1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
anon_vma_alloc(void)68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
anon_vma_free(struct anon_vma * anon_vma)85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
97 	 *
98 	 * page_lock_anon_vma()		VS	put_anon_vma()
99 	 *   mutex_trylock()			  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  mutex_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	might_sleep();
107 	if (mutex_is_locked(&anon_vma->root->mutex)) {
108 		anon_vma_lock(anon_vma);
109 		anon_vma_unlock(anon_vma);
110 	}
111 
112 	kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114 
anon_vma_chain_alloc(gfp_t gfp)115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 				struct anon_vma_chain *avc,
127 				struct anon_vma *anon_vma)
128 {
129 	avc->vma = vma;
130 	avc->anon_vma = anon_vma;
131 	list_add(&avc->same_vma, &vma->anon_vma_chain);
132 
133 	/*
134 	 * It's critical to add new vmas to the tail of the anon_vma,
135 	 * see comment in huge_memory.c:__split_huge_page().
136 	 */
137 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
138 }
139 
140 /**
141  * anon_vma_prepare - attach an anon_vma to a memory region
142  * @vma: the memory region in question
143  *
144  * This makes sure the memory mapping described by 'vma' has
145  * an 'anon_vma' attached to it, so that we can associate the
146  * anonymous pages mapped into it with that anon_vma.
147  *
148  * The common case will be that we already have one, but if
149  * not we either need to find an adjacent mapping that we
150  * can re-use the anon_vma from (very common when the only
151  * reason for splitting a vma has been mprotect()), or we
152  * allocate a new one.
153  *
154  * Anon-vma allocations are very subtle, because we may have
155  * optimistically looked up an anon_vma in page_lock_anon_vma()
156  * and that may actually touch the spinlock even in the newly
157  * allocated vma (it depends on RCU to make sure that the
158  * anon_vma isn't actually destroyed).
159  *
160  * As a result, we need to do proper anon_vma locking even
161  * for the new allocation. At the same time, we do not want
162  * to do any locking for the common case of already having
163  * an anon_vma.
164  *
165  * This must be called with the mmap_sem held for reading.
166  */
anon_vma_prepare(struct vm_area_struct * vma)167 int anon_vma_prepare(struct vm_area_struct *vma)
168 {
169 	struct anon_vma *anon_vma = vma->anon_vma;
170 	struct anon_vma_chain *avc;
171 
172 	might_sleep();
173 	if (unlikely(!anon_vma)) {
174 		struct mm_struct *mm = vma->vm_mm;
175 		struct anon_vma *allocated;
176 
177 		avc = anon_vma_chain_alloc(GFP_KERNEL);
178 		if (!avc)
179 			goto out_enomem;
180 
181 		anon_vma = find_mergeable_anon_vma(vma);
182 		allocated = NULL;
183 		if (!anon_vma) {
184 			anon_vma = anon_vma_alloc();
185 			if (unlikely(!anon_vma))
186 				goto out_enomem_free_avc;
187 			allocated = anon_vma;
188 		}
189 
190 		anon_vma_lock(anon_vma);
191 		/* page_table_lock to protect against threads */
192 		spin_lock(&mm->page_table_lock);
193 		if (likely(!vma->anon_vma)) {
194 			vma->anon_vma = anon_vma;
195 			anon_vma_chain_link(vma, avc, anon_vma);
196 			allocated = NULL;
197 			avc = NULL;
198 		}
199 		spin_unlock(&mm->page_table_lock);
200 		anon_vma_unlock(anon_vma);
201 
202 		if (unlikely(allocated))
203 			put_anon_vma(allocated);
204 		if (unlikely(avc))
205 			anon_vma_chain_free(avc);
206 	}
207 	return 0;
208 
209  out_enomem_free_avc:
210 	anon_vma_chain_free(avc);
211  out_enomem:
212 	return -ENOMEM;
213 }
214 
215 /*
216  * This is a useful helper function for locking the anon_vma root as
217  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
218  * have the same vma.
219  *
220  * Such anon_vma's should have the same root, so you'd expect to see
221  * just a single mutex_lock for the whole traversal.
222  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)223 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
224 {
225 	struct anon_vma *new_root = anon_vma->root;
226 	if (new_root != root) {
227 		if (WARN_ON_ONCE(root))
228 			mutex_unlock(&root->mutex);
229 		root = new_root;
230 		mutex_lock(&root->mutex);
231 	}
232 	return root;
233 }
234 
unlock_anon_vma_root(struct anon_vma * root)235 static inline void unlock_anon_vma_root(struct anon_vma *root)
236 {
237 	if (root)
238 		mutex_unlock(&root->mutex);
239 }
240 
241 /*
242  * Attach the anon_vmas from src to dst.
243  * Returns 0 on success, -ENOMEM on failure.
244  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)245 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
246 {
247 	struct anon_vma_chain *avc, *pavc;
248 	struct anon_vma *root = NULL;
249 
250 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
251 		struct anon_vma *anon_vma;
252 
253 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
254 		if (unlikely(!avc)) {
255 			unlock_anon_vma_root(root);
256 			root = NULL;
257 			avc = anon_vma_chain_alloc(GFP_KERNEL);
258 			if (!avc)
259 				goto enomem_failure;
260 		}
261 		anon_vma = pavc->anon_vma;
262 		root = lock_anon_vma_root(root, anon_vma);
263 		anon_vma_chain_link(dst, avc, anon_vma);
264 	}
265 	unlock_anon_vma_root(root);
266 	return 0;
267 
268  enomem_failure:
269 	unlink_anon_vmas(dst);
270 	return -ENOMEM;
271 }
272 
273 /*
274  * Some rmap walk that needs to find all ptes/hugepmds without false
275  * negatives (like migrate and split_huge_page) running concurrent
276  * with operations that copy or move pagetables (like mremap() and
277  * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
278  * list to be in a certain order: the dst_vma must be placed after the
279  * src_vma in the list. This is always guaranteed by fork() but
280  * mremap() needs to call this function to enforce it in case the
281  * dst_vma isn't newly allocated and chained with the anon_vma_clone()
282  * function but just an extension of a pre-existing vma through
283  * vma_merge.
284  *
285  * NOTE: the same_anon_vma list can still be changed by other
286  * processes while mremap runs because mremap doesn't hold the
287  * anon_vma mutex to prevent modifications to the list while it
288  * runs. All we need to enforce is that the relative order of this
289  * process vmas isn't changing (we don't care about other vmas
290  * order). Each vma corresponds to an anon_vma_chain structure so
291  * there's no risk that other processes calling anon_vma_moveto_tail()
292  * and changing the same_anon_vma list under mremap() will screw with
293  * the relative order of this process vmas in the list, because we
294  * they can't alter the order of any vma that belongs to this
295  * process. And there can't be another anon_vma_moveto_tail() running
296  * concurrently with mremap() coming from this process because we hold
297  * the mmap_sem for the whole mremap(). fork() ordering dependency
298  * also shouldn't be affected because fork() only cares that the
299  * parent vmas are placed in the list before the child vmas and
300  * anon_vma_moveto_tail() won't reorder vmas from either the fork()
301  * parent or child.
302  */
anon_vma_moveto_tail(struct vm_area_struct * dst)303 void anon_vma_moveto_tail(struct vm_area_struct *dst)
304 {
305 	struct anon_vma_chain *pavc;
306 	struct anon_vma *root = NULL;
307 
308 	list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
309 		struct anon_vma *anon_vma = pavc->anon_vma;
310 		VM_BUG_ON(pavc->vma != dst);
311 		root = lock_anon_vma_root(root, anon_vma);
312 		list_del(&pavc->same_anon_vma);
313 		list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
314 	}
315 	unlock_anon_vma_root(root);
316 }
317 
318 /*
319  * Attach vma to its own anon_vma, as well as to the anon_vmas that
320  * the corresponding VMA in the parent process is attached to.
321  * Returns 0 on success, non-zero on failure.
322  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)323 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
324 {
325 	struct anon_vma_chain *avc;
326 	struct anon_vma *anon_vma;
327 
328 	/* Don't bother if the parent process has no anon_vma here. */
329 	if (!pvma->anon_vma)
330 		return 0;
331 
332 	/*
333 	 * First, attach the new VMA to the parent VMA's anon_vmas,
334 	 * so rmap can find non-COWed pages in child processes.
335 	 */
336 	if (anon_vma_clone(vma, pvma))
337 		return -ENOMEM;
338 
339 	/* Then add our own anon_vma. */
340 	anon_vma = anon_vma_alloc();
341 	if (!anon_vma)
342 		goto out_error;
343 	avc = anon_vma_chain_alloc(GFP_KERNEL);
344 	if (!avc)
345 		goto out_error_free_anon_vma;
346 
347 	/*
348 	 * The root anon_vma's spinlock is the lock actually used when we
349 	 * lock any of the anon_vmas in this anon_vma tree.
350 	 */
351 	anon_vma->root = pvma->anon_vma->root;
352 	/*
353 	 * With refcounts, an anon_vma can stay around longer than the
354 	 * process it belongs to. The root anon_vma needs to be pinned until
355 	 * this anon_vma is freed, because the lock lives in the root.
356 	 */
357 	get_anon_vma(anon_vma->root);
358 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
359 	vma->anon_vma = anon_vma;
360 	anon_vma_lock(anon_vma);
361 	anon_vma_chain_link(vma, avc, anon_vma);
362 	anon_vma_unlock(anon_vma);
363 
364 	return 0;
365 
366  out_error_free_anon_vma:
367 	put_anon_vma(anon_vma);
368  out_error:
369 	unlink_anon_vmas(vma);
370 	return -ENOMEM;
371 }
372 
unlink_anon_vmas(struct vm_area_struct * vma)373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc, *next;
376 	struct anon_vma *root = NULL;
377 
378 	/*
379 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
380 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 	 */
382 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 		struct anon_vma *anon_vma = avc->anon_vma;
384 
385 		root = lock_anon_vma_root(root, anon_vma);
386 		list_del(&avc->same_anon_vma);
387 
388 		/*
389 		 * Leave empty anon_vmas on the list - we'll need
390 		 * to free them outside the lock.
391 		 */
392 		if (list_empty(&anon_vma->head))
393 			continue;
394 
395 		list_del(&avc->same_vma);
396 		anon_vma_chain_free(avc);
397 	}
398 	unlock_anon_vma_root(root);
399 
400 	/*
401 	 * Iterate the list once more, it now only contains empty and unlinked
402 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
403 	 * needing to acquire the anon_vma->root->mutex.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		put_anon_vma(anon_vma);
409 
410 		list_del(&avc->same_vma);
411 		anon_vma_chain_free(avc);
412 	}
413 }
414 
anon_vma_ctor(void * data)415 static void anon_vma_ctor(void *data)
416 {
417 	struct anon_vma *anon_vma = data;
418 
419 	mutex_init(&anon_vma->mutex);
420 	atomic_set(&anon_vma->refcount, 0);
421 	INIT_LIST_HEAD(&anon_vma->head);
422 }
423 
anon_vma_init(void)424 void __init anon_vma_init(void)
425 {
426 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
427 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
428 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
429 }
430 
431 /*
432  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
433  *
434  * Since there is no serialization what so ever against page_remove_rmap()
435  * the best this function can do is return a locked anon_vma that might
436  * have been relevant to this page.
437  *
438  * The page might have been remapped to a different anon_vma or the anon_vma
439  * returned may already be freed (and even reused).
440  *
441  * In case it was remapped to a different anon_vma, the new anon_vma will be a
442  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
443  * ensure that any anon_vma obtained from the page will still be valid for as
444  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
445  *
446  * All users of this function must be very careful when walking the anon_vma
447  * chain and verify that the page in question is indeed mapped in it
448  * [ something equivalent to page_mapped_in_vma() ].
449  *
450  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
451  * that the anon_vma pointer from page->mapping is valid if there is a
452  * mapcount, we can dereference the anon_vma after observing those.
453  */
page_get_anon_vma(struct page * page)454 struct anon_vma *page_get_anon_vma(struct page *page)
455 {
456 	struct anon_vma *anon_vma = NULL;
457 	unsigned long anon_mapping;
458 
459 	rcu_read_lock();
460 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
461 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
462 		goto out;
463 	if (!page_mapped(page))
464 		goto out;
465 
466 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
467 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
468 		anon_vma = NULL;
469 		goto out;
470 	}
471 
472 	/*
473 	 * If this page is still mapped, then its anon_vma cannot have been
474 	 * freed.  But if it has been unmapped, we have no security against the
475 	 * anon_vma structure being freed and reused (for another anon_vma:
476 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
477 	 * above cannot corrupt).
478 	 */
479 	if (!page_mapped(page)) {
480 		rcu_read_unlock();
481 		put_anon_vma(anon_vma);
482 		return NULL;
483 	}
484 out:
485 	rcu_read_unlock();
486 
487 	return anon_vma;
488 }
489 
490 /*
491  * Similar to page_get_anon_vma() except it locks the anon_vma.
492  *
493  * Its a little more complex as it tries to keep the fast path to a single
494  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
495  * reference like with page_get_anon_vma() and then block on the mutex.
496  */
page_lock_anon_vma(struct page * page)497 struct anon_vma *page_lock_anon_vma(struct page *page)
498 {
499 	struct anon_vma *anon_vma = NULL;
500 	struct anon_vma *root_anon_vma;
501 	unsigned long anon_mapping;
502 
503 	rcu_read_lock();
504 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
505 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
506 		goto out;
507 	if (!page_mapped(page))
508 		goto out;
509 
510 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
511 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
512 	if (mutex_trylock(&root_anon_vma->mutex)) {
513 		/*
514 		 * If the page is still mapped, then this anon_vma is still
515 		 * its anon_vma, and holding the mutex ensures that it will
516 		 * not go away, see anon_vma_free().
517 		 */
518 		if (!page_mapped(page)) {
519 			mutex_unlock(&root_anon_vma->mutex);
520 			anon_vma = NULL;
521 		}
522 		goto out;
523 	}
524 
525 	/* trylock failed, we got to sleep */
526 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
527 		anon_vma = NULL;
528 		goto out;
529 	}
530 
531 	if (!page_mapped(page)) {
532 		rcu_read_unlock();
533 		put_anon_vma(anon_vma);
534 		return NULL;
535 	}
536 
537 	/* we pinned the anon_vma, its safe to sleep */
538 	rcu_read_unlock();
539 	anon_vma_lock(anon_vma);
540 
541 	if (atomic_dec_and_test(&anon_vma->refcount)) {
542 		/*
543 		 * Oops, we held the last refcount, release the lock
544 		 * and bail -- can't simply use put_anon_vma() because
545 		 * we'll deadlock on the anon_vma_lock() recursion.
546 		 */
547 		anon_vma_unlock(anon_vma);
548 		__put_anon_vma(anon_vma);
549 		anon_vma = NULL;
550 	}
551 
552 	return anon_vma;
553 
554 out:
555 	rcu_read_unlock();
556 	return anon_vma;
557 }
558 
page_unlock_anon_vma(struct anon_vma * anon_vma)559 void page_unlock_anon_vma(struct anon_vma *anon_vma)
560 {
561 	anon_vma_unlock(anon_vma);
562 }
563 
564 /*
565  * At what user virtual address is page expected in @vma?
566  * Returns virtual address or -EFAULT if page's index/offset is not
567  * within the range mapped the @vma.
568  */
569 inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)570 vma_address(struct page *page, struct vm_area_struct *vma)
571 {
572 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573 	unsigned long address;
574 
575 	if (unlikely(is_vm_hugetlb_page(vma)))
576 		pgoff = page->index << huge_page_order(page_hstate(page));
577 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
578 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
579 		/* page should be within @vma mapping range */
580 		return -EFAULT;
581 	}
582 	return address;
583 }
584 
585 /*
586  * At what user virtual address is page expected in vma?
587  * Caller should check the page is actually part of the vma.
588  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)589 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
590 {
591 	if (PageAnon(page)) {
592 		struct anon_vma *page__anon_vma = page_anon_vma(page);
593 		/*
594 		 * Note: swapoff's unuse_vma() is more efficient with this
595 		 * check, and needs it to match anon_vma when KSM is active.
596 		 */
597 		if (!vma->anon_vma || !page__anon_vma ||
598 		    vma->anon_vma->root != page__anon_vma->root)
599 			return -EFAULT;
600 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
601 		if (!vma->vm_file ||
602 		    vma->vm_file->f_mapping != page->mapping)
603 			return -EFAULT;
604 	} else
605 		return -EFAULT;
606 	return vma_address(page, vma);
607 }
608 
609 /*
610  * Check that @page is mapped at @address into @mm.
611  *
612  * If @sync is false, page_check_address may perform a racy check to avoid
613  * the page table lock when the pte is not present (helpful when reclaiming
614  * highly shared pages).
615  *
616  * On success returns with pte mapped and locked.
617  */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)618 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
619 			  unsigned long address, spinlock_t **ptlp, int sync)
620 {
621 	pgd_t *pgd;
622 	pud_t *pud;
623 	pmd_t *pmd;
624 	pte_t *pte;
625 	spinlock_t *ptl;
626 
627 	if (unlikely(PageHuge(page))) {
628 		/* when pud is not present, pte will be NULL */
629 		pte = huge_pte_offset(mm, address);
630 		if (!pte)
631 			return NULL;
632 
633 		ptl = &mm->page_table_lock;
634 		goto check;
635 	}
636 
637 	pgd = pgd_offset(mm, address);
638 	if (!pgd_present(*pgd))
639 		return NULL;
640 
641 	pud = pud_offset(pgd, address);
642 	if (!pud_present(*pud))
643 		return NULL;
644 
645 	pmd = pmd_offset(pud, address);
646 	if (!pmd_present(*pmd))
647 		return NULL;
648 	if (pmd_trans_huge(*pmd))
649 		return NULL;
650 
651 	pte = pte_offset_map(pmd, address);
652 	/* Make a quick check before getting the lock */
653 	if (!sync && !pte_present(*pte)) {
654 		pte_unmap(pte);
655 		return NULL;
656 	}
657 
658 	ptl = pte_lockptr(mm, pmd);
659 check:
660 	spin_lock(ptl);
661 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
662 		*ptlp = ptl;
663 		return pte;
664 	}
665 	pte_unmap_unlock(pte, ptl);
666 	return NULL;
667 }
668 
669 /**
670  * page_mapped_in_vma - check whether a page is really mapped in a VMA
671  * @page: the page to test
672  * @vma: the VMA to test
673  *
674  * Returns 1 if the page is mapped into the page tables of the VMA, 0
675  * if the page is not mapped into the page tables of this VMA.  Only
676  * valid for normal file or anonymous VMAs.
677  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)678 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
679 {
680 	unsigned long address;
681 	pte_t *pte;
682 	spinlock_t *ptl;
683 
684 	address = vma_address(page, vma);
685 	if (address == -EFAULT)		/* out of vma range */
686 		return 0;
687 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
688 	if (!pte)			/* the page is not in this mm */
689 		return 0;
690 	pte_unmap_unlock(pte, ptl);
691 
692 	return 1;
693 }
694 
695 /*
696  * Subfunctions of page_referenced: page_referenced_one called
697  * repeatedly from either page_referenced_anon or page_referenced_file.
698  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,unsigned int * mapcount,unsigned long * vm_flags)699 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
700 			unsigned long address, unsigned int *mapcount,
701 			unsigned long *vm_flags)
702 {
703 	struct mm_struct *mm = vma->vm_mm;
704 	int referenced = 0;
705 
706 	if (unlikely(PageTransHuge(page))) {
707 		pmd_t *pmd;
708 
709 		spin_lock(&mm->page_table_lock);
710 		/*
711 		 * rmap might return false positives; we must filter
712 		 * these out using page_check_address_pmd().
713 		 */
714 		pmd = page_check_address_pmd(page, mm, address,
715 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
716 		if (!pmd) {
717 			spin_unlock(&mm->page_table_lock);
718 			goto out;
719 		}
720 
721 		if (vma->vm_flags & VM_LOCKED) {
722 			spin_unlock(&mm->page_table_lock);
723 			*mapcount = 0;	/* break early from loop */
724 			*vm_flags |= VM_LOCKED;
725 			goto out;
726 		}
727 
728 		/* go ahead even if the pmd is pmd_trans_splitting() */
729 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
730 			referenced++;
731 		spin_unlock(&mm->page_table_lock);
732 	} else {
733 		pte_t *pte;
734 		spinlock_t *ptl;
735 
736 		/*
737 		 * rmap might return false positives; we must filter
738 		 * these out using page_check_address().
739 		 */
740 		pte = page_check_address(page, mm, address, &ptl, 0);
741 		if (!pte)
742 			goto out;
743 
744 		if (vma->vm_flags & VM_LOCKED) {
745 			pte_unmap_unlock(pte, ptl);
746 			*mapcount = 0;	/* break early from loop */
747 			*vm_flags |= VM_LOCKED;
748 			goto out;
749 		}
750 
751 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
752 			/*
753 			 * Don't treat a reference through a sequentially read
754 			 * mapping as such.  If the page has been used in
755 			 * another mapping, we will catch it; if this other
756 			 * mapping is already gone, the unmap path will have
757 			 * set PG_referenced or activated the page.
758 			 */
759 			if (likely(!VM_SequentialReadHint(vma)))
760 				referenced++;
761 		}
762 		pte_unmap_unlock(pte, ptl);
763 	}
764 
765 	/* Pretend the page is referenced if the task has the
766 	   swap token and is in the middle of a page fault. */
767 	if (mm != current->mm && has_swap_token(mm) &&
768 			rwsem_is_locked(&mm->mmap_sem))
769 		referenced++;
770 
771 	(*mapcount)--;
772 
773 	if (referenced)
774 		*vm_flags |= vma->vm_flags;
775 out:
776 	return referenced;
777 }
778 
page_referenced_anon(struct page * page,struct mem_cgroup * memcg,unsigned long * vm_flags)779 static int page_referenced_anon(struct page *page,
780 				struct mem_cgroup *memcg,
781 				unsigned long *vm_flags)
782 {
783 	unsigned int mapcount;
784 	struct anon_vma *anon_vma;
785 	struct anon_vma_chain *avc;
786 	int referenced = 0;
787 
788 	anon_vma = page_lock_anon_vma(page);
789 	if (!anon_vma)
790 		return referenced;
791 
792 	mapcount = page_mapcount(page);
793 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
794 		struct vm_area_struct *vma = avc->vma;
795 		unsigned long address = vma_address(page, vma);
796 		if (address == -EFAULT)
797 			continue;
798 		/*
799 		 * If we are reclaiming on behalf of a cgroup, skip
800 		 * counting on behalf of references from different
801 		 * cgroups
802 		 */
803 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
804 			continue;
805 		referenced += page_referenced_one(page, vma, address,
806 						  &mapcount, vm_flags);
807 		if (!mapcount)
808 			break;
809 	}
810 
811 	page_unlock_anon_vma(anon_vma);
812 	return referenced;
813 }
814 
815 /**
816  * page_referenced_file - referenced check for object-based rmap
817  * @page: the page we're checking references on.
818  * @memcg: target memory control group
819  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
820  *
821  * For an object-based mapped page, find all the places it is mapped and
822  * check/clear the referenced flag.  This is done by following the page->mapping
823  * pointer, then walking the chain of vmas it holds.  It returns the number
824  * of references it found.
825  *
826  * This function is only called from page_referenced for object-based pages.
827  */
page_referenced_file(struct page * page,struct mem_cgroup * memcg,unsigned long * vm_flags)828 static int page_referenced_file(struct page *page,
829 				struct mem_cgroup *memcg,
830 				unsigned long *vm_flags)
831 {
832 	unsigned int mapcount;
833 	struct address_space *mapping = page->mapping;
834 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
835 	struct vm_area_struct *vma;
836 	struct prio_tree_iter iter;
837 	int referenced = 0;
838 
839 	/*
840 	 * The caller's checks on page->mapping and !PageAnon have made
841 	 * sure that this is a file page: the check for page->mapping
842 	 * excludes the case just before it gets set on an anon page.
843 	 */
844 	BUG_ON(PageAnon(page));
845 
846 	/*
847 	 * The page lock not only makes sure that page->mapping cannot
848 	 * suddenly be NULLified by truncation, it makes sure that the
849 	 * structure at mapping cannot be freed and reused yet,
850 	 * so we can safely take mapping->i_mmap_mutex.
851 	 */
852 	BUG_ON(!PageLocked(page));
853 
854 	mutex_lock(&mapping->i_mmap_mutex);
855 
856 	/*
857 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
858 	 * is more likely to be accurate if we note it after spinning.
859 	 */
860 	mapcount = page_mapcount(page);
861 
862 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
863 		unsigned long address = vma_address(page, vma);
864 		if (address == -EFAULT)
865 			continue;
866 		/*
867 		 * If we are reclaiming on behalf of a cgroup, skip
868 		 * counting on behalf of references from different
869 		 * cgroups
870 		 */
871 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
872 			continue;
873 		referenced += page_referenced_one(page, vma, address,
874 						  &mapcount, vm_flags);
875 		if (!mapcount)
876 			break;
877 	}
878 
879 	mutex_unlock(&mapping->i_mmap_mutex);
880 	return referenced;
881 }
882 
883 /**
884  * page_referenced - test if the page was referenced
885  * @page: the page to test
886  * @is_locked: caller holds lock on the page
887  * @memcg: target memory cgroup
888  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
889  *
890  * Quick test_and_clear_referenced for all mappings to a page,
891  * returns the number of ptes which referenced the page.
892  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)893 int page_referenced(struct page *page,
894 		    int is_locked,
895 		    struct mem_cgroup *memcg,
896 		    unsigned long *vm_flags)
897 {
898 	int referenced = 0;
899 	int we_locked = 0;
900 
901 	*vm_flags = 0;
902 	if (page_mapped(page) && page_rmapping(page)) {
903 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
904 			we_locked = trylock_page(page);
905 			if (!we_locked) {
906 				referenced++;
907 				goto out;
908 			}
909 		}
910 		if (unlikely(PageKsm(page)))
911 			referenced += page_referenced_ksm(page, memcg,
912 								vm_flags);
913 		else if (PageAnon(page))
914 			referenced += page_referenced_anon(page, memcg,
915 								vm_flags);
916 		else if (page->mapping)
917 			referenced += page_referenced_file(page, memcg,
918 								vm_flags);
919 		if (we_locked)
920 			unlock_page(page);
921 
922 		if (page_test_and_clear_young(page_to_pfn(page)))
923 			referenced++;
924 	}
925 out:
926 	return referenced;
927 }
928 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address)929 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
930 			    unsigned long address)
931 {
932 	struct mm_struct *mm = vma->vm_mm;
933 	pte_t *pte;
934 	spinlock_t *ptl;
935 	int ret = 0;
936 
937 	pte = page_check_address(page, mm, address, &ptl, 1);
938 	if (!pte)
939 		goto out;
940 
941 	if (pte_dirty(*pte) || pte_write(*pte)) {
942 		pte_t entry;
943 
944 		flush_cache_page(vma, address, pte_pfn(*pte));
945 		entry = ptep_clear_flush_notify(vma, address, pte);
946 		entry = pte_wrprotect(entry);
947 		entry = pte_mkclean(entry);
948 		set_pte_at(mm, address, pte, entry);
949 		ret = 1;
950 	}
951 
952 	pte_unmap_unlock(pte, ptl);
953 out:
954 	return ret;
955 }
956 
page_mkclean_file(struct address_space * mapping,struct page * page)957 static int page_mkclean_file(struct address_space *mapping, struct page *page)
958 {
959 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
960 	struct vm_area_struct *vma;
961 	struct prio_tree_iter iter;
962 	int ret = 0;
963 
964 	BUG_ON(PageAnon(page));
965 
966 	mutex_lock(&mapping->i_mmap_mutex);
967 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
968 		if (vma->vm_flags & VM_SHARED) {
969 			unsigned long address = vma_address(page, vma);
970 			if (address == -EFAULT)
971 				continue;
972 			ret += page_mkclean_one(page, vma, address);
973 		}
974 	}
975 	mutex_unlock(&mapping->i_mmap_mutex);
976 	return ret;
977 }
978 
page_mkclean(struct page * page)979 int page_mkclean(struct page *page)
980 {
981 	int ret = 0;
982 
983 	BUG_ON(!PageLocked(page));
984 
985 	if (page_mapped(page)) {
986 		struct address_space *mapping = page_mapping(page);
987 		if (mapping)
988 			ret = page_mkclean_file(mapping, page);
989 	}
990 
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(page_mkclean);
994 
995 /**
996  * page_move_anon_rmap - move a page to our anon_vma
997  * @page:	the page to move to our anon_vma
998  * @vma:	the vma the page belongs to
999  * @address:	the user virtual address mapped
1000  *
1001  * When a page belongs exclusively to one process after a COW event,
1002  * that page can be moved into the anon_vma that belongs to just that
1003  * process, so the rmap code will not search the parent or sibling
1004  * processes.
1005  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1006 void page_move_anon_rmap(struct page *page,
1007 	struct vm_area_struct *vma, unsigned long address)
1008 {
1009 	struct anon_vma *anon_vma = vma->anon_vma;
1010 
1011 	VM_BUG_ON(!PageLocked(page));
1012 	VM_BUG_ON(!anon_vma);
1013 	VM_BUG_ON(page->index != linear_page_index(vma, address));
1014 
1015 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1016 	page->mapping = (struct address_space *) anon_vma;
1017 }
1018 
1019 /**
1020  * __page_set_anon_rmap - set up new anonymous rmap
1021  * @page:	Page to add to rmap
1022  * @vma:	VM area to add page to.
1023  * @address:	User virtual address of the mapping
1024  * @exclusive:	the page is exclusively owned by the current process
1025  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1026 static void __page_set_anon_rmap(struct page *page,
1027 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1028 {
1029 	struct anon_vma *anon_vma = vma->anon_vma;
1030 
1031 	BUG_ON(!anon_vma);
1032 
1033 	if (PageAnon(page))
1034 		return;
1035 
1036 	/*
1037 	 * If the page isn't exclusively mapped into this vma,
1038 	 * we must use the _oldest_ possible anon_vma for the
1039 	 * page mapping!
1040 	 */
1041 	if (!exclusive)
1042 		anon_vma = anon_vma->root;
1043 
1044 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1045 	page->mapping = (struct address_space *) anon_vma;
1046 	page->index = linear_page_index(vma, address);
1047 }
1048 
1049 /**
1050  * __page_check_anon_rmap - sanity check anonymous rmap addition
1051  * @page:	the page to add the mapping to
1052  * @vma:	the vm area in which the mapping is added
1053  * @address:	the user virtual address mapped
1054  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1055 static void __page_check_anon_rmap(struct page *page,
1056 	struct vm_area_struct *vma, unsigned long address)
1057 {
1058 #ifdef CONFIG_DEBUG_VM
1059 	/*
1060 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1061 	 * be set up correctly at this point.
1062 	 *
1063 	 * We have exclusion against page_add_anon_rmap because the caller
1064 	 * always holds the page locked, except if called from page_dup_rmap,
1065 	 * in which case the page is already known to be setup.
1066 	 *
1067 	 * We have exclusion against page_add_new_anon_rmap because those pages
1068 	 * are initially only visible via the pagetables, and the pte is locked
1069 	 * over the call to page_add_new_anon_rmap.
1070 	 */
1071 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1072 	BUG_ON(page->index != linear_page_index(vma, address));
1073 #endif
1074 }
1075 
1076 /**
1077  * page_add_anon_rmap - add pte mapping to an anonymous page
1078  * @page:	the page to add the mapping to
1079  * @vma:	the vm area in which the mapping is added
1080  * @address:	the user virtual address mapped
1081  *
1082  * The caller needs to hold the pte lock, and the page must be locked in
1083  * the anon_vma case: to serialize mapping,index checking after setting,
1084  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085  * (but PageKsm is never downgraded to PageAnon).
1086  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1087 void page_add_anon_rmap(struct page *page,
1088 	struct vm_area_struct *vma, unsigned long address)
1089 {
1090 	do_page_add_anon_rmap(page, vma, address, 0);
1091 }
1092 
1093 /*
1094  * Special version of the above for do_swap_page, which often runs
1095  * into pages that are exclusively owned by the current process.
1096  * Everybody else should continue to use page_add_anon_rmap above.
1097  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1098 void do_page_add_anon_rmap(struct page *page,
1099 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1100 {
1101 	int first = atomic_inc_and_test(&page->_mapcount);
1102 	if (first) {
1103 		if (!PageTransHuge(page))
1104 			__inc_zone_page_state(page, NR_ANON_PAGES);
1105 		else
1106 			__inc_zone_page_state(page,
1107 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1108 	}
1109 	if (unlikely(PageKsm(page)))
1110 		return;
1111 
1112 	VM_BUG_ON(!PageLocked(page));
1113 	/* address might be in next vma when migration races vma_adjust */
1114 	if (first)
1115 		__page_set_anon_rmap(page, vma, address, exclusive);
1116 	else
1117 		__page_check_anon_rmap(page, vma, address);
1118 }
1119 
1120 /**
1121  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1122  * @page:	the page to add the mapping to
1123  * @vma:	the vm area in which the mapping is added
1124  * @address:	the user virtual address mapped
1125  *
1126  * Same as page_add_anon_rmap but must only be called on *new* pages.
1127  * This means the inc-and-test can be bypassed.
1128  * Page does not have to be locked.
1129  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1130 void page_add_new_anon_rmap(struct page *page,
1131 	struct vm_area_struct *vma, unsigned long address)
1132 {
1133 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1134 	SetPageSwapBacked(page);
1135 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1136 	if (!PageTransHuge(page))
1137 		__inc_zone_page_state(page, NR_ANON_PAGES);
1138 	else
1139 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1140 	__page_set_anon_rmap(page, vma, address, 1);
1141 	if (page_evictable(page, vma))
1142 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1143 	else
1144 		add_page_to_unevictable_list(page);
1145 }
1146 
1147 /**
1148  * page_add_file_rmap - add pte mapping to a file page
1149  * @page: the page to add the mapping to
1150  *
1151  * The caller needs to hold the pte lock.
1152  */
page_add_file_rmap(struct page * page)1153 void page_add_file_rmap(struct page *page)
1154 {
1155 	bool locked;
1156 	unsigned long flags;
1157 
1158 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1159 	if (atomic_inc_and_test(&page->_mapcount)) {
1160 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1161 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1162 	}
1163 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1164 }
1165 
1166 /**
1167  * page_remove_rmap - take down pte mapping from a page
1168  * @page: page to remove mapping from
1169  *
1170  * The caller needs to hold the pte lock.
1171  */
page_remove_rmap(struct page * page)1172 void page_remove_rmap(struct page *page)
1173 {
1174 	struct address_space *mapping = page_mapping(page);
1175 	bool anon = PageAnon(page);
1176 	bool locked;
1177 	unsigned long flags;
1178 
1179 	/*
1180 	 * The anon case has no mem_cgroup page_stat to update; but may
1181 	 * uncharge_page() below, where the lock ordering can deadlock if
1182 	 * we hold the lock against page_stat move: so avoid it on anon.
1183 	 */
1184 	if (!anon)
1185 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1186 
1187 	/* page still mapped by someone else? */
1188 	if (!atomic_add_negative(-1, &page->_mapcount))
1189 		goto out;
1190 
1191 	/*
1192 	 * Now that the last pte has gone, s390 must transfer dirty
1193 	 * flag from storage key to struct page.  We can usually skip
1194 	 * this if the page is anon, so about to be freed; but perhaps
1195 	 * not if it's in swapcache - there might be another pte slot
1196 	 * containing the swap entry, but page not yet written to swap.
1197 	 *
1198 	 * And we can skip it on file pages, so long as the filesystem
1199 	 * participates in dirty tracking; but need to catch shm and tmpfs
1200 	 * and ramfs pages which have been modified since creation by read
1201 	 * fault.
1202 	 *
1203 	 * Note that mapping must be decided above, before decrementing
1204 	 * mapcount (which luckily provides a barrier): once page is unmapped,
1205 	 * it could be truncated and page->mapping reset to NULL at any moment.
1206 	 * Note also that we are relying on page_mapping(page) to set mapping
1207 	 * to &swapper_space when PageSwapCache(page).
1208 	 */
1209 	if (mapping && !mapping_cap_account_dirty(mapping) &&
1210 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1211 		set_page_dirty(page);
1212 	/*
1213 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1214 	 * and not charged by memcg for now.
1215 	 */
1216 	if (unlikely(PageHuge(page)))
1217 		goto out;
1218 	if (anon) {
1219 		mem_cgroup_uncharge_page(page);
1220 		if (!PageTransHuge(page))
1221 			__dec_zone_page_state(page, NR_ANON_PAGES);
1222 		else
1223 			__dec_zone_page_state(page,
1224 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1225 	} else {
1226 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1227 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1228 	}
1229 	/*
1230 	 * It would be tidy to reset the PageAnon mapping here,
1231 	 * but that might overwrite a racing page_add_anon_rmap
1232 	 * which increments mapcount after us but sets mapping
1233 	 * before us: so leave the reset to free_hot_cold_page,
1234 	 * and remember that it's only reliable while mapped.
1235 	 * Leaving it set also helps swapoff to reinstate ptes
1236 	 * faster for those pages still in swapcache.
1237 	 */
1238 out:
1239 	if (!anon)
1240 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1241 }
1242 
1243 /*
1244  * Subfunctions of try_to_unmap: try_to_unmap_one called
1245  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1246  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,enum ttu_flags flags)1247 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1248 		     unsigned long address, enum ttu_flags flags)
1249 {
1250 	struct mm_struct *mm = vma->vm_mm;
1251 	pte_t *pte;
1252 	pte_t pteval;
1253 	spinlock_t *ptl;
1254 	int ret = SWAP_AGAIN;
1255 
1256 	pte = page_check_address(page, mm, address, &ptl, 0);
1257 	if (!pte)
1258 		goto out;
1259 
1260 	/*
1261 	 * If the page is mlock()d, we cannot swap it out.
1262 	 * If it's recently referenced (perhaps page_referenced
1263 	 * skipped over this mm) then we should reactivate it.
1264 	 */
1265 	if (!(flags & TTU_IGNORE_MLOCK)) {
1266 		if (vma->vm_flags & VM_LOCKED)
1267 			goto out_mlock;
1268 
1269 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1270 			goto out_unmap;
1271 	}
1272 	if (!(flags & TTU_IGNORE_ACCESS)) {
1273 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1274 			ret = SWAP_FAIL;
1275 			goto out_unmap;
1276 		}
1277   	}
1278 
1279 	/* Nuke the page table entry. */
1280 	flush_cache_page(vma, address, page_to_pfn(page));
1281 	pteval = ptep_clear_flush_notify(vma, address, pte);
1282 
1283 	/* Move the dirty bit to the physical page now the pte is gone. */
1284 	if (pte_dirty(pteval))
1285 		set_page_dirty(page);
1286 
1287 	/* Update high watermark before we lower rss */
1288 	update_hiwater_rss(mm);
1289 
1290 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1291 		if (PageAnon(page))
1292 			dec_mm_counter(mm, MM_ANONPAGES);
1293 		else
1294 			dec_mm_counter(mm, MM_FILEPAGES);
1295 		set_pte_at(mm, address, pte,
1296 				swp_entry_to_pte(make_hwpoison_entry(page)));
1297 	} else if (PageAnon(page)) {
1298 		swp_entry_t entry = { .val = page_private(page) };
1299 
1300 		if (PageSwapCache(page)) {
1301 			/*
1302 			 * Store the swap location in the pte.
1303 			 * See handle_pte_fault() ...
1304 			 */
1305 			if (swap_duplicate(entry) < 0) {
1306 				set_pte_at(mm, address, pte, pteval);
1307 				ret = SWAP_FAIL;
1308 				goto out_unmap;
1309 			}
1310 			if (list_empty(&mm->mmlist)) {
1311 				spin_lock(&mmlist_lock);
1312 				if (list_empty(&mm->mmlist))
1313 					list_add(&mm->mmlist, &init_mm.mmlist);
1314 				spin_unlock(&mmlist_lock);
1315 			}
1316 			dec_mm_counter(mm, MM_ANONPAGES);
1317 			inc_mm_counter(mm, MM_SWAPENTS);
1318 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1319 			/*
1320 			 * Store the pfn of the page in a special migration
1321 			 * pte. do_swap_page() will wait until the migration
1322 			 * pte is removed and then restart fault handling.
1323 			 */
1324 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1325 			entry = make_migration_entry(page, pte_write(pteval));
1326 		}
1327 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1328 		BUG_ON(pte_file(*pte));
1329 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1330 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1331 		/* Establish migration entry for a file page */
1332 		swp_entry_t entry;
1333 		entry = make_migration_entry(page, pte_write(pteval));
1334 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1335 	} else
1336 		dec_mm_counter(mm, MM_FILEPAGES);
1337 
1338 	page_remove_rmap(page);
1339 	page_cache_release(page);
1340 
1341 out_unmap:
1342 	pte_unmap_unlock(pte, ptl);
1343 out:
1344 	return ret;
1345 
1346 out_mlock:
1347 	pte_unmap_unlock(pte, ptl);
1348 
1349 
1350 	/*
1351 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1352 	 * unstable result and race. Plus, We can't wait here because
1353 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1354 	 * if trylock failed, the page remain in evictable lru and later
1355 	 * vmscan could retry to move the page to unevictable lru if the
1356 	 * page is actually mlocked.
1357 	 */
1358 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1359 		if (vma->vm_flags & VM_LOCKED) {
1360 			mlock_vma_page(page);
1361 			ret = SWAP_MLOCK;
1362 		}
1363 		up_read(&vma->vm_mm->mmap_sem);
1364 	}
1365 	return ret;
1366 }
1367 
1368 /*
1369  * objrmap doesn't work for nonlinear VMAs because the assumption that
1370  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1371  * Consequently, given a particular page and its ->index, we cannot locate the
1372  * ptes which are mapping that page without an exhaustive linear search.
1373  *
1374  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1375  * maps the file to which the target page belongs.  The ->vm_private_data field
1376  * holds the current cursor into that scan.  Successive searches will circulate
1377  * around the vma's virtual address space.
1378  *
1379  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1380  * more scanning pressure is placed against them as well.   Eventually pages
1381  * will become fully unmapped and are eligible for eviction.
1382  *
1383  * For very sparsely populated VMAs this is a little inefficient - chances are
1384  * there there won't be many ptes located within the scan cluster.  In this case
1385  * maybe we could scan further - to the end of the pte page, perhaps.
1386  *
1387  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1388  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1389  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1390  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1391  */
1392 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1393 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1394 
try_to_unmap_cluster(unsigned long cursor,unsigned int * mapcount,struct vm_area_struct * vma,struct page * check_page)1395 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1396 		struct vm_area_struct *vma, struct page *check_page)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	pgd_t *pgd;
1400 	pud_t *pud;
1401 	pmd_t *pmd;
1402 	pte_t *pte;
1403 	pte_t pteval;
1404 	spinlock_t *ptl;
1405 	struct page *page;
1406 	unsigned long address;
1407 	unsigned long end;
1408 	int ret = SWAP_AGAIN;
1409 	int locked_vma = 0;
1410 
1411 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1412 	end = address + CLUSTER_SIZE;
1413 	if (address < vma->vm_start)
1414 		address = vma->vm_start;
1415 	if (end > vma->vm_end)
1416 		end = vma->vm_end;
1417 
1418 	pgd = pgd_offset(mm, address);
1419 	if (!pgd_present(*pgd))
1420 		return ret;
1421 
1422 	pud = pud_offset(pgd, address);
1423 	if (!pud_present(*pud))
1424 		return ret;
1425 
1426 	pmd = pmd_offset(pud, address);
1427 	if (!pmd_present(*pmd))
1428 		return ret;
1429 
1430 	/*
1431 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1432 	 * keep the sem while scanning the cluster for mlocking pages.
1433 	 */
1434 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1435 		locked_vma = (vma->vm_flags & VM_LOCKED);
1436 		if (!locked_vma)
1437 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1438 	}
1439 
1440 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1441 
1442 	/* Update high watermark before we lower rss */
1443 	update_hiwater_rss(mm);
1444 
1445 	for (; address < end; pte++, address += PAGE_SIZE) {
1446 		if (!pte_present(*pte))
1447 			continue;
1448 		page = vm_normal_page(vma, address, *pte);
1449 		BUG_ON(!page || PageAnon(page));
1450 
1451 		if (locked_vma) {
1452 			mlock_vma_page(page);   /* no-op if already mlocked */
1453 			if (page == check_page)
1454 				ret = SWAP_MLOCK;
1455 			continue;	/* don't unmap */
1456 		}
1457 
1458 		if (ptep_clear_flush_young_notify(vma, address, pte))
1459 			continue;
1460 
1461 		/* Nuke the page table entry. */
1462 		flush_cache_page(vma, address, pte_pfn(*pte));
1463 		pteval = ptep_clear_flush_notify(vma, address, pte);
1464 
1465 		/* If nonlinear, store the file page offset in the pte. */
1466 		if (page->index != linear_page_index(vma, address))
1467 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1468 
1469 		/* Move the dirty bit to the physical page now the pte is gone. */
1470 		if (pte_dirty(pteval))
1471 			set_page_dirty(page);
1472 
1473 		page_remove_rmap(page);
1474 		page_cache_release(page);
1475 		dec_mm_counter(mm, MM_FILEPAGES);
1476 		(*mapcount)--;
1477 	}
1478 	pte_unmap_unlock(pte - 1, ptl);
1479 	if (locked_vma)
1480 		up_read(&vma->vm_mm->mmap_sem);
1481 	return ret;
1482 }
1483 
is_vma_temporary_stack(struct vm_area_struct * vma)1484 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1485 {
1486 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1487 
1488 	if (!maybe_stack)
1489 		return false;
1490 
1491 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1492 						VM_STACK_INCOMPLETE_SETUP)
1493 		return true;
1494 
1495 	return false;
1496 }
1497 
1498 /**
1499  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1500  * rmap method
1501  * @page: the page to unmap/unlock
1502  * @flags: action and flags
1503  *
1504  * Find all the mappings of a page using the mapping pointer and the vma chains
1505  * contained in the anon_vma struct it points to.
1506  *
1507  * This function is only called from try_to_unmap/try_to_munlock for
1508  * anonymous pages.
1509  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1510  * where the page was found will be held for write.  So, we won't recheck
1511  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1512  * 'LOCKED.
1513  */
try_to_unmap_anon(struct page * page,enum ttu_flags flags)1514 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1515 {
1516 	struct anon_vma *anon_vma;
1517 	struct anon_vma_chain *avc;
1518 	int ret = SWAP_AGAIN;
1519 
1520 	anon_vma = page_lock_anon_vma(page);
1521 	if (!anon_vma)
1522 		return ret;
1523 
1524 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1525 		struct vm_area_struct *vma = avc->vma;
1526 		unsigned long address;
1527 
1528 		/*
1529 		 * During exec, a temporary VMA is setup and later moved.
1530 		 * The VMA is moved under the anon_vma lock but not the
1531 		 * page tables leading to a race where migration cannot
1532 		 * find the migration ptes. Rather than increasing the
1533 		 * locking requirements of exec(), migration skips
1534 		 * temporary VMAs until after exec() completes.
1535 		 */
1536 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1537 				is_vma_temporary_stack(vma))
1538 			continue;
1539 
1540 		address = vma_address(page, vma);
1541 		if (address == -EFAULT)
1542 			continue;
1543 		ret = try_to_unmap_one(page, vma, address, flags);
1544 		if (ret != SWAP_AGAIN || !page_mapped(page))
1545 			break;
1546 	}
1547 
1548 	page_unlock_anon_vma(anon_vma);
1549 	return ret;
1550 }
1551 
1552 /**
1553  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1554  * @page: the page to unmap/unlock
1555  * @flags: action and flags
1556  *
1557  * Find all the mappings of a page using the mapping pointer and the vma chains
1558  * contained in the address_space struct it points to.
1559  *
1560  * This function is only called from try_to_unmap/try_to_munlock for
1561  * object-based pages.
1562  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1563  * where the page was found will be held for write.  So, we won't recheck
1564  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1565  * 'LOCKED.
1566  */
try_to_unmap_file(struct page * page,enum ttu_flags flags)1567 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1568 {
1569 	struct address_space *mapping = page->mapping;
1570 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1571 	struct vm_area_struct *vma;
1572 	struct prio_tree_iter iter;
1573 	int ret = SWAP_AGAIN;
1574 	unsigned long cursor;
1575 	unsigned long max_nl_cursor = 0;
1576 	unsigned long max_nl_size = 0;
1577 	unsigned int mapcount;
1578 
1579 	mutex_lock(&mapping->i_mmap_mutex);
1580 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1581 		unsigned long address = vma_address(page, vma);
1582 		if (address == -EFAULT)
1583 			continue;
1584 		ret = try_to_unmap_one(page, vma, address, flags);
1585 		if (ret != SWAP_AGAIN || !page_mapped(page))
1586 			goto out;
1587 	}
1588 
1589 	if (list_empty(&mapping->i_mmap_nonlinear))
1590 		goto out;
1591 
1592 	/*
1593 	 * We don't bother to try to find the munlocked page in nonlinears.
1594 	 * It's costly. Instead, later, page reclaim logic may call
1595 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1596 	 */
1597 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1598 		goto out;
1599 
1600 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1601 						shared.vm_set.list) {
1602 		cursor = (unsigned long) vma->vm_private_data;
1603 		if (cursor > max_nl_cursor)
1604 			max_nl_cursor = cursor;
1605 		cursor = vma->vm_end - vma->vm_start;
1606 		if (cursor > max_nl_size)
1607 			max_nl_size = cursor;
1608 	}
1609 
1610 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1611 		ret = SWAP_FAIL;
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * We don't try to search for this page in the nonlinear vmas,
1617 	 * and page_referenced wouldn't have found it anyway.  Instead
1618 	 * just walk the nonlinear vmas trying to age and unmap some.
1619 	 * The mapcount of the page we came in with is irrelevant,
1620 	 * but even so use it as a guide to how hard we should try?
1621 	 */
1622 	mapcount = page_mapcount(page);
1623 	if (!mapcount)
1624 		goto out;
1625 	cond_resched();
1626 
1627 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1628 	if (max_nl_cursor == 0)
1629 		max_nl_cursor = CLUSTER_SIZE;
1630 
1631 	do {
1632 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1633 						shared.vm_set.list) {
1634 			cursor = (unsigned long) vma->vm_private_data;
1635 			while ( cursor < max_nl_cursor &&
1636 				cursor < vma->vm_end - vma->vm_start) {
1637 				if (try_to_unmap_cluster(cursor, &mapcount,
1638 						vma, page) == SWAP_MLOCK)
1639 					ret = SWAP_MLOCK;
1640 				cursor += CLUSTER_SIZE;
1641 				vma->vm_private_data = (void *) cursor;
1642 				if ((int)mapcount <= 0)
1643 					goto out;
1644 			}
1645 			vma->vm_private_data = (void *) max_nl_cursor;
1646 		}
1647 		cond_resched();
1648 		max_nl_cursor += CLUSTER_SIZE;
1649 	} while (max_nl_cursor <= max_nl_size);
1650 
1651 	/*
1652 	 * Don't loop forever (perhaps all the remaining pages are
1653 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1654 	 * vmas, now forgetting on which ones it had fallen behind.
1655 	 */
1656 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1657 		vma->vm_private_data = NULL;
1658 out:
1659 	mutex_unlock(&mapping->i_mmap_mutex);
1660 	return ret;
1661 }
1662 
1663 /**
1664  * try_to_unmap - try to remove all page table mappings to a page
1665  * @page: the page to get unmapped
1666  * @flags: action and flags
1667  *
1668  * Tries to remove all the page table entries which are mapping this
1669  * page, used in the pageout path.  Caller must hold the page lock.
1670  * Return values are:
1671  *
1672  * SWAP_SUCCESS	- we succeeded in removing all mappings
1673  * SWAP_AGAIN	- we missed a mapping, try again later
1674  * SWAP_FAIL	- the page is unswappable
1675  * SWAP_MLOCK	- page is mlocked.
1676  */
try_to_unmap(struct page * page,enum ttu_flags flags)1677 int try_to_unmap(struct page *page, enum ttu_flags flags)
1678 {
1679 	int ret;
1680 
1681 	BUG_ON(!PageLocked(page));
1682 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1683 
1684 	if (unlikely(PageKsm(page)))
1685 		ret = try_to_unmap_ksm(page, flags);
1686 	else if (PageAnon(page))
1687 		ret = try_to_unmap_anon(page, flags);
1688 	else
1689 		ret = try_to_unmap_file(page, flags);
1690 	if (ret != SWAP_MLOCK && !page_mapped(page))
1691 		ret = SWAP_SUCCESS;
1692 	return ret;
1693 }
1694 
1695 /**
1696  * try_to_munlock - try to munlock a page
1697  * @page: the page to be munlocked
1698  *
1699  * Called from munlock code.  Checks all of the VMAs mapping the page
1700  * to make sure nobody else has this page mlocked. The page will be
1701  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1702  *
1703  * Return values are:
1704  *
1705  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1706  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1707  * SWAP_FAIL	- page cannot be located at present
1708  * SWAP_MLOCK	- page is now mlocked.
1709  */
try_to_munlock(struct page * page)1710 int try_to_munlock(struct page *page)
1711 {
1712 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1713 
1714 	if (unlikely(PageKsm(page)))
1715 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1716 	else if (PageAnon(page))
1717 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1718 	else
1719 		return try_to_unmap_file(page, TTU_MUNLOCK);
1720 }
1721 
__put_anon_vma(struct anon_vma * anon_vma)1722 void __put_anon_vma(struct anon_vma *anon_vma)
1723 {
1724 	struct anon_vma *root = anon_vma->root;
1725 
1726 	anon_vma_free(anon_vma);
1727 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1728 		anon_vma_free(root);
1729 }
1730 
1731 #ifdef CONFIG_MIGRATION
1732 /*
1733  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1734  * Called by migrate.c to remove migration ptes, but might be used more later.
1735  */
rmap_walk_anon(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1736 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1737 		struct vm_area_struct *, unsigned long, void *), void *arg)
1738 {
1739 	struct anon_vma *anon_vma;
1740 	struct anon_vma_chain *avc;
1741 	int ret = SWAP_AGAIN;
1742 
1743 	/*
1744 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1745 	 * because that depends on page_mapped(); but not all its usages
1746 	 * are holding mmap_sem. Users without mmap_sem are required to
1747 	 * take a reference count to prevent the anon_vma disappearing
1748 	 */
1749 	anon_vma = page_anon_vma(page);
1750 	if (!anon_vma)
1751 		return ret;
1752 	anon_vma_lock(anon_vma);
1753 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1754 		struct vm_area_struct *vma = avc->vma;
1755 		unsigned long address = vma_address(page, vma);
1756 		if (address == -EFAULT)
1757 			continue;
1758 		ret = rmap_one(page, vma, address, arg);
1759 		if (ret != SWAP_AGAIN)
1760 			break;
1761 	}
1762 	anon_vma_unlock(anon_vma);
1763 	return ret;
1764 }
1765 
rmap_walk_file(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1766 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1767 		struct vm_area_struct *, unsigned long, void *), void *arg)
1768 {
1769 	struct address_space *mapping = page->mapping;
1770 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1771 	struct vm_area_struct *vma;
1772 	struct prio_tree_iter iter;
1773 	int ret = SWAP_AGAIN;
1774 
1775 	if (!mapping)
1776 		return ret;
1777 	mutex_lock(&mapping->i_mmap_mutex);
1778 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1779 		unsigned long address = vma_address(page, vma);
1780 		if (address == -EFAULT)
1781 			continue;
1782 		ret = rmap_one(page, vma, address, arg);
1783 		if (ret != SWAP_AGAIN)
1784 			break;
1785 	}
1786 	/*
1787 	 * No nonlinear handling: being always shared, nonlinear vmas
1788 	 * never contain migration ptes.  Decide what to do about this
1789 	 * limitation to linear when we need rmap_walk() on nonlinear.
1790 	 */
1791 	mutex_unlock(&mapping->i_mmap_mutex);
1792 	return ret;
1793 }
1794 
rmap_walk(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1795 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1796 		struct vm_area_struct *, unsigned long, void *), void *arg)
1797 {
1798 	VM_BUG_ON(!PageLocked(page));
1799 
1800 	if (unlikely(PageKsm(page)))
1801 		return rmap_walk_ksm(page, rmap_one, arg);
1802 	else if (PageAnon(page))
1803 		return rmap_walk_anon(page, rmap_one, arg);
1804 	else
1805 		return rmap_walk_file(page, rmap_one, arg);
1806 }
1807 #endif /* CONFIG_MIGRATION */
1808 
1809 #ifdef CONFIG_HUGETLB_PAGE
1810 /*
1811  * The following three functions are for anonymous (private mapped) hugepages.
1812  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1813  * and no lru code, because we handle hugepages differently from common pages.
1814  */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1815 static void __hugepage_set_anon_rmap(struct page *page,
1816 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1817 {
1818 	struct anon_vma *anon_vma = vma->anon_vma;
1819 
1820 	BUG_ON(!anon_vma);
1821 
1822 	if (PageAnon(page))
1823 		return;
1824 	if (!exclusive)
1825 		anon_vma = anon_vma->root;
1826 
1827 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1828 	page->mapping = (struct address_space *) anon_vma;
1829 	page->index = linear_page_index(vma, address);
1830 }
1831 
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1832 void hugepage_add_anon_rmap(struct page *page,
1833 			    struct vm_area_struct *vma, unsigned long address)
1834 {
1835 	struct anon_vma *anon_vma = vma->anon_vma;
1836 	int first;
1837 
1838 	BUG_ON(!PageLocked(page));
1839 	BUG_ON(!anon_vma);
1840 	/* address might be in next vma when migration races vma_adjust */
1841 	first = atomic_inc_and_test(&page->_mapcount);
1842 	if (first)
1843 		__hugepage_set_anon_rmap(page, vma, address, 0);
1844 }
1845 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1846 void hugepage_add_new_anon_rmap(struct page *page,
1847 			struct vm_area_struct *vma, unsigned long address)
1848 {
1849 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1850 	atomic_set(&page->_mapcount, 0);
1851 	__hugepage_set_anon_rmap(page, vma, address, 1);
1852 }
1853 #endif /* CONFIG_HUGETLB_PAGE */
1854