1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale eSDHC controller driver.
4 *
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
7 * Copyright 2020 NXP
8 *
9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
10 * Anton Vorontsov <avorontsov@ru.mvista.com>
11 */
12
13 #include <linux/err.h>
14 #include <linux/io.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/delay.h>
18 #include <linux/module.h>
19 #include <linux/sys_soc.h>
20 #include <linux/clk.h>
21 #include <linux/ktime.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/iopoll.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/mmc.h>
26 #include "sdhci-pltfm.h"
27 #include "sdhci-esdhc.h"
28
29 #define VENDOR_V_22 0x12
30 #define VENDOR_V_23 0x13
31
32 #define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
33
34 struct esdhc_clk_fixup {
35 const unsigned int sd_dflt_max_clk;
36 const unsigned int max_clk[MMC_TIMING_NUM];
37 };
38
39 static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
40 .sd_dflt_max_clk = 25000000,
41 .max_clk[MMC_TIMING_MMC_HS] = 46500000,
42 .max_clk[MMC_TIMING_SD_HS] = 46500000,
43 };
44
45 static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
46 .sd_dflt_max_clk = 25000000,
47 .max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
48 .max_clk[MMC_TIMING_MMC_HS200] = 167000000,
49 };
50
51 static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
52 .sd_dflt_max_clk = 25000000,
53 .max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
54 .max_clk[MMC_TIMING_MMC_HS200] = 125000000,
55 };
56
57 static const struct esdhc_clk_fixup p1010_esdhc_clk = {
58 .sd_dflt_max_clk = 20000000,
59 .max_clk[MMC_TIMING_LEGACY] = 20000000,
60 .max_clk[MMC_TIMING_MMC_HS] = 42000000,
61 .max_clk[MMC_TIMING_SD_HS] = 40000000,
62 };
63
64 static const struct of_device_id sdhci_esdhc_of_match[] = {
65 { .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
66 { .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
67 { .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
68 { .compatible = "fsl,p1010-esdhc", .data = &p1010_esdhc_clk},
69 { .compatible = "fsl,mpc8379-esdhc" },
70 { .compatible = "fsl,mpc8536-esdhc" },
71 { .compatible = "fsl,esdhc" },
72 { }
73 };
74 MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
75
76 struct sdhci_esdhc {
77 u8 vendor_ver;
78 u8 spec_ver;
79 bool quirk_incorrect_hostver;
80 bool quirk_limited_clk_division;
81 bool quirk_unreliable_pulse_detection;
82 bool quirk_tuning_erratum_type1;
83 bool quirk_tuning_erratum_type2;
84 bool quirk_ignore_data_inhibit;
85 bool quirk_delay_before_data_reset;
86 bool quirk_trans_complete_erratum;
87 bool in_sw_tuning;
88 unsigned int peripheral_clock;
89 const struct esdhc_clk_fixup *clk_fixup;
90 u32 div_ratio;
91 };
92
93 /**
94 * esdhc_read*_fixup - Fixup the value read from incompatible eSDHC register
95 * to make it compatible with SD spec.
96 *
97 * @host: pointer to sdhci_host
98 * @spec_reg: SD spec register address
99 * @value: 32bit eSDHC register value on spec_reg address
100 *
101 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
102 * registers are 32 bits. There are differences in register size, register
103 * address, register function, bit position and function between eSDHC spec
104 * and SD spec.
105 *
106 * Return a fixed up register value
107 */
esdhc_readl_fixup(struct sdhci_host * host,int spec_reg,u32 value)108 static u32 esdhc_readl_fixup(struct sdhci_host *host,
109 int spec_reg, u32 value)
110 {
111 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
112 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
113 u32 ret;
114
115 /*
116 * The bit of ADMA flag in eSDHC is not compatible with standard
117 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
118 * supported by eSDHC.
119 * And for many FSL eSDHC controller, the reset value of field
120 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
121 * only these vendor version is greater than 2.2/0x12 support ADMA.
122 */
123 if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
124 if (esdhc->vendor_ver > VENDOR_V_22) {
125 ret = value | SDHCI_CAN_DO_ADMA2;
126 return ret;
127 }
128 }
129 /*
130 * The DAT[3:0] line signal levels and the CMD line signal level are
131 * not compatible with standard SDHC register. The line signal levels
132 * DAT[7:0] are at bits 31:24 and the command line signal level is at
133 * bit 23. All other bits are the same as in the standard SDHC
134 * register.
135 */
136 if (spec_reg == SDHCI_PRESENT_STATE) {
137 ret = value & 0x000fffff;
138 ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
139 ret |= (value << 1) & SDHCI_CMD_LVL;
140 return ret;
141 }
142
143 /*
144 * DTS properties of mmc host are used to enable each speed mode
145 * according to soc and board capability. So clean up
146 * SDR50/SDR104/DDR50 support bits here.
147 */
148 if (spec_reg == SDHCI_CAPABILITIES_1) {
149 ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
150 SDHCI_SUPPORT_DDR50);
151 return ret;
152 }
153
154 /*
155 * Some controllers have unreliable Data Line Active
156 * bit for commands with busy signal. This affects
157 * Command Inhibit (data) bit. Just ignore it since
158 * MMC core driver has already polled card status
159 * with CMD13 after any command with busy siganl.
160 */
161 if ((spec_reg == SDHCI_PRESENT_STATE) &&
162 (esdhc->quirk_ignore_data_inhibit == true)) {
163 ret = value & ~SDHCI_DATA_INHIBIT;
164 return ret;
165 }
166
167 ret = value;
168 return ret;
169 }
170
esdhc_readw_fixup(struct sdhci_host * host,int spec_reg,u32 value)171 static u16 esdhc_readw_fixup(struct sdhci_host *host,
172 int spec_reg, u32 value)
173 {
174 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
175 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
176 u16 ret;
177 int shift = (spec_reg & 0x2) * 8;
178
179 if (spec_reg == SDHCI_TRANSFER_MODE)
180 return pltfm_host->xfer_mode_shadow;
181
182 if (spec_reg == SDHCI_HOST_VERSION)
183 ret = value & 0xffff;
184 else
185 ret = (value >> shift) & 0xffff;
186 /* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
187 * vendor version and spec version information.
188 */
189 if ((spec_reg == SDHCI_HOST_VERSION) &&
190 (esdhc->quirk_incorrect_hostver))
191 ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
192 return ret;
193 }
194
esdhc_readb_fixup(struct sdhci_host * host,int spec_reg,u32 value)195 static u8 esdhc_readb_fixup(struct sdhci_host *host,
196 int spec_reg, u32 value)
197 {
198 u8 ret;
199 u8 dma_bits;
200 int shift = (spec_reg & 0x3) * 8;
201
202 ret = (value >> shift) & 0xff;
203
204 /*
205 * "DMA select" locates at offset 0x28 in SD specification, but on
206 * P5020 or P3041, it locates at 0x29.
207 */
208 if (spec_reg == SDHCI_HOST_CONTROL) {
209 /* DMA select is 22,23 bits in Protocol Control Register */
210 dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
211 /* fixup the result */
212 ret &= ~SDHCI_CTRL_DMA_MASK;
213 ret |= dma_bits;
214 }
215 return ret;
216 }
217
218 /**
219 * esdhc_write*_fixup - Fixup the SD spec register value so that it could be
220 * written into eSDHC register.
221 *
222 * @host: pointer to sdhci_host
223 * @spec_reg: SD spec register address
224 * @value: 8/16/32bit SD spec register value that would be written
225 * @old_value: 32bit eSDHC register value on spec_reg address
226 *
227 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
228 * registers are 32 bits. There are differences in register size, register
229 * address, register function, bit position and function between eSDHC spec
230 * and SD spec.
231 *
232 * Return a fixed up register value
233 */
esdhc_writel_fixup(struct sdhci_host * host,int spec_reg,u32 value,u32 old_value)234 static u32 esdhc_writel_fixup(struct sdhci_host *host,
235 int spec_reg, u32 value, u32 old_value)
236 {
237 u32 ret;
238
239 /*
240 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
241 * when SYSCTL[RSTD] is set for some special operations.
242 * No any impact on other operation.
243 */
244 if (spec_reg == SDHCI_INT_ENABLE)
245 ret = value | SDHCI_INT_BLK_GAP;
246 else
247 ret = value;
248
249 return ret;
250 }
251
esdhc_writew_fixup(struct sdhci_host * host,int spec_reg,u16 value,u32 old_value)252 static u32 esdhc_writew_fixup(struct sdhci_host *host,
253 int spec_reg, u16 value, u32 old_value)
254 {
255 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
256 int shift = (spec_reg & 0x2) * 8;
257 u32 ret;
258
259 switch (spec_reg) {
260 case SDHCI_TRANSFER_MODE:
261 /*
262 * Postpone this write, we must do it together with a
263 * command write that is down below. Return old value.
264 */
265 pltfm_host->xfer_mode_shadow = value;
266 return old_value;
267 case SDHCI_COMMAND:
268 ret = (value << 16) | pltfm_host->xfer_mode_shadow;
269 return ret;
270 }
271
272 ret = old_value & (~(0xffff << shift));
273 ret |= (value << shift);
274
275 if (spec_reg == SDHCI_BLOCK_SIZE) {
276 /*
277 * Two last DMA bits are reserved, and first one is used for
278 * non-standard blksz of 4096 bytes that we don't support
279 * yet. So clear the DMA boundary bits.
280 */
281 ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
282 }
283 return ret;
284 }
285
esdhc_writeb_fixup(struct sdhci_host * host,int spec_reg,u8 value,u32 old_value)286 static u32 esdhc_writeb_fixup(struct sdhci_host *host,
287 int spec_reg, u8 value, u32 old_value)
288 {
289 u32 ret;
290 u32 dma_bits;
291 u8 tmp;
292 int shift = (spec_reg & 0x3) * 8;
293
294 /*
295 * eSDHC doesn't have a standard power control register, so we do
296 * nothing here to avoid incorrect operation.
297 */
298 if (spec_reg == SDHCI_POWER_CONTROL)
299 return old_value;
300 /*
301 * "DMA select" location is offset 0x28 in SD specification, but on
302 * P5020 or P3041, it's located at 0x29.
303 */
304 if (spec_reg == SDHCI_HOST_CONTROL) {
305 /*
306 * If host control register is not standard, exit
307 * this function
308 */
309 if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
310 return old_value;
311
312 /* DMA select is 22,23 bits in Protocol Control Register */
313 dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
314 ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
315 tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
316 (old_value & SDHCI_CTRL_DMA_MASK);
317 ret = (ret & (~0xff)) | tmp;
318
319 /* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
320 ret &= ~ESDHC_HOST_CONTROL_RES;
321 return ret;
322 }
323
324 ret = (old_value & (~(0xff << shift))) | (value << shift);
325 return ret;
326 }
327
esdhc_be_readl(struct sdhci_host * host,int reg)328 static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
329 {
330 u32 ret;
331 u32 value;
332
333 if (reg == SDHCI_CAPABILITIES_1)
334 value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
335 else
336 value = ioread32be(host->ioaddr + reg);
337
338 ret = esdhc_readl_fixup(host, reg, value);
339
340 return ret;
341 }
342
esdhc_le_readl(struct sdhci_host * host,int reg)343 static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
344 {
345 u32 ret;
346 u32 value;
347
348 if (reg == SDHCI_CAPABILITIES_1)
349 value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
350 else
351 value = ioread32(host->ioaddr + reg);
352
353 ret = esdhc_readl_fixup(host, reg, value);
354
355 return ret;
356 }
357
esdhc_be_readw(struct sdhci_host * host,int reg)358 static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
359 {
360 u16 ret;
361 u32 value;
362 int base = reg & ~0x3;
363
364 value = ioread32be(host->ioaddr + base);
365 ret = esdhc_readw_fixup(host, reg, value);
366 return ret;
367 }
368
esdhc_le_readw(struct sdhci_host * host,int reg)369 static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
370 {
371 u16 ret;
372 u32 value;
373 int base = reg & ~0x3;
374
375 value = ioread32(host->ioaddr + base);
376 ret = esdhc_readw_fixup(host, reg, value);
377 return ret;
378 }
379
esdhc_be_readb(struct sdhci_host * host,int reg)380 static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
381 {
382 u8 ret;
383 u32 value;
384 int base = reg & ~0x3;
385
386 value = ioread32be(host->ioaddr + base);
387 ret = esdhc_readb_fixup(host, reg, value);
388 return ret;
389 }
390
esdhc_le_readb(struct sdhci_host * host,int reg)391 static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
392 {
393 u8 ret;
394 u32 value;
395 int base = reg & ~0x3;
396
397 value = ioread32(host->ioaddr + base);
398 ret = esdhc_readb_fixup(host, reg, value);
399 return ret;
400 }
401
esdhc_be_writel(struct sdhci_host * host,u32 val,int reg)402 static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
403 {
404 u32 value;
405
406 value = esdhc_writel_fixup(host, reg, val, 0);
407 iowrite32be(value, host->ioaddr + reg);
408 }
409
esdhc_le_writel(struct sdhci_host * host,u32 val,int reg)410 static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
411 {
412 u32 value;
413
414 value = esdhc_writel_fixup(host, reg, val, 0);
415 iowrite32(value, host->ioaddr + reg);
416 }
417
esdhc_be_writew(struct sdhci_host * host,u16 val,int reg)418 static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
419 {
420 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
421 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
422 int base = reg & ~0x3;
423 u32 value;
424 u32 ret;
425
426 value = ioread32be(host->ioaddr + base);
427 ret = esdhc_writew_fixup(host, reg, val, value);
428 if (reg != SDHCI_TRANSFER_MODE)
429 iowrite32be(ret, host->ioaddr + base);
430
431 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
432 * 1us later after ESDHC_EXTN is set.
433 */
434 if (base == ESDHC_SYSTEM_CONTROL_2) {
435 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
436 esdhc->in_sw_tuning) {
437 udelay(1);
438 ret |= ESDHC_SMPCLKSEL;
439 iowrite32be(ret, host->ioaddr + base);
440 }
441 }
442 }
443
esdhc_le_writew(struct sdhci_host * host,u16 val,int reg)444 static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
445 {
446 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
447 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
448 int base = reg & ~0x3;
449 u32 value;
450 u32 ret;
451
452 value = ioread32(host->ioaddr + base);
453 ret = esdhc_writew_fixup(host, reg, val, value);
454 if (reg != SDHCI_TRANSFER_MODE)
455 iowrite32(ret, host->ioaddr + base);
456
457 /* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
458 * 1us later after ESDHC_EXTN is set.
459 */
460 if (base == ESDHC_SYSTEM_CONTROL_2) {
461 if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
462 esdhc->in_sw_tuning) {
463 udelay(1);
464 ret |= ESDHC_SMPCLKSEL;
465 iowrite32(ret, host->ioaddr + base);
466 }
467 }
468 }
469
esdhc_be_writeb(struct sdhci_host * host,u8 val,int reg)470 static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
471 {
472 int base = reg & ~0x3;
473 u32 value;
474 u32 ret;
475
476 value = ioread32be(host->ioaddr + base);
477 ret = esdhc_writeb_fixup(host, reg, val, value);
478 iowrite32be(ret, host->ioaddr + base);
479 }
480
esdhc_le_writeb(struct sdhci_host * host,u8 val,int reg)481 static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
482 {
483 int base = reg & ~0x3;
484 u32 value;
485 u32 ret;
486
487 value = ioread32(host->ioaddr + base);
488 ret = esdhc_writeb_fixup(host, reg, val, value);
489 iowrite32(ret, host->ioaddr + base);
490 }
491
492 /*
493 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
494 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
495 * and Block Gap Event(IRQSTAT[BGE]) are also set.
496 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
497 * and re-issue the entire read transaction from beginning.
498 */
esdhc_of_adma_workaround(struct sdhci_host * host,u32 intmask)499 static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
500 {
501 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
502 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
503 bool applicable;
504 dma_addr_t dmastart;
505 dma_addr_t dmanow;
506
507 applicable = (intmask & SDHCI_INT_DATA_END) &&
508 (intmask & SDHCI_INT_BLK_GAP) &&
509 (esdhc->vendor_ver == VENDOR_V_23);
510 if (!applicable)
511 return;
512
513 host->data->error = 0;
514 dmastart = sg_dma_address(host->data->sg);
515 dmanow = dmastart + host->data->bytes_xfered;
516 /*
517 * Force update to the next DMA block boundary.
518 */
519 dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
520 SDHCI_DEFAULT_BOUNDARY_SIZE;
521 host->data->bytes_xfered = dmanow - dmastart;
522 sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
523 }
524
esdhc_of_enable_dma(struct sdhci_host * host)525 static int esdhc_of_enable_dma(struct sdhci_host *host)
526 {
527 int ret;
528 u32 value;
529 struct device *dev = mmc_dev(host->mmc);
530
531 if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
532 of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) {
533 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
534 if (ret)
535 return ret;
536 }
537
538 value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
539
540 if (of_dma_is_coherent(dev->of_node))
541 value |= ESDHC_DMA_SNOOP;
542 else
543 value &= ~ESDHC_DMA_SNOOP;
544
545 sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
546 return 0;
547 }
548
esdhc_of_get_max_clock(struct sdhci_host * host)549 static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
550 {
551 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
552 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
553
554 if (esdhc->peripheral_clock)
555 return esdhc->peripheral_clock;
556 else
557 return pltfm_host->clock;
558 }
559
esdhc_of_get_min_clock(struct sdhci_host * host)560 static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
561 {
562 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
563 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
564 unsigned int clock;
565
566 if (esdhc->peripheral_clock)
567 clock = esdhc->peripheral_clock;
568 else
569 clock = pltfm_host->clock;
570 return clock / 256 / 16;
571 }
572
esdhc_clock_enable(struct sdhci_host * host,bool enable)573 static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
574 {
575 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
576 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
577 ktime_t timeout;
578 u32 val, clk_en;
579
580 clk_en = ESDHC_CLOCK_SDCLKEN;
581
582 /*
583 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
584 * is 2.2 or lower.
585 */
586 if (esdhc->vendor_ver <= VENDOR_V_22)
587 clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
588 ESDHC_CLOCK_PEREN);
589
590 val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
591
592 if (enable)
593 val |= clk_en;
594 else
595 val &= ~clk_en;
596
597 sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
598
599 /*
600 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
601 * wait clock stable bit which does not exist.
602 */
603 timeout = ktime_add_ms(ktime_get(), 20);
604 while (esdhc->vendor_ver > VENDOR_V_22) {
605 bool timedout = ktime_after(ktime_get(), timeout);
606
607 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
608 break;
609 if (timedout) {
610 pr_err("%s: Internal clock never stabilised.\n",
611 mmc_hostname(host->mmc));
612 break;
613 }
614 usleep_range(10, 20);
615 }
616 }
617
esdhc_flush_async_fifo(struct sdhci_host * host)618 static void esdhc_flush_async_fifo(struct sdhci_host *host)
619 {
620 ktime_t timeout;
621 u32 val;
622
623 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
624 val |= ESDHC_FLUSH_ASYNC_FIFO;
625 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
626
627 /* Wait max 20 ms */
628 timeout = ktime_add_ms(ktime_get(), 20);
629 while (1) {
630 bool timedout = ktime_after(ktime_get(), timeout);
631
632 if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
633 ESDHC_FLUSH_ASYNC_FIFO))
634 break;
635 if (timedout) {
636 pr_err("%s: flushing asynchronous FIFO timeout.\n",
637 mmc_hostname(host->mmc));
638 break;
639 }
640 usleep_range(10, 20);
641 }
642 }
643
esdhc_of_set_clock(struct sdhci_host * host,unsigned int clock)644 static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
645 {
646 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
647 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
648 unsigned int pre_div = 1, div = 1;
649 unsigned int clock_fixup = 0;
650 ktime_t timeout;
651 u32 temp;
652
653 if (clock == 0) {
654 host->mmc->actual_clock = 0;
655 esdhc_clock_enable(host, false);
656 return;
657 }
658
659 /* Start pre_div at 2 for vendor version < 2.3. */
660 if (esdhc->vendor_ver < VENDOR_V_23)
661 pre_div = 2;
662
663 /* Fix clock value. */
664 if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
665 esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
666 clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
667 else if (esdhc->clk_fixup)
668 clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
669
670 if (clock_fixup == 0 || clock < clock_fixup)
671 clock_fixup = clock;
672
673 /* Calculate pre_div and div. */
674 while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
675 pre_div *= 2;
676
677 while (host->max_clk / pre_div / div > clock_fixup && div < 16)
678 div++;
679
680 esdhc->div_ratio = pre_div * div;
681
682 /* Limit clock division for HS400 200MHz clock for quirk. */
683 if (esdhc->quirk_limited_clk_division &&
684 clock == MMC_HS200_MAX_DTR &&
685 (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
686 host->flags & SDHCI_HS400_TUNING)) {
687 if (esdhc->div_ratio <= 4) {
688 pre_div = 4;
689 div = 1;
690 } else if (esdhc->div_ratio <= 8) {
691 pre_div = 4;
692 div = 2;
693 } else if (esdhc->div_ratio <= 12) {
694 pre_div = 4;
695 div = 3;
696 } else {
697 pr_warn("%s: using unsupported clock division.\n",
698 mmc_hostname(host->mmc));
699 }
700 esdhc->div_ratio = pre_div * div;
701 }
702
703 host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
704
705 dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
706 clock, host->mmc->actual_clock);
707
708 /* Set clock division into register. */
709 pre_div >>= 1;
710 div--;
711
712 esdhc_clock_enable(host, false);
713
714 temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
715 temp &= ~ESDHC_CLOCK_MASK;
716 temp |= ((div << ESDHC_DIVIDER_SHIFT) |
717 (pre_div << ESDHC_PREDIV_SHIFT));
718 sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
719
720 /*
721 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
722 * wait clock stable bit which does not exist.
723 */
724 timeout = ktime_add_ms(ktime_get(), 20);
725 while (esdhc->vendor_ver > VENDOR_V_22) {
726 bool timedout = ktime_after(ktime_get(), timeout);
727
728 if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
729 break;
730 if (timedout) {
731 pr_err("%s: Internal clock never stabilised.\n",
732 mmc_hostname(host->mmc));
733 break;
734 }
735 usleep_range(10, 20);
736 }
737
738 /* Additional setting for HS400. */
739 if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
740 clock == MMC_HS200_MAX_DTR) {
741 temp = sdhci_readl(host, ESDHC_TBCTL);
742 sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
743 temp = sdhci_readl(host, ESDHC_SDCLKCTL);
744 sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
745 esdhc_clock_enable(host, true);
746
747 temp = sdhci_readl(host, ESDHC_DLLCFG0);
748 temp |= ESDHC_DLL_ENABLE;
749 if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
750 temp |= ESDHC_DLL_FREQ_SEL;
751 sdhci_writel(host, temp, ESDHC_DLLCFG0);
752
753 temp |= ESDHC_DLL_RESET;
754 sdhci_writel(host, temp, ESDHC_DLLCFG0);
755 udelay(1);
756 temp &= ~ESDHC_DLL_RESET;
757 sdhci_writel(host, temp, ESDHC_DLLCFG0);
758
759 /* Wait max 20 ms */
760 if (read_poll_timeout(sdhci_readl, temp,
761 temp & ESDHC_DLL_STS_SLV_LOCK,
762 10, 20000, false,
763 host, ESDHC_DLLSTAT0))
764 pr_err("%s: timeout for delay chain lock.\n",
765 mmc_hostname(host->mmc));
766
767 temp = sdhci_readl(host, ESDHC_TBCTL);
768 sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
769
770 esdhc_clock_enable(host, false);
771 esdhc_flush_async_fifo(host);
772 }
773 esdhc_clock_enable(host, true);
774 }
775
esdhc_pltfm_set_bus_width(struct sdhci_host * host,int width)776 static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
777 {
778 u32 ctrl;
779
780 ctrl = sdhci_readl(host, ESDHC_PROCTL);
781 ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
782 switch (width) {
783 case MMC_BUS_WIDTH_8:
784 ctrl |= ESDHC_CTRL_8BITBUS;
785 break;
786
787 case MMC_BUS_WIDTH_4:
788 ctrl |= ESDHC_CTRL_4BITBUS;
789 break;
790
791 default:
792 break;
793 }
794
795 sdhci_writel(host, ctrl, ESDHC_PROCTL);
796 }
797
esdhc_reset(struct sdhci_host * host,u8 mask)798 static void esdhc_reset(struct sdhci_host *host, u8 mask)
799 {
800 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
801 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
802 u32 val, bus_width = 0;
803
804 /*
805 * Add delay to make sure all the DMA transfers are finished
806 * for quirk.
807 */
808 if (esdhc->quirk_delay_before_data_reset &&
809 (mask & SDHCI_RESET_DATA) &&
810 (host->flags & SDHCI_REQ_USE_DMA))
811 mdelay(5);
812
813 /*
814 * Save bus-width for eSDHC whose vendor version is 2.2
815 * or lower for data reset.
816 */
817 if ((mask & SDHCI_RESET_DATA) &&
818 (esdhc->vendor_ver <= VENDOR_V_22)) {
819 val = sdhci_readl(host, ESDHC_PROCTL);
820 bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
821 }
822
823 sdhci_reset(host, mask);
824
825 /*
826 * Restore bus-width setting and interrupt registers for eSDHC
827 * whose vendor version is 2.2 or lower for data reset.
828 */
829 if ((mask & SDHCI_RESET_DATA) &&
830 (esdhc->vendor_ver <= VENDOR_V_22)) {
831 val = sdhci_readl(host, ESDHC_PROCTL);
832 val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
833 val |= bus_width;
834 sdhci_writel(host, val, ESDHC_PROCTL);
835
836 sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
837 sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
838 }
839
840 /*
841 * Some bits have to be cleaned manually for eSDHC whose spec
842 * version is higher than 3.0 for all reset.
843 */
844 if ((mask & SDHCI_RESET_ALL) &&
845 (esdhc->spec_ver >= SDHCI_SPEC_300)) {
846 val = sdhci_readl(host, ESDHC_TBCTL);
847 val &= ~ESDHC_TB_EN;
848 sdhci_writel(host, val, ESDHC_TBCTL);
849
850 /*
851 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
852 * 0 for quirk.
853 */
854 if (esdhc->quirk_unreliable_pulse_detection) {
855 val = sdhci_readl(host, ESDHC_DLLCFG1);
856 val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
857 sdhci_writel(host, val, ESDHC_DLLCFG1);
858 }
859 }
860 }
861
862 /* The SCFG, Supplemental Configuration Unit, provides SoC specific
863 * configuration and status registers for the device. There is a
864 * SDHC IO VSEL control register on SCFG for some platforms. It's
865 * used to support SDHC IO voltage switching.
866 */
867 static const struct of_device_id scfg_device_ids[] = {
868 { .compatible = "fsl,t1040-scfg", },
869 { .compatible = "fsl,ls1012a-scfg", },
870 { .compatible = "fsl,ls1046a-scfg", },
871 {}
872 };
873
874 /* SDHC IO VSEL control register definition */
875 #define SCFG_SDHCIOVSELCR 0x408
876 #define SDHCIOVSELCR_TGLEN 0x80000000
877 #define SDHCIOVSELCR_VSELVAL 0x60000000
878 #define SDHCIOVSELCR_SDHC_VS 0x00000001
879
esdhc_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)880 static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
881 struct mmc_ios *ios)
882 {
883 struct sdhci_host *host = mmc_priv(mmc);
884 struct device_node *scfg_node;
885 void __iomem *scfg_base = NULL;
886 u32 sdhciovselcr;
887 u32 val;
888
889 /*
890 * Signal Voltage Switching is only applicable for Host Controllers
891 * v3.00 and above.
892 */
893 if (host->version < SDHCI_SPEC_300)
894 return 0;
895
896 val = sdhci_readl(host, ESDHC_PROCTL);
897
898 switch (ios->signal_voltage) {
899 case MMC_SIGNAL_VOLTAGE_330:
900 val &= ~ESDHC_VOLT_SEL;
901 sdhci_writel(host, val, ESDHC_PROCTL);
902 return 0;
903 case MMC_SIGNAL_VOLTAGE_180:
904 scfg_node = of_find_matching_node(NULL, scfg_device_ids);
905 if (scfg_node)
906 scfg_base = of_iomap(scfg_node, 0);
907 of_node_put(scfg_node);
908 if (scfg_base) {
909 sdhciovselcr = SDHCIOVSELCR_TGLEN |
910 SDHCIOVSELCR_VSELVAL;
911 iowrite32be(sdhciovselcr,
912 scfg_base + SCFG_SDHCIOVSELCR);
913
914 val |= ESDHC_VOLT_SEL;
915 sdhci_writel(host, val, ESDHC_PROCTL);
916 mdelay(5);
917
918 sdhciovselcr = SDHCIOVSELCR_TGLEN |
919 SDHCIOVSELCR_SDHC_VS;
920 iowrite32be(sdhciovselcr,
921 scfg_base + SCFG_SDHCIOVSELCR);
922 iounmap(scfg_base);
923 } else {
924 val |= ESDHC_VOLT_SEL;
925 sdhci_writel(host, val, ESDHC_PROCTL);
926 }
927 return 0;
928 default:
929 return 0;
930 }
931 }
932
933 static struct soc_device_attribute soc_tuning_erratum_type1[] = {
934 { .family = "QorIQ T1023", },
935 { .family = "QorIQ T1040", },
936 { .family = "QorIQ T2080", },
937 { .family = "QorIQ LS1021A", },
938 { /* sentinel */ }
939 };
940
941 static struct soc_device_attribute soc_tuning_erratum_type2[] = {
942 { .family = "QorIQ LS1012A", },
943 { .family = "QorIQ LS1043A", },
944 { .family = "QorIQ LS1046A", },
945 { .family = "QorIQ LS1080A", },
946 { .family = "QorIQ LS2080A", },
947 { .family = "QorIQ LA1575A", },
948 { /* sentinel */ }
949 };
950
esdhc_tuning_block_enable(struct sdhci_host * host,bool enable)951 static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
952 {
953 u32 val;
954
955 esdhc_clock_enable(host, false);
956 esdhc_flush_async_fifo(host);
957
958 val = sdhci_readl(host, ESDHC_TBCTL);
959 if (enable)
960 val |= ESDHC_TB_EN;
961 else
962 val &= ~ESDHC_TB_EN;
963 sdhci_writel(host, val, ESDHC_TBCTL);
964
965 esdhc_clock_enable(host, true);
966 }
967
esdhc_tuning_window_ptr(struct sdhci_host * host,u8 * window_start,u8 * window_end)968 static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
969 u8 *window_end)
970 {
971 u32 val;
972
973 /* Write TBCTL[11:8]=4'h8 */
974 val = sdhci_readl(host, ESDHC_TBCTL);
975 val &= ~(0xf << 8);
976 val |= 8 << 8;
977 sdhci_writel(host, val, ESDHC_TBCTL);
978
979 mdelay(1);
980
981 /* Read TBCTL[31:0] register and rewrite again */
982 val = sdhci_readl(host, ESDHC_TBCTL);
983 sdhci_writel(host, val, ESDHC_TBCTL);
984
985 mdelay(1);
986
987 /* Read the TBSTAT[31:0] register twice */
988 val = sdhci_readl(host, ESDHC_TBSTAT);
989 val = sdhci_readl(host, ESDHC_TBSTAT);
990
991 *window_end = val & 0xff;
992 *window_start = (val >> 8) & 0xff;
993 }
994
esdhc_prepare_sw_tuning(struct sdhci_host * host,u8 * window_start,u8 * window_end)995 static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
996 u8 *window_end)
997 {
998 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
999 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1000 u8 start_ptr, end_ptr;
1001
1002 if (esdhc->quirk_tuning_erratum_type1) {
1003 *window_start = 5 * esdhc->div_ratio;
1004 *window_end = 3 * esdhc->div_ratio;
1005 return;
1006 }
1007
1008 esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
1009
1010 /* Reset data lines by setting ESDHCCTL[RSTD] */
1011 sdhci_reset(host, SDHCI_RESET_DATA);
1012 /* Write 32'hFFFF_FFFF to IRQSTAT register */
1013 sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
1014
1015 /* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1016 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1017 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1018 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1019 */
1020
1021 if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1022 *window_start = 8 * esdhc->div_ratio;
1023 *window_end = 4 * esdhc->div_ratio;
1024 } else {
1025 *window_start = 5 * esdhc->div_ratio;
1026 *window_end = 3 * esdhc->div_ratio;
1027 }
1028 }
1029
esdhc_execute_sw_tuning(struct mmc_host * mmc,u32 opcode,u8 window_start,u8 window_end)1030 static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1031 u8 window_start, u8 window_end)
1032 {
1033 struct sdhci_host *host = mmc_priv(mmc);
1034 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1035 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1036 u32 val;
1037 int ret;
1038
1039 /* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1040 val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1041 ESDHC_WNDW_STRT_PTR_MASK;
1042 val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1043 sdhci_writel(host, val, ESDHC_TBPTR);
1044
1045 /* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1046 val = sdhci_readl(host, ESDHC_TBCTL);
1047 val &= ~ESDHC_TB_MODE_MASK;
1048 val |= ESDHC_TB_MODE_SW;
1049 sdhci_writel(host, val, ESDHC_TBCTL);
1050
1051 esdhc->in_sw_tuning = true;
1052 ret = sdhci_execute_tuning(mmc, opcode);
1053 esdhc->in_sw_tuning = false;
1054 return ret;
1055 }
1056
esdhc_execute_tuning(struct mmc_host * mmc,u32 opcode)1057 static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1058 {
1059 struct sdhci_host *host = mmc_priv(mmc);
1060 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1061 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1062 u8 window_start, window_end;
1063 int ret, retries = 1;
1064 bool hs400_tuning;
1065 unsigned int clk;
1066 u32 val;
1067
1068 /* For tuning mode, the sd clock divisor value
1069 * must be larger than 3 according to reference manual.
1070 */
1071 clk = esdhc->peripheral_clock / 3;
1072 if (host->clock > clk)
1073 esdhc_of_set_clock(host, clk);
1074
1075 esdhc_tuning_block_enable(host, true);
1076
1077 /*
1078 * The eSDHC controller takes the data timeout value into account
1079 * during tuning. If the SD card is too slow sending the response, the
1080 * timer will expire and a "Buffer Read Ready" interrupt without data
1081 * is triggered. This leads to tuning errors.
1082 *
1083 * Just set the timeout to the maximum value because the core will
1084 * already take care of it in sdhci_send_tuning().
1085 */
1086 sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
1087
1088 hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1089
1090 do {
1091 if (esdhc->quirk_limited_clk_division &&
1092 hs400_tuning)
1093 esdhc_of_set_clock(host, host->clock);
1094
1095 /* Do HW tuning */
1096 val = sdhci_readl(host, ESDHC_TBCTL);
1097 val &= ~ESDHC_TB_MODE_MASK;
1098 val |= ESDHC_TB_MODE_3;
1099 sdhci_writel(host, val, ESDHC_TBCTL);
1100
1101 ret = sdhci_execute_tuning(mmc, opcode);
1102 if (ret)
1103 break;
1104
1105 /* For type2 affected platforms of the tuning erratum,
1106 * tuning may succeed although eSDHC might not have
1107 * tuned properly. Need to check tuning window.
1108 */
1109 if (esdhc->quirk_tuning_erratum_type2 &&
1110 !host->tuning_err) {
1111 esdhc_tuning_window_ptr(host, &window_start,
1112 &window_end);
1113 if (abs(window_start - window_end) >
1114 (4 * esdhc->div_ratio + 2))
1115 host->tuning_err = -EAGAIN;
1116 }
1117
1118 /* If HW tuning fails and triggers erratum,
1119 * try workaround.
1120 */
1121 ret = host->tuning_err;
1122 if (ret == -EAGAIN &&
1123 (esdhc->quirk_tuning_erratum_type1 ||
1124 esdhc->quirk_tuning_erratum_type2)) {
1125 /* Recover HS400 tuning flag */
1126 if (hs400_tuning)
1127 host->flags |= SDHCI_HS400_TUNING;
1128 pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1129 mmc_hostname(mmc));
1130 /* Do SW tuning */
1131 esdhc_prepare_sw_tuning(host, &window_start,
1132 &window_end);
1133 ret = esdhc_execute_sw_tuning(mmc, opcode,
1134 window_start,
1135 window_end);
1136 if (ret)
1137 break;
1138
1139 /* Retry both HW/SW tuning with reduced clock. */
1140 ret = host->tuning_err;
1141 if (ret == -EAGAIN && retries) {
1142 /* Recover HS400 tuning flag */
1143 if (hs400_tuning)
1144 host->flags |= SDHCI_HS400_TUNING;
1145
1146 clk = host->max_clk / (esdhc->div_ratio + 1);
1147 esdhc_of_set_clock(host, clk);
1148 pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1149 mmc_hostname(mmc));
1150 } else {
1151 break;
1152 }
1153 } else {
1154 break;
1155 }
1156 } while (retries--);
1157
1158 if (ret) {
1159 esdhc_tuning_block_enable(host, false);
1160 } else if (hs400_tuning) {
1161 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1162 val |= ESDHC_FLW_CTL_BG;
1163 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1164 }
1165
1166 return ret;
1167 }
1168
esdhc_set_uhs_signaling(struct sdhci_host * host,unsigned int timing)1169 static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1170 unsigned int timing)
1171 {
1172 u32 val;
1173
1174 /*
1175 * There are specific registers setting for HS400 mode.
1176 * Clean all of them if controller is in HS400 mode to
1177 * exit HS400 mode before re-setting any speed mode.
1178 */
1179 val = sdhci_readl(host, ESDHC_TBCTL);
1180 if (val & ESDHC_HS400_MODE) {
1181 val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1182 val &= ~ESDHC_FLW_CTL_BG;
1183 sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1184
1185 val = sdhci_readl(host, ESDHC_SDCLKCTL);
1186 val &= ~ESDHC_CMD_CLK_CTL;
1187 sdhci_writel(host, val, ESDHC_SDCLKCTL);
1188
1189 esdhc_clock_enable(host, false);
1190 val = sdhci_readl(host, ESDHC_TBCTL);
1191 val &= ~ESDHC_HS400_MODE;
1192 sdhci_writel(host, val, ESDHC_TBCTL);
1193 esdhc_clock_enable(host, true);
1194
1195 val = sdhci_readl(host, ESDHC_DLLCFG0);
1196 val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1197 sdhci_writel(host, val, ESDHC_DLLCFG0);
1198
1199 val = sdhci_readl(host, ESDHC_TBCTL);
1200 val &= ~ESDHC_HS400_WNDW_ADJUST;
1201 sdhci_writel(host, val, ESDHC_TBCTL);
1202
1203 esdhc_tuning_block_enable(host, false);
1204 }
1205
1206 if (timing == MMC_TIMING_MMC_HS400)
1207 esdhc_tuning_block_enable(host, true);
1208 else
1209 sdhci_set_uhs_signaling(host, timing);
1210 }
1211
esdhc_irq(struct sdhci_host * host,u32 intmask)1212 static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1213 {
1214 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1215 struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1216 u32 command;
1217
1218 if (esdhc->quirk_trans_complete_erratum) {
1219 command = SDHCI_GET_CMD(sdhci_readw(host,
1220 SDHCI_COMMAND));
1221 if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1222 sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1223 intmask & SDHCI_INT_DATA_END) {
1224 intmask &= ~SDHCI_INT_DATA_END;
1225 sdhci_writel(host, SDHCI_INT_DATA_END,
1226 SDHCI_INT_STATUS);
1227 }
1228 }
1229 return intmask;
1230 }
1231
1232 #ifdef CONFIG_PM_SLEEP
1233 static u32 esdhc_proctl;
esdhc_of_suspend(struct device * dev)1234 static int esdhc_of_suspend(struct device *dev)
1235 {
1236 struct sdhci_host *host = dev_get_drvdata(dev);
1237
1238 esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1239
1240 if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1241 mmc_retune_needed(host->mmc);
1242
1243 return sdhci_suspend_host(host);
1244 }
1245
esdhc_of_resume(struct device * dev)1246 static int esdhc_of_resume(struct device *dev)
1247 {
1248 struct sdhci_host *host = dev_get_drvdata(dev);
1249 int ret = sdhci_resume_host(host);
1250
1251 if (ret == 0) {
1252 /* Isn't this already done by sdhci_resume_host() ? --rmk */
1253 esdhc_of_enable_dma(host);
1254 sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1255 }
1256 return ret;
1257 }
1258 #endif
1259
1260 static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1261 esdhc_of_suspend,
1262 esdhc_of_resume);
1263
1264 static const struct sdhci_ops sdhci_esdhc_be_ops = {
1265 .read_l = esdhc_be_readl,
1266 .read_w = esdhc_be_readw,
1267 .read_b = esdhc_be_readb,
1268 .write_l = esdhc_be_writel,
1269 .write_w = esdhc_be_writew,
1270 .write_b = esdhc_be_writeb,
1271 .set_clock = esdhc_of_set_clock,
1272 .enable_dma = esdhc_of_enable_dma,
1273 .get_max_clock = esdhc_of_get_max_clock,
1274 .get_min_clock = esdhc_of_get_min_clock,
1275 .adma_workaround = esdhc_of_adma_workaround,
1276 .set_bus_width = esdhc_pltfm_set_bus_width,
1277 .reset = esdhc_reset,
1278 .set_uhs_signaling = esdhc_set_uhs_signaling,
1279 .irq = esdhc_irq,
1280 };
1281
1282 static const struct sdhci_ops sdhci_esdhc_le_ops = {
1283 .read_l = esdhc_le_readl,
1284 .read_w = esdhc_le_readw,
1285 .read_b = esdhc_le_readb,
1286 .write_l = esdhc_le_writel,
1287 .write_w = esdhc_le_writew,
1288 .write_b = esdhc_le_writeb,
1289 .set_clock = esdhc_of_set_clock,
1290 .enable_dma = esdhc_of_enable_dma,
1291 .get_max_clock = esdhc_of_get_max_clock,
1292 .get_min_clock = esdhc_of_get_min_clock,
1293 .adma_workaround = esdhc_of_adma_workaround,
1294 .set_bus_width = esdhc_pltfm_set_bus_width,
1295 .reset = esdhc_reset,
1296 .set_uhs_signaling = esdhc_set_uhs_signaling,
1297 .irq = esdhc_irq,
1298 };
1299
1300 static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1301 .quirks = ESDHC_DEFAULT_QUIRKS |
1302 #ifdef CONFIG_PPC
1303 SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1304 #endif
1305 SDHCI_QUIRK_NO_CARD_NO_RESET |
1306 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1307 .ops = &sdhci_esdhc_be_ops,
1308 };
1309
1310 static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1311 .quirks = ESDHC_DEFAULT_QUIRKS |
1312 SDHCI_QUIRK_NO_CARD_NO_RESET |
1313 SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1314 .ops = &sdhci_esdhc_le_ops,
1315 };
1316
1317 static struct soc_device_attribute soc_incorrect_hostver[] = {
1318 { .family = "QorIQ T4240", .revision = "1.0", },
1319 { .family = "QorIQ T4240", .revision = "2.0", },
1320 { /* sentinel */ }
1321 };
1322
1323 static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1324 { .family = "QorIQ LX2160A", .revision = "1.0", },
1325 { .family = "QorIQ LX2160A", .revision = "2.0", },
1326 { .family = "QorIQ LS1028A", .revision = "1.0", },
1327 { /* sentinel */ }
1328 };
1329
1330 static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1331 { .family = "QorIQ LX2160A", .revision = "1.0", },
1332 { .family = "QorIQ LX2160A", .revision = "2.0", },
1333 { .family = "QorIQ LS1028A", .revision = "1.0", },
1334 { /* sentinel */ }
1335 };
1336
esdhc_init(struct platform_device * pdev,struct sdhci_host * host)1337 static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1338 {
1339 const struct of_device_id *match;
1340 struct sdhci_pltfm_host *pltfm_host;
1341 struct sdhci_esdhc *esdhc;
1342 struct device_node *np;
1343 struct clk *clk;
1344 u32 val;
1345 u16 host_ver;
1346
1347 pltfm_host = sdhci_priv(host);
1348 esdhc = sdhci_pltfm_priv(pltfm_host);
1349
1350 host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1351 esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1352 SDHCI_VENDOR_VER_SHIFT;
1353 esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1354 if (soc_device_match(soc_incorrect_hostver))
1355 esdhc->quirk_incorrect_hostver = true;
1356 else
1357 esdhc->quirk_incorrect_hostver = false;
1358
1359 if (soc_device_match(soc_fixup_sdhc_clkdivs))
1360 esdhc->quirk_limited_clk_division = true;
1361 else
1362 esdhc->quirk_limited_clk_division = false;
1363
1364 if (soc_device_match(soc_unreliable_pulse_detection))
1365 esdhc->quirk_unreliable_pulse_detection = true;
1366 else
1367 esdhc->quirk_unreliable_pulse_detection = false;
1368
1369 match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1370 if (match)
1371 esdhc->clk_fixup = match->data;
1372 np = pdev->dev.of_node;
1373
1374 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1375 esdhc->quirk_delay_before_data_reset = true;
1376 esdhc->quirk_trans_complete_erratum = true;
1377 }
1378
1379 clk = of_clk_get(np, 0);
1380 if (!IS_ERR(clk)) {
1381 /*
1382 * esdhc->peripheral_clock would be assigned with a value
1383 * which is eSDHC base clock when use periperal clock.
1384 * For some platforms, the clock value got by common clk
1385 * API is peripheral clock while the eSDHC base clock is
1386 * 1/2 peripheral clock.
1387 */
1388 if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1389 of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1390 of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1391 esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1392 else
1393 esdhc->peripheral_clock = clk_get_rate(clk);
1394
1395 clk_put(clk);
1396 }
1397
1398 esdhc_clock_enable(host, false);
1399 val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1400 /*
1401 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1402 * initialize it as 1 or 0 once, to override the different value
1403 * which may be configured in bootloader.
1404 */
1405 if (esdhc->peripheral_clock)
1406 val |= ESDHC_PERIPHERAL_CLK_SEL;
1407 else
1408 val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1409 sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1410 esdhc_clock_enable(host, true);
1411 }
1412
esdhc_hs400_prepare_ddr(struct mmc_host * mmc)1413 static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1414 {
1415 esdhc_tuning_block_enable(mmc_priv(mmc), false);
1416 return 0;
1417 }
1418
sdhci_esdhc_probe(struct platform_device * pdev)1419 static int sdhci_esdhc_probe(struct platform_device *pdev)
1420 {
1421 struct sdhci_host *host;
1422 struct device_node *np, *tp;
1423 struct sdhci_pltfm_host *pltfm_host;
1424 struct sdhci_esdhc *esdhc;
1425 int ret;
1426
1427 np = pdev->dev.of_node;
1428
1429 if (of_property_read_bool(np, "little-endian"))
1430 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1431 sizeof(struct sdhci_esdhc));
1432 else
1433 host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1434 sizeof(struct sdhci_esdhc));
1435
1436 if (IS_ERR(host))
1437 return PTR_ERR(host);
1438
1439 host->mmc_host_ops.start_signal_voltage_switch =
1440 esdhc_signal_voltage_switch;
1441 host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1442 host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1443 host->tuning_delay = 1;
1444
1445 esdhc_init(pdev, host);
1446
1447 sdhci_get_of_property(pdev);
1448
1449 pltfm_host = sdhci_priv(host);
1450 esdhc = sdhci_pltfm_priv(pltfm_host);
1451 if (soc_device_match(soc_tuning_erratum_type1))
1452 esdhc->quirk_tuning_erratum_type1 = true;
1453 else
1454 esdhc->quirk_tuning_erratum_type1 = false;
1455
1456 if (soc_device_match(soc_tuning_erratum_type2))
1457 esdhc->quirk_tuning_erratum_type2 = true;
1458 else
1459 esdhc->quirk_tuning_erratum_type2 = false;
1460
1461 if (esdhc->vendor_ver == VENDOR_V_22)
1462 host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1463
1464 if (esdhc->vendor_ver > VENDOR_V_22)
1465 host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1466
1467 tp = of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc");
1468 if (tp) {
1469 of_node_put(tp);
1470 host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1471 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1472 }
1473
1474 if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1475 of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1476 of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1477 of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1478 of_device_is_compatible(np, "fsl,t1040-esdhc"))
1479 host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1480
1481 if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1482 host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1483
1484 esdhc->quirk_ignore_data_inhibit = false;
1485 if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1486 /*
1487 * Freescale messed up with P2020 as it has a non-standard
1488 * host control register
1489 */
1490 host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1491 esdhc->quirk_ignore_data_inhibit = true;
1492 }
1493
1494 /* call to generic mmc_of_parse to support additional capabilities */
1495 ret = mmc_of_parse(host->mmc);
1496 if (ret)
1497 goto err;
1498
1499 mmc_of_parse_voltage(host->mmc, &host->ocr_mask);
1500
1501 ret = sdhci_add_host(host);
1502 if (ret)
1503 goto err;
1504
1505 return 0;
1506 err:
1507 sdhci_pltfm_free(pdev);
1508 return ret;
1509 }
1510
1511 static struct platform_driver sdhci_esdhc_driver = {
1512 .driver = {
1513 .name = "sdhci-esdhc",
1514 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1515 .of_match_table = sdhci_esdhc_of_match,
1516 .pm = &esdhc_of_dev_pm_ops,
1517 },
1518 .probe = sdhci_esdhc_probe,
1519 .remove = sdhci_pltfm_unregister,
1520 };
1521
1522 module_platform_driver(sdhci_esdhc_driver);
1523
1524 MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1525 MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1526 "Anton Vorontsov <avorontsov@ru.mvista.com>");
1527 MODULE_LICENSE("GPL v2");
1528