1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 struct ttm_tt *ttm,
71 struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 struct ttm_tt *ttm);
74
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 unsigned int type,
77 uint64_t size_in_page)
78 {
79 return ttm_range_man_init(&adev->mman.bdev, type,
80 false, size_in_page);
81 }
82
83 /**
84 * amdgpu_evict_flags - Compute placement flags
85 *
86 * @bo: The buffer object to evict
87 * @placement: Possible destination(s) for evicted BO
88 *
89 * Fill in placement data when ttm_bo_evict() is called
90 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 struct ttm_placement *placement)
93 {
94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 struct amdgpu_bo *abo;
96 static const struct ttm_place placements = {
97 .fpfn = 0,
98 .lpfn = 0,
99 .mem_type = TTM_PL_SYSTEM,
100 .flags = 0
101 };
102
103 /* Don't handle scatter gather BOs */
104 if (bo->type == ttm_bo_type_sg) {
105 placement->num_placement = 0;
106 placement->num_busy_placement = 0;
107 return;
108 }
109
110 /* Object isn't an AMDGPU object so ignore */
111 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 placement->placement = &placements;
113 placement->busy_placement = &placements;
114 placement->num_placement = 1;
115 placement->num_busy_placement = 1;
116 return;
117 }
118
119 abo = ttm_to_amdgpu_bo(bo);
120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 placement->num_placement = 0;
122 placement->num_busy_placement = 0;
123 return;
124 }
125
126 switch (bo->resource->mem_type) {
127 case AMDGPU_PL_GDS:
128 case AMDGPU_PL_GWS:
129 case AMDGPU_PL_OA:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167 }
168
169 /**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 struct amdgpu_device *adev = ring->adev;
190 unsigned offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct dma_fence *fence;
193 struct amdgpu_job *job;
194 void *cpu_addr;
195 uint64_t flags;
196 unsigned int i;
197 int r;
198
199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201
202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 return -EINVAL;
204
205 /* Map only what can't be accessed directly */
206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 mm_cur->start;
209 return 0;
210 }
211
212
213 /*
214 * If start begins at an offset inside the page, then adjust the size
215 * and addr accordingly
216 */
217 offset = mm_cur->start & ~PAGE_MASK;
218
219 num_pages = PFN_UP(*size + offset);
220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221
222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223
224 *addr = adev->gmc.gart_start;
225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 AMDGPU_GPU_PAGE_SIZE;
227 *addr += offset;
228
229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231
232 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 AMDGPU_IB_POOL_DELAYED, &job);
234 if (r)
235 return r;
236
237 src_addr = num_dw * 4;
238 src_addr += job->ibs[0].gpu_addr;
239
240 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 dst_addr, num_bytes, false);
244
245 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 WARN_ON(job->ibs[0].length_dw > num_dw);
247
248 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 if (tmz)
250 flags |= AMDGPU_PTE_TMZ;
251
252 cpu_addr = &job->ibs[0].ptr[num_dw];
253
254 if (mem->mem_type == TTM_PL_TT) {
255 dma_addr_t *dma_addr;
256
257 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 } else {
260 dma_addr_t dma_address;
261
262 dma_address = mm_cur->start;
263 dma_address += adev->vm_manager.vram_base_offset;
264
265 for (i = 0; i < num_pages; ++i) {
266 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 flags, cpu_addr);
268 dma_address += PAGE_SIZE;
269 }
270 }
271
272 r = amdgpu_job_submit(job, &adev->mman.entity,
273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 if (r)
275 goto error_free;
276
277 dma_fence_put(fence);
278
279 return r;
280
281 error_free:
282 amdgpu_job_free(job);
283 return r;
284 }
285
286 /**
287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288 * @adev: amdgpu device
289 * @src: buffer/address where to read from
290 * @dst: buffer/address where to write to
291 * @size: number of bytes to copy
292 * @tmz: if a secure copy should be used
293 * @resv: resv object to sync to
294 * @f: Returns the last fence if multiple jobs are submitted.
295 *
296 * The function copies @size bytes from {src->mem + src->offset} to
297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298 * move and different for a BO to BO copy.
299 *
300 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 const struct amdgpu_copy_mem *src,
303 const struct amdgpu_copy_mem *dst,
304 uint64_t size, bool tmz,
305 struct dma_resv *resv,
306 struct dma_fence **f)
307 {
308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 struct amdgpu_res_cursor src_mm, dst_mm;
310 struct dma_fence *fence = NULL;
311 int r = 0;
312
313 if (!adev->mman.buffer_funcs_enabled) {
314 DRM_ERROR("Trying to move memory with ring turned off.\n");
315 return -EINVAL;
316 }
317
318 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320
321 mutex_lock(&adev->mman.gtt_window_lock);
322 while (src_mm.remaining) {
323 uint64_t from, to, cur_size;
324 struct dma_fence *next;
325
326 /* Never copy more than 256MiB at once to avoid a timeout */
327 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328
329 /* Map src to window 0 and dst to window 1. */
330 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 0, ring, tmz, &cur_size, &from);
332 if (r)
333 goto error;
334
335 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 1, ring, tmz, &cur_size, &to);
337 if (r)
338 goto error;
339
340 r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 resv, &next, false, true, tmz);
342 if (r)
343 goto error;
344
345 dma_fence_put(fence);
346 fence = next;
347
348 amdgpu_res_next(&src_mm, cur_size);
349 amdgpu_res_next(&dst_mm, cur_size);
350 }
351 error:
352 mutex_unlock(&adev->mman.gtt_window_lock);
353 if (f)
354 *f = dma_fence_get(fence);
355 dma_fence_put(fence);
356 return r;
357 }
358
359 /*
360 * amdgpu_move_blit - Copy an entire buffer to another buffer
361 *
362 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363 * help move buffers to and from VRAM.
364 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 bool evict,
367 struct ttm_resource *new_mem,
368 struct ttm_resource *old_mem)
369 {
370 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 struct amdgpu_copy_mem src, dst;
373 struct dma_fence *fence = NULL;
374 int r;
375
376 src.bo = bo;
377 dst.bo = bo;
378 src.mem = old_mem;
379 dst.mem = new_mem;
380 src.offset = 0;
381 dst.offset = 0;
382
383 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 new_mem->num_pages << PAGE_SHIFT,
385 amdgpu_bo_encrypted(abo),
386 bo->base.resv, &fence);
387 if (r)
388 goto error;
389
390 /* clear the space being freed */
391 if (old_mem->mem_type == TTM_PL_VRAM &&
392 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 struct dma_fence *wipe_fence = NULL;
394
395 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 if (r) {
397 goto error;
398 } else if (wipe_fence) {
399 dma_fence_put(fence);
400 fence = wipe_fence;
401 }
402 }
403
404 /* Always block for VM page tables before committing the new location */
405 if (bo->type == ttm_bo_type_kernel)
406 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 else
408 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 dma_fence_put(fence);
410 return r;
411
412 error:
413 if (fence)
414 dma_fence_wait(fence, false);
415 dma_fence_put(fence);
416 return r;
417 }
418
419 /*
420 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421 *
422 * Called by amdgpu_bo_move()
423 */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_resource * mem)424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 struct ttm_resource *mem)
426 {
427 u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 struct amdgpu_res_cursor cursor;
429 u64 end;
430
431 if (mem->mem_type == TTM_PL_SYSTEM ||
432 mem->mem_type == TTM_PL_TT)
433 return true;
434 if (mem->mem_type != TTM_PL_VRAM)
435 return false;
436
437 amdgpu_res_first(mem, 0, mem_size, &cursor);
438 end = cursor.start + cursor.size;
439 while (cursor.remaining) {
440 amdgpu_res_next(&cursor, cursor.size);
441
442 if (!cursor.remaining)
443 break;
444
445 /* ttm_resource_ioremap only supports contiguous memory */
446 if (end != cursor.start)
447 return false;
448
449 end = cursor.start + cursor.size;
450 }
451
452 return end <= adev->gmc.visible_vram_size;
453 }
454
455 /*
456 * amdgpu_bo_move - Move a buffer object to a new memory location
457 *
458 * Called by ttm_bo_handle_move_mem()
459 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 struct ttm_operation_ctx *ctx,
462 struct ttm_resource *new_mem,
463 struct ttm_place *hop)
464 {
465 struct amdgpu_device *adev;
466 struct amdgpu_bo *abo;
467 struct ttm_resource *old_mem = bo->resource;
468 int r;
469
470 if (new_mem->mem_type == TTM_PL_TT ||
471 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 if (r)
474 return r;
475 }
476
477 /* Can't move a pinned BO */
478 abo = ttm_to_amdgpu_bo(bo);
479 if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 return -EINVAL;
481
482 adev = amdgpu_ttm_adev(bo->bdev);
483
484 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
485 bo->ttm == NULL)) {
486 ttm_bo_move_null(bo, new_mem);
487 goto out;
488 }
489 if (old_mem->mem_type == TTM_PL_SYSTEM &&
490 (new_mem->mem_type == TTM_PL_TT ||
491 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
492 ttm_bo_move_null(bo, new_mem);
493 goto out;
494 }
495 if ((old_mem->mem_type == TTM_PL_TT ||
496 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 new_mem->mem_type == TTM_PL_SYSTEM) {
498 r = ttm_bo_wait_ctx(bo, ctx);
499 if (r)
500 return r;
501
502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 ttm_resource_free(bo, &bo->resource);
504 ttm_bo_assign_mem(bo, new_mem);
505 goto out;
506 }
507
508 if (old_mem->mem_type == AMDGPU_PL_GDS ||
509 old_mem->mem_type == AMDGPU_PL_GWS ||
510 old_mem->mem_type == AMDGPU_PL_OA ||
511 new_mem->mem_type == AMDGPU_PL_GDS ||
512 new_mem->mem_type == AMDGPU_PL_GWS ||
513 new_mem->mem_type == AMDGPU_PL_OA) {
514 /* Nothing to save here */
515 ttm_bo_move_null(bo, new_mem);
516 goto out;
517 }
518
519 if (bo->type == ttm_bo_type_device &&
520 new_mem->mem_type == TTM_PL_VRAM &&
521 old_mem->mem_type != TTM_PL_VRAM) {
522 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523 * accesses the BO after it's moved.
524 */
525 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526 }
527
528 if (adev->mman.buffer_funcs_enabled) {
529 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530 new_mem->mem_type == TTM_PL_VRAM) ||
531 (old_mem->mem_type == TTM_PL_VRAM &&
532 new_mem->mem_type == TTM_PL_SYSTEM))) {
533 hop->fpfn = 0;
534 hop->lpfn = 0;
535 hop->mem_type = TTM_PL_TT;
536 hop->flags = TTM_PL_FLAG_TEMPORARY;
537 return -EMULTIHOP;
538 }
539
540 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541 } else {
542 r = -ENODEV;
543 }
544
545 if (r) {
546 /* Check that all memory is CPU accessible */
547 if (!amdgpu_mem_visible(adev, old_mem) ||
548 !amdgpu_mem_visible(adev, new_mem)) {
549 pr_err("Move buffer fallback to memcpy unavailable\n");
550 return r;
551 }
552
553 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554 if (r)
555 return r;
556 }
557
558 out:
559 /* update statistics */
560 atomic64_add(bo->base.size, &adev->num_bytes_moved);
561 amdgpu_bo_move_notify(bo, evict, new_mem);
562 return 0;
563 }
564
565 /*
566 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
567 *
568 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
569 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
571 struct ttm_resource *mem)
572 {
573 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
574 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
575
576 switch (mem->mem_type) {
577 case TTM_PL_SYSTEM:
578 /* system memory */
579 return 0;
580 case TTM_PL_TT:
581 case AMDGPU_PL_PREEMPT:
582 break;
583 case TTM_PL_VRAM:
584 mem->bus.offset = mem->start << PAGE_SHIFT;
585 /* check if it's visible */
586 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
587 return -EINVAL;
588
589 if (adev->mman.aper_base_kaddr &&
590 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
591 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
592 mem->bus.offset;
593
594 mem->bus.offset += adev->gmc.aper_base;
595 mem->bus.is_iomem = true;
596 break;
597 default:
598 return -EINVAL;
599 }
600 return 0;
601 }
602
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
604 unsigned long page_offset)
605 {
606 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
607 struct amdgpu_res_cursor cursor;
608
609 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
610 &cursor);
611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613
614 /**
615 * amdgpu_ttm_domain_start - Returns GPU start address
616 * @adev: amdgpu device object
617 * @type: type of the memory
618 *
619 * Returns:
620 * GPU start address of a memory domain
621 */
622
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625 switch (type) {
626 case TTM_PL_TT:
627 return adev->gmc.gart_start;
628 case TTM_PL_VRAM:
629 return adev->gmc.vram_start;
630 }
631
632 return 0;
633 }
634
635 /*
636 * TTM backend functions.
637 */
638 struct amdgpu_ttm_tt {
639 struct ttm_tt ttm;
640 struct drm_gem_object *gobj;
641 u64 offset;
642 uint64_t userptr;
643 struct task_struct *usertask;
644 uint32_t userflags;
645 bool bound;
646 };
647
648 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
649
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653 * memory and start HMM tracking CPU page table update
654 *
655 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656 * once afterwards to stop HMM tracking
657 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
659 struct hmm_range **range)
660 {
661 struct ttm_tt *ttm = bo->tbo.ttm;
662 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
663 unsigned long start = gtt->userptr;
664 struct vm_area_struct *vma;
665 struct mm_struct *mm;
666 bool readonly;
667 int r = 0;
668
669 /* Make sure get_user_pages_done() can cleanup gracefully */
670 *range = NULL;
671
672 mm = bo->notifier.mm;
673 if (unlikely(!mm)) {
674 DRM_DEBUG_DRIVER("BO is not registered?\n");
675 return -EFAULT;
676 }
677
678 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 return -ESRCH;
680
681 mmap_read_lock(mm);
682 vma = vma_lookup(mm, start);
683 if (unlikely(!vma)) {
684 r = -EFAULT;
685 goto out_unlock;
686 }
687 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 vma->vm_file)) {
689 r = -EPERM;
690 goto out_unlock;
691 }
692
693 readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 ttm->num_pages, range, readonly,
696 true, NULL);
697 out_unlock:
698 mmap_read_unlock(mm);
699 if (r)
700 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701
702 mmput(mm);
703
704 return r;
705 }
706
707 /*
708 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709 * Check if the pages backing this ttm range have been invalidated
710 *
711 * Returns: true if pages are still valid
712 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
714 struct hmm_range *range)
715 {
716 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
717
718 if (!gtt || !gtt->userptr || !range)
719 return false;
720
721 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722 gtt->userptr, ttm->num_pages);
723
724 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
725
726 /*
727 * FIXME: Must always hold notifier_lock for this, and must
728 * not ignore the return code.
729 */
730 return !amdgpu_hmm_range_get_pages_done(range);
731 }
732 #endif
733
734 /*
735 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
736 *
737 * Called by amdgpu_cs_list_validate(). This creates the page list
738 * that backs user memory and will ultimately be mapped into the device
739 * address space.
740 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
742 {
743 unsigned long i;
744
745 for (i = 0; i < ttm->num_pages; ++i)
746 ttm->pages[i] = pages ? pages[i] : NULL;
747 }
748
749 /*
750 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
751 *
752 * Called by amdgpu_ttm_backend_bind()
753 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
755 struct ttm_tt *ttm)
756 {
757 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
758 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
759 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
760 enum dma_data_direction direction = write ?
761 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
762 int r;
763
764 /* Allocate an SG array and squash pages into it */
765 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
766 (u64)ttm->num_pages << PAGE_SHIFT,
767 GFP_KERNEL);
768 if (r)
769 goto release_sg;
770
771 /* Map SG to device */
772 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
773 if (r)
774 goto release_sg;
775
776 /* convert SG to linear array of pages and dma addresses */
777 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
778 ttm->num_pages);
779
780 return 0;
781
782 release_sg:
783 kfree(ttm->sg);
784 ttm->sg = NULL;
785 return r;
786 }
787
788 /*
789 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
790 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)791 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
792 struct ttm_tt *ttm)
793 {
794 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
795 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
796 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
797 enum dma_data_direction direction = write ?
798 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
799
800 /* double check that we don't free the table twice */
801 if (!ttm->sg || !ttm->sg->sgl)
802 return;
803
804 /* unmap the pages mapped to the device */
805 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
806 sg_free_table(ttm->sg);
807 }
808
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)809 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
810 struct ttm_buffer_object *tbo,
811 uint64_t flags)
812 {
813 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
814 struct ttm_tt *ttm = tbo->ttm;
815 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
816
817 if (amdgpu_bo_encrypted(abo))
818 flags |= AMDGPU_PTE_TMZ;
819
820 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
821 uint64_t page_idx = 1;
822
823 amdgpu_gart_bind(adev, gtt->offset, page_idx,
824 gtt->ttm.dma_address, flags);
825
826 /* The memory type of the first page defaults to UC. Now
827 * modify the memory type to NC from the second page of
828 * the BO onward.
829 */
830 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
831 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
832
833 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
834 ttm->num_pages - page_idx,
835 &(gtt->ttm.dma_address[page_idx]), flags);
836 } else {
837 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
838 gtt->ttm.dma_address, flags);
839 }
840 }
841
842 /*
843 * amdgpu_ttm_backend_bind - Bind GTT memory
844 *
845 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
846 * This handles binding GTT memory to the device address space.
847 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)848 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
849 struct ttm_tt *ttm,
850 struct ttm_resource *bo_mem)
851 {
852 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
853 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
854 uint64_t flags;
855 int r;
856
857 if (!bo_mem)
858 return -EINVAL;
859
860 if (gtt->bound)
861 return 0;
862
863 if (gtt->userptr) {
864 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
865 if (r) {
866 DRM_ERROR("failed to pin userptr\n");
867 return r;
868 }
869 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
870 if (!ttm->sg) {
871 struct dma_buf_attachment *attach;
872 struct sg_table *sgt;
873
874 attach = gtt->gobj->import_attach;
875 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
876 if (IS_ERR(sgt))
877 return PTR_ERR(sgt);
878
879 ttm->sg = sgt;
880 }
881
882 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
883 ttm->num_pages);
884 }
885
886 if (!ttm->num_pages) {
887 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
888 ttm->num_pages, bo_mem, ttm);
889 }
890
891 if (bo_mem->mem_type != TTM_PL_TT ||
892 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
893 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
894 return 0;
895 }
896
897 /* compute PTE flags relevant to this BO memory */
898 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
899
900 /* bind pages into GART page tables */
901 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
902 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
903 gtt->ttm.dma_address, flags);
904 gtt->bound = true;
905 return 0;
906 }
907
908 /*
909 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
910 * through AGP or GART aperture.
911 *
912 * If bo is accessible through AGP aperture, then use AGP aperture
913 * to access bo; otherwise allocate logical space in GART aperture
914 * and map bo to GART aperture.
915 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)916 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
917 {
918 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
919 struct ttm_operation_ctx ctx = { false, false };
920 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
921 struct ttm_placement placement;
922 struct ttm_place placements;
923 struct ttm_resource *tmp;
924 uint64_t addr, flags;
925 int r;
926
927 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
928 return 0;
929
930 addr = amdgpu_gmc_agp_addr(bo);
931 if (addr != AMDGPU_BO_INVALID_OFFSET) {
932 bo->resource->start = addr >> PAGE_SHIFT;
933 return 0;
934 }
935
936 /* allocate GART space */
937 placement.num_placement = 1;
938 placement.placement = &placements;
939 placement.num_busy_placement = 1;
940 placement.busy_placement = &placements;
941 placements.fpfn = 0;
942 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
943 placements.mem_type = TTM_PL_TT;
944 placements.flags = bo->resource->placement;
945
946 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
947 if (unlikely(r))
948 return r;
949
950 /* compute PTE flags for this buffer object */
951 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
952
953 /* Bind pages */
954 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
955 amdgpu_ttm_gart_bind(adev, bo, flags);
956 amdgpu_gart_invalidate_tlb(adev);
957 ttm_resource_free(bo, &bo->resource);
958 ttm_bo_assign_mem(bo, tmp);
959
960 return 0;
961 }
962
963 /*
964 * amdgpu_ttm_recover_gart - Rebind GTT pages
965 *
966 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
967 * rebind GTT pages during a GPU reset.
968 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)969 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
970 {
971 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
972 uint64_t flags;
973
974 if (!tbo->ttm)
975 return;
976
977 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
978 amdgpu_ttm_gart_bind(adev, tbo, flags);
979 }
980
981 /*
982 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
983 *
984 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
985 * ttm_tt_destroy().
986 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)987 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
988 struct ttm_tt *ttm)
989 {
990 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
992
993 /* if the pages have userptr pinning then clear that first */
994 if (gtt->userptr) {
995 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
996 } else if (ttm->sg && gtt->gobj->import_attach) {
997 struct dma_buf_attachment *attach;
998
999 attach = gtt->gobj->import_attach;
1000 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1001 ttm->sg = NULL;
1002 }
1003
1004 if (!gtt->bound)
1005 return;
1006
1007 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1008 return;
1009
1010 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1011 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1012 gtt->bound = false;
1013 }
1014
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1015 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1016 struct ttm_tt *ttm)
1017 {
1018 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1019
1020 if (gtt->usertask)
1021 put_task_struct(gtt->usertask);
1022
1023 ttm_tt_fini(>t->ttm);
1024 kfree(gtt);
1025 }
1026
1027 /**
1028 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1029 *
1030 * @bo: The buffer object to create a GTT ttm_tt object around
1031 * @page_flags: Page flags to be added to the ttm_tt object
1032 *
1033 * Called by ttm_tt_create().
1034 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1035 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1036 uint32_t page_flags)
1037 {
1038 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1039 struct amdgpu_ttm_tt *gtt;
1040 enum ttm_caching caching;
1041
1042 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1043 if (gtt == NULL) {
1044 return NULL;
1045 }
1046 gtt->gobj = &bo->base;
1047
1048 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1049 caching = ttm_write_combined;
1050 else
1051 caching = ttm_cached;
1052
1053 /* allocate space for the uninitialized page entries */
1054 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1055 kfree(gtt);
1056 return NULL;
1057 }
1058 return >t->ttm;
1059 }
1060
1061 /*
1062 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1063 *
1064 * Map the pages of a ttm_tt object to an address space visible
1065 * to the underlying device.
1066 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1067 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1068 struct ttm_tt *ttm,
1069 struct ttm_operation_ctx *ctx)
1070 {
1071 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1072 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1073 pgoff_t i;
1074 int ret;
1075
1076 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1077 if (gtt->userptr) {
1078 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1079 if (!ttm->sg)
1080 return -ENOMEM;
1081 return 0;
1082 }
1083
1084 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1085 return 0;
1086
1087 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1088 if (ret)
1089 return ret;
1090
1091 for (i = 0; i < ttm->num_pages; ++i)
1092 ttm->pages[i]->mapping = bdev->dev_mapping;
1093
1094 return 0;
1095 }
1096
1097 /*
1098 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1099 *
1100 * Unmaps pages of a ttm_tt object from the device address space and
1101 * unpopulates the page array backing it.
1102 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1103 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1104 struct ttm_tt *ttm)
1105 {
1106 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1107 struct amdgpu_device *adev;
1108 pgoff_t i;
1109
1110 amdgpu_ttm_backend_unbind(bdev, ttm);
1111
1112 if (gtt->userptr) {
1113 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1114 kfree(ttm->sg);
1115 ttm->sg = NULL;
1116 return;
1117 }
1118
1119 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1120 return;
1121
1122 for (i = 0; i < ttm->num_pages; ++i)
1123 ttm->pages[i]->mapping = NULL;
1124
1125 adev = amdgpu_ttm_adev(bdev);
1126 return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1127 }
1128
1129 /**
1130 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1131 * task
1132 *
1133 * @tbo: The ttm_buffer_object that contains the userptr
1134 * @user_addr: The returned value
1135 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1136 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1137 uint64_t *user_addr)
1138 {
1139 struct amdgpu_ttm_tt *gtt;
1140
1141 if (!tbo->ttm)
1142 return -EINVAL;
1143
1144 gtt = (void *)tbo->ttm;
1145 *user_addr = gtt->userptr;
1146 return 0;
1147 }
1148
1149 /**
1150 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1151 * task
1152 *
1153 * @bo: The ttm_buffer_object to bind this userptr to
1154 * @addr: The address in the current tasks VM space to use
1155 * @flags: Requirements of userptr object.
1156 *
1157 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1158 * to current task
1159 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1160 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1161 uint64_t addr, uint32_t flags)
1162 {
1163 struct amdgpu_ttm_tt *gtt;
1164
1165 if (!bo->ttm) {
1166 /* TODO: We want a separate TTM object type for userptrs */
1167 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1168 if (bo->ttm == NULL)
1169 return -ENOMEM;
1170 }
1171
1172 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1173 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1174
1175 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1176 gtt->userptr = addr;
1177 gtt->userflags = flags;
1178
1179 if (gtt->usertask)
1180 put_task_struct(gtt->usertask);
1181 gtt->usertask = current->group_leader;
1182 get_task_struct(gtt->usertask);
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1189 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1190 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1191 {
1192 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1193
1194 if (gtt == NULL)
1195 return NULL;
1196
1197 if (gtt->usertask == NULL)
1198 return NULL;
1199
1200 return gtt->usertask->mm;
1201 }
1202
1203 /*
1204 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1205 * address range for the current task.
1206 *
1207 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1208 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1209 unsigned long end, unsigned long *userptr)
1210 {
1211 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1212 unsigned long size;
1213
1214 if (gtt == NULL || !gtt->userptr)
1215 return false;
1216
1217 /* Return false if no part of the ttm_tt object lies within
1218 * the range
1219 */
1220 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1221 if (gtt->userptr > end || gtt->userptr + size <= start)
1222 return false;
1223
1224 if (userptr)
1225 *userptr = gtt->userptr;
1226 return true;
1227 }
1228
1229 /*
1230 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1231 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1232 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1233 {
1234 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1235
1236 if (gtt == NULL || !gtt->userptr)
1237 return false;
1238
1239 return true;
1240 }
1241
1242 /*
1243 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1244 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1245 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1246 {
1247 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1248
1249 if (gtt == NULL)
1250 return false;
1251
1252 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1253 }
1254
1255 /**
1256 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1257 *
1258 * @ttm: The ttm_tt object to compute the flags for
1259 * @mem: The memory registry backing this ttm_tt object
1260 *
1261 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1262 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1263 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1264 {
1265 uint64_t flags = 0;
1266
1267 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1268 flags |= AMDGPU_PTE_VALID;
1269
1270 if (mem && (mem->mem_type == TTM_PL_TT ||
1271 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1272 flags |= AMDGPU_PTE_SYSTEM;
1273
1274 if (ttm->caching == ttm_cached)
1275 flags |= AMDGPU_PTE_SNOOPED;
1276 }
1277
1278 if (mem && mem->mem_type == TTM_PL_VRAM &&
1279 mem->bus.caching == ttm_cached)
1280 flags |= AMDGPU_PTE_SNOOPED;
1281
1282 return flags;
1283 }
1284
1285 /**
1286 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1287 *
1288 * @adev: amdgpu_device pointer
1289 * @ttm: The ttm_tt object to compute the flags for
1290 * @mem: The memory registry backing this ttm_tt object
1291 *
1292 * Figure out the flags to use for a VM PTE (Page Table Entry).
1293 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1294 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1295 struct ttm_resource *mem)
1296 {
1297 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1298
1299 flags |= adev->gart.gart_pte_flags;
1300 flags |= AMDGPU_PTE_READABLE;
1301
1302 if (!amdgpu_ttm_tt_is_readonly(ttm))
1303 flags |= AMDGPU_PTE_WRITEABLE;
1304
1305 return flags;
1306 }
1307
1308 /*
1309 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1310 * object.
1311 *
1312 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1313 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1314 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1315 * used to clean out a memory space.
1316 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1317 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1318 const struct ttm_place *place)
1319 {
1320 struct dma_resv_iter resv_cursor;
1321 struct dma_fence *f;
1322
1323 if (!amdgpu_bo_is_amdgpu_bo(bo))
1324 return ttm_bo_eviction_valuable(bo, place);
1325
1326 /* Swapout? */
1327 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1328 return true;
1329
1330 if (bo->type == ttm_bo_type_kernel &&
1331 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1332 return false;
1333
1334 /* If bo is a KFD BO, check if the bo belongs to the current process.
1335 * If true, then return false as any KFD process needs all its BOs to
1336 * be resident to run successfully
1337 */
1338 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1339 DMA_RESV_USAGE_BOOKKEEP, f) {
1340 if (amdkfd_fence_check_mm(f, current->mm))
1341 return false;
1342 }
1343
1344 /* Preemptible BOs don't own system resources managed by the
1345 * driver (pages, VRAM, GART space). They point to resources
1346 * owned by someone else (e.g. pageable memory in user mode
1347 * or a DMABuf). They are used in a preemptible context so we
1348 * can guarantee no deadlocks and good QoS in case of MMU
1349 * notifiers or DMABuf move notifiers from the resource owner.
1350 */
1351 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1352 return false;
1353
1354 if (bo->resource->mem_type == TTM_PL_TT &&
1355 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1356 return false;
1357
1358 return ttm_bo_eviction_valuable(bo, place);
1359 }
1360
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1361 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1362 void *buf, size_t size, bool write)
1363 {
1364 while (size) {
1365 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1366 uint64_t bytes = 4 - (pos & 0x3);
1367 uint32_t shift = (pos & 0x3) * 8;
1368 uint32_t mask = 0xffffffff << shift;
1369 uint32_t value = 0;
1370
1371 if (size < bytes) {
1372 mask &= 0xffffffff >> (bytes - size) * 8;
1373 bytes = size;
1374 }
1375
1376 if (mask != 0xffffffff) {
1377 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1378 if (write) {
1379 value &= ~mask;
1380 value |= (*(uint32_t *)buf << shift) & mask;
1381 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1382 } else {
1383 value = (value & mask) >> shift;
1384 memcpy(buf, &value, bytes);
1385 }
1386 } else {
1387 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1388 }
1389
1390 pos += bytes;
1391 buf += bytes;
1392 size -= bytes;
1393 }
1394 }
1395
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1396 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1397 unsigned long offset, void *buf, int len, int write)
1398 {
1399 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401 struct amdgpu_res_cursor src_mm;
1402 struct amdgpu_job *job;
1403 struct dma_fence *fence;
1404 uint64_t src_addr, dst_addr;
1405 unsigned int num_dw;
1406 int r, idx;
1407
1408 if (len != PAGE_SIZE)
1409 return -EINVAL;
1410
1411 if (!adev->mman.sdma_access_ptr)
1412 return -EACCES;
1413
1414 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415 return -ENODEV;
1416
1417 if (write)
1418 memcpy(adev->mman.sdma_access_ptr, buf, len);
1419
1420 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1422 if (r)
1423 goto out;
1424
1425 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1426 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1427 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1428 if (write)
1429 swap(src_addr, dst_addr);
1430
1431 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1432
1433 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1434 WARN_ON(job->ibs[0].length_dw > num_dw);
1435
1436 r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1437 if (r) {
1438 amdgpu_job_free(job);
1439 goto out;
1440 }
1441
1442 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1443 r = -ETIMEDOUT;
1444 dma_fence_put(fence);
1445
1446 if (!(r || write))
1447 memcpy(buf, adev->mman.sdma_access_ptr, len);
1448 out:
1449 drm_dev_exit(idx);
1450 return r;
1451 }
1452
1453 /**
1454 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1455 *
1456 * @bo: The buffer object to read/write
1457 * @offset: Offset into buffer object
1458 * @buf: Secondary buffer to write/read from
1459 * @len: Length in bytes of access
1460 * @write: true if writing
1461 *
1462 * This is used to access VRAM that backs a buffer object via MMIO
1463 * access for debugging purposes.
1464 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1465 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1466 unsigned long offset, void *buf, int len,
1467 int write)
1468 {
1469 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1470 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1471 struct amdgpu_res_cursor cursor;
1472 int ret = 0;
1473
1474 if (bo->resource->mem_type != TTM_PL_VRAM)
1475 return -EIO;
1476
1477 if (amdgpu_device_has_timeouts_enabled(adev) &&
1478 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1479 return len;
1480
1481 amdgpu_res_first(bo->resource, offset, len, &cursor);
1482 while (cursor.remaining) {
1483 size_t count, size = cursor.size;
1484 loff_t pos = cursor.start;
1485
1486 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1487 size -= count;
1488 if (size) {
1489 /* using MM to access rest vram and handle un-aligned address */
1490 pos += count;
1491 buf += count;
1492 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1493 }
1494
1495 ret += cursor.size;
1496 buf += cursor.size;
1497 amdgpu_res_next(&cursor, cursor.size);
1498 }
1499
1500 return ret;
1501 }
1502
1503 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1504 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1505 {
1506 amdgpu_bo_move_notify(bo, false, NULL);
1507 }
1508
1509 static struct ttm_device_funcs amdgpu_bo_driver = {
1510 .ttm_tt_create = &amdgpu_ttm_tt_create,
1511 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1512 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1513 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1514 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1515 .evict_flags = &amdgpu_evict_flags,
1516 .move = &amdgpu_bo_move,
1517 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1518 .release_notify = &amdgpu_bo_release_notify,
1519 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1520 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1521 .access_memory = &amdgpu_ttm_access_memory,
1522 };
1523
1524 /*
1525 * Firmware Reservation functions
1526 */
1527 /**
1528 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1529 *
1530 * @adev: amdgpu_device pointer
1531 *
1532 * free fw reserved vram if it has been reserved.
1533 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1534 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1535 {
1536 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1537 NULL, &adev->mman.fw_vram_usage_va);
1538 }
1539
1540 /**
1541 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1542 *
1543 * @adev: amdgpu_device pointer
1544 *
1545 * create bo vram reservation from fw.
1546 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1547 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1548 {
1549 uint64_t vram_size = adev->gmc.visible_vram_size;
1550
1551 adev->mman.fw_vram_usage_va = NULL;
1552 adev->mman.fw_vram_usage_reserved_bo = NULL;
1553
1554 if (adev->mman.fw_vram_usage_size == 0 ||
1555 adev->mman.fw_vram_usage_size > vram_size)
1556 return 0;
1557
1558 return amdgpu_bo_create_kernel_at(adev,
1559 adev->mman.fw_vram_usage_start_offset,
1560 adev->mman.fw_vram_usage_size,
1561 AMDGPU_GEM_DOMAIN_VRAM,
1562 &adev->mman.fw_vram_usage_reserved_bo,
1563 &adev->mman.fw_vram_usage_va);
1564 }
1565
1566 /*
1567 * Memoy training reservation functions
1568 */
1569
1570 /**
1571 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1572 *
1573 * @adev: amdgpu_device pointer
1574 *
1575 * free memory training reserved vram if it has been reserved.
1576 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1577 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1578 {
1579 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1580
1581 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1582 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1583 ctx->c2p_bo = NULL;
1584
1585 return 0;
1586 }
1587
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev)1588 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1589 {
1590 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1591
1592 memset(ctx, 0, sizeof(*ctx));
1593
1594 ctx->c2p_train_data_offset =
1595 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1596 ctx->p2c_train_data_offset =
1597 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1598 ctx->train_data_size =
1599 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1600
1601 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1602 ctx->train_data_size,
1603 ctx->p2c_train_data_offset,
1604 ctx->c2p_train_data_offset);
1605 }
1606
1607 /*
1608 * reserve TMR memory at the top of VRAM which holds
1609 * IP Discovery data and is protected by PSP.
1610 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1611 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1612 {
1613 int ret;
1614 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1615 bool mem_train_support = false;
1616
1617 if (!amdgpu_sriov_vf(adev)) {
1618 if (amdgpu_atomfirmware_mem_training_supported(adev))
1619 mem_train_support = true;
1620 else
1621 DRM_DEBUG("memory training does not support!\n");
1622 }
1623
1624 /*
1625 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1626 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1627 *
1628 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1629 * discovery data and G6 memory training data respectively
1630 */
1631 adev->mman.discovery_tmr_size =
1632 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1633 if (!adev->mman.discovery_tmr_size)
1634 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1635
1636 if (mem_train_support) {
1637 /* reserve vram for mem train according to TMR location */
1638 amdgpu_ttm_training_data_block_init(adev);
1639 ret = amdgpu_bo_create_kernel_at(adev,
1640 ctx->c2p_train_data_offset,
1641 ctx->train_data_size,
1642 AMDGPU_GEM_DOMAIN_VRAM,
1643 &ctx->c2p_bo,
1644 NULL);
1645 if (ret) {
1646 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1647 amdgpu_ttm_training_reserve_vram_fini(adev);
1648 return ret;
1649 }
1650 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1651 }
1652
1653 ret = amdgpu_bo_create_kernel_at(adev,
1654 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1655 adev->mman.discovery_tmr_size,
1656 AMDGPU_GEM_DOMAIN_VRAM,
1657 &adev->mman.discovery_memory,
1658 NULL);
1659 if (ret) {
1660 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1661 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1662 return ret;
1663 }
1664
1665 return 0;
1666 }
1667
1668 /*
1669 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1670 * gtt/vram related fields.
1671 *
1672 * This initializes all of the memory space pools that the TTM layer
1673 * will need such as the GTT space (system memory mapped to the device),
1674 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1675 * can be mapped per VMID.
1676 */
amdgpu_ttm_init(struct amdgpu_device * adev)1677 int amdgpu_ttm_init(struct amdgpu_device *adev)
1678 {
1679 uint64_t gtt_size;
1680 int r;
1681 u64 vis_vram_limit;
1682
1683 mutex_init(&adev->mman.gtt_window_lock);
1684
1685 /* No others user of address space so set it to 0 */
1686 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1687 adev_to_drm(adev)->anon_inode->i_mapping,
1688 adev_to_drm(adev)->vma_offset_manager,
1689 adev->need_swiotlb,
1690 dma_addressing_limited(adev->dev));
1691 if (r) {
1692 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1693 return r;
1694 }
1695 adev->mman.initialized = true;
1696
1697 /* Initialize VRAM pool with all of VRAM divided into pages */
1698 r = amdgpu_vram_mgr_init(adev);
1699 if (r) {
1700 DRM_ERROR("Failed initializing VRAM heap.\n");
1701 return r;
1702 }
1703
1704 /* Reduce size of CPU-visible VRAM if requested */
1705 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1706 if (amdgpu_vis_vram_limit > 0 &&
1707 vis_vram_limit <= adev->gmc.visible_vram_size)
1708 adev->gmc.visible_vram_size = vis_vram_limit;
1709
1710 /* Change the size here instead of the init above so only lpfn is affected */
1711 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1712 #ifdef CONFIG_64BIT
1713 #ifdef CONFIG_X86
1714 if (adev->gmc.xgmi.connected_to_cpu)
1715 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1716 adev->gmc.visible_vram_size);
1717
1718 else
1719 #endif
1720 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1721 adev->gmc.visible_vram_size);
1722 #endif
1723
1724 /*
1725 *The reserved vram for firmware must be pinned to the specified
1726 *place on the VRAM, so reserve it early.
1727 */
1728 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1729 if (r) {
1730 return r;
1731 }
1732
1733 /*
1734 * only NAVI10 and onwards ASIC support for IP discovery.
1735 * If IP discovery enabled, a block of memory should be
1736 * reserved for IP discovey.
1737 */
1738 if (adev->mman.discovery_bin) {
1739 r = amdgpu_ttm_reserve_tmr(adev);
1740 if (r)
1741 return r;
1742 }
1743
1744 /* allocate memory as required for VGA
1745 * This is used for VGA emulation and pre-OS scanout buffers to
1746 * avoid display artifacts while transitioning between pre-OS
1747 * and driver. */
1748 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1749 AMDGPU_GEM_DOMAIN_VRAM,
1750 &adev->mman.stolen_vga_memory,
1751 NULL);
1752 if (r)
1753 return r;
1754 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1755 adev->mman.stolen_extended_size,
1756 AMDGPU_GEM_DOMAIN_VRAM,
1757 &adev->mman.stolen_extended_memory,
1758 NULL);
1759 if (r)
1760 return r;
1761 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1762 adev->mman.stolen_reserved_size,
1763 AMDGPU_GEM_DOMAIN_VRAM,
1764 &adev->mman.stolen_reserved_memory,
1765 NULL);
1766 if (r)
1767 return r;
1768
1769 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1770 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1771
1772 /* Compute GTT size, either based on 1/2 the size of RAM size
1773 * or whatever the user passed on module init */
1774 if (amdgpu_gtt_size == -1) {
1775 struct sysinfo si;
1776
1777 si_meminfo(&si);
1778 /* Certain GL unit tests for large textures can cause problems
1779 * with the OOM killer since there is no way to link this memory
1780 * to a process. This was originally mitigated (but not necessarily
1781 * eliminated) by limiting the GTT size. The problem is this limit
1782 * is often too low for many modern games so just make the limit 1/2
1783 * of system memory which aligns with TTM. The OOM accounting needs
1784 * to be addressed, but we shouldn't prevent common 3D applications
1785 * from being usable just to potentially mitigate that corner case.
1786 */
1787 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1788 (u64)si.totalram * si.mem_unit / 2);
1789 } else {
1790 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1791 }
1792
1793 /* Initialize GTT memory pool */
1794 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1795 if (r) {
1796 DRM_ERROR("Failed initializing GTT heap.\n");
1797 return r;
1798 }
1799 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1800 (unsigned)(gtt_size / (1024 * 1024)));
1801
1802 /* Initialize preemptible memory pool */
1803 r = amdgpu_preempt_mgr_init(adev);
1804 if (r) {
1805 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1806 return r;
1807 }
1808
1809 /* Initialize various on-chip memory pools */
1810 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1811 if (r) {
1812 DRM_ERROR("Failed initializing GDS heap.\n");
1813 return r;
1814 }
1815
1816 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1817 if (r) {
1818 DRM_ERROR("Failed initializing gws heap.\n");
1819 return r;
1820 }
1821
1822 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1823 if (r) {
1824 DRM_ERROR("Failed initializing oa heap.\n");
1825 return r;
1826 }
1827
1828 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1829 AMDGPU_GEM_DOMAIN_GTT,
1830 &adev->mman.sdma_access_bo, NULL,
1831 &adev->mman.sdma_access_ptr))
1832 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1833
1834 return 0;
1835 }
1836
1837 /*
1838 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1839 */
amdgpu_ttm_fini(struct amdgpu_device * adev)1840 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1841 {
1842 int idx;
1843 if (!adev->mman.initialized)
1844 return;
1845
1846 amdgpu_ttm_training_reserve_vram_fini(adev);
1847 /* return the stolen vga memory back to VRAM */
1848 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1849 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1850 /* return the IP Discovery TMR memory back to VRAM */
1851 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1852 if (adev->mman.stolen_reserved_size)
1853 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1854 NULL, NULL);
1855 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1856 &adev->mman.sdma_access_ptr);
1857 amdgpu_ttm_fw_reserve_vram_fini(adev);
1858
1859 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1860
1861 if (adev->mman.aper_base_kaddr)
1862 iounmap(adev->mman.aper_base_kaddr);
1863 adev->mman.aper_base_kaddr = NULL;
1864
1865 drm_dev_exit(idx);
1866 }
1867
1868 amdgpu_vram_mgr_fini(adev);
1869 amdgpu_gtt_mgr_fini(adev);
1870 amdgpu_preempt_mgr_fini(adev);
1871 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1872 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1873 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1874 ttm_device_fini(&adev->mman.bdev);
1875 adev->mman.initialized = false;
1876 DRM_INFO("amdgpu: ttm finalized\n");
1877 }
1878
1879 /**
1880 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1881 *
1882 * @adev: amdgpu_device pointer
1883 * @enable: true when we can use buffer functions.
1884 *
1885 * Enable/disable use of buffer functions during suspend/resume. This should
1886 * only be called at bootup or when userspace isn't running.
1887 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1888 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1889 {
1890 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1891 uint64_t size;
1892 int r;
1893
1894 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1895 adev->mman.buffer_funcs_enabled == enable)
1896 return;
1897
1898 if (enable) {
1899 struct amdgpu_ring *ring;
1900 struct drm_gpu_scheduler *sched;
1901
1902 ring = adev->mman.buffer_funcs_ring;
1903 sched = &ring->sched;
1904 r = drm_sched_entity_init(&adev->mman.entity,
1905 DRM_SCHED_PRIORITY_KERNEL, &sched,
1906 1, NULL);
1907 if (r) {
1908 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1909 r);
1910 return;
1911 }
1912 } else {
1913 drm_sched_entity_destroy(&adev->mman.entity);
1914 dma_fence_put(man->move);
1915 man->move = NULL;
1916 }
1917
1918 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1919 if (enable)
1920 size = adev->gmc.real_vram_size;
1921 else
1922 size = adev->gmc.visible_vram_size;
1923 man->size = size;
1924 adev->mman.buffer_funcs_enabled = enable;
1925 }
1926
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job)1927 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1928 bool direct_submit,
1929 unsigned int num_dw,
1930 struct dma_resv *resv,
1931 bool vm_needs_flush,
1932 struct amdgpu_job **job)
1933 {
1934 enum amdgpu_ib_pool_type pool = direct_submit ?
1935 AMDGPU_IB_POOL_DIRECT :
1936 AMDGPU_IB_POOL_DELAYED;
1937 int r;
1938
1939 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1940 if (r)
1941 return r;
1942
1943 if (vm_needs_flush) {
1944 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1945 adev->gmc.pdb0_bo :
1946 adev->gart.bo);
1947 (*job)->vm_needs_flush = true;
1948 }
1949 if (resv) {
1950 r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1951 AMDGPU_SYNC_ALWAYS,
1952 AMDGPU_FENCE_OWNER_UNDEFINED);
1953 if (r) {
1954 DRM_ERROR("sync failed (%d).\n", r);
1955 amdgpu_job_free(*job);
1956 return r;
1957 }
1958 }
1959 return 0;
1960 }
1961
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)1962 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1963 uint64_t dst_offset, uint32_t byte_count,
1964 struct dma_resv *resv,
1965 struct dma_fence **fence, bool direct_submit,
1966 bool vm_needs_flush, bool tmz)
1967 {
1968 struct amdgpu_device *adev = ring->adev;
1969 unsigned num_loops, num_dw;
1970 struct amdgpu_job *job;
1971 uint32_t max_bytes;
1972 unsigned i;
1973 int r;
1974
1975 if (!direct_submit && !ring->sched.ready) {
1976 DRM_ERROR("Trying to move memory with ring turned off.\n");
1977 return -EINVAL;
1978 }
1979
1980 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1981 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1982 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1983 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
1984 resv, vm_needs_flush, &job);
1985 if (r)
1986 return r;
1987
1988 for (i = 0; i < num_loops; i++) {
1989 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1990
1991 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1992 dst_offset, cur_size_in_bytes, tmz);
1993
1994 src_offset += cur_size_in_bytes;
1995 dst_offset += cur_size_in_bytes;
1996 byte_count -= cur_size_in_bytes;
1997 }
1998
1999 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2000 WARN_ON(job->ibs[0].length_dw > num_dw);
2001 if (direct_submit)
2002 r = amdgpu_job_submit_direct(job, ring, fence);
2003 else
2004 r = amdgpu_job_submit(job, &adev->mman.entity,
2005 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2006 if (r)
2007 goto error_free;
2008
2009 return r;
2010
2011 error_free:
2012 amdgpu_job_free(job);
2013 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2014 return r;
2015 }
2016
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush)2017 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2018 uint64_t dst_addr, uint32_t byte_count,
2019 struct dma_resv *resv,
2020 struct dma_fence **fence,
2021 bool vm_needs_flush)
2022 {
2023 struct amdgpu_device *adev = ring->adev;
2024 unsigned int num_loops, num_dw;
2025 struct amdgpu_job *job;
2026 uint32_t max_bytes;
2027 unsigned int i;
2028 int r;
2029
2030 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2031 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2032 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2033 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2034 &job);
2035 if (r)
2036 return r;
2037
2038 for (i = 0; i < num_loops; i++) {
2039 uint32_t cur_size = min(byte_count, max_bytes);
2040
2041 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2042 cur_size);
2043
2044 dst_addr += cur_size;
2045 byte_count -= cur_size;
2046 }
2047
2048 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2049 WARN_ON(job->ibs[0].length_dw > num_dw);
2050 r = amdgpu_job_submit(job, &adev->mman.entity,
2051 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2052 if (r)
2053 goto error_free;
2054
2055 return 0;
2056
2057 error_free:
2058 amdgpu_job_free(job);
2059 return r;
2060 }
2061
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f)2062 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2063 uint32_t src_data,
2064 struct dma_resv *resv,
2065 struct dma_fence **f)
2066 {
2067 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2068 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2069 struct dma_fence *fence = NULL;
2070 struct amdgpu_res_cursor dst;
2071 int r;
2072
2073 if (!adev->mman.buffer_funcs_enabled) {
2074 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2075 return -EINVAL;
2076 }
2077
2078 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2079
2080 mutex_lock(&adev->mman.gtt_window_lock);
2081 while (dst.remaining) {
2082 struct dma_fence *next;
2083 uint64_t cur_size, to;
2084
2085 /* Never fill more than 256MiB at once to avoid timeouts */
2086 cur_size = min(dst.size, 256ULL << 20);
2087
2088 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2089 1, ring, false, &cur_size, &to);
2090 if (r)
2091 goto error;
2092
2093 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2094 &next, true);
2095 if (r)
2096 goto error;
2097
2098 dma_fence_put(fence);
2099 fence = next;
2100
2101 amdgpu_res_next(&dst, cur_size);
2102 }
2103 error:
2104 mutex_unlock(&adev->mman.gtt_window_lock);
2105 if (f)
2106 *f = dma_fence_get(fence);
2107 dma_fence_put(fence);
2108 return r;
2109 }
2110
2111 /**
2112 * amdgpu_ttm_evict_resources - evict memory buffers
2113 * @adev: amdgpu device object
2114 * @mem_type: evicted BO's memory type
2115 *
2116 * Evicts all @mem_type buffers on the lru list of the memory type.
2117 *
2118 * Returns:
2119 * 0 for success or a negative error code on failure.
2120 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2121 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2122 {
2123 struct ttm_resource_manager *man;
2124
2125 switch (mem_type) {
2126 case TTM_PL_VRAM:
2127 case TTM_PL_TT:
2128 case AMDGPU_PL_GWS:
2129 case AMDGPU_PL_GDS:
2130 case AMDGPU_PL_OA:
2131 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2132 break;
2133 default:
2134 DRM_ERROR("Trying to evict invalid memory type\n");
2135 return -EINVAL;
2136 }
2137
2138 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2139 }
2140
2141 #if defined(CONFIG_DEBUG_FS)
2142
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2143 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2144 {
2145 struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2146
2147 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2148 }
2149
2150 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2151
2152 /*
2153 * amdgpu_ttm_vram_read - Linear read access to VRAM
2154 *
2155 * Accesses VRAM via MMIO for debugging purposes.
2156 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2157 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2158 size_t size, loff_t *pos)
2159 {
2160 struct amdgpu_device *adev = file_inode(f)->i_private;
2161 ssize_t result = 0;
2162
2163 if (size & 0x3 || *pos & 0x3)
2164 return -EINVAL;
2165
2166 if (*pos >= adev->gmc.mc_vram_size)
2167 return -ENXIO;
2168
2169 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2170 while (size) {
2171 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2172 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2173
2174 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2175 if (copy_to_user(buf, value, bytes))
2176 return -EFAULT;
2177
2178 result += bytes;
2179 buf += bytes;
2180 *pos += bytes;
2181 size -= bytes;
2182 }
2183
2184 return result;
2185 }
2186
2187 /*
2188 * amdgpu_ttm_vram_write - Linear write access to VRAM
2189 *
2190 * Accesses VRAM via MMIO for debugging purposes.
2191 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2192 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2193 size_t size, loff_t *pos)
2194 {
2195 struct amdgpu_device *adev = file_inode(f)->i_private;
2196 ssize_t result = 0;
2197 int r;
2198
2199 if (size & 0x3 || *pos & 0x3)
2200 return -EINVAL;
2201
2202 if (*pos >= adev->gmc.mc_vram_size)
2203 return -ENXIO;
2204
2205 while (size) {
2206 uint32_t value;
2207
2208 if (*pos >= adev->gmc.mc_vram_size)
2209 return result;
2210
2211 r = get_user(value, (uint32_t *)buf);
2212 if (r)
2213 return r;
2214
2215 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2216
2217 result += 4;
2218 buf += 4;
2219 *pos += 4;
2220 size -= 4;
2221 }
2222
2223 return result;
2224 }
2225
2226 static const struct file_operations amdgpu_ttm_vram_fops = {
2227 .owner = THIS_MODULE,
2228 .read = amdgpu_ttm_vram_read,
2229 .write = amdgpu_ttm_vram_write,
2230 .llseek = default_llseek,
2231 };
2232
2233 /*
2234 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2235 *
2236 * This function is used to read memory that has been mapped to the
2237 * GPU and the known addresses are not physical addresses but instead
2238 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2239 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2240 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2241 size_t size, loff_t *pos)
2242 {
2243 struct amdgpu_device *adev = file_inode(f)->i_private;
2244 struct iommu_domain *dom;
2245 ssize_t result = 0;
2246 int r;
2247
2248 /* retrieve the IOMMU domain if any for this device */
2249 dom = iommu_get_domain_for_dev(adev->dev);
2250
2251 while (size) {
2252 phys_addr_t addr = *pos & PAGE_MASK;
2253 loff_t off = *pos & ~PAGE_MASK;
2254 size_t bytes = PAGE_SIZE - off;
2255 unsigned long pfn;
2256 struct page *p;
2257 void *ptr;
2258
2259 bytes = bytes < size ? bytes : size;
2260
2261 /* Translate the bus address to a physical address. If
2262 * the domain is NULL it means there is no IOMMU active
2263 * and the address translation is the identity
2264 */
2265 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2266
2267 pfn = addr >> PAGE_SHIFT;
2268 if (!pfn_valid(pfn))
2269 return -EPERM;
2270
2271 p = pfn_to_page(pfn);
2272 if (p->mapping != adev->mman.bdev.dev_mapping)
2273 return -EPERM;
2274
2275 ptr = kmap(p);
2276 r = copy_to_user(buf, ptr + off, bytes);
2277 kunmap(p);
2278 if (r)
2279 return -EFAULT;
2280
2281 size -= bytes;
2282 *pos += bytes;
2283 result += bytes;
2284 }
2285
2286 return result;
2287 }
2288
2289 /*
2290 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2291 *
2292 * This function is used to write memory that has been mapped to the
2293 * GPU and the known addresses are not physical addresses but instead
2294 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2295 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2296 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2297 size_t size, loff_t *pos)
2298 {
2299 struct amdgpu_device *adev = file_inode(f)->i_private;
2300 struct iommu_domain *dom;
2301 ssize_t result = 0;
2302 int r;
2303
2304 dom = iommu_get_domain_for_dev(adev->dev);
2305
2306 while (size) {
2307 phys_addr_t addr = *pos & PAGE_MASK;
2308 loff_t off = *pos & ~PAGE_MASK;
2309 size_t bytes = PAGE_SIZE - off;
2310 unsigned long pfn;
2311 struct page *p;
2312 void *ptr;
2313
2314 bytes = bytes < size ? bytes : size;
2315
2316 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2317
2318 pfn = addr >> PAGE_SHIFT;
2319 if (!pfn_valid(pfn))
2320 return -EPERM;
2321
2322 p = pfn_to_page(pfn);
2323 if (p->mapping != adev->mman.bdev.dev_mapping)
2324 return -EPERM;
2325
2326 ptr = kmap(p);
2327 r = copy_from_user(ptr + off, buf, bytes);
2328 kunmap(p);
2329 if (r)
2330 return -EFAULT;
2331
2332 size -= bytes;
2333 *pos += bytes;
2334 result += bytes;
2335 }
2336
2337 return result;
2338 }
2339
2340 static const struct file_operations amdgpu_ttm_iomem_fops = {
2341 .owner = THIS_MODULE,
2342 .read = amdgpu_iomem_read,
2343 .write = amdgpu_iomem_write,
2344 .llseek = default_llseek
2345 };
2346
2347 #endif
2348
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2349 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2350 {
2351 #if defined(CONFIG_DEBUG_FS)
2352 struct drm_minor *minor = adev_to_drm(adev)->primary;
2353 struct dentry *root = minor->debugfs_root;
2354
2355 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2356 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2357 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2358 &amdgpu_ttm_iomem_fops);
2359 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2360 &amdgpu_ttm_page_pool_fops);
2361 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2362 TTM_PL_VRAM),
2363 root, "amdgpu_vram_mm");
2364 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2365 TTM_PL_TT),
2366 root, "amdgpu_gtt_mm");
2367 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2368 AMDGPU_PL_GDS),
2369 root, "amdgpu_gds_mm");
2370 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2371 AMDGPU_PL_GWS),
2372 root, "amdgpu_gws_mm");
2373 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2374 AMDGPU_PL_OA),
2375 root, "amdgpu_oa_mm");
2376
2377 #endif
2378 }
2379