 * no process can access the old page before the
2790 			 * decremented mapcount is visible. And the old page
2791 			 * cannot be reused until after the decremented
2792 			 * mapcount is visible. So transitively, TLBs to
2793 			 * old page will be flushed before it can be reused.
2794 			 */
2795 			page_remove_rmap(old_page);
2796 		}
2797 
2798 		/* Free the old page.. */
2799 		new_page = old_page;
2800 		ret |= VM_FAULT_WRITE;
2801 	} else
2802 		mem_cgroup_uncharge_page(new_page);
2803 
2804 	if (new_page)
2805 		page_cache_release(new_page);
2806 unlock:
2807 	pte_unmap_unlock(page_table, ptl);
2808 	if (old_page) {
2809 		/*
2810 		 * Don't let another task, with possibly unlocked vma,
2811 		 * keep the mlocked page.
2812 		 */
2813 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2814 			lock_page(old_page);	/* LRU manipulation */
2815 			munlock_vma_page(old_page);
2816 			unlock_page(old_page);
2817 		}
2818 		page_cache_release(old_page);
2819 	}
2820 	return ret;
2821 oom_free_new:
2822 	page_cache_release(new_page);
2823 oom:
2824 	if (old_page) {
2825 		if (page_mkwrite) {
2826 			unlock_page(old_page);
2827 			page_cache_release(old_page);
2828 		}
2829 		page_cache_release(old_page);
2830 	}
2831 	return VM_FAULT_OOM;
2832 
2833 unwritable_page:
2834 	page_cache_release(old_page);
2835 	return ret;
2836 }
2837 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2838 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2839 		unsigned long start_addr, unsigned long end_addr,
2840 		struct zap_details *details)
2841 {
2842 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2843 }
2844 
unmap_mapping_range_tree(struct prio_tree_root * root,struct zap_details * details)2845 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2846 					    struct zap_details *details)
2847 {
2848 	struct vm_area_struct *vma;
2849 	struct prio_tree_iter iter;
2850 	pgoff_t vba, vea, zba, zea;
2851 
2852 	vma_prio_tree_foreach(vma, &iter, root,
2853 			details->first_index, details->last_index) {
2854 
2855 		vba = vma->vm_pgoff;
2856 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2857 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2858 		zba = details->first_index;
2859 		if (zba < vba)
2860 			zba = vba;
2861 		zea = details->last_index;
2862 		if (zea > vea)
2863 			zea = vea;
2864 
2865 		unmap_mapping_range_vma(vma,
2866 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2867 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2868 				details);
2869 	}
2870 }
2871 
unmap_mapping_range_list(struct list_head * head,struct zap_details * details)2872 static inline void unmap_mapping_range_list(struct list_head *head,
2873 					    struct zap_details *details)
2874 {
2875 	struct vm_area_struct *vma;
2876 
2877 	/*
2878 	 * In nonlinear VMAs there is no correspondence between virtual address
2879 	 * offset and file offset.  So we must perform an exhaustive search
2880 	 * across *all* the pages in each nonlinear VMA, not just the pages
2881 	 * whose virtual address lies outside the file truncation point.
2882 	 */
2883 	list_for_each_entry(vma, head, shared.vm_set.list) {
2884 		details->nonlinear_vma = vma;
2885 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2886 	}
2887 }
2888 
2889 /**
2890  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2891  * @mapping: the address space containing mmaps to be unmapped.
2892  * @holebegin: byte in first page to unmap, relative to the start of
2893  * the underlying file.  This will be rounded down to a PAGE_SIZE
2894  * boundary.  Note that this is different from truncate_pagecache(), which
2895  * must keep the partial page.  In contrast, we must get rid of
2896  * partial pages.
2897  * @holelen: size of prospective hole in bytes.  This will be rounded
2898  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2899  * end of the file.
2900  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2901  * but 0 when invalidating pagecache, don't throw away private data.
2902  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2903 void unmap_mapping_range(struct address_space *mapping,
2904 		loff_t const holebegin, loff_t const holelen, int even_cows)
2905 {
2906 	struct zap_details details;
2907 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2908 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2909 
2910 	/* Check for overflow. */
2911 	if (sizeof(holelen) > sizeof(hlen)) {
2912 		long long holeend =
2913 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2914 		if (holeend & ~(long long)ULONG_MAX)
2915 			hlen = ULONG_MAX - hba + 1;
2916 	}
2917 
2918 	details.check_mapping = even_cows? NULL: mapping;
2919 	details.nonlinear_vma = NULL;
2920 	details.first_index = hba;
2921 	details.last_index = hba + hlen - 1;
2922 	if (details.last_index < details.first_index)
2923 		details.last_index = ULONG_MAX;
2924 
2925 
2926 	mutex_lock(&mapping->i_mmap_mutex);
2927 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2928 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2929 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2930 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2931 	mutex_unlock(&mapping->i_mmap_mutex);
2932 }
2933 EXPORT_SYMBOL(unmap_mapping_range);
2934 
2935 /*
2936  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2937  * but allow concurrent faults), and pte mapped but not yet locked.
2938  * We return with mmap_sem still held, but pte unmapped and unlocked.
2939  */
do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)2940 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2941 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2942 		unsigned int flags, pte_t orig_pte)
2943 {
2944 	spinlock_t *ptl;
2945 	struct page *page, *swapcache = NULL;
2946 	swp_entry_t entry;
2947 	pte_t pte;
2948 	int locked;
2949 	struct mem_cgroup *ptr;
2950 	int exclusive = 0;
2951 	int ret = 0;
2952 
2953 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2954 		goto out;
2955 
2956 	entry = pte_to_swp_entry(orig_pte);
2957 	if (unlikely(non_swap_entry(entry))) {
2958 		if (is_migration_entry(entry)) {
2959 			migration_entry_wait(mm, pmd, address);
2960 		} else if (is_hwpoison_entry(entry)) {
2961 			ret = VM_FAULT_HWPOISON;
2962 		} else {
2963 			print_bad_pte(vma, address, orig_pte, NULL);
2964 			ret = VM_FAULT_SIGBUS;
2965 		}
2966 		goto out;
2967 	}
2968 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2969 	page = lookup_swap_cache(entry);
2970 	if (!page) {
2971 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2972 		page = swapin_readahead(entry,
2973 					GFP_HIGHUSER_MOVABLE, vma, address);
2974 		if (!page) {
2975 			/*
2976 			 * Back out if somebody else faulted in this pte
2977 			 * while we released the pte lock.
2978 			 */
2979 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2980 			if (likely(pte_same(*page_table, orig_pte)))
2981 				ret = VM_FAULT_OOM;
2982 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2983 			goto unlock;
2984 		}
2985 
2986 		/* Had to read the page from swap area: Major fault */
2987 		ret = VM_FAULT_MAJOR;
2988 		count_vm_event(PGMAJFAULT);
2989 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2990 	} else if (PageHWPoison(page)) {
2991 		/*
2992 		 * hwpoisoned dirty swapcache pages are kept for killing
2993 		 * owner processes (which may be unknown at hwpoison time)
2994 		 */
2995 		ret = VM_FAULT_HWPOISON;
2996 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2997 		goto out_release;
2998 	}
2999 
3000 	locked = lock_page_or_retry(page, mm, flags);
3001 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3002 	if (!locked) {
3003 		ret |= VM_FAULT_RETRY;
3004 		goto out_release;
3005 	}
3006 
3007 	/*
3008 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3009 	 * release the swapcache from under us.  The page pin, and pte_same
3010 	 * test below, are not enough to exclude that.  Even if it is still
3011 	 * swapcache, we need to check that the page's swap has not changed.
3012 	 */
3013 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3014 		goto out_page;
3015 
3016 	if (ksm_might_need_to_copy(page, vma, address)) {
3017 		swapcache = page;
3018 		page = ksm_does_need_to_copy(page, vma, address);
3019 
3020 		if (unlikely(!page)) {
3021 			ret = VM_FAULT_OOM;
3022 			page = swapcache;
3023 			swapcache = NULL;
3024 			goto out_page;
3025 		}
3026 	}
3027 
3028 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3029 		ret = VM_FAULT_OOM;
3030 		goto out_page;
3031 	}
3032 
3033 	/*
3034 	 * Back out if somebody else already faulted in this pte.
3035 	 */
3036 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3037 	if (unlikely(!pte_same(*page_table, orig_pte)))
3038 		goto out_nomap;
3039 
3040 	if (unlikely(!PageUptodate(page))) {
3041 		ret = VM_FAULT_SIGBUS;
3042 		goto out_nomap;
3043 	}
3044 
3045 	/*
3046 	 * The page isn't present yet, go ahead with the fault.
3047 	 *
3048 	 * Be careful about the sequence of operations here.
3049 	 * To get its accounting right, reuse_swap_page() must be called
3050 	 * while the page is counted on swap but not yet in mapcount i.e.
3051 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3052 	 * must be called after the swap_free(), or it will never succeed.
3053 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3054 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3055 	 * in page->private. In this case, a record in swap_cgroup  is silently
3056 	 * discarded at swap_free().
3057 	 */
3058 
3059 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3060 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3061 	pte = mk_pte(page, vma->vm_page_prot);
3062 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3063 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3064 		flags &= ~FAULT_FLAG_WRITE;
3065 		ret |= VM_FAULT_WRITE;
3066 		exclusive = 1;
3067 	}
3068 	flush_icache_page(vma, page);
3069 	set_pte_at(mm, address, page_table, pte);
3070 	do_page_add_anon_rmap(page, vma, address, exclusive);
3071 	/* It's better to call commit-charge after rmap is established */
3072 	mem_cgroup_commit_charge_swapin(page, ptr);
3073 
3074 	swap_free(entry);
3075 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3076 		try_to_free_swap(page);
3077 	unlock_page(page);
3078 	if (swapcache) {
3079 		/*
3080 		 * Hold the lock to avoid the swap entry to be reused
3081 		 * until we take the PT lock for the pte_same() check
3082 		 * (to avoid false positives from pte_same). For
3083 		 * further safety release the lock after the swap_free
3084 		 * so that the swap count won't change under a
3085 		 * parallel locked swapcache.
3086 		 */
3087 		unlock_page(swapcache);
3088 		page_cache_release(swapcache);
3089 	}
3090 
3091 	if (flags & FAULT_FLAG_WRITE) {
3092 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3093 		if (ret & VM_FAULT_ERROR)
3094 			ret &= VM_FAULT_ERROR;
3095 		goto out;
3096 	}
3097 
3098 	/* No need to invalidate - it was non-present before */
3099 	update_mmu_cache(vma, address, page_table);
3100 unlock:
3101 	pte_unmap_unlock(page_table, ptl);
3102 out:
3103 	return ret;
3104 out_nomap:
3105 	mem_cgroup_cancel_charge_swapin(ptr);
3106 	pte_unmap_unlock(page_table, ptl);
3107 out_page:
3108 	unlock_page(page);
3109 out_release:
3110 	page_cache_release(page);
3111 	if (swapcache) {
3112 		unlock_page(swapcache);
3113 		page_cache_release(swapcache);
3114 	}
3115 	return ret;
3116 }
3117 
3118 /*
3119  * This is like a special single-page "expand_{down|up}wards()",
3120  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3121  * doesn't hit another vma.
3122  */
check_stack_guard_page(struct vm_area_struct * vma,unsigned long address)3123 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3124 {
3125 	address &= PAGE_MASK;
3126 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3127 		struct vm_area_struct *prev = vma->vm_prev;
3128 
3129 		/*
3130 		 * Is there a mapping abutting this one below?
3131 		 *
3132 		 * That's only ok if it's the same stack mapping
3133 		 * that has gotten split..
3134 		 */
3135 		if (prev && prev->vm_end == address)
3136 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3137 
3138 		expand_downwards(vma, address - PAGE_SIZE);
3139 	}
3140 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3141 		struct vm_area_struct *next = vma->vm_next;
3142 
3143 		/* As VM_GROWSDOWN but s/below/above/ */
3144 		if (next && next->vm_start == address + PAGE_SIZE)
3145 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3146 
3147 		expand_upwards(vma, address + PAGE_SIZE);
3148 	}
3149 	return 0;
3150 }
3151 
3152 /*
3153  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3154  * but allow concurrent faults), and pte mapped but not yet locked.
3155  * We return with mmap_sem still held, but pte unmapped and unlocked.
3156  */
do_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags)3157 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3158 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3159 		unsigned int flags)
3160 {
3161 	struct page *page;
3162 	spinlock_t *ptl;
3163 	pte_t entry;
3164 
3165 	pte_unmap(page_table);
3166 
3167 	/* Check if we need to add a guard page to the stack */
3168 	if (check_stack_guard_page(vma, address) < 0)
3169 		return VM_FAULT_SIGBUS;
3170 
3171 	/* Use the zero-page for reads */
3172 	if (!(flags & FAULT_FLAG_WRITE)) {
3173 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3174 						vma->vm_page_prot));
3175 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3176 		if (!pte_none(*page_table))
3177 			goto unlock;
3178 		goto setpte;
3179 	}
3180 
3181 	/* Allocate our own private page. */
3182 	if (unlikely(anon_vma_prepare(vma)))
3183 		goto oom;
3184 	page = alloc_zeroed_user_highpage_movable(vma, address);
3185 	if (!page)
3186 		goto oom;
3187 	__SetPageUptodate(page);
3188 
3189 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3190 		goto oom_free_page;
3191 
3192 	entry = mk_pte(page, vma->vm_page_prot);
3193 	if (vma->vm_flags & VM_WRITE)
3194 		entry = pte_mkwrite(pte_mkdirty(entry));
3195 
3196 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3197 	if (!pte_none(*page_table))
3198 		goto release;
3199 
3200 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3201 	page_add_new_anon_rmap(page, vma, address);
3202 setpte:
3203 	set_pte_at(mm, address, page_table, entry);
3204 
3205 	/* No need to invalidate - it was non-present before */
3206 	update_mmu_cache(vma, address, page_table);
3207 unlock:
3208 	pte_unmap_unlock(page_table, ptl);
3209 	return 0;
3210 release:
3211 	mem_cgroup_uncharge_page(page);
3212 	page_cache_release(page);
3213 	goto unlock;
3214 oom_free_page:
3215 	page_cache_release(page);
3216 oom:
3217 	return VM_FAULT_OOM;
3218 }
3219 
3220 /*
3221  * __do_fault() tries to create a new page mapping. It aggressively
3222  * tries to share with existing pages, but makes a separate copy if
3223  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3224  * the next page fault.
3225  *
3226  * As this is called only for pages that do not currently exist, we
3227  * do not need to flush old virtual caches or the TLB.
3228  *
3229  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3230  * but allow concurrent faults), and pte neither mapped nor locked.
3231  * We return with mmap_sem still held, but pte unmapped and unlocked.
3232  */
__do_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pgoff_t pgoff,unsigned int flags,pte_t orig_pte)3233 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3234 		unsigned long address, pmd_t *pmd,
3235 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3236 {
3237 	pte_t *page_table;
3238 	spinlock_t *ptl;
3239 	struct page *page;
3240 	struct page *cow_page;
3241 	pte_t entry;
3242 	int anon = 0;
3243 	struct page *dirty_page = NULL;
3244 	struct vm_fault vmf;
3245 	int ret;
3246 	int page_mkwrite = 0;
3247 
3248 	/*
3249 	 * If we do COW later, allocate page befor taking lock_page()
3250 	 * on the file cache page. This will reduce lock holding time.
3251 	 */
3252 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3253 
3254 		if (unlikely(anon_vma_prepare(vma)))
3255 			return VM_FAULT_OOM;
3256 
3257 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3258 		if (!cow_page)
3259 			return VM_FAULT_OOM;
3260 
3261 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3262 			page_cache_release(cow_page);
3263 			return VM_FAULT_OOM;
3264 		}
3265 	} else
3266 		cow_page = NULL;
3267 
3268 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3269 	vmf.pgoff = pgoff;
3270 	vmf.flags = flags;
3271 	vmf.page = NULL;
3272 
3273 	ret = vma->vm_ops->fault(vma, &vmf);
3274 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3275 			    VM_FAULT_RETRY)))
3276 		goto uncharge_out;
3277 
3278 	if (unlikely(PageHWPoison(vmf.page))) {
3279 		if (ret & VM_FAULT_LOCKED)
3280 			unlock_page(vmf.page);
3281 		ret = VM_FAULT_HWPOISON;
3282 		goto uncharge_out;
3283 	}
3284 
3285 	/*
3286 	 * For consistency in subsequent calls, make the faulted page always
3287 	 * locked.
3288 	 */
3289 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3290 		lock_page(vmf.page);
3291 	else
3292 		VM_BUG_ON(!PageLocked(vmf.page));
3293 
3294 	/*
3295 	 * Should we do an early C-O-W break?
3296 	 */
3297 	page = vmf.page;
3298 	if (flags & FAULT_FLAG_WRITE) {
3299 		if (!(vma->vm_flags & VM_SHARED)) {
3300 			page = cow_page;
3301 			anon = 1;
3302 			copy_user_highpage(page, vmf.page, address, vma);
3303 			__SetPageUptodate(page);
3304 		} else {
3305 			/*
3306 			 * If the page will be shareable, see if the backing
3307 			 * address space wants to know that the page is about
3308 			 * to become writable
3309 			 */
3310 			if (vma->vm_ops->page_mkwrite) {
3311 				int tmp;
3312 
3313 				unlock_page(page);
3314 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3315 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3316 				if (unlikely(tmp &
3317 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3318 					ret = tmp;
3319 					goto unwritable_page;
3320 				}
3321 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3322 					lock_page(page);
3323 					if (!page->mapping) {
3324 						ret = 0; /* retry the fault */
3325 						unlock_page(page);
3326 						goto unwritable_page;
3327 					}
3328 				} else
3329 					VM_BUG_ON(!PageLocked(page));
3330 				page_mkwrite = 1;
3331 			}
3332 		}
3333 
3334 	}
3335 
3336 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3337 
3338 	/*
3339 	 * This silly early PAGE_DIRTY setting removes a race
3340 	 * due to the bad i386 page protection. But it's valid
3341 	 * for other architectures too.
3342 	 *
3343 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3344 	 * an exclusive copy of the page, or this is a shared mapping,
3345 	 * so we can make it writable and dirty to avoid having to
3346 	 * handle that later.
3347 	 */
3348 	/* Only go through if we didn't race with anybody else... */
3349 	if (likely(pte_same(*page_table, orig_pte))) {
3350 		flush_icache_page(vma, page);
3351 		entry = mk_pte(page, vma->vm_page_prot);
3352 		if (flags & FAULT_FLAG_WRITE)
3353 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3354 		if (anon) {
3355 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3356 			page_add_new_anon_rmap(page, vma, address);
3357 		} else {
3358 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3359 			page_add_file_rmap(page);
3360 			if (flags & FAULT_FLAG_WRITE) {
3361 				dirty_page = page;
3362 				get_page(dirty_page);
3363 			}
3364 		}
3365 		set_pte_at(mm, address, page_table, entry);
3366 
3367 		/* no need to invalidate: a not-present page won't be cached */
3368 		update_mmu_cache(vma, address, page_table);
3369 	} else {
3370 		if (cow_page)
3371 			mem_cgroup_uncharge_page(cow_page);
3372 		if (anon)
3373 			page_cache_release(page);
3374 		else
3375 			anon = 1; /* no anon but release faulted_page */
3376 	}
3377 
3378 	pte_unmap_unlock(page_table, ptl);
3379 
3380 	if (dirty_page) {
3381 		struct address_space *mapping = page->mapping;
3382 
3383 		if (set_page_dirty(dirty_page))
3384 			page_mkwrite = 1;
3385 		unlock_page(dirty_page);
3386 		put_page(dirty_page);
3387 		if (page_mkwrite && mapping) {
3388 			/*
3389 			 * Some device drivers do not set page.mapping but still
3390 			 * dirty their pages
3391 			 */
3392 			balance_dirty_pages_ratelimited(mapping);
3393 		}
3394 
3395 		/* file_update_time outside page_lock */
3396 		if (vma->vm_file)
3397 			file_update_time(vma->vm_file);
3398 	} else {
3399 		unlock_page(vmf.page);
3400 		if (anon)
3401 			page_cache_release(vmf.page);
3402 	}
3403 
3404 	return ret;
3405 
3406 unwritable_page:
3407 	page_cache_release(page);
3408 	return ret;
3409 uncharge_out:
3410 	/* fs's fault handler get error */
3411 	if (cow_page) {
3412 		mem_cgroup_uncharge_page(cow_page);
3413 		page_cache_release(cow_page);
3414 	}
3415 	return ret;
3416 }
3417 
do_linear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3418 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3419 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3420 		unsigned int flags, pte_t orig_pte)
3421 {
3422 	pgoff_t pgoff = (((address & PAGE_MASK)
3423 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3424 
3425 	pte_unmap(page_table);
3426 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3427 }
3428 
3429 /*
3430  * Fault of a previously existing named mapping. Repopulate the pte
3431  * from the encoded file_pte if possible. This enables swappable
3432  * nonlinear vmas.
3433  *
3434  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3435  * but allow concurrent faults), and pte mapped but not yet locked.
3436  * We return with mmap_sem still held, but pte unmapped and unlocked.
3437  */
do_nonlinear_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * page_table,pmd_t * pmd,unsigned int flags,pte_t orig_pte)3438 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3439 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3440 		unsigned int flags, pte_t orig_pte)
3441 {
3442 	pgoff_t pgoff;
3443 
3444 	flags |= FAULT_FLAG_NONLINEAR;
3445 
3446 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3447 		return 0;
3448 
3449 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3450 		/*
3451 		 * Page table corrupted: show pte and kill process.
3452 		 */
3453 		print_bad_pte(vma, address, orig_pte, NULL);
3454 		return VM_FAULT_SIGBUS;
3455 	}
3456 
3457 	pgoff = pte_to_pgoff(orig_pte);
3458 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3459 }
3460 
3461 /*
3462  * These routines also need to handle stuff like marking pages dirty
3463  * and/or accessed for architectures that don't do it in hardware (most
3464  * RISC architectures).  The early dirtying is also good on the i386.
3465  *
3466  * There is also a hook called "update_mmu_cache()" that architectures
3467  * with external mmu caches can use to update those (ie the Sparc or
3468  * PowerPC hashed page tables that act as extended TLBs).
3469  *
3470  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3471  * but allow concurrent faults), and pte mapped but not yet locked.
3472  * We return with mmap_sem still held, but pte unmapped and unlocked.
3473  */
handle_pte_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * pte,pmd_t * pmd,unsigned int flags)3474 int handle_pte_fault(struct mm_struct *mm,
3475 		     struct vm_area_struct *vma, unsigned long address,
3476 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3477 {
3478 	pte_t entry;
3479 	spinlock_t *ptl;
3480 
3481 	entry = *pte;
3482 	if (!pte_present(entry)) {
3483 		if (pte_none(entry)) {
3484 			if (vma->vm_ops) {
3485 				if (likely(vma->vm_ops->fault))
3486 					return do_linear_fault(mm, vma, address,
3487 						pte, pmd, flags, entry);
3488 			}
3489 			return do_anonymous_page(mm, vma, address,
3490 						 pte, pmd, flags);
3491 		}
3492 		if (pte_file(entry))
3493 			return do_nonlinear_fault(mm, vma, address,
3494 					pte, pmd, flags, entry);
3495 		return do_swap_page(mm, vma, address,
3496 					pte, pmd, flags, entry);
3497 	}
3498 
3499 	ptl = pte_lockptr(mm, pmd);
3500 	spin_lock(ptl);
3501 	if (unlikely(!pte_same(*pte, entry)))
3502 		goto unlock;
3503 	if (flags & FAULT_FLAG_WRITE) {
3504 		if (!pte_write(entry))
3505 			return do_wp_page(mm, vma, address,
3506 					pte, pmd, ptl, entry);
3507 		entry = pte_mkdirty(entry);
3508 	}
3509 	entry = pte_mkyoung(entry);
3510 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3511 		update_mmu_cache(vma, address, pte);
3512 	} else {
3513 		/*
3514 		 * This is needed only for protection faults but the arch code
3515 		 * is not yet telling us if this is a protection fault or not.
3516 		 * This still avoids useless tlb flushes for .text page faults
3517 		 * with threads.
3518 		 */
3519 		if (flags & FAULT_FLAG_WRITE)
3520 			flush_tlb_fix_spurious_fault(vma, address);
3521 	}
3522 unlock:
3523 	pte_unmap_unlock(pte, ptl);
3524 	return 0;
3525 }
3526 
3527 /*
3528  * By the time we get here, we already hold the mm semaphore
3529  */
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)3530 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3531 		unsigned long address, unsigned int flags)
3532 {
3533 	pgd_t *pgd;
3534 	pud_t *pud;
3535 	pmd_t *pmd;
3536 	pte_t *pte;
3537 
3538 	__set_current_state(TASK_RUNNING);
3539 
3540 	count_vm_event(PGFAULT);
3541 	mem_cgroup_count_vm_event(mm, PGFAULT);
3542 
3543 	/* do counter updates before entering really critical section. */
3544 	check_sync_rss_stat(current);
3545 
3546 	if (unlikely(is_vm_hugetlb_page(vma)))
3547 		return hugetlb_fault(mm, vma, address, flags);
3548 
3549 retry:
3550 	pgd = pgd_offset(mm, address);
3551 	pud = pud_alloc(mm, pgd, address);
3552 	if (!pud)
3553 		return VM_FAULT_OOM;
3554 	pmd = pmd_alloc(mm, pud, address);
3555 	if (!pmd)
3556 		return VM_FAULT_OOM;
3557 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3558 		if (!vma->vm_ops)
3559 			return do_huge_pmd_anonymous_page(mm, vma, address,
3560 							  pmd, flags);
3561 	} else {
3562 		pmd_t orig_pmd = *pmd;
3563 		int ret;
3564 
3565 		barrier();
3566 		if (pmd_trans_huge(orig_pmd)) {
3567 			if (flags & FAULT_FLAG_WRITE &&
3568 			    !pmd_write(orig_pmd) &&
3569 			    !pmd_trans_splitting(orig_pmd)) {
3570 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3571 							  orig_pmd);
3572 				/*
3573 				 * If COW results in an oom, the huge pmd will
3574 				 * have been split, so retry the fault on the
3575 				 * pte for a smaller charge.
3576 				 */
3577 				if (unlikely(ret & VM_FAULT_OOM))
3578 					goto retry;
3579 				return ret;
3580 			}
3581 			return 0;
3582 		}
3583 	}
3584 
3585 	/*
3586 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3587 	 * run pte_offset_map on the pmd, if an huge pmd could
3588 	 * materialize from under us from a different thread.
3589 	 */
3590 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3591 		return VM_FAULT_OOM;
3592 	/* if an huge pmd materialized from under us just retry later */
3593 	if (unlikely(pmd_trans_huge(*pmd)))
3594 		return 0;
3595 	/*
3596 	 * A regular pmd is established and it can't morph into a huge pmd
3597 	 * from under us anymore at this point because we hold the mmap_sem
3598 	 * read mode and khugepaged takes it in write mode. So now it's
3599 	 * safe to run pte_offset_map().
3600 	 */
3601 	pte = pte_offset_map(pmd, address);
3602 
3603 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3604 }
3605 
3606 #ifndef __PAGETABLE_PUD_FOLDED
3607 /*
3608  * Allocate page upper directory.
3609  * We've already handled the fast-path in-line.
3610  */
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)3611 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3612 {
3613 	pud_t *new = pud_alloc_one(mm, address);
3614 	if (!new)
3615 		return -ENOMEM;
3616 
3617 	smp_wmb(); /* See comment in __pte_alloc */
3618 
3619 	spin_lock(&mm->page_table_lock);
3620 	if (pgd_present(*pgd))		/* Another has populated it */
3621 		pud_free(mm, new);
3622 	else
3623 		pgd_populate(mm, pgd, new);
3624 	spin_unlock(&mm->page_table_lock);
3625 	return 0;
3626 }
3627 #endif /* __PAGETABLE_PUD_FOLDED */
3628 
3629 #ifndef __PAGETABLE_PMD_FOLDED
3630 /*
3631  * Allocate page middle directory.
3632  * We've already handled the fast-path in-line.
3633  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)3634 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3635 {
3636 	pmd_t *new = pmd_alloc_one(mm, address);
3637 	if (!new)
3638 		return -ENOMEM;
3639 
3640 	smp_wmb(); /* See comment in __pte_alloc */
3641 
3642 	spin_lock(&mm->page_table_lock);
3643 #ifndef __ARCH_HAS_4LEVEL_HACK
3644 	if (pud_present(*pud))		/* Another has populated it */
3645 		pmd_free(mm, new);
3646 	else
3647 		pud_populate(mm, pud, new);
3648 #else
3649 	if (pgd_present(*pud))		/* Another has populated it */
3650 		pmd_free(mm, new);
3651 	else
3652 		pgd_populate(mm, pud, new);
3653 #endif /* __ARCH_HAS_4LEVEL_HACK */
3654 	spin_unlock(&mm->page_table_lock);
3655 	return 0;
3656 }
3657 #endif /* __PAGETABLE_PMD_FOLDED */
3658 
make_pages_present(unsigned long addr,unsigned long end)3659 int make_pages_present(unsigned long addr, unsigned long end)
3660 {
3661 	int ret, len, write;
3662 	struct vm_area_struct * vma;
3663 
3664 	vma = find_vma(current->mm, addr);
3665 	if (!vma)
3666 		return -ENOMEM;
3667 	/*
3668 	 * We want to touch writable mappings with a write fault in order
3669 	 * to break COW, except for shared mappings because these don't COW
3670 	 * and we would not want to dirty them for nothing.
3671 	 */
3672 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3673 	BUG_ON(addr >= end);
3674 	BUG_ON(end > vma->vm_end);
3675 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3676 	ret = get_user_pages(current, current->mm, addr,
3677 			len, write, 0, NULL, NULL);
3678 	if (ret < 0)
3679 		return ret;
3680 	return ret == len ? 0 : -EFAULT;
3681 }
3682 
3683 #if !defined(__HAVE_ARCH_GATE_AREA)
3684 
3685 #if defined(AT_SYSINFO_EHDR)
3686 static struct vm_area_struct gate_vma;
3687 
gate_vma_init(void)3688 static int __init gate_vma_init(void)
3689 {
3690 	gate_vma.vm_mm = NULL;
3691 	gate_vma.vm_start = FIXADDR_USER_START;
3692 	gate_vma.vm_end = FIXADDR_USER_END;
3693 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3694 	gate_vma.vm_page_prot = __P101;
3695 
3696 	return 0;
3697 }
3698 __initcall(gate_vma_init);
3699 #endif
3700 
get_gate_vma(struct mm_struct * mm)3701 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3702 {
3703 #ifdef AT_SYSINFO_EHDR
3704 	return &gate_vma;
3705 #else
3706 	return NULL;
3707 #endif
3708 }
3709 
in_gate_area_no_mm(unsigned long addr)3710 int in_gate_area_no_mm(unsigned long addr)
3711 {
3712 #ifdef AT_SYSINFO_EHDR
3713 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3714 		return 1;
3715 #endif
3716 	return 0;
3717 }
3718 
3719 #endif	/* __HAVE_ARCH_GATE_AREA */
3720 
__follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3721 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3722 		pte_t **ptepp, spinlock_t **ptlp)
3723 {
3724 	pgd_t *pgd;
3725 	pud_t *pud;
3726 	pmd_t *pmd;
3727 	pte_t *ptep;
3728 
3729 	pgd = pgd_offset(mm, address);
3730 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3731 		goto out;
3732 
3733 	pud = pud_offset(pgd, address);
3734 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3735 		goto out;
3736 
3737 	pmd = pmd_offset(pud, address);
3738 	VM_BUG_ON(pmd_trans_huge(*pmd));
3739 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3740 		goto out;
3741 
3742 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3743 	if (pmd_huge(*pmd))
3744 		goto out;
3745 
3746 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3747 	if (!ptep)
3748 		goto out;
3749 	if (!pte_present(*ptep))
3750 		goto unlock;
3751 	*ptepp = ptep;
3752 	return 0;
3753 unlock:
3754 	pte_unmap_unlock(ptep, *ptlp);
3755 out:
3756 	return -EINVAL;
3757 }
3758 
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)3759 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3760 			     pte_t **ptepp, spinlock_t **ptlp)
3761 {
3762 	int res;
3763 
3764 	/* (void) is needed to make gcc happy */
3765 	(void) __cond_lock(*ptlp,
3766 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3767 	return res;
3768 }
3769 
3770 /**
3771  * follow_pfn - look up PFN at a user virtual address
3772  * @vma: memory mapping
3773  * @address: user virtual address
3774  * @pfn: location to store found PFN
3775  *
3776  * Only IO mappings and raw PFN mappings are allowed.
3777  *
3778  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3779  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)3780 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3781 	unsigned long *pfn)
3782 {
3783 	int ret = -EINVAL;
3784 	spinlock_t *ptl;
3785 	pte_t *ptep;
3786 
3787 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3788 		return ret;
3789 
3790 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3791 	if (ret)
3792 		return ret;
3793 	*pfn = pte_pfn(*ptep);
3794 	pte_unmap_unlock(ptep, ptl);
3795 	return 0;
3796 }
3797 EXPORT_SYMBOL(follow_pfn);
3798 
3799 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)3800 int follow_phys(struct vm_area_struct *vma,
3801 		unsigned long address, unsigned int flags,
3802 		unsigned long *prot, resource_size_t *phys)
3803 {
3804 	int ret = -EINVAL;
3805 	pte_t *ptep, pte;
3806 	spinlock_t *ptl;
3807 
3808 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3809 		goto out;
3810 
3811 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3812 		goto out;
3813 	pte = *ptep;
3814 
3815 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3816 		goto unlock;
3817 
3818 	*prot = pgprot_val(pte_pgprot(pte));
3819 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3820 
3821 	ret = 0;
3822 unlock:
3823 	pte_unmap_unlock(ptep, ptl);
3824 out:
3825 	return ret;
3826 }
3827 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)3828 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3829 			void *buf, int len, int write)
3830 {
3831 	resource_size_t phys_addr;
3832 	unsigned long prot = 0;
3833 	void __iomem *maddr;
3834 	int offset = addr & (PAGE_SIZE-1);
3835 
3836 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3837 		return -EINVAL;
3838 
3839 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3840 	if (write)
3841 		memcpy_toio(maddr + offset, buf, len);
3842 	else
3843 		memcpy_fromio(buf, maddr + offset, len);
3844 	iounmap(maddr);
3845 
3846 	return len;
3847 }
3848 #endif
3849 
3850 /*
3851  * Access another process' address space as given in mm.  If non-NULL, use the
3852  * given task for page fault accounting.
3853  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3854 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3855 		unsigned long addr, void *buf, int len, int write)
3856 {
3857 	struct vm_area_struct *vma;
3858 	void *old_buf = buf;
3859 
3860 	down_read(&mm->mmap_sem);
3861 	/* ignore errors, just check how much was successfully transferred */
3862 	while (len) {
3863 		int bytes, ret, offset;
3864 		void *maddr;
3865 		struct page *page = NULL;
3866 
3867 		ret = get_user_pages(tsk, mm, addr, 1,
3868 				write, 1, &page, &vma);
3869 		if (ret <= 0) {
3870 			/*
3871 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3872 			 * we can access using slightly different code.
3873 			 */
3874 #ifdef CONFIG_HAVE_IOREMAP_PROT
3875 			vma = find_vma(mm, addr);
3876 			if (!vma || vma->vm_start > addr)
3877 				break;
3878 			if (vma->vm_ops && vma->vm_ops->access)
3879 				ret = vma->vm_ops->access(vma, addr, buf,
3880 							  len, write);
3881 			if (ret <= 0)
3882 #endif
3883 				break;
3884 			bytes = ret;
3885 		} else {
3886 			bytes = len;
3887 			offset = addr & (PAGE_SIZE-1);
3888 			if (bytes > PAGE_SIZE-offset)
3889 				bytes = PAGE_SIZE-offset;
3890 
3891 			maddr = kmap(page);
3892 			if (write) {
3893 				copy_to_user_page(vma, page, addr,
3894 						  maddr + offset, buf, bytes);
3895 				set_page_dirty_lock(page);
3896 			} else {
3897 				copy_from_user_page(vma, page, addr,
3898 						    buf, maddr + offset, bytes);
3899 			}
3900 			kunmap(page);
3901 			page_cache_release(page);
3902 		}
3903 		len -= bytes;
3904 		buf += bytes;
3905 		addr += bytes;
3906 	}
3907 	up_read(&mm->mmap_sem);
3908 
3909 	return buf - old_buf;
3910 }
3911 
3912 /**
3913  * access_remote_vm - access another process' address space
3914  * @mm:		the mm_struct of the target address space
3915  * @addr:	start address to access
3916  * @buf:	source or destination buffer
3917  * @len:	number of bytes to transfer
3918  * @write:	whether the access is a write
3919  *
3920  * The caller must hold a reference on @mm.
3921  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)3922 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3923 		void *buf, int len, int write)
3924 {
3925 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3926 }
3927 
3928 /*
3929  * Access another process' address space.
3930  * Source/target buffer must be kernel space,
3931  * Do not walk the page table directly, use get_user_pages
3932  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)3933 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3934 		void *buf, int len, int write)
3935 {
3936 	struct mm_struct *mm;
3937 	int ret;
3938 
3939 	mm = get_task_mm(tsk);
3940 	if (!mm)
3941 		return 0;
3942 
3943 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3944 	mmput(mm);
3945 
3946 	return ret;
3947 }
3948 
3949 /*
3950  * Print the name of a VMA.
3951  */
print_vma_addr(char * prefix,unsigned long ip)3952 void print_vma_addr(char *prefix, unsigned long ip)
3953 {
3954 	struct mm_struct *mm = current->mm;
3955 	struct vm_area_struct *vma;
3956 
3957 	/*
3958 	 * Do not print if we are in atomic
3959 	 * contexts (in exception stacks, etc.):
3960 	 */
3961 	if (preempt_count())
3962 		return;
3963 
3964 	down_read(&mm->mmap_sem);
3965 	vma = find_vma(mm, ip);
3966 	if (vma && vma->vm_file) {
3967 		struct file *f = vma->vm_file;
3968 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3969 		if (buf) {
3970 			char *p, *s;
3971 
3972 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3973 			if (IS_ERR(p))
3974 				p = "?";
3975 			s = strrchr(p, '/');
3976 			if (s)
3977 				p = s+1;
3978 			printk("%s%s[%lx+%lx]", prefix, p,
3979 					vma->vm_start,
3980 					vma->vm_end - vma->vm_start);
3981 			free_page((unsigned long)buf);
3982 		}
3983 	}
3984 	up_read(&current->mm->mmap_sem);
3985 }
3986 
3987 #ifdef CONFIG_PROVE_LOCKING
might_fault(void)3988 void might_fault(void)
3989 {
3990 	/*
3991 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3992 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3993 	 * get paged out, therefore we'll never actually fault, and the
3994 	 * below annotations will generate false positives.
3995 	 */
3996 	if (segment_eq(get_fs(), KERNEL_DS))
3997 		return;
3998 
3999 	might_sleep();
4000 	/*
4001 	 * it would be nicer only to annotate paths which are not under
4002 	 * pagefault_disable, however that requires a larger audit and
4003 	 * providing helpers like get_user_atomic.
4004 	 */
4005 	if (!in_atomic() && current->mm)
4006 		might_lock_read(&current->mm->mmap_sem);
4007 }
4008 EXPORT_SYMBOL(might_fault);
4009 #endif
4010 
4011 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4012 static void clear_gigantic_page(struct page *page,
4013 				unsigned long addr,
4014 				unsigned int pages_per_huge_page)
4015 {
4016 	int i;
4017 	struct page *p = page;
4018 
4019 	might_sleep();
4020 	for (i = 0; i < pages_per_huge_page;
4021 	     i++, p = mem_map_next(p, page, i)) {
4022 		cond_resched();
4023 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4024 	}
4025 }
clear_huge_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4026 void clear_huge_page(struct page *page,
4027 		     unsigned long addr, unsigned int pages_per_huge_page)
4028 {
4029 	int i;
4030 
4031 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4032 		clear_gigantic_page(page, addr, pages_per_huge_page);
4033 		return;
4034 	}
4035 
4036 	might_sleep();
4037 	for (i = 0; i < pages_per_huge_page; i++) {
4038 		cond_resched();
4039 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4040 	}
4041 }
4042 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4043 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4044 				    unsigned long addr,
4045 				    struct vm_area_struct *vma,
4046 				    unsigned int pages_per_huge_page)
4047 {
4048 	int i;
4049 	struct page *dst_base = dst;
4050 	struct page *src_base = src;
4051 
4052 	for (i = 0; i < pages_per_huge_page; ) {
4053 		cond_resched();
4054 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4055 
4056 		i++;
4057 		dst = mem_map_next(dst, dst_base, i);
4058 		src = mem_map_next(src, src_base, i);
4059 	}
4060 }
4061 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4062 void copy_user_huge_page(struct page *dst, struct page *src,
4063 			 unsigned long addr, struct vm_area_struct *vma,
4064 			 unsigned int pages_per_huge_page)
4065 {
4066 	int i;
4067 
4068 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4069 		copy_user_gigantic_page(dst, src, addr, vma,
4070 					pages_per_huge_page);
4071 		return;
4072 	}
4073 
4074 	might_sleep();
4075 	for (i = 0; i < pages_per_huge_page; i++) {
4076 		cond_resched();
4077 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4078 	}
4079 }
4080 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4081