1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31 
32 
33 /******************\
34 * Helper functions *
35 \******************/
36 
37 /*
38  * Get the PHY Chip revision
39  */
ath5k_hw_radio_revision(struct ath5k_hw * ah,unsigned int chan)40 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41 {
42 	unsigned int i;
43 	u32 srev;
44 	u16 ret;
45 
46 	/*
47 	 * Set the radio chip access register
48 	 */
49 	switch (chan) {
50 	case CHANNEL_2GHZ:
51 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 		break;
53 	case CHANNEL_5GHZ:
54 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 		break;
56 	default:
57 		return 0;
58 	}
59 
60 	mdelay(2);
61 
62 	/* ...wait until PHY is ready and read the selected radio revision */
63 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64 
65 	for (i = 0; i < 8; i++)
66 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67 
68 	if (ah->ah_version == AR5K_AR5210) {
69 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 	} else {
72 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 				((srev & 0x0f) << 4), 8);
75 	}
76 
77 	/* Reset to the 5GHz mode */
78 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79 
80 	return ret;
81 }
82 
83 /*
84  * Check if a channel is supported
85  */
ath5k_channel_ok(struct ath5k_hw * ah,u16 freq,unsigned int flags)86 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87 {
88 	/* Check if the channel is in our supported range */
89 	if (flags & CHANNEL_2GHZ) {
90 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 			return true;
93 	} else if (flags & CHANNEL_5GHZ)
94 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 			return true;
97 
98 	return false;
99 }
100 
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct ieee80211_channel * channel)101 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 				struct ieee80211_channel *channel)
103 {
104 	u8 refclk_freq;
105 
106 	if ((ah->ah_radio == AR5K_RF5112) ||
107 	(ah->ah_radio == AR5K_RF5413) ||
108 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 		refclk_freq = 40;
110 	else
111 		refclk_freq = 32;
112 
113 	if ((channel->center_freq % refclk_freq != 0) &&
114 	((channel->center_freq % refclk_freq < 10) ||
115 	(channel->center_freq % refclk_freq > 22)))
116 		return true;
117 	else
118 		return false;
119 }
120 
121 /*
122  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123  */
ath5k_hw_rfb_op(struct ath5k_hw * ah,const struct ath5k_rf_reg * rf_regs,u32 val,u8 reg_id,bool set)124 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 					const struct ath5k_rf_reg *rf_regs,
126 					u32 val, u8 reg_id, bool set)
127 {
128 	const struct ath5k_rf_reg *rfreg = NULL;
129 	u8 offset, bank, num_bits, col, position;
130 	u16 entry;
131 	u32 mask, data, last_bit, bits_shifted, first_bit;
132 	u32 *rfb;
133 	s32 bits_left;
134 	int i;
135 
136 	data = 0;
137 	rfb = ah->ah_rf_banks;
138 
139 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 		if (rf_regs[i].index == reg_id) {
141 			rfreg = &rf_regs[i];
142 			break;
143 		}
144 	}
145 
146 	if (rfb == NULL || rfreg == NULL) {
147 		ATH5K_PRINTF("Rf register not found!\n");
148 		/* should not happen */
149 		return 0;
150 	}
151 
152 	bank = rfreg->bank;
153 	num_bits = rfreg->field.len;
154 	first_bit = rfreg->field.pos;
155 	col = rfreg->field.col;
156 
157 	/* first_bit is an offset from bank's
158 	 * start. Since we have all banks on
159 	 * the same array, we use this offset
160 	 * to mark each bank's start */
161 	offset = ah->ah_offset[bank];
162 
163 	/* Boundary check */
164 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
165 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 		return 0;
167 	}
168 
169 	entry = ((first_bit - 1) / 8) + offset;
170 	position = (first_bit - 1) % 8;
171 
172 	if (set)
173 		data = ath5k_hw_bitswap(val, num_bits);
174 
175 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 	position = 0, entry++) {
177 
178 		last_bit = (position + bits_left > 8) ? 8 :
179 					position + bits_left;
180 
181 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 								(col * 8);
183 
184 		if (set) {
185 			rfb[entry] &= ~mask;
186 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
187 			data >>= (8 - position);
188 		} else {
189 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 				<< bits_shifted;
191 			bits_shifted += last_bit - position;
192 		}
193 
194 		bits_left -= 8 - position;
195 	}
196 
197 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
198 
199 	return data;
200 }
201 
202 /**
203  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204  *
205  * @ah: the &struct ath5k_hw
206  * @channel: the currently set channel upon reset
207  *
208  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210  *
211  * Since delta slope is floating point we split it on its exponent and
212  * mantissa and provide these values on hw.
213  *
214  * For more infos i think this patent is related
215  * http://www.freepatentsonline.com/7184495.html
216  */
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct ieee80211_channel * channel)217 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 	struct ieee80211_channel *channel)
219 {
220 	/* Get exponent and mantissa and set it */
221 	u32 coef_scaled, coef_exp, coef_man,
222 		ds_coef_exp, ds_coef_man, clock;
223 
224 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 		!(channel->hw_value & CHANNEL_OFDM));
226 
227 	/* Get coefficient
228 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 	 * we scale coef by shifting clock value by 24 for
230 	 * better precision since we use integers */
231 	switch (ah->ah_bwmode) {
232 	case AR5K_BWMODE_40MHZ:
233 		clock = 40 * 2;
234 		break;
235 	case AR5K_BWMODE_10MHZ:
236 		clock = 40 / 2;
237 		break;
238 	case AR5K_BWMODE_5MHZ:
239 		clock = 40 / 4;
240 		break;
241 	default:
242 		clock = 40;
243 		break;
244 	}
245 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246 
247 	/* Get exponent
248 	 * ALGO: coef_exp = 14 - highest set bit position */
249 	coef_exp = ilog2(coef_scaled);
250 
251 	/* Doesn't make sense if it's zero*/
252 	if (!coef_scaled || !coef_exp)
253 		return -EINVAL;
254 
255 	/* Note: we've shifted coef_scaled by 24 */
256 	coef_exp = 14 - (coef_exp - 24);
257 
258 
259 	/* Get mantissa (significant digits)
260 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 	coef_man = coef_scaled +
262 		(1 << (24 - coef_exp - 1));
263 
264 	/* Calculate delta slope coefficient exponent
265 	 * and mantissa (remove scaling) and set them on hw */
266 	ds_coef_man = coef_man >> (24 - coef_exp);
267 	ds_coef_exp = coef_exp - 16;
268 
269 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273 
274 	return 0;
275 }
276 
ath5k_hw_phy_disable(struct ath5k_hw * ah)277 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278 {
279 	/*Just a try M.F.*/
280 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281 
282 	return 0;
283 }
284 
285 /*
286  * Wait for synth to settle
287  */
ath5k_hw_wait_for_synth(struct ath5k_hw * ah,struct ieee80211_channel * channel)288 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
289 			struct ieee80211_channel *channel)
290 {
291 	/*
292 	 * On 5211+ read activation -> rx delay
293 	 * and use it (100ns steps).
294 	 */
295 	if (ah->ah_version != AR5K_AR5210) {
296 		u32 delay;
297 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
298 			AR5K_PHY_RX_DELAY_M;
299 		delay = (channel->hw_value & CHANNEL_CCK) ?
300 			((delay << 2) / 22) : (delay / 10);
301 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
302 			delay = delay << 1;
303 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
304 			delay = delay << 2;
305 		/* XXX: /2 on turbo ? Let's be safe
306 		 * for now */
307 		udelay(100 + delay);
308 	} else {
309 		mdelay(1);
310 	}
311 }
312 
313 
314 /**********************\
315 * RF Gain optimization *
316 \**********************/
317 
318 /*
319  * This code is used to optimize RF gain on different environments
320  * (temperature mostly) based on feedback from a power detector.
321  *
322  * It's only used on RF5111 and RF5112, later RF chips seem to have
323  * auto adjustment on hw -notice they have a much smaller BANK 7 and
324  * no gain optimization ladder-.
325  *
326  * For more infos check out this patent doc
327  * http://www.freepatentsonline.com/7400691.html
328  *
329  * This paper describes power drops as seen on the receiver due to
330  * probe packets
331  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
332  * %20of%20Power%20Control.pdf
333  *
334  * And this is the MadWiFi bug entry related to the above
335  * http://madwifi-project.org/ticket/1659
336  * with various measurements and diagrams
337  *
338  * TODO: Deal with power drops due to probes by setting an appropriate
339  * tx power on the probe packets ! Make this part of the calibration process.
340  */
341 
342 /* Initialize ah_gain during attach */
ath5k_hw_rfgain_opt_init(struct ath5k_hw * ah)343 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
344 {
345 	/* Initialize the gain optimization values */
346 	switch (ah->ah_radio) {
347 	case AR5K_RF5111:
348 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
349 		ah->ah_gain.g_low = 20;
350 		ah->ah_gain.g_high = 35;
351 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
352 		break;
353 	case AR5K_RF5112:
354 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
355 		ah->ah_gain.g_low = 20;
356 		ah->ah_gain.g_high = 85;
357 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
358 		break;
359 	default:
360 		return -EINVAL;
361 	}
362 
363 	return 0;
364 }
365 
366 /* Schedule a gain probe check on the next transmited packet.
367  * That means our next packet is going to be sent with lower
368  * tx power and a Peak to Average Power Detector (PAPD) will try
369  * to measure the gain.
370  *
371  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
372  * just after we enable the probe so that we don't mess with
373  * standard traffic ? Maybe it's time to use sw interrupts and
374  * a probe tasklet !!!
375  */
ath5k_hw_request_rfgain_probe(struct ath5k_hw * ah)376 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
377 {
378 
379 	/* Skip if gain calibration is inactive or
380 	 * we already handle a probe request */
381 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
382 		return;
383 
384 	/* Send the packet with 2dB below max power as
385 	 * patent doc suggest */
386 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
387 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
388 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
389 
390 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
391 
392 }
393 
394 /* Calculate gain_F measurement correction
395  * based on the current step for RF5112 rev. 2 */
ath5k_hw_rf_gainf_corr(struct ath5k_hw * ah)396 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
397 {
398 	u32 mix, step;
399 	u32 *rf;
400 	const struct ath5k_gain_opt *go;
401 	const struct ath5k_gain_opt_step *g_step;
402 	const struct ath5k_rf_reg *rf_regs;
403 
404 	/* Only RF5112 Rev. 2 supports it */
405 	if ((ah->ah_radio != AR5K_RF5112) ||
406 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
407 		return 0;
408 
409 	go = &rfgain_opt_5112;
410 	rf_regs = rf_regs_5112a;
411 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
412 
413 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
414 
415 	if (ah->ah_rf_banks == NULL)
416 		return 0;
417 
418 	rf = ah->ah_rf_banks;
419 	ah->ah_gain.g_f_corr = 0;
420 
421 	/* No VGA (Variable Gain Amplifier) override, skip */
422 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
423 		return 0;
424 
425 	/* Mix gain stepping */
426 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
427 
428 	/* Mix gain override */
429 	mix = g_step->gos_param[0];
430 
431 	switch (mix) {
432 	case 3:
433 		ah->ah_gain.g_f_corr = step * 2;
434 		break;
435 	case 2:
436 		ah->ah_gain.g_f_corr = (step - 5) * 2;
437 		break;
438 	case 1:
439 		ah->ah_gain.g_f_corr = step;
440 		break;
441 	default:
442 		ah->ah_gain.g_f_corr = 0;
443 		break;
444 	}
445 
446 	return ah->ah_gain.g_f_corr;
447 }
448 
449 /* Check if current gain_F measurement is in the range of our
450  * power detector windows. If we get a measurement outside range
451  * we know it's not accurate (detectors can't measure anything outside
452  * their detection window) so we must ignore it */
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw * ah)453 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
454 {
455 	const struct ath5k_rf_reg *rf_regs;
456 	u32 step, mix_ovr, level[4];
457 	u32 *rf;
458 
459 	if (ah->ah_rf_banks == NULL)
460 		return false;
461 
462 	rf = ah->ah_rf_banks;
463 
464 	if (ah->ah_radio == AR5K_RF5111) {
465 
466 		rf_regs = rf_regs_5111;
467 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
468 
469 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
470 			false);
471 
472 		level[0] = 0;
473 		level[1] = (step == 63) ? 50 : step + 4;
474 		level[2] = (step != 63) ? 64 : level[0];
475 		level[3] = level[2] + 50 ;
476 
477 		ah->ah_gain.g_high = level[3] -
478 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
479 		ah->ah_gain.g_low = level[0] +
480 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
481 	} else {
482 
483 		rf_regs = rf_regs_5112;
484 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
485 
486 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
487 			false);
488 
489 		level[0] = level[2] = 0;
490 
491 		if (mix_ovr == 1) {
492 			level[1] = level[3] = 83;
493 		} else {
494 			level[1] = level[3] = 107;
495 			ah->ah_gain.g_high = 55;
496 		}
497 	}
498 
499 	return (ah->ah_gain.g_current >= level[0] &&
500 			ah->ah_gain.g_current <= level[1]) ||
501 		(ah->ah_gain.g_current >= level[2] &&
502 			ah->ah_gain.g_current <= level[3]);
503 }
504 
505 /* Perform gain_F adjustment by choosing the right set
506  * of parameters from RF gain optimization ladder */
ath5k_hw_rf_gainf_adjust(struct ath5k_hw * ah)507 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
508 {
509 	const struct ath5k_gain_opt *go;
510 	const struct ath5k_gain_opt_step *g_step;
511 	int ret = 0;
512 
513 	switch (ah->ah_radio) {
514 	case AR5K_RF5111:
515 		go = &rfgain_opt_5111;
516 		break;
517 	case AR5K_RF5112:
518 		go = &rfgain_opt_5112;
519 		break;
520 	default:
521 		return 0;
522 	}
523 
524 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
525 
526 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
527 
528 		/* Reached maximum */
529 		if (ah->ah_gain.g_step_idx == 0)
530 			return -1;
531 
532 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
533 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
534 				ah->ah_gain.g_step_idx > 0;
535 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
536 			ah->ah_gain.g_target -= 2 *
537 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
538 			    g_step->gos_gain);
539 
540 		ret = 1;
541 		goto done;
542 	}
543 
544 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
545 
546 		/* Reached minimum */
547 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
548 			return -2;
549 
550 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
551 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
552 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
553 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
554 			ah->ah_gain.g_target -= 2 *
555 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
556 			    g_step->gos_gain);
557 
558 		ret = 2;
559 		goto done;
560 	}
561 
562 done:
563 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
564 		"ret %d, gain step %u, current gain %u, target gain %u\n",
565 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
566 		ah->ah_gain.g_target);
567 
568 	return ret;
569 }
570 
571 /* Main callback for thermal RF gain calibration engine
572  * Check for a new gain reading and schedule an adjustment
573  * if needed.
574  *
575  * TODO: Use sw interrupt to schedule reset if gain_F needs
576  * adjustment */
ath5k_hw_gainf_calibrate(struct ath5k_hw * ah)577 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
578 {
579 	u32 data, type;
580 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
581 
582 	if (ah->ah_rf_banks == NULL ||
583 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
584 		return AR5K_RFGAIN_INACTIVE;
585 
586 	/* No check requested, either engine is inactive
587 	 * or an adjustment is already requested */
588 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
589 		goto done;
590 
591 	/* Read the PAPD (Peak to Average Power Detector)
592 	 * register */
593 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
594 
595 	/* No probe is scheduled, read gain_F measurement */
596 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
597 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
598 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
599 
600 		/* If tx packet is CCK correct the gain_F measurement
601 		 * by cck ofdm gain delta */
602 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
603 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
604 				ah->ah_gain.g_current +=
605 					ee->ee_cck_ofdm_gain_delta;
606 			else
607 				ah->ah_gain.g_current +=
608 					AR5K_GAIN_CCK_PROBE_CORR;
609 		}
610 
611 		/* Further correct gain_F measurement for
612 		 * RF5112A radios */
613 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
614 			ath5k_hw_rf_gainf_corr(ah);
615 			ah->ah_gain.g_current =
616 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
617 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
618 				0;
619 		}
620 
621 		/* Check if measurement is ok and if we need
622 		 * to adjust gain, schedule a gain adjustment,
623 		 * else switch back to the acive state */
624 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
625 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
626 		ath5k_hw_rf_gainf_adjust(ah)) {
627 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
628 		} else {
629 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
630 		}
631 	}
632 
633 done:
634 	return ah->ah_gain.g_state;
635 }
636 
637 /* Write initial RF gain table to set the RF sensitivity
638  * this one works on all RF chips and has nothing to do
639  * with gain_F calibration */
ath5k_hw_rfgain_init(struct ath5k_hw * ah,enum ieee80211_band band)640 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
641 {
642 	const struct ath5k_ini_rfgain *ath5k_rfg;
643 	unsigned int i, size, index;
644 
645 	switch (ah->ah_radio) {
646 	case AR5K_RF5111:
647 		ath5k_rfg = rfgain_5111;
648 		size = ARRAY_SIZE(rfgain_5111);
649 		break;
650 	case AR5K_RF5112:
651 		ath5k_rfg = rfgain_5112;
652 		size = ARRAY_SIZE(rfgain_5112);
653 		break;
654 	case AR5K_RF2413:
655 		ath5k_rfg = rfgain_2413;
656 		size = ARRAY_SIZE(rfgain_2413);
657 		break;
658 	case AR5K_RF2316:
659 		ath5k_rfg = rfgain_2316;
660 		size = ARRAY_SIZE(rfgain_2316);
661 		break;
662 	case AR5K_RF5413:
663 		ath5k_rfg = rfgain_5413;
664 		size = ARRAY_SIZE(rfgain_5413);
665 		break;
666 	case AR5K_RF2317:
667 	case AR5K_RF2425:
668 		ath5k_rfg = rfgain_2425;
669 		size = ARRAY_SIZE(rfgain_2425);
670 		break;
671 	default:
672 		return -EINVAL;
673 	}
674 
675 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
676 
677 	for (i = 0; i < size; i++) {
678 		AR5K_REG_WAIT(i);
679 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
680 			(u32)ath5k_rfg[i].rfg_register);
681 	}
682 
683 	return 0;
684 }
685 
686 
687 
688 /********************\
689 * RF Registers setup *
690 \********************/
691 
692 /*
693  * Setup RF registers by writing RF buffer on hw
694  */
ath5k_hw_rfregs_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,unsigned int mode)695 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
696 	struct ieee80211_channel *channel, unsigned int mode)
697 {
698 	const struct ath5k_rf_reg *rf_regs;
699 	const struct ath5k_ini_rfbuffer *ini_rfb;
700 	const struct ath5k_gain_opt *go = NULL;
701 	const struct ath5k_gain_opt_step *g_step;
702 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
703 	u8 ee_mode = 0;
704 	u32 *rfb;
705 	int i, obdb = -1, bank = -1;
706 
707 	switch (ah->ah_radio) {
708 	case AR5K_RF5111:
709 		rf_regs = rf_regs_5111;
710 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
711 		ini_rfb = rfb_5111;
712 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
713 		go = &rfgain_opt_5111;
714 		break;
715 	case AR5K_RF5112:
716 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
717 			rf_regs = rf_regs_5112a;
718 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
719 			ini_rfb = rfb_5112a;
720 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
721 		} else {
722 			rf_regs = rf_regs_5112;
723 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
724 			ini_rfb = rfb_5112;
725 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
726 		}
727 		go = &rfgain_opt_5112;
728 		break;
729 	case AR5K_RF2413:
730 		rf_regs = rf_regs_2413;
731 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
732 		ini_rfb = rfb_2413;
733 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
734 		break;
735 	case AR5K_RF2316:
736 		rf_regs = rf_regs_2316;
737 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
738 		ini_rfb = rfb_2316;
739 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
740 		break;
741 	case AR5K_RF5413:
742 		rf_regs = rf_regs_5413;
743 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
744 		ini_rfb = rfb_5413;
745 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
746 		break;
747 	case AR5K_RF2317:
748 		rf_regs = rf_regs_2425;
749 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
750 		ini_rfb = rfb_2317;
751 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
752 		break;
753 	case AR5K_RF2425:
754 		rf_regs = rf_regs_2425;
755 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
756 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
757 			ini_rfb = rfb_2425;
758 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
759 		} else {
760 			ini_rfb = rfb_2417;
761 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
762 		}
763 		break;
764 	default:
765 		return -EINVAL;
766 	}
767 
768 	/* If it's the first time we set RF buffer, allocate
769 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
770 	 * we set above */
771 	if (ah->ah_rf_banks == NULL) {
772 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
773 								GFP_KERNEL);
774 		if (ah->ah_rf_banks == NULL) {
775 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
776 			return -ENOMEM;
777 		}
778 	}
779 
780 	/* Copy values to modify them */
781 	rfb = ah->ah_rf_banks;
782 
783 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
784 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
785 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
786 			return -EINVAL;
787 		}
788 
789 		/* Bank changed, write down the offset */
790 		if (bank != ini_rfb[i].rfb_bank) {
791 			bank = ini_rfb[i].rfb_bank;
792 			ah->ah_offset[bank] = i;
793 		}
794 
795 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
796 	}
797 
798 	/* Set Output and Driver bias current (OB/DB) */
799 	if (channel->hw_value & CHANNEL_2GHZ) {
800 
801 		if (channel->hw_value & CHANNEL_CCK)
802 			ee_mode = AR5K_EEPROM_MODE_11B;
803 		else
804 			ee_mode = AR5K_EEPROM_MODE_11G;
805 
806 		/* For RF511X/RF211X combination we
807 		 * use b_OB and b_DB parameters stored
808 		 * in eeprom on ee->ee_ob[ee_mode][0]
809 		 *
810 		 * For all other chips we use OB/DB for 2Ghz
811 		 * stored in the b/g modal section just like
812 		 * 802.11a on ee->ee_ob[ee_mode][1] */
813 		if ((ah->ah_radio == AR5K_RF5111) ||
814 		(ah->ah_radio == AR5K_RF5112))
815 			obdb = 0;
816 		else
817 			obdb = 1;
818 
819 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
820 						AR5K_RF_OB_2GHZ, true);
821 
822 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
823 						AR5K_RF_DB_2GHZ, true);
824 
825 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
826 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
827 			(ah->ah_radio == AR5K_RF5111)) {
828 
829 		/* For 11a, Turbo and XR we need to choose
830 		 * OB/DB based on frequency range */
831 		ee_mode = AR5K_EEPROM_MODE_11A;
832 		obdb =	 channel->center_freq >= 5725 ? 3 :
833 			(channel->center_freq >= 5500 ? 2 :
834 			(channel->center_freq >= 5260 ? 1 :
835 			 (channel->center_freq > 4000 ? 0 : -1)));
836 
837 		if (obdb < 0)
838 			return -EINVAL;
839 
840 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
841 						AR5K_RF_OB_5GHZ, true);
842 
843 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
844 						AR5K_RF_DB_5GHZ, true);
845 	}
846 
847 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
848 
849 	/* Set turbo mode (N/A on RF5413) */
850 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
851 	(ah->ah_radio != AR5K_RF5413))
852 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
853 
854 	/* Bank Modifications (chip-specific) */
855 	if (ah->ah_radio == AR5K_RF5111) {
856 
857 		/* Set gain_F settings according to current step */
858 		if (channel->hw_value & CHANNEL_OFDM) {
859 
860 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
861 					AR5K_PHY_FRAME_CTL_TX_CLIP,
862 					g_step->gos_param[0]);
863 
864 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
865 							AR5K_RF_PWD_90, true);
866 
867 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
868 							AR5K_RF_PWD_84, true);
869 
870 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
871 						AR5K_RF_RFGAIN_SEL, true);
872 
873 			/* We programmed gain_F parameters, switch back
874 			 * to active state */
875 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
876 
877 		}
878 
879 		/* Bank 6/7 setup */
880 
881 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
882 						AR5K_RF_PWD_XPD, true);
883 
884 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
885 						AR5K_RF_XPD_GAIN, true);
886 
887 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
888 						AR5K_RF_GAIN_I, true);
889 
890 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
891 						AR5K_RF_PLO_SEL, true);
892 
893 		/* Tweak power detectors for half/quarter rate support */
894 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
895 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
896 			u8 wait_i;
897 
898 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
899 						AR5K_RF_WAIT_S, true);
900 
901 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
902 							0x1f : 0x10;
903 
904 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
905 						AR5K_RF_WAIT_I, true);
906 			ath5k_hw_rfb_op(ah, rf_regs, 3,
907 						AR5K_RF_MAX_TIME, true);
908 
909 		}
910 	}
911 
912 	if (ah->ah_radio == AR5K_RF5112) {
913 
914 		/* Set gain_F settings according to current step */
915 		if (channel->hw_value & CHANNEL_OFDM) {
916 
917 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
918 						AR5K_RF_MIXGAIN_OVR, true);
919 
920 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
921 						AR5K_RF_PWD_138, true);
922 
923 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
924 						AR5K_RF_PWD_137, true);
925 
926 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
927 						AR5K_RF_PWD_136, true);
928 
929 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
930 						AR5K_RF_PWD_132, true);
931 
932 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
933 						AR5K_RF_PWD_131, true);
934 
935 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
936 						AR5K_RF_PWD_130, true);
937 
938 			/* We programmed gain_F parameters, switch back
939 			 * to active state */
940 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
941 		}
942 
943 		/* Bank 6/7 setup */
944 
945 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
946 						AR5K_RF_XPD_SEL, true);
947 
948 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
949 			/* Rev. 1 supports only one xpd */
950 			ath5k_hw_rfb_op(ah, rf_regs,
951 						ee->ee_x_gain[ee_mode],
952 						AR5K_RF_XPD_GAIN, true);
953 
954 		} else {
955 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
956 			if (ee->ee_pd_gains[ee_mode] > 1) {
957 				ath5k_hw_rfb_op(ah, rf_regs,
958 						pdg_curve_to_idx[0],
959 						AR5K_RF_PD_GAIN_LO, true);
960 				ath5k_hw_rfb_op(ah, rf_regs,
961 						pdg_curve_to_idx[1],
962 						AR5K_RF_PD_GAIN_HI, true);
963 			} else {
964 				ath5k_hw_rfb_op(ah, rf_regs,
965 						pdg_curve_to_idx[0],
966 						AR5K_RF_PD_GAIN_LO, true);
967 				ath5k_hw_rfb_op(ah, rf_regs,
968 						pdg_curve_to_idx[0],
969 						AR5K_RF_PD_GAIN_HI, true);
970 			}
971 
972 			/* Lower synth voltage on Rev 2 */
973 			ath5k_hw_rfb_op(ah, rf_regs, 2,
974 					AR5K_RF_HIGH_VC_CP, true);
975 
976 			ath5k_hw_rfb_op(ah, rf_regs, 2,
977 					AR5K_RF_MID_VC_CP, true);
978 
979 			ath5k_hw_rfb_op(ah, rf_regs, 2,
980 					AR5K_RF_LOW_VC_CP, true);
981 
982 			ath5k_hw_rfb_op(ah, rf_regs, 2,
983 					AR5K_RF_PUSH_UP, true);
984 
985 			/* Decrease power consumption on 5213+ BaseBand */
986 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
987 				ath5k_hw_rfb_op(ah, rf_regs, 1,
988 						AR5K_RF_PAD2GND, true);
989 
990 				ath5k_hw_rfb_op(ah, rf_regs, 1,
991 						AR5K_RF_XB2_LVL, true);
992 
993 				ath5k_hw_rfb_op(ah, rf_regs, 1,
994 						AR5K_RF_XB5_LVL, true);
995 
996 				ath5k_hw_rfb_op(ah, rf_regs, 1,
997 						AR5K_RF_PWD_167, true);
998 
999 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1000 						AR5K_RF_PWD_166, true);
1001 			}
1002 		}
1003 
1004 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005 						AR5K_RF_GAIN_I, true);
1006 
1007 		/* Tweak power detector for half/quarter rates */
1008 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1009 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1010 			u8 pd_delay;
1011 
1012 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1013 							0xf : 0x8;
1014 
1015 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1016 						AR5K_RF_PD_PERIOD_A, true);
1017 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1018 						AR5K_RF_PD_DELAY_A, true);
1019 
1020 		}
1021 	}
1022 
1023 	if (ah->ah_radio == AR5K_RF5413 &&
1024 	channel->hw_value & CHANNEL_2GHZ) {
1025 
1026 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1027 									true);
1028 
1029 		/* Set optimum value for early revisions (on pci-e chips) */
1030 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1031 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1032 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1033 						AR5K_RF_PWD_ICLOBUF_2G, true);
1034 
1035 	}
1036 
1037 	/* Write RF banks on hw */
1038 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1039 		AR5K_REG_WAIT(i);
1040 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 
1047 /**************************\
1048   PHY/RF channel functions
1049 \**************************/
1050 
1051 /*
1052  * Conversion needed for RF5110
1053  */
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel * channel)1054 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1055 {
1056 	u32 athchan;
1057 
1058 	/*
1059 	 * Convert IEEE channel/MHz to an internal channel value used
1060 	 * by the AR5210 chipset. This has not been verified with
1061 	 * newer chipsets like the AR5212A who have a completely
1062 	 * different RF/PHY part.
1063 	 */
1064 	athchan = (ath5k_hw_bitswap(
1065 			(ieee80211_frequency_to_channel(
1066 				channel->center_freq) - 24) / 2, 5)
1067 				<< 1) | (1 << 6) | 0x1;
1068 	return athchan;
1069 }
1070 
1071 /*
1072  * Set channel on RF5110
1073  */
ath5k_hw_rf5110_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1074 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1075 		struct ieee80211_channel *channel)
1076 {
1077 	u32 data;
1078 
1079 	/*
1080 	 * Set the channel and wait
1081 	 */
1082 	data = ath5k_hw_rf5110_chan2athchan(channel);
1083 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1084 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1085 	mdelay(1);
1086 
1087 	return 0;
1088 }
1089 
1090 /*
1091  * Conversion needed for 5111
1092  */
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,struct ath5k_athchan_2ghz * athchan)1093 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1094 		struct ath5k_athchan_2ghz *athchan)
1095 {
1096 	int channel;
1097 
1098 	/* Cast this value to catch negative channel numbers (>= -19) */
1099 	channel = (int)ieee;
1100 
1101 	/*
1102 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1103 	 */
1104 	if (channel <= 13) {
1105 		athchan->a2_athchan = 115 + channel;
1106 		athchan->a2_flags = 0x46;
1107 	} else if (channel == 14) {
1108 		athchan->a2_athchan = 124;
1109 		athchan->a2_flags = 0x44;
1110 	} else if (channel >= 15 && channel <= 26) {
1111 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1112 		athchan->a2_flags = 0x46;
1113 	} else
1114 		return -EINVAL;
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * Set channel on 5111
1121  */
ath5k_hw_rf5111_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1122 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1123 		struct ieee80211_channel *channel)
1124 {
1125 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1126 	unsigned int ath5k_channel =
1127 		ieee80211_frequency_to_channel(channel->center_freq);
1128 	u32 data0, data1, clock;
1129 	int ret;
1130 
1131 	/*
1132 	 * Set the channel on the RF5111 radio
1133 	 */
1134 	data0 = data1 = 0;
1135 
1136 	if (channel->hw_value & CHANNEL_2GHZ) {
1137 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1138 		ret = ath5k_hw_rf5111_chan2athchan(
1139 			ieee80211_frequency_to_channel(channel->center_freq),
1140 			&ath5k_channel_2ghz);
1141 		if (ret)
1142 			return ret;
1143 
1144 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1145 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1146 		    << 5) | (1 << 4);
1147 	}
1148 
1149 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1150 		clock = 1;
1151 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1152 			(clock << 1) | (1 << 10) | 1;
1153 	} else {
1154 		clock = 0;
1155 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1156 			<< 2) | (clock << 1) | (1 << 10) | 1;
1157 	}
1158 
1159 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1160 			AR5K_RF_BUFFER);
1161 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1162 			AR5K_RF_BUFFER_CONTROL_3);
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Set channel on 5112 and newer
1169  */
ath5k_hw_rf5112_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1170 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1171 		struct ieee80211_channel *channel)
1172 {
1173 	u32 data, data0, data1, data2;
1174 	u16 c;
1175 
1176 	data = data0 = data1 = data2 = 0;
1177 	c = channel->center_freq;
1178 
1179 	if (c < 4800) {
1180 		if (!((c - 2224) % 5)) {
1181 			data0 = ((2 * (c - 704)) - 3040) / 10;
1182 			data1 = 1;
1183 		} else if (!((c - 2192) % 5)) {
1184 			data0 = ((2 * (c - 672)) - 3040) / 10;
1185 			data1 = 0;
1186 		} else
1187 			return -EINVAL;
1188 
1189 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1190 	} else if ((c % 5) != 2 || c > 5435) {
1191 		if (!(c % 20) && c >= 5120) {
1192 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1193 			data2 = ath5k_hw_bitswap(3, 2);
1194 		} else if (!(c % 10)) {
1195 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1196 			data2 = ath5k_hw_bitswap(2, 2);
1197 		} else if (!(c % 5)) {
1198 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1199 			data2 = ath5k_hw_bitswap(1, 2);
1200 		} else
1201 			return -EINVAL;
1202 	} else {
1203 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1204 		data2 = ath5k_hw_bitswap(0, 2);
1205 	}
1206 
1207 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1208 
1209 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1210 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Set the channel on the RF2425
1217  */
ath5k_hw_rf2425_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1218 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1219 		struct ieee80211_channel *channel)
1220 {
1221 	u32 data, data0, data2;
1222 	u16 c;
1223 
1224 	data = data0 = data2 = 0;
1225 	c = channel->center_freq;
1226 
1227 	if (c < 4800) {
1228 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1229 		data2 = 0;
1230 	/* ? 5GHz ? */
1231 	} else if ((c % 5) != 2 || c > 5435) {
1232 		if (!(c % 20) && c < 5120)
1233 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1234 		else if (!(c % 10))
1235 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1236 		else if (!(c % 5))
1237 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1238 		else
1239 			return -EINVAL;
1240 		data2 = ath5k_hw_bitswap(1, 2);
1241 	} else {
1242 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1243 		data2 = ath5k_hw_bitswap(0, 2);
1244 	}
1245 
1246 	data = (data0 << 4) | data2 << 2 | 0x1001;
1247 
1248 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1249 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1250 
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Set a channel on the radio chip
1256  */
ath5k_hw_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1257 static int ath5k_hw_channel(struct ath5k_hw *ah,
1258 		struct ieee80211_channel *channel)
1259 {
1260 	int ret;
1261 	/*
1262 	 * Check bounds supported by the PHY (we don't care about regultory
1263 	 * restrictions at this point). Note: hw_value already has the band
1264 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1265 	 * of the band by that */
1266 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1267 		ATH5K_ERR(ah->ah_sc,
1268 			"channel frequency (%u MHz) out of supported "
1269 			"band range\n",
1270 			channel->center_freq);
1271 			return -EINVAL;
1272 	}
1273 
1274 	/*
1275 	 * Set the channel and wait
1276 	 */
1277 	switch (ah->ah_radio) {
1278 	case AR5K_RF5110:
1279 		ret = ath5k_hw_rf5110_channel(ah, channel);
1280 		break;
1281 	case AR5K_RF5111:
1282 		ret = ath5k_hw_rf5111_channel(ah, channel);
1283 		break;
1284 	case AR5K_RF2317:
1285 	case AR5K_RF2425:
1286 		ret = ath5k_hw_rf2425_channel(ah, channel);
1287 		break;
1288 	default:
1289 		ret = ath5k_hw_rf5112_channel(ah, channel);
1290 		break;
1291 	}
1292 
1293 	if (ret)
1294 		return ret;
1295 
1296 	/* Set JAPAN setting for channel 14 */
1297 	if (channel->center_freq == 2484) {
1298 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1299 				AR5K_PHY_CCKTXCTL_JAPAN);
1300 	} else {
1301 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1302 				AR5K_PHY_CCKTXCTL_WORLD);
1303 	}
1304 
1305 	ah->ah_current_channel = channel;
1306 
1307 	return 0;
1308 }
1309 
1310 /*****************\
1311   PHY calibration
1312 \*****************/
1313 
ath5k_hw_read_measured_noise_floor(struct ath5k_hw * ah)1314 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1315 {
1316 	s32 val;
1317 
1318 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1319 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1320 }
1321 
ath5k_hw_init_nfcal_hist(struct ath5k_hw * ah)1322 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1323 {
1324 	int i;
1325 
1326 	ah->ah_nfcal_hist.index = 0;
1327 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1328 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1329 }
1330 
ath5k_hw_update_nfcal_hist(struct ath5k_hw * ah,s16 noise_floor)1331 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1332 {
1333 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1334 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1335 	hist->nfval[hist->index] = noise_floor;
1336 }
1337 
ath5k_hw_get_median_noise_floor(struct ath5k_hw * ah)1338 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1339 {
1340 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1341 	s16 tmp;
1342 	int i, j;
1343 
1344 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1345 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1346 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1347 			if (sort[j] > sort[j-1]) {
1348 				tmp = sort[j];
1349 				sort[j] = sort[j-1];
1350 				sort[j-1] = tmp;
1351 			}
1352 		}
1353 	}
1354 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1355 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1356 			"cal %d:%d\n", i, sort[i]);
1357 	}
1358 	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1359 }
1360 
1361 /*
1362  * When we tell the hardware to perform a noise floor calibration
1363  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1364  * sample-and-hold the minimum noise level seen at the antennas.
1365  * This value is then stored in a ring buffer of recently measured
1366  * noise floor values so we have a moving window of the last few
1367  * samples.
1368  *
1369  * The median of the values in the history is then loaded into the
1370  * hardware for its own use for RSSI and CCA measurements.
1371  */
ath5k_hw_update_noise_floor(struct ath5k_hw * ah)1372 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1373 {
1374 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1375 	u32 val;
1376 	s16 nf, threshold;
1377 	u8 ee_mode;
1378 
1379 	/* keep last value if calibration hasn't completed */
1380 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1381 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1382 			"NF did not complete in calibration window\n");
1383 
1384 		return;
1385 	}
1386 
1387 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1388 
1389 	/* completed NF calibration, test threshold */
1390 	nf = ath5k_hw_read_measured_noise_floor(ah);
1391 	threshold = ee->ee_noise_floor_thr[ee_mode];
1392 
1393 	if (nf > threshold) {
1394 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1395 			"noise floor failure detected; "
1396 			"read %d, threshold %d\n",
1397 			nf, threshold);
1398 
1399 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1400 	}
1401 
1402 	ath5k_hw_update_nfcal_hist(ah, nf);
1403 	nf = ath5k_hw_get_median_noise_floor(ah);
1404 
1405 	/* load noise floor (in .5 dBm) so the hardware will use it */
1406 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1407 	val |= (nf * 2) & AR5K_PHY_NF_M;
1408 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1409 
1410 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1411 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1412 
1413 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1414 		0, false);
1415 
1416 	/*
1417 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1418 	 * so that we're not capped by the median we just loaded.
1419 	 * This will be used as the initial value for the next noise
1420 	 * floor calibration.
1421 	 */
1422 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1423 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1424 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1425 		AR5K_PHY_AGCCTL_NF_EN |
1426 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1427 		AR5K_PHY_AGCCTL_NF);
1428 
1429 	ah->ah_noise_floor = nf;
1430 
1431 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1432 		"noise floor calibrated: %d\n", nf);
1433 }
1434 
1435 /*
1436  * Perform a PHY calibration on RF5110
1437  * -Fix BPSK/QAM Constellation (I/Q correction)
1438  */
ath5k_hw_rf5110_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1439 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1440 		struct ieee80211_channel *channel)
1441 {
1442 	u32 phy_sig, phy_agc, phy_sat, beacon;
1443 	int ret;
1444 
1445 	/*
1446 	 * Disable beacons and RX/TX queues, wait
1447 	 */
1448 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1449 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1450 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1451 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1452 
1453 	mdelay(2);
1454 
1455 	/*
1456 	 * Set the channel (with AGC turned off)
1457 	 */
1458 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1459 	udelay(10);
1460 	ret = ath5k_hw_channel(ah, channel);
1461 
1462 	/*
1463 	 * Activate PHY and wait
1464 	 */
1465 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1466 	mdelay(1);
1467 
1468 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1469 
1470 	if (ret)
1471 		return ret;
1472 
1473 	/*
1474 	 * Calibrate the radio chip
1475 	 */
1476 
1477 	/* Remember normal state */
1478 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1479 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1480 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1481 
1482 	/* Update radio registers */
1483 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1484 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1485 
1486 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1487 			AR5K_PHY_AGCCOARSE_LO)) |
1488 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1489 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1490 
1491 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1492 			AR5K_PHY_ADCSAT_THR)) |
1493 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1494 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1495 
1496 	udelay(20);
1497 
1498 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1499 	udelay(10);
1500 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1501 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1502 
1503 	mdelay(1);
1504 
1505 	/*
1506 	 * Enable calibration and wait until completion
1507 	 */
1508 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1509 
1510 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1511 			AR5K_PHY_AGCCTL_CAL, 0, false);
1512 
1513 	/* Reset to normal state */
1514 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1515 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1516 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1517 
1518 	if (ret) {
1519 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1520 				channel->center_freq);
1521 		return ret;
1522 	}
1523 
1524 	/*
1525 	 * Re-enable RX/TX and beacons
1526 	 */
1527 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1528 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1529 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Perform I/Q calibration on RF5111/5112 and newer chips
1536  */
1537 static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw * ah)1538 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1539 {
1540 	u32 i_pwr, q_pwr;
1541 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1542 	int i;
1543 
1544 	if (!ah->ah_calibration ||
1545 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1546 		return 0;
1547 
1548 	/* Calibration has finished, get the results and re-run */
1549 	/* work around empty results which can apparently happen on 5212 */
1550 	for (i = 0; i <= 10; i++) {
1551 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1552 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1553 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1554 		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1555 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1556 		if (i_pwr && q_pwr)
1557 			break;
1558 	}
1559 
1560 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1561 
1562 	if (ah->ah_version == AR5K_AR5211)
1563 		q_coffd = q_pwr >> 6;
1564 	else
1565 		q_coffd = q_pwr >> 7;
1566 
1567 	/* protect against divide by 0 and loss of sign bits */
1568 	if (i_coffd == 0 || q_coffd < 2)
1569 		return 0;
1570 
1571 	i_coff = (-iq_corr) / i_coffd;
1572 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1573 
1574 	if (ah->ah_version == AR5K_AR5211)
1575 		q_coff = (i_pwr / q_coffd) - 64;
1576 	else
1577 		q_coff = (i_pwr / q_coffd) - 128;
1578 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1579 
1580 	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1581 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1582 			i_coff, q_coff, i_coffd, q_coffd);
1583 
1584 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1585 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1586 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1587 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1588 
1589 	/* Re-enable calibration -if we don't we'll commit
1590 	 * the same values again and again */
1591 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1592 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1593 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1594 
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Perform a PHY calibration
1600  */
ath5k_hw_phy_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1601 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1602 		struct ieee80211_channel *channel)
1603 {
1604 	int ret;
1605 
1606 	if (ah->ah_radio == AR5K_RF5110)
1607 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1608 	else {
1609 		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1610 		ath5k_hw_request_rfgain_probe(ah);
1611 	}
1612 
1613 	return ret;
1614 }
1615 
1616 
1617 /***************************\
1618 * Spur mitigation functions *
1619 \***************************/
1620 
1621 static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw * ah,struct ieee80211_channel * channel)1622 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1623 				struct ieee80211_channel *channel)
1624 {
1625 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1626 	u32 mag_mask[4] = {0, 0, 0, 0};
1627 	u32 pilot_mask[2] = {0, 0};
1628 	/* Note: fbin values are scaled up by 2 */
1629 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1630 	s32 spur_delta_phase, spur_freq_sigma_delta;
1631 	s32 spur_offset, num_symbols_x16;
1632 	u8 num_symbol_offsets, i, freq_band;
1633 
1634 	/* Convert current frequency to fbin value (the same way channels
1635 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1636 	 * up by 2 so we can compare it later */
1637 	if (channel->hw_value & CHANNEL_2GHZ) {
1638 		chan_fbin = (channel->center_freq - 2300) * 10;
1639 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1640 	} else {
1641 		chan_fbin = (channel->center_freq - 4900) * 10;
1642 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1643 	}
1644 
1645 	/* Check if any spur_chan_fbin from EEPROM is
1646 	 * within our current channel's spur detection range */
1647 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1648 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1649 	/* XXX: Half/Quarter channels ?*/
1650 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1651 		spur_detection_window *= 2;
1652 
1653 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1654 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1655 
1656 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1657 		 * so it's zero if we got nothing from EEPROM */
1658 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1659 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1660 			break;
1661 		}
1662 
1663 		if ((chan_fbin - spur_detection_window <=
1664 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1665 		(chan_fbin + spur_detection_window >=
1666 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1667 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1668 			break;
1669 		}
1670 	}
1671 
1672 	/* We need to enable spur filter for this channel */
1673 	if (spur_chan_fbin) {
1674 		spur_offset = spur_chan_fbin - chan_fbin;
1675 		/*
1676 		 * Calculate deltas:
1677 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1678 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1679 		 * Note: Both values have 100Hz resolution
1680 		 */
1681 		switch (ah->ah_bwmode) {
1682 		case AR5K_BWMODE_40MHZ:
1683 			/* Both sample_freq and chip_freq are 80MHz */
1684 			spur_delta_phase = (spur_offset << 16) / 25;
1685 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1686 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1687 			break;
1688 		case AR5K_BWMODE_10MHZ:
1689 			/* Both sample_freq and chip_freq are 20MHz (?) */
1690 			spur_delta_phase = (spur_offset << 18) / 25;
1691 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1692 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1693 		case AR5K_BWMODE_5MHZ:
1694 			/* Both sample_freq and chip_freq are 10MHz (?) */
1695 			spur_delta_phase = (spur_offset << 19) / 25;
1696 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1697 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1698 		default:
1699 			if (channel->hw_value == CHANNEL_A) {
1700 				/* Both sample_freq and chip_freq are 40MHz */
1701 				spur_delta_phase = (spur_offset << 17) / 25;
1702 				spur_freq_sigma_delta =
1703 						(spur_delta_phase >> 10);
1704 				symbol_width =
1705 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1706 			} else {
1707 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1708 				 * (for b compatibility) */
1709 				spur_delta_phase = (spur_offset << 17) / 25;
1710 				spur_freq_sigma_delta =
1711 						(spur_offset << 8) / 55;
1712 				symbol_width =
1713 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1714 			}
1715 			break;
1716 		}
1717 
1718 		/* Calculate pilot and magnitude masks */
1719 
1720 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1721 		 * and divide by symbol_width to find how many symbols we have
1722 		 * Note: number of symbols is scaled up by 16 */
1723 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1724 
1725 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1726 		if (!(num_symbols_x16 & 0xF))
1727 			/* _X_ */
1728 			num_symbol_offsets = 3;
1729 		else
1730 			/* _xx_ */
1731 			num_symbol_offsets = 4;
1732 
1733 		for (i = 0; i < num_symbol_offsets; i++) {
1734 
1735 			/* Calculate pilot mask */
1736 			s32 curr_sym_off =
1737 				(num_symbols_x16 / 16) + i + 25;
1738 
1739 			/* Pilot magnitude mask seems to be a way to
1740 			 * declare the boundaries for our detection
1741 			 * window or something, it's 2 for the middle
1742 			 * value(s) where the symbol is expected to be
1743 			 * and 1 on the boundary values */
1744 			u8 plt_mag_map =
1745 				(i == 0 || i == (num_symbol_offsets - 1))
1746 								? 1 : 2;
1747 
1748 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1749 				if (curr_sym_off <= 25)
1750 					pilot_mask[0] |= 1 << curr_sym_off;
1751 				else if (curr_sym_off >= 27)
1752 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1753 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1754 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1755 
1756 			/* Calculate magnitude mask (for viterbi decoder) */
1757 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1758 				mag_mask[0] |=
1759 					plt_mag_map << (curr_sym_off + 1) * 2;
1760 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1761 				mag_mask[1] |=
1762 					plt_mag_map << (curr_sym_off - 15) * 2;
1763 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1764 				mag_mask[2] |=
1765 					plt_mag_map << (curr_sym_off - 31) * 2;
1766 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1767 				mag_mask[3] |=
1768 					plt_mag_map << (curr_sym_off - 47) * 2;
1769 
1770 		}
1771 
1772 		/* Write settings on hw to enable spur filter */
1773 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1774 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1775 		/* XXX: Self correlator also ? */
1776 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1777 					AR5K_PHY_IQ_PILOT_MASK_EN |
1778 					AR5K_PHY_IQ_CHAN_MASK_EN |
1779 					AR5K_PHY_IQ_SPUR_FILT_EN);
1780 
1781 		/* Set delta phase and freq sigma delta */
1782 		ath5k_hw_reg_write(ah,
1783 				AR5K_REG_SM(spur_delta_phase,
1784 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1785 				AR5K_REG_SM(spur_freq_sigma_delta,
1786 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1787 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1788 				AR5K_PHY_TIMING_11);
1789 
1790 		/* Write pilot masks */
1791 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1792 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1793 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1794 					pilot_mask[1]);
1795 
1796 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1797 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1798 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1799 					pilot_mask[1]);
1800 
1801 		/* Write magnitude masks */
1802 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1803 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1804 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1805 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1806 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1807 					mag_mask[3]);
1808 
1809 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1810 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1811 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1812 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1813 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1814 					mag_mask[3]);
1815 
1816 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1817 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1818 		/* Clean up spur mitigation settings and disable fliter */
1819 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1820 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1821 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1822 					AR5K_PHY_IQ_PILOT_MASK_EN |
1823 					AR5K_PHY_IQ_CHAN_MASK_EN |
1824 					AR5K_PHY_IQ_SPUR_FILT_EN);
1825 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1826 
1827 		/* Clear pilot masks */
1828 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1829 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1830 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1831 					0);
1832 
1833 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1834 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1835 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1836 					0);
1837 
1838 		/* Clear magnitude masks */
1839 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1840 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1841 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1842 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1843 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1844 					0);
1845 
1846 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1847 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1848 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1849 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1850 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1851 					0);
1852 	}
1853 }
1854 
1855 
1856 /*****************\
1857 * Antenna control *
1858 \*****************/
1859 
1860 static void /*TODO:Boundary check*/
ath5k_hw_set_def_antenna(struct ath5k_hw * ah,u8 ant)1861 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1862 {
1863 	if (ah->ah_version != AR5K_AR5210)
1864 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1865 }
1866 
1867 /*
1868  * Enable/disable fast rx antenna diversity
1869  */
1870 static void
ath5k_hw_set_fast_div(struct ath5k_hw * ah,u8 ee_mode,bool enable)1871 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1872 {
1873 	switch (ee_mode) {
1874 	case AR5K_EEPROM_MODE_11G:
1875 		/* XXX: This is set to
1876 		 * disabled on initvals !!! */
1877 	case AR5K_EEPROM_MODE_11A:
1878 		if (enable)
1879 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1880 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1881 		else
1882 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1883 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1884 		break;
1885 	case AR5K_EEPROM_MODE_11B:
1886 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888 		break;
1889 	default:
1890 		return;
1891 	}
1892 
1893 	if (enable) {
1894 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1895 				AR5K_PHY_RESTART_DIV_GC, 4);
1896 
1897 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1898 					AR5K_PHY_FAST_ANT_DIV_EN);
1899 	} else {
1900 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1901 				AR5K_PHY_RESTART_DIV_GC, 0);
1902 
1903 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1904 					AR5K_PHY_FAST_ANT_DIV_EN);
1905 	}
1906 }
1907 
1908 void
ath5k_hw_set_antenna_switch(struct ath5k_hw * ah,u8 ee_mode)1909 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1910 {
1911 	u8 ant0, ant1;
1912 
1913 	/*
1914 	 * In case a fixed antenna was set as default
1915 	 * use the same switch table twice.
1916 	 */
1917 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1918 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1919 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1920 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1921 	else {
1922 		ant0 = AR5K_ANT_SWTABLE_A;
1923 		ant1 = AR5K_ANT_SWTABLE_B;
1924 	}
1925 
1926 	/* Set antenna idle switch table */
1927 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1928 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1929 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1930 			AR5K_PHY_ANT_CTL_TXRX_EN));
1931 
1932 	/* Set antenna switch tables */
1933 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1934 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1935 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1936 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1937 }
1938 
1939 /*
1940  * Set antenna operating mode
1941  */
1942 void
ath5k_hw_set_antenna_mode(struct ath5k_hw * ah,u8 ant_mode)1943 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1944 {
1945 	struct ieee80211_channel *channel = ah->ah_current_channel;
1946 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1947 	bool use_def_for_sg;
1948 	int ee_mode;
1949 	u8 def_ant, tx_ant;
1950 	u32 sta_id1 = 0;
1951 
1952 	/* if channel is not initialized yet we can't set the antennas
1953 	 * so just store the mode. it will be set on the next reset */
1954 	if (channel == NULL) {
1955 		ah->ah_ant_mode = ant_mode;
1956 		return;
1957 	}
1958 
1959 	def_ant = ah->ah_def_ant;
1960 
1961 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1962 	if (ee_mode < 0) {
1963 		ATH5K_ERR(ah->ah_sc,
1964 			"invalid channel: %d\n", channel->center_freq);
1965 		return;
1966 	}
1967 
1968 	switch (ant_mode) {
1969 	case AR5K_ANTMODE_DEFAULT:
1970 		tx_ant = 0;
1971 		use_def_for_tx = false;
1972 		update_def_on_tx = false;
1973 		use_def_for_rts = false;
1974 		use_def_for_sg = false;
1975 		fast_div = true;
1976 		break;
1977 	case AR5K_ANTMODE_FIXED_A:
1978 		def_ant = 1;
1979 		tx_ant = 1;
1980 		use_def_for_tx = true;
1981 		update_def_on_tx = false;
1982 		use_def_for_rts = true;
1983 		use_def_for_sg = true;
1984 		fast_div = false;
1985 		break;
1986 	case AR5K_ANTMODE_FIXED_B:
1987 		def_ant = 2;
1988 		tx_ant = 2;
1989 		use_def_for_tx = true;
1990 		update_def_on_tx = false;
1991 		use_def_for_rts = true;
1992 		use_def_for_sg = true;
1993 		fast_div = false;
1994 		break;
1995 	case AR5K_ANTMODE_SINGLE_AP:
1996 		def_ant = 1;	/* updated on tx */
1997 		tx_ant = 0;
1998 		use_def_for_tx = true;
1999 		update_def_on_tx = true;
2000 		use_def_for_rts = true;
2001 		use_def_for_sg = true;
2002 		fast_div = true;
2003 		break;
2004 	case AR5K_ANTMODE_SECTOR_AP:
2005 		tx_ant = 1;	/* variable */
2006 		use_def_for_tx = false;
2007 		update_def_on_tx = false;
2008 		use_def_for_rts = true;
2009 		use_def_for_sg = false;
2010 		fast_div = false;
2011 		break;
2012 	case AR5K_ANTMODE_SECTOR_STA:
2013 		tx_ant = 1;	/* variable */
2014 		use_def_for_tx = true;
2015 		update_def_on_tx = false;
2016 		use_def_for_rts = true;
2017 		use_def_for_sg = false;
2018 		fast_div = true;
2019 		break;
2020 	case AR5K_ANTMODE_DEBUG:
2021 		def_ant = 1;
2022 		tx_ant = 2;
2023 		use_def_for_tx = false;
2024 		update_def_on_tx = false;
2025 		use_def_for_rts = false;
2026 		use_def_for_sg = false;
2027 		fast_div = false;
2028 		break;
2029 	default:
2030 		return;
2031 	}
2032 
2033 	ah->ah_tx_ant = tx_ant;
2034 	ah->ah_ant_mode = ant_mode;
2035 	ah->ah_def_ant = def_ant;
2036 
2037 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2038 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2039 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2040 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2041 
2042 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2043 
2044 	if (sta_id1)
2045 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2046 
2047 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2048 	/* Note: set diversity before default antenna
2049 	 * because it won't work correctly */
2050 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2051 	ath5k_hw_set_def_antenna(ah, def_ant);
2052 }
2053 
2054 
2055 /****************\
2056 * TX power setup *
2057 \****************/
2058 
2059 /*
2060  * Helper functions
2061  */
2062 
2063 /*
2064  * Do linear interpolation between two given (x, y) points
2065  */
2066 static s16
ath5k_get_interpolated_value(s16 target,s16 x_left,s16 x_right,s16 y_left,s16 y_right)2067 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2068 					s16 y_left, s16 y_right)
2069 {
2070 	s16 ratio, result;
2071 
2072 	/* Avoid divide by zero and skip interpolation
2073 	 * if we have the same point */
2074 	if ((x_left == x_right) || (y_left == y_right))
2075 		return y_left;
2076 
2077 	/*
2078 	 * Since we use ints and not fps, we need to scale up in
2079 	 * order to get a sane ratio value (or else we 'll eg. get
2080 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2081 	 * to have some accuracy both for 0.5 and 0.25 steps.
2082 	 */
2083 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
2084 
2085 	/* Now scale down to be in range */
2086 	result = y_left + (ratio * (target - x_left) / 100);
2087 
2088 	return result;
2089 }
2090 
2091 /*
2092  * Find vertical boundary (min pwr) for the linear PCDAC curve.
2093  *
2094  * Since we have the top of the curve and we draw the line below
2095  * until we reach 1 (1 pcdac step) we need to know which point
2096  * (x value) that is so that we don't go below y axis and have negative
2097  * pcdac values when creating the curve, or fill the table with zeroes.
2098  */
2099 static s16
ath5k_get_linear_pcdac_min(const u8 * stepL,const u8 * stepR,const s16 * pwrL,const s16 * pwrR)2100 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2101 				const s16 *pwrL, const s16 *pwrR)
2102 {
2103 	s8 tmp;
2104 	s16 min_pwrL, min_pwrR;
2105 	s16 pwr_i;
2106 
2107 	/* Some vendors write the same pcdac value twice !!! */
2108 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2109 		return max(pwrL[0], pwrR[0]);
2110 
2111 	if (pwrL[0] == pwrL[1])
2112 		min_pwrL = pwrL[0];
2113 	else {
2114 		pwr_i = pwrL[0];
2115 		do {
2116 			pwr_i--;
2117 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2118 							pwrL[0], pwrL[1],
2119 							stepL[0], stepL[1]);
2120 		} while (tmp > 1);
2121 
2122 		min_pwrL = pwr_i;
2123 	}
2124 
2125 	if (pwrR[0] == pwrR[1])
2126 		min_pwrR = pwrR[0];
2127 	else {
2128 		pwr_i = pwrR[0];
2129 		do {
2130 			pwr_i--;
2131 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2132 							pwrR[0], pwrR[1],
2133 							stepR[0], stepR[1]);
2134 		} while (tmp > 1);
2135 
2136 		min_pwrR = pwr_i;
2137 	}
2138 
2139 	/* Keep the right boundary so that it works for both curves */
2140 	return max(min_pwrL, min_pwrR);
2141 }
2142 
2143 /*
2144  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2145  * Power to PCDAC curve.
2146  *
2147  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2148  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2149  * PCDAC/PDADC step for each curve is 64 but we can write more than
2150  * one curves on hw so we can go up to 128 (which is the max step we
2151  * can write on the final table).
2152  *
2153  * We write y values (PCDAC/PDADC steps) on hw.
2154  */
2155 static void
ath5k_create_power_curve(s16 pmin,s16 pmax,const s16 * pwr,const u8 * vpd,u8 num_points,u8 * vpd_table,u8 type)2156 ath5k_create_power_curve(s16 pmin, s16 pmax,
2157 			const s16 *pwr, const u8 *vpd,
2158 			u8 num_points,
2159 			u8 *vpd_table, u8 type)
2160 {
2161 	u8 idx[2] = { 0, 1 };
2162 	s16 pwr_i = 2*pmin;
2163 	int i;
2164 
2165 	if (num_points < 2)
2166 		return;
2167 
2168 	/* We want the whole line, so adjust boundaries
2169 	 * to cover the entire power range. Note that
2170 	 * power values are already 0.25dB so no need
2171 	 * to multiply pwr_i by 2 */
2172 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2173 		pwr_i = pmin;
2174 		pmin = 0;
2175 		pmax = 63;
2176 	}
2177 
2178 	/* Find surrounding turning points (TPs)
2179 	 * and interpolate between them */
2180 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2181 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2182 
2183 		/* We passed the right TP, move to the next set of TPs
2184 		 * if we pass the last TP, extrapolate above using the last
2185 		 * two TPs for ratio */
2186 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2187 			idx[0]++;
2188 			idx[1]++;
2189 		}
2190 
2191 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2192 						pwr[idx[0]], pwr[idx[1]],
2193 						vpd[idx[0]], vpd[idx[1]]);
2194 
2195 		/* Increase by 0.5dB
2196 		 * (0.25 dB units) */
2197 		pwr_i += 2;
2198 	}
2199 }
2200 
2201 /*
2202  * Get the surrounding per-channel power calibration piers
2203  * for a given frequency so that we can interpolate between
2204  * them and come up with an appropriate dataset for our current
2205  * channel.
2206  */
2207 static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_chan_pcal_info ** pcinfo_l,struct ath5k_chan_pcal_info ** pcinfo_r)2208 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2209 			struct ieee80211_channel *channel,
2210 			struct ath5k_chan_pcal_info **pcinfo_l,
2211 			struct ath5k_chan_pcal_info **pcinfo_r)
2212 {
2213 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2214 	struct ath5k_chan_pcal_info *pcinfo;
2215 	u8 idx_l, idx_r;
2216 	u8 mode, max, i;
2217 	u32 target = channel->center_freq;
2218 
2219 	idx_l = 0;
2220 	idx_r = 0;
2221 
2222 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2223 		pcinfo = ee->ee_pwr_cal_b;
2224 		mode = AR5K_EEPROM_MODE_11B;
2225 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2226 		pcinfo = ee->ee_pwr_cal_g;
2227 		mode = AR5K_EEPROM_MODE_11G;
2228 	} else {
2229 		pcinfo = ee->ee_pwr_cal_a;
2230 		mode = AR5K_EEPROM_MODE_11A;
2231 	}
2232 	max = ee->ee_n_piers[mode] - 1;
2233 
2234 	/* Frequency is below our calibrated
2235 	 * range. Use the lowest power curve
2236 	 * we have */
2237 	if (target < pcinfo[0].freq) {
2238 		idx_l = idx_r = 0;
2239 		goto done;
2240 	}
2241 
2242 	/* Frequency is above our calibrated
2243 	 * range. Use the highest power curve
2244 	 * we have */
2245 	if (target > pcinfo[max].freq) {
2246 		idx_l = idx_r = max;
2247 		goto done;
2248 	}
2249 
2250 	/* Frequency is inside our calibrated
2251 	 * channel range. Pick the surrounding
2252 	 * calibration piers so that we can
2253 	 * interpolate */
2254 	for (i = 0; i <= max; i++) {
2255 
2256 		/* Frequency matches one of our calibration
2257 		 * piers, no need to interpolate, just use
2258 		 * that calibration pier */
2259 		if (pcinfo[i].freq == target) {
2260 			idx_l = idx_r = i;
2261 			goto done;
2262 		}
2263 
2264 		/* We found a calibration pier that's above
2265 		 * frequency, use this pier and the previous
2266 		 * one to interpolate */
2267 		if (target < pcinfo[i].freq) {
2268 			idx_r = i;
2269 			idx_l = idx_r - 1;
2270 			goto done;
2271 		}
2272 	}
2273 
2274 done:
2275 	*pcinfo_l = &pcinfo[idx_l];
2276 	*pcinfo_r = &pcinfo[idx_r];
2277 }
2278 
2279 /*
2280  * Get the surrounding per-rate power calibration data
2281  * for a given frequency and interpolate between power
2282  * values to set max target power supported by hw for
2283  * each rate.
2284  */
2285 static void
ath5k_get_rate_pcal_data(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_rate_pcal_info * rates)2286 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2287 			struct ieee80211_channel *channel,
2288 			struct ath5k_rate_pcal_info *rates)
2289 {
2290 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2291 	struct ath5k_rate_pcal_info *rpinfo;
2292 	u8 idx_l, idx_r;
2293 	u8 mode, max, i;
2294 	u32 target = channel->center_freq;
2295 
2296 	idx_l = 0;
2297 	idx_r = 0;
2298 
2299 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2300 		rpinfo = ee->ee_rate_tpwr_b;
2301 		mode = AR5K_EEPROM_MODE_11B;
2302 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2303 		rpinfo = ee->ee_rate_tpwr_g;
2304 		mode = AR5K_EEPROM_MODE_11G;
2305 	} else {
2306 		rpinfo = ee->ee_rate_tpwr_a;
2307 		mode = AR5K_EEPROM_MODE_11A;
2308 	}
2309 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2310 
2311 	/* Get the surrounding calibration
2312 	 * piers - same as above */
2313 	if (target < rpinfo[0].freq) {
2314 		idx_l = idx_r = 0;
2315 		goto done;
2316 	}
2317 
2318 	if (target > rpinfo[max].freq) {
2319 		idx_l = idx_r = max;
2320 		goto done;
2321 	}
2322 
2323 	for (i = 0; i <= max; i++) {
2324 
2325 		if (rpinfo[i].freq == target) {
2326 			idx_l = idx_r = i;
2327 			goto done;
2328 		}
2329 
2330 		if (target < rpinfo[i].freq) {
2331 			idx_r = i;
2332 			idx_l = idx_r - 1;
2333 			goto done;
2334 		}
2335 	}
2336 
2337 done:
2338 	/* Now interpolate power value, based on the frequency */
2339 	rates->freq = target;
2340 
2341 	rates->target_power_6to24 =
2342 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2343 					rpinfo[idx_r].freq,
2344 					rpinfo[idx_l].target_power_6to24,
2345 					rpinfo[idx_r].target_power_6to24);
2346 
2347 	rates->target_power_36 =
2348 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2349 					rpinfo[idx_r].freq,
2350 					rpinfo[idx_l].target_power_36,
2351 					rpinfo[idx_r].target_power_36);
2352 
2353 	rates->target_power_48 =
2354 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2355 					rpinfo[idx_r].freq,
2356 					rpinfo[idx_l].target_power_48,
2357 					rpinfo[idx_r].target_power_48);
2358 
2359 	rates->target_power_54 =
2360 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2361 					rpinfo[idx_r].freq,
2362 					rpinfo[idx_l].target_power_54,
2363 					rpinfo[idx_r].target_power_54);
2364 }
2365 
2366 /*
2367  * Get the max edge power for this channel if
2368  * we have such data from EEPROM's Conformance Test
2369  * Limits (CTL), and limit max power if needed.
2370  */
2371 static void
ath5k_get_max_ctl_power(struct ath5k_hw * ah,struct ieee80211_channel * channel)2372 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2373 			struct ieee80211_channel *channel)
2374 {
2375 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2376 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2377 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2378 	u8 *ctl_val = ee->ee_ctl;
2379 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2380 	s16 edge_pwr = 0;
2381 	u8 rep_idx;
2382 	u8 i, ctl_mode;
2383 	u8 ctl_idx = 0xFF;
2384 	u32 target = channel->center_freq;
2385 
2386 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2387 
2388 	switch (channel->hw_value & CHANNEL_MODES) {
2389 	case CHANNEL_A:
2390 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2391 			ctl_mode |= AR5K_CTL_TURBO;
2392 		else
2393 			ctl_mode |= AR5K_CTL_11A;
2394 		break;
2395 	case CHANNEL_G:
2396 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2397 			ctl_mode |= AR5K_CTL_TURBOG;
2398 		else
2399 			ctl_mode |= AR5K_CTL_11G;
2400 		break;
2401 	case CHANNEL_B:
2402 		ctl_mode |= AR5K_CTL_11B;
2403 		break;
2404 	case CHANNEL_XR:
2405 		/* Fall through */
2406 	default:
2407 		return;
2408 	}
2409 
2410 	for (i = 0; i < ee->ee_ctls; i++) {
2411 		if (ctl_val[i] == ctl_mode) {
2412 			ctl_idx = i;
2413 			break;
2414 		}
2415 	}
2416 
2417 	/* If we have a CTL dataset available grab it and find the
2418 	 * edge power for our frequency */
2419 	if (ctl_idx == 0xFF)
2420 		return;
2421 
2422 	/* Edge powers are sorted by frequency from lower
2423 	 * to higher. Each CTL corresponds to 8 edge power
2424 	 * measurements. */
2425 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2426 
2427 	/* Don't do boundaries check because we
2428 	 * might have more that one bands defined
2429 	 * for this mode */
2430 
2431 	/* Get the edge power that's closer to our
2432 	 * frequency */
2433 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2434 		rep_idx += i;
2435 		if (target <= rep[rep_idx].freq)
2436 			edge_pwr = (s16) rep[rep_idx].edge;
2437 	}
2438 
2439 	if (edge_pwr)
2440 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2441 }
2442 
2443 
2444 /*
2445  * Power to PCDAC table functions
2446  */
2447 
2448 /*
2449  * Fill Power to PCDAC table on RF5111
2450  *
2451  * No further processing is needed for RF5111, the only thing we have to
2452  * do is fill the values below and above calibration range since eeprom data
2453  * may not cover the entire PCDAC table.
2454  */
2455 static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw * ah,s16 * table_min,s16 * table_max)2456 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2457 							s16 *table_max)
2458 {
2459 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2460 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2461 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2462 	s16	min_pwr, max_pwr;
2463 
2464 	/* Get table boundaries */
2465 	min_pwr = table_min[0];
2466 	pcdac_0 = pcdac_tmp[0];
2467 
2468 	max_pwr = table_max[0];
2469 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2470 
2471 	/* Extrapolate below minimum using pcdac_0 */
2472 	pcdac_i = 0;
2473 	for (i = 0; i < min_pwr; i++)
2474 		pcdac_out[pcdac_i++] = pcdac_0;
2475 
2476 	/* Copy values from pcdac_tmp */
2477 	pwr_idx = min_pwr;
2478 	for (i = 0 ; pwr_idx <= max_pwr &&
2479 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2480 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2481 		pwr_idx++;
2482 	}
2483 
2484 	/* Extrapolate above maximum */
2485 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2486 		pcdac_out[pcdac_i++] = pcdac_n;
2487 
2488 }
2489 
2490 /*
2491  * Combine available XPD Curves and fill Linear Power to PCDAC table
2492  * on RF5112
2493  *
2494  * RFX112 can have up to 2 curves (one for low txpower range and one for
2495  * higher txpower range). We need to put them both on pcdac_out and place
2496  * them in the correct location. In case we only have one curve available
2497  * just fit it on pcdac_out (it's supposed to cover the entire range of
2498  * available pwr levels since it's always the higher power curve). Extrapolate
2499  * below and above final table if needed.
2500  */
2501 static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw * ah,s16 * table_min,s16 * table_max,u8 pdcurves)2502 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2503 						s16 *table_max, u8 pdcurves)
2504 {
2505 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2506 	u8	*pcdac_low_pwr;
2507 	u8	*pcdac_high_pwr;
2508 	u8	*pcdac_tmp;
2509 	u8	pwr;
2510 	s16	max_pwr_idx;
2511 	s16	min_pwr_idx;
2512 	s16	mid_pwr_idx = 0;
2513 	/* Edge flag turs on the 7nth bit on the PCDAC
2514 	 * to delcare the higher power curve (force values
2515 	 * to be greater than 64). If we only have one curve
2516 	 * we don't need to set this, if we have 2 curves and
2517 	 * fill the table backwards this can also be used to
2518 	 * switch from higher power curve to lower power curve */
2519 	u8	edge_flag;
2520 	int	i;
2521 
2522 	/* When we have only one curve available
2523 	 * that's the higher power curve. If we have
2524 	 * two curves the first is the high power curve
2525 	 * and the next is the low power curve. */
2526 	if (pdcurves > 1) {
2527 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2528 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2529 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2530 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2531 
2532 		/* If table size goes beyond 31.5dB, keep the
2533 		 * upper 31.5dB range when setting tx power.
2534 		 * Note: 126 = 31.5 dB in quarter dB steps */
2535 		if (table_max[0] - table_min[1] > 126)
2536 			min_pwr_idx = table_max[0] - 126;
2537 		else
2538 			min_pwr_idx = table_min[1];
2539 
2540 		/* Since we fill table backwards
2541 		 * start from high power curve */
2542 		pcdac_tmp = pcdac_high_pwr;
2543 
2544 		edge_flag = 0x40;
2545 	} else {
2546 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2547 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2548 		min_pwr_idx = table_min[0];
2549 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2550 		pcdac_tmp = pcdac_high_pwr;
2551 		edge_flag = 0;
2552 	}
2553 
2554 	/* This is used when setting tx power*/
2555 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2556 
2557 	/* Fill Power to PCDAC table backwards */
2558 	pwr = max_pwr_idx;
2559 	for (i = 63; i >= 0; i--) {
2560 		/* Entering lower power range, reset
2561 		 * edge flag and set pcdac_tmp to lower
2562 		 * power curve.*/
2563 		if (edge_flag == 0x40 &&
2564 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2565 			edge_flag = 0x00;
2566 			pcdac_tmp = pcdac_low_pwr;
2567 			pwr = mid_pwr_idx/2;
2568 		}
2569 
2570 		/* Don't go below 1, extrapolate below if we have
2571 		 * already swithced to the lower power curve -or
2572 		 * we only have one curve and edge_flag is zero
2573 		 * anyway */
2574 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2575 			while (i >= 0) {
2576 				pcdac_out[i] = pcdac_out[i + 1];
2577 				i--;
2578 			}
2579 			break;
2580 		}
2581 
2582 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2583 
2584 		/* Extrapolate above if pcdac is greater than
2585 		 * 126 -this can happen because we OR pcdac_out
2586 		 * value with edge_flag on high power curve */
2587 		if (pcdac_out[i] > 126)
2588 			pcdac_out[i] = 126;
2589 
2590 		/* Decrease by a 0.5dB step */
2591 		pwr--;
2592 	}
2593 }
2594 
2595 /* Write PCDAC values on hw */
2596 static void
ath5k_write_pcdac_table(struct ath5k_hw * ah)2597 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2598 {
2599 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2600 	int	i;
2601 
2602 	/*
2603 	 * Write TX power values
2604 	 */
2605 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2606 		ath5k_hw_reg_write(ah,
2607 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2608 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2609 			AR5K_PHY_PCDAC_TXPOWER(i));
2610 	}
2611 }
2612 
2613 
2614 /*
2615  * Power to PDADC table functions
2616  */
2617 
2618 /*
2619  * Set the gain boundaries and create final Power to PDADC table
2620  *
2621  * We can have up to 4 pd curves, we need to do a similar process
2622  * as we do for RF5112. This time we don't have an edge_flag but we
2623  * set the gain boundaries on a separate register.
2624  */
2625 static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw * ah,s16 * pwr_min,s16 * pwr_max,u8 pdcurves)2626 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2627 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2628 {
2629 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2630 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2631 	u8 *pdadc_tmp;
2632 	s16 pdadc_0;
2633 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2634 	u8 pd_gain_overlap;
2635 
2636 	/* Note: Register value is initialized on initvals
2637 	 * there is no feedback from hw.
2638 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2639 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2640 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2641 
2642 	/* Create final PDADC table */
2643 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2644 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2645 
2646 		if (pdg == pdcurves - 1)
2647 			/* 2 dB boundary stretch for last
2648 			 * (higher power) curve */
2649 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2650 		else
2651 			/* Set gain boundary in the middle
2652 			 * between this curve and the next one */
2653 			gain_boundaries[pdg] =
2654 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2655 
2656 		/* Sanity check in case our 2 db stretch got out of
2657 		 * range. */
2658 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2659 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2660 
2661 		/* For the first curve (lower power)
2662 		 * start from 0 dB */
2663 		if (pdg == 0)
2664 			pdadc_0 = 0;
2665 		else
2666 			/* For the other curves use the gain overlap */
2667 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2668 							pd_gain_overlap;
2669 
2670 		/* Force each power step to be at least 0.5 dB */
2671 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2672 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2673 		else
2674 			pwr_step = 1;
2675 
2676 		/* If pdadc_0 is negative, we need to extrapolate
2677 		 * below this pdgain by a number of pwr_steps */
2678 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2679 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2680 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2681 			pdadc_0++;
2682 		}
2683 
2684 		/* Set last pwr level, using gain boundaries */
2685 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2686 		/* Limit it to be inside pwr range */
2687 		table_size = pwr_max[pdg] - pwr_min[pdg];
2688 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2689 
2690 		/* Fill pdadc_out table */
2691 		while (pdadc_0 < max_idx && pdadc_i < 128)
2692 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2693 
2694 		/* Need to extrapolate above this pdgain? */
2695 		if (pdadc_n <= max_idx)
2696 			continue;
2697 
2698 		/* Force each power step to be at least 0.5 dB */
2699 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2700 			pwr_step = pdadc_tmp[table_size - 1] -
2701 						pdadc_tmp[table_size - 2];
2702 		else
2703 			pwr_step = 1;
2704 
2705 		/* Extrapolate above */
2706 		while ((pdadc_0 < (s16) pdadc_n) &&
2707 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2708 			s16 tmp = pdadc_tmp[table_size - 1] +
2709 					(pdadc_0 - max_idx) * pwr_step;
2710 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2711 			pdadc_0++;
2712 		}
2713 	}
2714 
2715 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2716 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2717 		pdg++;
2718 	}
2719 
2720 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2721 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2722 		pdadc_i++;
2723 	}
2724 
2725 	/* Set gain boundaries */
2726 	ath5k_hw_reg_write(ah,
2727 		AR5K_REG_SM(pd_gain_overlap,
2728 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2729 		AR5K_REG_SM(gain_boundaries[0],
2730 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2731 		AR5K_REG_SM(gain_boundaries[1],
2732 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2733 		AR5K_REG_SM(gain_boundaries[2],
2734 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2735 		AR5K_REG_SM(gain_boundaries[3],
2736 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2737 		AR5K_PHY_TPC_RG5);
2738 
2739 	/* Used for setting rate power table */
2740 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2741 
2742 }
2743 
2744 /* Write PDADC values on hw */
2745 static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw * ah,u8 ee_mode)2746 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2747 {
2748 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2749 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2750 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2751 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2752 	u32 reg;
2753 	u8 i;
2754 
2755 	/* Select the right pdgain curves */
2756 
2757 	/* Clear current settings */
2758 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2759 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2760 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2761 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2762 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2763 
2764 	/*
2765 	 * Use pd_gains curve from eeprom
2766 	 *
2767 	 * This overrides the default setting from initvals
2768 	 * in case some vendors (e.g. Zcomax) don't use the default
2769 	 * curves. If we don't honor their settings we 'll get a
2770 	 * 5dB (1 * gain overlap ?) drop.
2771 	 */
2772 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2773 
2774 	switch (pdcurves) {
2775 	case 3:
2776 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2777 		/* Fall through */
2778 	case 2:
2779 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2780 		/* Fall through */
2781 	case 1:
2782 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2783 		break;
2784 	}
2785 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2786 
2787 	/*
2788 	 * Write TX power values
2789 	 */
2790 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2791 		ath5k_hw_reg_write(ah,
2792 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2793 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2794 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2795 			((pdadc_out[4*i + 3] & 0xff) << 24),
2796 			AR5K_PHY_PDADC_TXPOWER(i));
2797 	}
2798 }
2799 
2800 
2801 /*
2802  * Common code for PCDAC/PDADC tables
2803  */
2804 
2805 /*
2806  * This is the main function that uses all of the above
2807  * to set PCDAC/PDADC table on hw for the current channel.
2808  * This table is used for tx power calibration on the basband,
2809  * without it we get weird tx power levels and in some cases
2810  * distorted spectral mask
2811  */
2812 static int
ath5k_setup_channel_powertable(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 ee_mode,u8 type)2813 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2814 			struct ieee80211_channel *channel,
2815 			u8 ee_mode, u8 type)
2816 {
2817 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2818 	struct ath5k_chan_pcal_info *pcinfo_L;
2819 	struct ath5k_chan_pcal_info *pcinfo_R;
2820 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2821 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2822 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2823 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2824 	u8 *tmpL;
2825 	u8 *tmpR;
2826 	u32 target = channel->center_freq;
2827 	int pdg, i;
2828 
2829 	/* Get surrounding freq piers for this channel */
2830 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2831 						&pcinfo_L,
2832 						&pcinfo_R);
2833 
2834 	/* Loop over pd gain curves on
2835 	 * surrounding freq piers by index */
2836 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2837 
2838 		/* Fill curves in reverse order
2839 		 * from lower power (max gain)
2840 		 * to higher power. Use curve -> idx
2841 		 * backmapping we did on eeprom init */
2842 		u8 idx = pdg_curve_to_idx[pdg];
2843 
2844 		/* Grab the needed curves by index */
2845 		pdg_L = &pcinfo_L->pd_curves[idx];
2846 		pdg_R = &pcinfo_R->pd_curves[idx];
2847 
2848 		/* Initialize the temp tables */
2849 		tmpL = ah->ah_txpower.tmpL[pdg];
2850 		tmpR = ah->ah_txpower.tmpR[pdg];
2851 
2852 		/* Set curve's x boundaries and create
2853 		 * curves so that they cover the same
2854 		 * range (if we don't do that one table
2855 		 * will have values on some range and the
2856 		 * other one won't have any so interpolation
2857 		 * will fail) */
2858 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2859 					pdg_R->pd_pwr[0]) / 2;
2860 
2861 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2862 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2863 
2864 		/* Now create the curves on surrounding channels
2865 		 * and interpolate if needed to get the final
2866 		 * curve for this gain on this channel */
2867 		switch (type) {
2868 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2869 			/* Override min/max so that we don't loose
2870 			 * accuracy (don't divide by 2) */
2871 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2872 						pdg_R->pd_pwr[0]);
2873 
2874 			table_max[pdg] =
2875 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2876 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2877 
2878 			/* Override minimum so that we don't get
2879 			 * out of bounds while extrapolating
2880 			 * below. Don't do this when we have 2
2881 			 * curves and we are on the high power curve
2882 			 * because table_min is ok in this case */
2883 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2884 
2885 				table_min[pdg] =
2886 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2887 								pdg_R->pd_step,
2888 								pdg_L->pd_pwr,
2889 								pdg_R->pd_pwr);
2890 
2891 				/* Don't go too low because we will
2892 				 * miss the upper part of the curve.
2893 				 * Note: 126 = 31.5dB (max power supported)
2894 				 * in 0.25dB units */
2895 				if (table_max[pdg] - table_min[pdg] > 126)
2896 					table_min[pdg] = table_max[pdg] - 126;
2897 			}
2898 
2899 			/* Fall through */
2900 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2901 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2902 
2903 			ath5k_create_power_curve(table_min[pdg],
2904 						table_max[pdg],
2905 						pdg_L->pd_pwr,
2906 						pdg_L->pd_step,
2907 						pdg_L->pd_points, tmpL, type);
2908 
2909 			/* We are in a calibration
2910 			 * pier, no need to interpolate
2911 			 * between freq piers */
2912 			if (pcinfo_L == pcinfo_R)
2913 				continue;
2914 
2915 			ath5k_create_power_curve(table_min[pdg],
2916 						table_max[pdg],
2917 						pdg_R->pd_pwr,
2918 						pdg_R->pd_step,
2919 						pdg_R->pd_points, tmpR, type);
2920 			break;
2921 		default:
2922 			return -EINVAL;
2923 		}
2924 
2925 		/* Interpolate between curves
2926 		 * of surrounding freq piers to
2927 		 * get the final curve for this
2928 		 * pd gain. Re-use tmpL for interpolation
2929 		 * output */
2930 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2931 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2932 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2933 							(s16) pcinfo_L->freq,
2934 							(s16) pcinfo_R->freq,
2935 							(s16) tmpL[i],
2936 							(s16) tmpR[i]);
2937 		}
2938 	}
2939 
2940 	/* Now we have a set of curves for this
2941 	 * channel on tmpL (x range is table_max - table_min
2942 	 * and y values are tmpL[pdg][]) sorted in the same
2943 	 * order as EEPROM (because we've used the backmapping).
2944 	 * So for RF5112 it's from higher power to lower power
2945 	 * and for RF2413 it's from lower power to higher power.
2946 	 * For RF5111 we only have one curve. */
2947 
2948 	/* Fill min and max power levels for this
2949 	 * channel by interpolating the values on
2950 	 * surrounding channels to complete the dataset */
2951 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2952 					(s16) pcinfo_L->freq,
2953 					(s16) pcinfo_R->freq,
2954 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2955 
2956 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2957 					(s16) pcinfo_L->freq,
2958 					(s16) pcinfo_R->freq,
2959 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2960 
2961 	/* Fill PCDAC/PDADC table */
2962 	switch (type) {
2963 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2964 		/* For RF5112 we can have one or two curves
2965 		 * and each curve covers a certain power lvl
2966 		 * range so we need to do some more processing */
2967 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2968 						ee->ee_pd_gains[ee_mode]);
2969 
2970 		/* Set txp.offset so that we can
2971 		 * match max power value with max
2972 		 * table index */
2973 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2974 		break;
2975 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2976 		/* We are done for RF5111 since it has only
2977 		 * one curve, just fit the curve on the table */
2978 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2979 
2980 		/* No rate powertable adjustment for RF5111 */
2981 		ah->ah_txpower.txp_min_idx = 0;
2982 		ah->ah_txpower.txp_offset = 0;
2983 		break;
2984 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2985 		/* Set PDADC boundaries and fill
2986 		 * final PDADC table */
2987 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2988 						ee->ee_pd_gains[ee_mode]);
2989 
2990 		/* Set txp.offset, note that table_min
2991 		 * can be negative */
2992 		ah->ah_txpower.txp_offset = table_min[0];
2993 		break;
2994 	default:
2995 		return -EINVAL;
2996 	}
2997 
2998 	ah->ah_txpower.txp_setup = true;
2999 
3000 	return 0;
3001 }
3002 
3003 /* Write power table for current channel to hw */
3004 static void
ath5k_write_channel_powertable(struct ath5k_hw * ah,u8 ee_mode,u8 type)3005 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3006 {
3007 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3008 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3009 	else
3010 		ath5k_write_pcdac_table(ah);
3011 }
3012 
3013 /*
3014  * Per-rate tx power setting
3015  *
3016  * This is the code that sets the desired tx power (below
3017  * maximum) on hw for each rate (we also have TPC that sets
3018  * power per packet). We do that by providing an index on the
3019  * PCDAC/PDADC table we set up.
3020  */
3021 
3022 /*
3023  * Set rate power table
3024  *
3025  * For now we only limit txpower based on maximum tx power
3026  * supported by hw (what's inside rate_info). We need to limit
3027  * this even more, based on regulatory domain etc.
3028  *
3029  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3030  * and is indexed as follows:
3031  * rates[0] - rates[7] -> OFDM rates
3032  * rates[8] - rates[14] -> CCK rates
3033  * rates[15] -> XR rates (they all have the same power)
3034  */
3035 static void
ath5k_setup_rate_powertable(struct ath5k_hw * ah,u16 max_pwr,struct ath5k_rate_pcal_info * rate_info,u8 ee_mode)3036 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3037 			struct ath5k_rate_pcal_info *rate_info,
3038 			u8 ee_mode)
3039 {
3040 	unsigned int i;
3041 	u16 *rates;
3042 
3043 	/* max_pwr is power level we got from driver/user in 0.5dB
3044 	 * units, switch to 0.25dB units so we can compare */
3045 	max_pwr *= 2;
3046 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3047 
3048 	/* apply rate limits */
3049 	rates = ah->ah_txpower.txp_rates_power_table;
3050 
3051 	/* OFDM rates 6 to 24Mb/s */
3052 	for (i = 0; i < 5; i++)
3053 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3054 
3055 	/* Rest OFDM rates */
3056 	rates[5] = min(rates[0], rate_info->target_power_36);
3057 	rates[6] = min(rates[0], rate_info->target_power_48);
3058 	rates[7] = min(rates[0], rate_info->target_power_54);
3059 
3060 	/* CCK rates */
3061 	/* 1L */
3062 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3063 	/* 2L */
3064 	rates[9] = min(rates[0], rate_info->target_power_36);
3065 	/* 2S */
3066 	rates[10] = min(rates[0], rate_info->target_power_36);
3067 	/* 5L */
3068 	rates[11] = min(rates[0], rate_info->target_power_48);
3069 	/* 5S */
3070 	rates[12] = min(rates[0], rate_info->target_power_48);
3071 	/* 11L */
3072 	rates[13] = min(rates[0], rate_info->target_power_54);
3073 	/* 11S */
3074 	rates[14] = min(rates[0], rate_info->target_power_54);
3075 
3076 	/* XR rates */
3077 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3078 
3079 	/* CCK rates have different peak to average ratio
3080 	 * so we have to tweak their power so that gainf
3081 	 * correction works ok. For this we use OFDM to
3082 	 * CCK delta from eeprom */
3083 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3084 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3085 		for (i = 8; i <= 15; i++)
3086 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3087 
3088 	/* Now that we have all rates setup use table offset to
3089 	 * match the power range set by user with the power indices
3090 	 * on PCDAC/PDADC table */
3091 	for (i = 0; i < 16; i++) {
3092 		rates[i] += ah->ah_txpower.txp_offset;
3093 		/* Don't get out of bounds */
3094 		if (rates[i] > 63)
3095 			rates[i] = 63;
3096 	}
3097 
3098 	/* Min/max in 0.25dB units */
3099 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3100 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3101 	ah->ah_txpower.txp_ofdm = rates[7];
3102 }
3103 
3104 
3105 /*
3106  * Set transmission power
3107  */
3108 static int
ath5k_hw_txpower(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 txpower)3109 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3110 		 u8 txpower)
3111 {
3112 	struct ath5k_rate_pcal_info rate_info;
3113 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3114 	int ee_mode;
3115 	u8 type;
3116 	int ret;
3117 
3118 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3119 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3120 		return -EINVAL;
3121 	}
3122 
3123 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3124 	if (ee_mode < 0) {
3125 		ATH5K_ERR(ah->ah_sc,
3126 			"invalid channel: %d\n", channel->center_freq);
3127 		return -EINVAL;
3128 	}
3129 
3130 	/* Initialize TX power table */
3131 	switch (ah->ah_radio) {
3132 	case AR5K_RF5110:
3133 		/* TODO */
3134 		return 0;
3135 	case AR5K_RF5111:
3136 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3137 		break;
3138 	case AR5K_RF5112:
3139 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3140 		break;
3141 	case AR5K_RF2413:
3142 	case AR5K_RF5413:
3143 	case AR5K_RF2316:
3144 	case AR5K_RF2317:
3145 	case AR5K_RF2425:
3146 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3147 		break;
3148 	default:
3149 		return -EINVAL;
3150 	}
3151 
3152 	/*
3153 	 * If we don't change channel/mode skip tx powertable calculation
3154 	 * and use the cached one.
3155 	 */
3156 	if (!ah->ah_txpower.txp_setup ||
3157 	    (channel->hw_value != curr_channel->hw_value) ||
3158 	    (channel->center_freq != curr_channel->center_freq)) {
3159 		/* Reset TX power values */
3160 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3161 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3162 
3163 		/* Calculate the powertable */
3164 		ret = ath5k_setup_channel_powertable(ah, channel,
3165 							ee_mode, type);
3166 		if (ret)
3167 			return ret;
3168 	}
3169 
3170 	/* Write table on hw */
3171 	ath5k_write_channel_powertable(ah, ee_mode, type);
3172 
3173 	/* Limit max power if we have a CTL available */
3174 	ath5k_get_max_ctl_power(ah, channel);
3175 
3176 	/* FIXME: Antenna reduction stuff */
3177 
3178 	/* FIXME: Limit power on turbo modes */
3179 
3180 	/* FIXME: TPC scale reduction */
3181 
3182 	/* Get surrounding channels for per-rate power table
3183 	 * calibration */
3184 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3185 
3186 	/* Setup rate power table */
3187 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3188 
3189 	/* Write rate power table on hw */
3190 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3191 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3192 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3193 
3194 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3195 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3196 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3197 
3198 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3199 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3200 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3201 
3202 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3203 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3204 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3205 
3206 	/* FIXME: TPC support */
3207 	if (ah->ah_txpower.txp_tpc) {
3208 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3209 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3210 
3211 		ath5k_hw_reg_write(ah,
3212 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3213 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3214 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3215 			AR5K_TPC);
3216 	} else {
3217 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3218 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
ath5k_hw_set_txpower_limit(struct ath5k_hw * ah,u8 txpower)3224 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3225 {
3226 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3227 		"changing txpower to %d\n", txpower);
3228 
3229 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3230 }
3231 
3232 /*************\
3233  Init function
3234 \*************/
3235 
ath5k_hw_phy_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 mode,bool fast)3236 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3237 		      u8 mode, bool fast)
3238 {
3239 	struct ieee80211_channel *curr_channel;
3240 	int ret, i;
3241 	u32 phy_tst1;
3242 	ret = 0;
3243 
3244 	/*
3245 	 * Sanity check for fast flag
3246 	 * Don't try fast channel change when changing modulation
3247 	 * mode/band. We check for chip compatibility on
3248 	 * ath5k_hw_reset.
3249 	 */
3250 	curr_channel = ah->ah_current_channel;
3251 	if (fast && (channel->hw_value != curr_channel->hw_value))
3252 		return -EINVAL;
3253 
3254 	/*
3255 	 * On fast channel change we only set the synth parameters
3256 	 * while PHY is running, enable calibration and skip the rest.
3257 	 */
3258 	if (fast) {
3259 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3260 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3261 		for (i = 0; i < 100; i++) {
3262 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3263 				break;
3264 			udelay(5);
3265 		}
3266 		/* Failed */
3267 		if (i >= 100)
3268 			return -EIO;
3269 
3270 		/* Set channel and wait for synth */
3271 		ret = ath5k_hw_channel(ah, channel);
3272 		if (ret)
3273 			return ret;
3274 
3275 		ath5k_hw_wait_for_synth(ah, channel);
3276 	}
3277 
3278 	/*
3279 	 * Set TX power
3280 	 *
3281 	 * Note: We need to do that before we set
3282 	 * RF buffer settings on 5211/5212+ so that we
3283 	 * properly set curve indices.
3284 	 */
3285 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3286 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3287 	if (ret)
3288 		return ret;
3289 
3290 	/* Write OFDM timings on 5212*/
3291 	if (ah->ah_version == AR5K_AR5212 &&
3292 		channel->hw_value & CHANNEL_OFDM) {
3293 
3294 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3295 		if (ret)
3296 			return ret;
3297 
3298 		/* Spur info is available only from EEPROM versions
3299 		 * greater than 5.3, but the EEPROM routines will use
3300 		 * static values for older versions */
3301 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3302 			ath5k_hw_set_spur_mitigation_filter(ah,
3303 							    channel);
3304 	}
3305 
3306 	/* If we used fast channel switching
3307 	 * we are done, release RF bus and
3308 	 * fire up NF calibration.
3309 	 *
3310 	 * Note: Only NF calibration due to
3311 	 * channel change, not AGC calibration
3312 	 * since AGC is still running !
3313 	 */
3314 	if (fast) {
3315 		/*
3316 		 * Release RF Bus grant
3317 		 */
3318 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3319 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3320 
3321 		/*
3322 		 * Start NF calibration
3323 		 */
3324 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3325 					AR5K_PHY_AGCCTL_NF);
3326 
3327 		return ret;
3328 	}
3329 
3330 	/*
3331 	 * For 5210 we do all initialization using
3332 	 * initvals, so we don't have to modify
3333 	 * any settings (5210 also only supports
3334 	 * a/aturbo modes)
3335 	 */
3336 	if (ah->ah_version != AR5K_AR5210) {
3337 
3338 		/*
3339 		 * Write initial RF gain settings
3340 		 * This should work for both 5111/5112
3341 		 */
3342 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3343 		if (ret)
3344 			return ret;
3345 
3346 		mdelay(1);
3347 
3348 		/*
3349 		 * Write RF buffer
3350 		 */
3351 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3352 		if (ret)
3353 			return ret;
3354 
3355 		/*Enable/disable 802.11b mode on 5111
3356 		(enable 2111 frequency converter + CCK)*/
3357 		if (ah->ah_radio == AR5K_RF5111) {
3358 			if (mode == AR5K_MODE_11B)
3359 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3360 				    AR5K_TXCFG_B_MODE);
3361 			else
3362 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3363 				    AR5K_TXCFG_B_MODE);
3364 		}
3365 
3366 	} else if (ah->ah_version == AR5K_AR5210) {
3367 		mdelay(1);
3368 		/* Disable phy and wait */
3369 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3370 		mdelay(1);
3371 	}
3372 
3373 	/* Set channel on PHY */
3374 	ret = ath5k_hw_channel(ah, channel);
3375 	if (ret)
3376 		return ret;
3377 
3378 	/*
3379 	 * Enable the PHY and wait until completion
3380 	 * This includes BaseBand and Synthesizer
3381 	 * activation.
3382 	 */
3383 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3384 
3385 	ath5k_hw_wait_for_synth(ah, channel);
3386 
3387 	/*
3388 	 * Perform ADC test to see if baseband is ready
3389 	 * Set tx hold and check adc test register
3390 	 */
3391 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3392 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3393 	for (i = 0; i <= 20; i++) {
3394 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3395 			break;
3396 		udelay(200);
3397 	}
3398 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3399 
3400 	/*
3401 	 * Start automatic gain control calibration
3402 	 *
3403 	 * During AGC calibration RX path is re-routed to
3404 	 * a power detector so we don't receive anything.
3405 	 *
3406 	 * This method is used to calibrate some static offsets
3407 	 * used together with on-the fly I/Q calibration (the
3408 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3409 	 * interrupt rx path.
3410 	 *
3411 	 * While rx path is re-routed to the power detector we also
3412 	 * start a noise floor calibration to measure the
3413 	 * card's noise floor (the noise we measure when we are not
3414 	 * transmitting or receiving anything).
3415 	 *
3416 	 * If we are in a noisy environment, AGC calibration may time
3417 	 * out and/or noise floor calibration might timeout.
3418 	 */
3419 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3420 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3421 
3422 	/* At the same time start I/Q calibration for QAM constellation
3423 	 * -no need for CCK- */
3424 	ah->ah_calibration = false;
3425 	if (!(mode == AR5K_MODE_11B)) {
3426 		ah->ah_calibration = true;
3427 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3428 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3429 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3430 				AR5K_PHY_IQ_RUN);
3431 	}
3432 
3433 	/* Wait for gain calibration to finish (we check for I/Q calibration
3434 	 * during ath5k_phy_calibrate) */
3435 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3436 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3437 		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3438 			channel->center_freq);
3439 	}
3440 
3441 	/* Restore antenna mode */
3442 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3443 
3444 	return ret;
3445 }
3446