1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
amdgpu_mem_visible(struct amdgpu_device * adev,struct ttm_resource * mem)424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 	u64 end;
430 
431 	if (mem->mem_type == TTM_PL_SYSTEM ||
432 	    mem->mem_type == TTM_PL_TT)
433 		return true;
434 	if (mem->mem_type != TTM_PL_VRAM)
435 		return false;
436 
437 	amdgpu_res_first(mem, 0, mem_size, &cursor);
438 	end = cursor.start + cursor.size;
439 	while (cursor.remaining) {
440 		amdgpu_res_next(&cursor, cursor.size);
441 
442 		if (!cursor.remaining)
443 			break;
444 
445 		/* ttm_resource_ioremap only supports contiguous memory */
446 		if (end != cursor.start)
447 			return false;
448 
449 		end = cursor.start + cursor.size;
450 	}
451 
452 	return end <= adev->gmc.visible_vram_size;
453 }
454 
455 /*
456  * amdgpu_bo_move - Move a buffer object to a new memory location
457  *
458  * Called by ttm_bo_handle_move_mem()
459  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
461 			  struct ttm_operation_ctx *ctx,
462 			  struct ttm_resource *new_mem,
463 			  struct ttm_place *hop)
464 {
465 	struct amdgpu_device *adev;
466 	struct amdgpu_bo *abo;
467 	struct ttm_resource *old_mem = bo->resource;
468 	int r;
469 
470 	if (new_mem->mem_type == TTM_PL_TT ||
471 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
472 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
473 		if (r)
474 			return r;
475 	}
476 
477 	/* Can't move a pinned BO */
478 	abo = ttm_to_amdgpu_bo(bo);
479 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
480 		return -EINVAL;
481 
482 	adev = amdgpu_ttm_adev(bo->bdev);
483 
484 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
485 			 bo->ttm == NULL)) {
486 		ttm_bo_move_null(bo, new_mem);
487 		goto out;
488 	}
489 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
490 	    (new_mem->mem_type == TTM_PL_TT ||
491 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
492 		ttm_bo_move_null(bo, new_mem);
493 		goto out;
494 	}
495 	if ((old_mem->mem_type == TTM_PL_TT ||
496 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
497 	    new_mem->mem_type == TTM_PL_SYSTEM) {
498 		r = ttm_bo_wait_ctx(bo, ctx);
499 		if (r)
500 			return r;
501 
502 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
503 		ttm_resource_free(bo, &bo->resource);
504 		ttm_bo_assign_mem(bo, new_mem);
505 		goto out;
506 	}
507 
508 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
509 	    old_mem->mem_type == AMDGPU_PL_GWS ||
510 	    old_mem->mem_type == AMDGPU_PL_OA ||
511 	    new_mem->mem_type == AMDGPU_PL_GDS ||
512 	    new_mem->mem_type == AMDGPU_PL_GWS ||
513 	    new_mem->mem_type == AMDGPU_PL_OA) {
514 		/* Nothing to save here */
515 		ttm_bo_move_null(bo, new_mem);
516 		goto out;
517 	}
518 
519 	if (bo->type == ttm_bo_type_device &&
520 	    new_mem->mem_type == TTM_PL_VRAM &&
521 	    old_mem->mem_type != TTM_PL_VRAM) {
522 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523 		 * accesses the BO after it's moved.
524 		 */
525 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526 	}
527 
528 	if (adev->mman.buffer_funcs_enabled) {
529 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530 		      new_mem->mem_type == TTM_PL_VRAM) ||
531 		     (old_mem->mem_type == TTM_PL_VRAM &&
532 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
533 			hop->fpfn = 0;
534 			hop->lpfn = 0;
535 			hop->mem_type = TTM_PL_TT;
536 			hop->flags = TTM_PL_FLAG_TEMPORARY;
537 			return -EMULTIHOP;
538 		}
539 
540 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541 	} else {
542 		r = -ENODEV;
543 	}
544 
545 	if (r) {
546 		/* Check that all memory is CPU accessible */
547 		if (!amdgpu_mem_visible(adev, old_mem) ||
548 		    !amdgpu_mem_visible(adev, new_mem)) {
549 			pr_err("Move buffer fallback to memcpy unavailable\n");
550 			return r;
551 		}
552 
553 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554 		if (r)
555 			return r;
556 	}
557 
558 out:
559 	/* update statistics */
560 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
561 	amdgpu_bo_move_notify(bo, evict, new_mem);
562 	return 0;
563 }
564 
565 /*
566  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
567  *
568  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
569  */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
571 				     struct ttm_resource *mem)
572 {
573 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
574 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
575 
576 	switch (mem->mem_type) {
577 	case TTM_PL_SYSTEM:
578 		/* system memory */
579 		return 0;
580 	case TTM_PL_TT:
581 	case AMDGPU_PL_PREEMPT:
582 		break;
583 	case TTM_PL_VRAM:
584 		mem->bus.offset = mem->start << PAGE_SHIFT;
585 		/* check if it's visible */
586 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
587 			return -EINVAL;
588 
589 		if (adev->mman.aper_base_kaddr &&
590 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
591 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
592 					mem->bus.offset;
593 
594 		mem->bus.offset += adev->gmc.aper_base;
595 		mem->bus.is_iomem = true;
596 		break;
597 	default:
598 		return -EINVAL;
599 	}
600 	return 0;
601 }
602 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
604 					   unsigned long page_offset)
605 {
606 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
607 	struct amdgpu_res_cursor cursor;
608 
609 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
610 			 &cursor);
611 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
612 }
613 
614 /**
615  * amdgpu_ttm_domain_start - Returns GPU start address
616  * @adev: amdgpu device object
617  * @type: type of the memory
618  *
619  * Returns:
620  * GPU start address of a memory domain
621  */
622 
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
624 {
625 	switch (type) {
626 	case TTM_PL_TT:
627 		return adev->gmc.gart_start;
628 	case TTM_PL_VRAM:
629 		return adev->gmc.vram_start;
630 	}
631 
632 	return 0;
633 }
634 
635 /*
636  * TTM backend functions.
637  */
638 struct amdgpu_ttm_tt {
639 	struct ttm_tt	ttm;
640 	struct drm_gem_object	*gobj;
641 	u64			offset;
642 	uint64_t		userptr;
643 	struct task_struct	*usertask;
644 	uint32_t		userflags;
645 	bool			bound;
646 };
647 
648 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
649 
650 #ifdef CONFIG_DRM_AMDGPU_USERPTR
651 /*
652  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
653  * memory and start HMM tracking CPU page table update
654  *
655  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
656  * once afterwards to stop HMM tracking
657  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
659 				 struct hmm_range **range)
660 {
661 	struct ttm_tt *ttm = bo->tbo.ttm;
662 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
663 	unsigned long start = gtt->userptr;
664 	struct vm_area_struct *vma;
665 	struct mm_struct *mm;
666 	bool readonly;
667 	int r = 0;
668 
669 	/* Make sure get_user_pages_done() can cleanup gracefully */
670 	*range = NULL;
671 
672 	mm = bo->notifier.mm;
673 	if (unlikely(!mm)) {
674 		DRM_DEBUG_DRIVER("BO is not registered?\n");
675 		return -EFAULT;
676 	}
677 
678 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
679 		return -ESRCH;
680 
681 	mmap_read_lock(mm);
682 	vma = vma_lookup(mm, start);
683 	if (unlikely(!vma)) {
684 		r = -EFAULT;
685 		goto out_unlock;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_unlock;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, range, readonly,
696 				       true, NULL);
697 out_unlock:
698 	mmap_read_unlock(mm);
699 	if (r)
700 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
701 
702 	mmput(mm);
703 
704 	return r;
705 }
706 
707 /*
708  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
709  * Check if the pages backing this ttm range have been invalidated
710  *
711  * Returns: true if pages are still valid
712  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
714 				       struct hmm_range *range)
715 {
716 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
717 
718 	if (!gtt || !gtt->userptr || !range)
719 		return false;
720 
721 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
722 		gtt->userptr, ttm->num_pages);
723 
724 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
725 
726 	/*
727 	 * FIXME: Must always hold notifier_lock for this, and must
728 	 * not ignore the return code.
729 	 */
730 	return !amdgpu_hmm_range_get_pages_done(range);
731 }
732 #endif
733 
734 /*
735  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
736  *
737  * Called by amdgpu_cs_list_validate(). This creates the page list
738  * that backs user memory and will ultimately be mapped into the device
739  * address space.
740  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
742 {
743 	unsigned long i;
744 
745 	for (i = 0; i < ttm->num_pages; ++i)
746 		ttm->pages[i] = pages ? pages[i] : NULL;
747 }
748 
749 /*
750  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
751  *
752  * Called by amdgpu_ttm_backend_bind()
753  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
755 				     struct ttm_tt *ttm)
756 {
757 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
758 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
759 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
760 	enum dma_data_direction direction = write ?
761 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
762 	int r;
763 
764 	/* Allocate an SG array and squash pages into it */
765 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
766 				      (u64)ttm->num_pages << PAGE_SHIFT,
767 				      GFP_KERNEL);
768 	if (r)
769 		goto release_sg;
770 
771 	/* Map SG to device */
772 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
773 	if (r)
774 		goto release_sg;
775 
776 	/* convert SG to linear array of pages and dma addresses */
777 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
778 				       ttm->num_pages);
779 
780 	return 0;
781 
782 release_sg:
783 	kfree(ttm->sg);
784 	ttm->sg = NULL;
785 	return r;
786 }
787 
788 /*
789  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
790  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)791 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
792 					struct ttm_tt *ttm)
793 {
794 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
795 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
796 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
797 	enum dma_data_direction direction = write ?
798 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
799 
800 	/* double check that we don't free the table twice */
801 	if (!ttm->sg || !ttm->sg->sgl)
802 		return;
803 
804 	/* unmap the pages mapped to the device */
805 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
806 	sg_free_table(ttm->sg);
807 }
808 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)809 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
810 				 struct ttm_buffer_object *tbo,
811 				 uint64_t flags)
812 {
813 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
814 	struct ttm_tt *ttm = tbo->ttm;
815 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
816 
817 	if (amdgpu_bo_encrypted(abo))
818 		flags |= AMDGPU_PTE_TMZ;
819 
820 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
821 		uint64_t page_idx = 1;
822 
823 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
824 				 gtt->ttm.dma_address, flags);
825 
826 		/* The memory type of the first page defaults to UC. Now
827 		 * modify the memory type to NC from the second page of
828 		 * the BO onward.
829 		 */
830 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
831 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
832 
833 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
834 				 ttm->num_pages - page_idx,
835 				 &(gtt->ttm.dma_address[page_idx]), flags);
836 	} else {
837 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
838 				 gtt->ttm.dma_address, flags);
839 	}
840 }
841 
842 /*
843  * amdgpu_ttm_backend_bind - Bind GTT memory
844  *
845  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
846  * This handles binding GTT memory to the device address space.
847  */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)848 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
849 				   struct ttm_tt *ttm,
850 				   struct ttm_resource *bo_mem)
851 {
852 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
853 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
854 	uint64_t flags;
855 	int r;
856 
857 	if (!bo_mem)
858 		return -EINVAL;
859 
860 	if (gtt->bound)
861 		return 0;
862 
863 	if (gtt->userptr) {
864 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
865 		if (r) {
866 			DRM_ERROR("failed to pin userptr\n");
867 			return r;
868 		}
869 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
870 		if (!ttm->sg) {
871 			struct dma_buf_attachment *attach;
872 			struct sg_table *sgt;
873 
874 			attach = gtt->gobj->import_attach;
875 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
876 			if (IS_ERR(sgt))
877 				return PTR_ERR(sgt);
878 
879 			ttm->sg = sgt;
880 		}
881 
882 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
883 					       ttm->num_pages);
884 	}
885 
886 	if (!ttm->num_pages) {
887 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
888 		     ttm->num_pages, bo_mem, ttm);
889 	}
890 
891 	if (bo_mem->mem_type != TTM_PL_TT ||
892 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
893 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
894 		return 0;
895 	}
896 
897 	/* compute PTE flags relevant to this BO memory */
898 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
899 
900 	/* bind pages into GART page tables */
901 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
902 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
903 			 gtt->ttm.dma_address, flags);
904 	gtt->bound = true;
905 	return 0;
906 }
907 
908 /*
909  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
910  * through AGP or GART aperture.
911  *
912  * If bo is accessible through AGP aperture, then use AGP aperture
913  * to access bo; otherwise allocate logical space in GART aperture
914  * and map bo to GART aperture.
915  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)916 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
917 {
918 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
919 	struct ttm_operation_ctx ctx = { false, false };
920 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
921 	struct ttm_placement placement;
922 	struct ttm_place placements;
923 	struct ttm_resource *tmp;
924 	uint64_t addr, flags;
925 	int r;
926 
927 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
928 		return 0;
929 
930 	addr = amdgpu_gmc_agp_addr(bo);
931 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
932 		bo->resource->start = addr >> PAGE_SHIFT;
933 		return 0;
934 	}
935 
936 	/* allocate GART space */
937 	placement.num_placement = 1;
938 	placement.placement = &placements;
939 	placement.num_busy_placement = 1;
940 	placement.busy_placement = &placements;
941 	placements.fpfn = 0;
942 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
943 	placements.mem_type = TTM_PL_TT;
944 	placements.flags = bo->resource->placement;
945 
946 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
947 	if (unlikely(r))
948 		return r;
949 
950 	/* compute PTE flags for this buffer object */
951 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
952 
953 	/* Bind pages */
954 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
955 	amdgpu_ttm_gart_bind(adev, bo, flags);
956 	amdgpu_gart_invalidate_tlb(adev);
957 	ttm_resource_free(bo, &bo->resource);
958 	ttm_bo_assign_mem(bo, tmp);
959 
960 	return 0;
961 }
962 
963 /*
964  * amdgpu_ttm_recover_gart - Rebind GTT pages
965  *
966  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
967  * rebind GTT pages during a GPU reset.
968  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)969 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
970 {
971 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
972 	uint64_t flags;
973 
974 	if (!tbo->ttm)
975 		return;
976 
977 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
978 	amdgpu_ttm_gart_bind(adev, tbo, flags);
979 }
980 
981 /*
982  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
983  *
984  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
985  * ttm_tt_destroy().
986  */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)987 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
988 				      struct ttm_tt *ttm)
989 {
990 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
991 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
992 
993 	/* if the pages have userptr pinning then clear that first */
994 	if (gtt->userptr) {
995 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
996 	} else if (ttm->sg && gtt->gobj->import_attach) {
997 		struct dma_buf_attachment *attach;
998 
999 		attach = gtt->gobj->import_attach;
1000 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1001 		ttm->sg = NULL;
1002 	}
1003 
1004 	if (!gtt->bound)
1005 		return;
1006 
1007 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1008 		return;
1009 
1010 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1011 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1012 	gtt->bound = false;
1013 }
1014 
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1015 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1016 				       struct ttm_tt *ttm)
1017 {
1018 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1019 
1020 	if (gtt->usertask)
1021 		put_task_struct(gtt->usertask);
1022 
1023 	ttm_tt_fini(&gtt->ttm);
1024 	kfree(gtt);
1025 }
1026 
1027 /**
1028  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1029  *
1030  * @bo: The buffer object to create a GTT ttm_tt object around
1031  * @page_flags: Page flags to be added to the ttm_tt object
1032  *
1033  * Called by ttm_tt_create().
1034  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1035 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1036 					   uint32_t page_flags)
1037 {
1038 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1039 	struct amdgpu_ttm_tt *gtt;
1040 	enum ttm_caching caching;
1041 
1042 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1043 	if (gtt == NULL) {
1044 		return NULL;
1045 	}
1046 	gtt->gobj = &bo->base;
1047 
1048 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1049 		caching = ttm_write_combined;
1050 	else
1051 		caching = ttm_cached;
1052 
1053 	/* allocate space for the uninitialized page entries */
1054 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1055 		kfree(gtt);
1056 		return NULL;
1057 	}
1058 	return &gtt->ttm;
1059 }
1060 
1061 /*
1062  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1063  *
1064  * Map the pages of a ttm_tt object to an address space visible
1065  * to the underlying device.
1066  */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1067 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1068 				  struct ttm_tt *ttm,
1069 				  struct ttm_operation_ctx *ctx)
1070 {
1071 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1072 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1073 	pgoff_t i;
1074 	int ret;
1075 
1076 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1077 	if (gtt->userptr) {
1078 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1079 		if (!ttm->sg)
1080 			return -ENOMEM;
1081 		return 0;
1082 	}
1083 
1084 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1085 		return 0;
1086 
1087 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1088 	if (ret)
1089 		return ret;
1090 
1091 	for (i = 0; i < ttm->num_pages; ++i)
1092 		ttm->pages[i]->mapping = bdev->dev_mapping;
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1099  *
1100  * Unmaps pages of a ttm_tt object from the device address space and
1101  * unpopulates the page array backing it.
1102  */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1103 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1104 				     struct ttm_tt *ttm)
1105 {
1106 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1107 	struct amdgpu_device *adev;
1108 	pgoff_t i;
1109 
1110 	amdgpu_ttm_backend_unbind(bdev, ttm);
1111 
1112 	if (gtt->userptr) {
1113 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1114 		kfree(ttm->sg);
1115 		ttm->sg = NULL;
1116 		return;
1117 	}
1118 
1119 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1120 		return;
1121 
1122 	for (i = 0; i < ttm->num_pages; ++i)
1123 		ttm->pages[i]->mapping = NULL;
1124 
1125 	adev = amdgpu_ttm_adev(bdev);
1126 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1127 }
1128 
1129 /**
1130  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1131  * task
1132  *
1133  * @tbo: The ttm_buffer_object that contains the userptr
1134  * @user_addr:  The returned value
1135  */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1136 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1137 			      uint64_t *user_addr)
1138 {
1139 	struct amdgpu_ttm_tt *gtt;
1140 
1141 	if (!tbo->ttm)
1142 		return -EINVAL;
1143 
1144 	gtt = (void *)tbo->ttm;
1145 	*user_addr = gtt->userptr;
1146 	return 0;
1147 }
1148 
1149 /**
1150  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1151  * task
1152  *
1153  * @bo: The ttm_buffer_object to bind this userptr to
1154  * @addr:  The address in the current tasks VM space to use
1155  * @flags: Requirements of userptr object.
1156  *
1157  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1158  * to current task
1159  */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1160 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1161 			      uint64_t addr, uint32_t flags)
1162 {
1163 	struct amdgpu_ttm_tt *gtt;
1164 
1165 	if (!bo->ttm) {
1166 		/* TODO: We want a separate TTM object type for userptrs */
1167 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1168 		if (bo->ttm == NULL)
1169 			return -ENOMEM;
1170 	}
1171 
1172 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1173 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1174 
1175 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1176 	gtt->userptr = addr;
1177 	gtt->userflags = flags;
1178 
1179 	if (gtt->usertask)
1180 		put_task_struct(gtt->usertask);
1181 	gtt->usertask = current->group_leader;
1182 	get_task_struct(gtt->usertask);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1189  */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1190 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1191 {
1192 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1193 
1194 	if (gtt == NULL)
1195 		return NULL;
1196 
1197 	if (gtt->usertask == NULL)
1198 		return NULL;
1199 
1200 	return gtt->usertask->mm;
1201 }
1202 
1203 /*
1204  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1205  * address range for the current task.
1206  *
1207  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1208 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1209 				  unsigned long end, unsigned long *userptr)
1210 {
1211 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1212 	unsigned long size;
1213 
1214 	if (gtt == NULL || !gtt->userptr)
1215 		return false;
1216 
1217 	/* Return false if no part of the ttm_tt object lies within
1218 	 * the range
1219 	 */
1220 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1221 	if (gtt->userptr > end || gtt->userptr + size <= start)
1222 		return false;
1223 
1224 	if (userptr)
1225 		*userptr = gtt->userptr;
1226 	return true;
1227 }
1228 
1229 /*
1230  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1231  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1232 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1233 {
1234 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1235 
1236 	if (gtt == NULL || !gtt->userptr)
1237 		return false;
1238 
1239 	return true;
1240 }
1241 
1242 /*
1243  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1244  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1245 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1248 
1249 	if (gtt == NULL)
1250 		return false;
1251 
1252 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1253 }
1254 
1255 /**
1256  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1257  *
1258  * @ttm: The ttm_tt object to compute the flags for
1259  * @mem: The memory registry backing this ttm_tt object
1260  *
1261  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1262  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1263 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1264 {
1265 	uint64_t flags = 0;
1266 
1267 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1268 		flags |= AMDGPU_PTE_VALID;
1269 
1270 	if (mem && (mem->mem_type == TTM_PL_TT ||
1271 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1272 		flags |= AMDGPU_PTE_SYSTEM;
1273 
1274 		if (ttm->caching == ttm_cached)
1275 			flags |= AMDGPU_PTE_SNOOPED;
1276 	}
1277 
1278 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1279 			mem->bus.caching == ttm_cached)
1280 		flags |= AMDGPU_PTE_SNOOPED;
1281 
1282 	return flags;
1283 }
1284 
1285 /**
1286  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1287  *
1288  * @adev: amdgpu_device pointer
1289  * @ttm: The ttm_tt object to compute the flags for
1290  * @mem: The memory registry backing this ttm_tt object
1291  *
1292  * Figure out the flags to use for a VM PTE (Page Table Entry).
1293  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1294 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1295 				 struct ttm_resource *mem)
1296 {
1297 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1298 
1299 	flags |= adev->gart.gart_pte_flags;
1300 	flags |= AMDGPU_PTE_READABLE;
1301 
1302 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1303 		flags |= AMDGPU_PTE_WRITEABLE;
1304 
1305 	return flags;
1306 }
1307 
1308 /*
1309  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1310  * object.
1311  *
1312  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1313  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1314  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1315  * used to clean out a memory space.
1316  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1317 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1318 					    const struct ttm_place *place)
1319 {
1320 	struct dma_resv_iter resv_cursor;
1321 	struct dma_fence *f;
1322 
1323 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1324 		return ttm_bo_eviction_valuable(bo, place);
1325 
1326 	/* Swapout? */
1327 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1328 		return true;
1329 
1330 	if (bo->type == ttm_bo_type_kernel &&
1331 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1332 		return false;
1333 
1334 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1335 	 * If true, then return false as any KFD process needs all its BOs to
1336 	 * be resident to run successfully
1337 	 */
1338 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1339 				DMA_RESV_USAGE_BOOKKEEP, f) {
1340 		if (amdkfd_fence_check_mm(f, current->mm))
1341 			return false;
1342 	}
1343 
1344 	/* Preemptible BOs don't own system resources managed by the
1345 	 * driver (pages, VRAM, GART space). They point to resources
1346 	 * owned by someone else (e.g. pageable memory in user mode
1347 	 * or a DMABuf). They are used in a preemptible context so we
1348 	 * can guarantee no deadlocks and good QoS in case of MMU
1349 	 * notifiers or DMABuf move notifiers from the resource owner.
1350 	 */
1351 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1352 		return false;
1353 
1354 	if (bo->resource->mem_type == TTM_PL_TT &&
1355 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1356 		return false;
1357 
1358 	return ttm_bo_eviction_valuable(bo, place);
1359 }
1360 
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1361 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1362 				      void *buf, size_t size, bool write)
1363 {
1364 	while (size) {
1365 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1366 		uint64_t bytes = 4 - (pos & 0x3);
1367 		uint32_t shift = (pos & 0x3) * 8;
1368 		uint32_t mask = 0xffffffff << shift;
1369 		uint32_t value = 0;
1370 
1371 		if (size < bytes) {
1372 			mask &= 0xffffffff >> (bytes - size) * 8;
1373 			bytes = size;
1374 		}
1375 
1376 		if (mask != 0xffffffff) {
1377 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1378 			if (write) {
1379 				value &= ~mask;
1380 				value |= (*(uint32_t *)buf << shift) & mask;
1381 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1382 			} else {
1383 				value = (value & mask) >> shift;
1384 				memcpy(buf, &value, bytes);
1385 			}
1386 		} else {
1387 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1388 		}
1389 
1390 		pos += bytes;
1391 		buf += bytes;
1392 		size -= bytes;
1393 	}
1394 }
1395 
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1396 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1397 					unsigned long offset, void *buf, int len, int write)
1398 {
1399 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1400 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1401 	struct amdgpu_res_cursor src_mm;
1402 	struct amdgpu_job *job;
1403 	struct dma_fence *fence;
1404 	uint64_t src_addr, dst_addr;
1405 	unsigned int num_dw;
1406 	int r, idx;
1407 
1408 	if (len != PAGE_SIZE)
1409 		return -EINVAL;
1410 
1411 	if (!adev->mman.sdma_access_ptr)
1412 		return -EACCES;
1413 
1414 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1415 		return -ENODEV;
1416 
1417 	if (write)
1418 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1419 
1420 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1421 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1422 	if (r)
1423 		goto out;
1424 
1425 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1426 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1427 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1428 	if (write)
1429 		swap(src_addr, dst_addr);
1430 
1431 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1432 
1433 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1434 	WARN_ON(job->ibs[0].length_dw > num_dw);
1435 
1436 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1437 	if (r) {
1438 		amdgpu_job_free(job);
1439 		goto out;
1440 	}
1441 
1442 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1443 		r = -ETIMEDOUT;
1444 	dma_fence_put(fence);
1445 
1446 	if (!(r || write))
1447 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1448 out:
1449 	drm_dev_exit(idx);
1450 	return r;
1451 }
1452 
1453 /**
1454  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1455  *
1456  * @bo:  The buffer object to read/write
1457  * @offset:  Offset into buffer object
1458  * @buf:  Secondary buffer to write/read from
1459  * @len: Length in bytes of access
1460  * @write:  true if writing
1461  *
1462  * This is used to access VRAM that backs a buffer object via MMIO
1463  * access for debugging purposes.
1464  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1465 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1466 				    unsigned long offset, void *buf, int len,
1467 				    int write)
1468 {
1469 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1470 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1471 	struct amdgpu_res_cursor cursor;
1472 	int ret = 0;
1473 
1474 	if (bo->resource->mem_type != TTM_PL_VRAM)
1475 		return -EIO;
1476 
1477 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1478 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1479 		return len;
1480 
1481 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1482 	while (cursor.remaining) {
1483 		size_t count, size = cursor.size;
1484 		loff_t pos = cursor.start;
1485 
1486 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1487 		size -= count;
1488 		if (size) {
1489 			/* using MM to access rest vram and handle un-aligned address */
1490 			pos += count;
1491 			buf += count;
1492 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1493 		}
1494 
1495 		ret += cursor.size;
1496 		buf += cursor.size;
1497 		amdgpu_res_next(&cursor, cursor.size);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1504 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1505 {
1506 	amdgpu_bo_move_notify(bo, false, NULL);
1507 }
1508 
1509 static struct ttm_device_funcs amdgpu_bo_driver = {
1510 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1511 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1512 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1513 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1514 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1515 	.evict_flags = &amdgpu_evict_flags,
1516 	.move = &amdgpu_bo_move,
1517 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1518 	.release_notify = &amdgpu_bo_release_notify,
1519 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1520 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1521 	.access_memory = &amdgpu_ttm_access_memory,
1522 };
1523 
1524 /*
1525  * Firmware Reservation functions
1526  */
1527 /**
1528  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1529  *
1530  * @adev: amdgpu_device pointer
1531  *
1532  * free fw reserved vram if it has been reserved.
1533  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1534 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1535 {
1536 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1537 		NULL, &adev->mman.fw_vram_usage_va);
1538 }
1539 
1540 /**
1541  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1542  *
1543  * @adev: amdgpu_device pointer
1544  *
1545  * create bo vram reservation from fw.
1546  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1547 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1548 {
1549 	uint64_t vram_size = adev->gmc.visible_vram_size;
1550 
1551 	adev->mman.fw_vram_usage_va = NULL;
1552 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1553 
1554 	if (adev->mman.fw_vram_usage_size == 0 ||
1555 	    adev->mman.fw_vram_usage_size > vram_size)
1556 		return 0;
1557 
1558 	return amdgpu_bo_create_kernel_at(adev,
1559 					  adev->mman.fw_vram_usage_start_offset,
1560 					  adev->mman.fw_vram_usage_size,
1561 					  AMDGPU_GEM_DOMAIN_VRAM,
1562 					  &adev->mman.fw_vram_usage_reserved_bo,
1563 					  &adev->mman.fw_vram_usage_va);
1564 }
1565 
1566 /*
1567  * Memoy training reservation functions
1568  */
1569 
1570 /**
1571  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1572  *
1573  * @adev: amdgpu_device pointer
1574  *
1575  * free memory training reserved vram if it has been reserved.
1576  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1577 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1578 {
1579 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1580 
1581 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1582 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1583 	ctx->c2p_bo = NULL;
1584 
1585 	return 0;
1586 }
1587 
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev)1588 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1589 {
1590 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1591 
1592 	memset(ctx, 0, sizeof(*ctx));
1593 
1594 	ctx->c2p_train_data_offset =
1595 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1596 	ctx->p2c_train_data_offset =
1597 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1598 	ctx->train_data_size =
1599 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1600 
1601 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1602 			ctx->train_data_size,
1603 			ctx->p2c_train_data_offset,
1604 			ctx->c2p_train_data_offset);
1605 }
1606 
1607 /*
1608  * reserve TMR memory at the top of VRAM which holds
1609  * IP Discovery data and is protected by PSP.
1610  */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1611 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1612 {
1613 	int ret;
1614 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1615 	bool mem_train_support = false;
1616 
1617 	if (!amdgpu_sriov_vf(adev)) {
1618 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1619 			mem_train_support = true;
1620 		else
1621 			DRM_DEBUG("memory training does not support!\n");
1622 	}
1623 
1624 	/*
1625 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1626 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1627 	 *
1628 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1629 	 * discovery data and G6 memory training data respectively
1630 	 */
1631 	adev->mman.discovery_tmr_size =
1632 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1633 	if (!adev->mman.discovery_tmr_size)
1634 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1635 
1636 	if (mem_train_support) {
1637 		/* reserve vram for mem train according to TMR location */
1638 		amdgpu_ttm_training_data_block_init(adev);
1639 		ret = amdgpu_bo_create_kernel_at(adev,
1640 					 ctx->c2p_train_data_offset,
1641 					 ctx->train_data_size,
1642 					 AMDGPU_GEM_DOMAIN_VRAM,
1643 					 &ctx->c2p_bo,
1644 					 NULL);
1645 		if (ret) {
1646 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1647 			amdgpu_ttm_training_reserve_vram_fini(adev);
1648 			return ret;
1649 		}
1650 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1651 	}
1652 
1653 	ret = amdgpu_bo_create_kernel_at(adev,
1654 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1655 				adev->mman.discovery_tmr_size,
1656 				AMDGPU_GEM_DOMAIN_VRAM,
1657 				&adev->mman.discovery_memory,
1658 				NULL);
1659 	if (ret) {
1660 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1661 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1662 		return ret;
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 /*
1669  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1670  * gtt/vram related fields.
1671  *
1672  * This initializes all of the memory space pools that the TTM layer
1673  * will need such as the GTT space (system memory mapped to the device),
1674  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1675  * can be mapped per VMID.
1676  */
amdgpu_ttm_init(struct amdgpu_device * adev)1677 int amdgpu_ttm_init(struct amdgpu_device *adev)
1678 {
1679 	uint64_t gtt_size;
1680 	int r;
1681 	u64 vis_vram_limit;
1682 
1683 	mutex_init(&adev->mman.gtt_window_lock);
1684 
1685 	/* No others user of address space so set it to 0 */
1686 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1687 			       adev_to_drm(adev)->anon_inode->i_mapping,
1688 			       adev_to_drm(adev)->vma_offset_manager,
1689 			       adev->need_swiotlb,
1690 			       dma_addressing_limited(adev->dev));
1691 	if (r) {
1692 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1693 		return r;
1694 	}
1695 	adev->mman.initialized = true;
1696 
1697 	/* Initialize VRAM pool with all of VRAM divided into pages */
1698 	r = amdgpu_vram_mgr_init(adev);
1699 	if (r) {
1700 		DRM_ERROR("Failed initializing VRAM heap.\n");
1701 		return r;
1702 	}
1703 
1704 	/* Reduce size of CPU-visible VRAM if requested */
1705 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1706 	if (amdgpu_vis_vram_limit > 0 &&
1707 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1708 		adev->gmc.visible_vram_size = vis_vram_limit;
1709 
1710 	/* Change the size here instead of the init above so only lpfn is affected */
1711 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1712 #ifdef CONFIG_64BIT
1713 #ifdef CONFIG_X86
1714 	if (adev->gmc.xgmi.connected_to_cpu)
1715 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1716 				adev->gmc.visible_vram_size);
1717 
1718 	else
1719 #endif
1720 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1721 				adev->gmc.visible_vram_size);
1722 #endif
1723 
1724 	/*
1725 	 *The reserved vram for firmware must be pinned to the specified
1726 	 *place on the VRAM, so reserve it early.
1727 	 */
1728 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1729 	if (r) {
1730 		return r;
1731 	}
1732 
1733 	/*
1734 	 * only NAVI10 and onwards ASIC support for IP discovery.
1735 	 * If IP discovery enabled, a block of memory should be
1736 	 * reserved for IP discovey.
1737 	 */
1738 	if (adev->mman.discovery_bin) {
1739 		r = amdgpu_ttm_reserve_tmr(adev);
1740 		if (r)
1741 			return r;
1742 	}
1743 
1744 	/* allocate memory as required for VGA
1745 	 * This is used for VGA emulation and pre-OS scanout buffers to
1746 	 * avoid display artifacts while transitioning between pre-OS
1747 	 * and driver.  */
1748 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1749 				       AMDGPU_GEM_DOMAIN_VRAM,
1750 				       &adev->mman.stolen_vga_memory,
1751 				       NULL);
1752 	if (r)
1753 		return r;
1754 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1755 				       adev->mman.stolen_extended_size,
1756 				       AMDGPU_GEM_DOMAIN_VRAM,
1757 				       &adev->mman.stolen_extended_memory,
1758 				       NULL);
1759 	if (r)
1760 		return r;
1761 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1762 				       adev->mman.stolen_reserved_size,
1763 				       AMDGPU_GEM_DOMAIN_VRAM,
1764 				       &adev->mman.stolen_reserved_memory,
1765 				       NULL);
1766 	if (r)
1767 		return r;
1768 
1769 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1770 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1771 
1772 	/* Compute GTT size, either based on 1/2 the size of RAM size
1773 	 * or whatever the user passed on module init */
1774 	if (amdgpu_gtt_size == -1) {
1775 		struct sysinfo si;
1776 
1777 		si_meminfo(&si);
1778 		/* Certain GL unit tests for large textures can cause problems
1779 		 * with the OOM killer since there is no way to link this memory
1780 		 * to a process.  This was originally mitigated (but not necessarily
1781 		 * eliminated) by limiting the GTT size.  The problem is this limit
1782 		 * is often too low for many modern games so just make the limit 1/2
1783 		 * of system memory which aligns with TTM. The OOM accounting needs
1784 		 * to be addressed, but we shouldn't prevent common 3D applications
1785 		 * from being usable just to potentially mitigate that corner case.
1786 		 */
1787 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1788 			       (u64)si.totalram * si.mem_unit / 2);
1789 	} else {
1790 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1791 	}
1792 
1793 	/* Initialize GTT memory pool */
1794 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1795 	if (r) {
1796 		DRM_ERROR("Failed initializing GTT heap.\n");
1797 		return r;
1798 	}
1799 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1800 		 (unsigned)(gtt_size / (1024 * 1024)));
1801 
1802 	/* Initialize preemptible memory pool */
1803 	r = amdgpu_preempt_mgr_init(adev);
1804 	if (r) {
1805 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1806 		return r;
1807 	}
1808 
1809 	/* Initialize various on-chip memory pools */
1810 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1811 	if (r) {
1812 		DRM_ERROR("Failed initializing GDS heap.\n");
1813 		return r;
1814 	}
1815 
1816 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1817 	if (r) {
1818 		DRM_ERROR("Failed initializing gws heap.\n");
1819 		return r;
1820 	}
1821 
1822 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1823 	if (r) {
1824 		DRM_ERROR("Failed initializing oa heap.\n");
1825 		return r;
1826 	}
1827 
1828 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1829 				AMDGPU_GEM_DOMAIN_GTT,
1830 				&adev->mman.sdma_access_bo, NULL,
1831 				&adev->mman.sdma_access_ptr))
1832 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1833 
1834 	return 0;
1835 }
1836 
1837 /*
1838  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1839  */
amdgpu_ttm_fini(struct amdgpu_device * adev)1840 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1841 {
1842 	int idx;
1843 	if (!adev->mman.initialized)
1844 		return;
1845 
1846 	amdgpu_ttm_training_reserve_vram_fini(adev);
1847 	/* return the stolen vga memory back to VRAM */
1848 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1849 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1850 	/* return the IP Discovery TMR memory back to VRAM */
1851 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1852 	if (adev->mman.stolen_reserved_size)
1853 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1854 				      NULL, NULL);
1855 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1856 					&adev->mman.sdma_access_ptr);
1857 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1858 
1859 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1860 
1861 		if (adev->mman.aper_base_kaddr)
1862 			iounmap(adev->mman.aper_base_kaddr);
1863 		adev->mman.aper_base_kaddr = NULL;
1864 
1865 		drm_dev_exit(idx);
1866 	}
1867 
1868 	amdgpu_vram_mgr_fini(adev);
1869 	amdgpu_gtt_mgr_fini(adev);
1870 	amdgpu_preempt_mgr_fini(adev);
1871 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1872 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1873 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1874 	ttm_device_fini(&adev->mman.bdev);
1875 	adev->mman.initialized = false;
1876 	DRM_INFO("amdgpu: ttm finalized\n");
1877 }
1878 
1879 /**
1880  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1881  *
1882  * @adev: amdgpu_device pointer
1883  * @enable: true when we can use buffer functions.
1884  *
1885  * Enable/disable use of buffer functions during suspend/resume. This should
1886  * only be called at bootup or when userspace isn't running.
1887  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)1888 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1889 {
1890 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1891 	uint64_t size;
1892 	int r;
1893 
1894 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1895 	    adev->mman.buffer_funcs_enabled == enable)
1896 		return;
1897 
1898 	if (enable) {
1899 		struct amdgpu_ring *ring;
1900 		struct drm_gpu_scheduler *sched;
1901 
1902 		ring = adev->mman.buffer_funcs_ring;
1903 		sched = &ring->sched;
1904 		r = drm_sched_entity_init(&adev->mman.entity,
1905 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1906 					  1, NULL);
1907 		if (r) {
1908 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1909 				  r);
1910 			return;
1911 		}
1912 	} else {
1913 		drm_sched_entity_destroy(&adev->mman.entity);
1914 		dma_fence_put(man->move);
1915 		man->move = NULL;
1916 	}
1917 
1918 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1919 	if (enable)
1920 		size = adev->gmc.real_vram_size;
1921 	else
1922 		size = adev->gmc.visible_vram_size;
1923 	man->size = size;
1924 	adev->mman.buffer_funcs_enabled = enable;
1925 }
1926 
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job)1927 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1928 				  bool direct_submit,
1929 				  unsigned int num_dw,
1930 				  struct dma_resv *resv,
1931 				  bool vm_needs_flush,
1932 				  struct amdgpu_job **job)
1933 {
1934 	enum amdgpu_ib_pool_type pool = direct_submit ?
1935 		AMDGPU_IB_POOL_DIRECT :
1936 		AMDGPU_IB_POOL_DELAYED;
1937 	int r;
1938 
1939 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1940 	if (r)
1941 		return r;
1942 
1943 	if (vm_needs_flush) {
1944 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1945 							adev->gmc.pdb0_bo :
1946 							adev->gart.bo);
1947 		(*job)->vm_needs_flush = true;
1948 	}
1949 	if (resv) {
1950 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1951 				     AMDGPU_SYNC_ALWAYS,
1952 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1953 		if (r) {
1954 			DRM_ERROR("sync failed (%d).\n", r);
1955 			amdgpu_job_free(*job);
1956 			return r;
1957 		}
1958 	}
1959 	return 0;
1960 }
1961 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)1962 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1963 		       uint64_t dst_offset, uint32_t byte_count,
1964 		       struct dma_resv *resv,
1965 		       struct dma_fence **fence, bool direct_submit,
1966 		       bool vm_needs_flush, bool tmz)
1967 {
1968 	struct amdgpu_device *adev = ring->adev;
1969 	unsigned num_loops, num_dw;
1970 	struct amdgpu_job *job;
1971 	uint32_t max_bytes;
1972 	unsigned i;
1973 	int r;
1974 
1975 	if (!direct_submit && !ring->sched.ready) {
1976 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1977 		return -EINVAL;
1978 	}
1979 
1980 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1981 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1982 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1983 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
1984 				   resv, vm_needs_flush, &job);
1985 	if (r)
1986 		return r;
1987 
1988 	for (i = 0; i < num_loops; i++) {
1989 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1990 
1991 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1992 					dst_offset, cur_size_in_bytes, tmz);
1993 
1994 		src_offset += cur_size_in_bytes;
1995 		dst_offset += cur_size_in_bytes;
1996 		byte_count -= cur_size_in_bytes;
1997 	}
1998 
1999 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2000 	WARN_ON(job->ibs[0].length_dw > num_dw);
2001 	if (direct_submit)
2002 		r = amdgpu_job_submit_direct(job, ring, fence);
2003 	else
2004 		r = amdgpu_job_submit(job, &adev->mman.entity,
2005 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2006 	if (r)
2007 		goto error_free;
2008 
2009 	return r;
2010 
2011 error_free:
2012 	amdgpu_job_free(job);
2013 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2014 	return r;
2015 }
2016 
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush)2017 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2018 			       uint64_t dst_addr, uint32_t byte_count,
2019 			       struct dma_resv *resv,
2020 			       struct dma_fence **fence,
2021 			       bool vm_needs_flush)
2022 {
2023 	struct amdgpu_device *adev = ring->adev;
2024 	unsigned int num_loops, num_dw;
2025 	struct amdgpu_job *job;
2026 	uint32_t max_bytes;
2027 	unsigned int i;
2028 	int r;
2029 
2030 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2031 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2032 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2033 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2034 				   &job);
2035 	if (r)
2036 		return r;
2037 
2038 	for (i = 0; i < num_loops; i++) {
2039 		uint32_t cur_size = min(byte_count, max_bytes);
2040 
2041 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2042 					cur_size);
2043 
2044 		dst_addr += cur_size;
2045 		byte_count -= cur_size;
2046 	}
2047 
2048 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2049 	WARN_ON(job->ibs[0].length_dw > num_dw);
2050 	r = amdgpu_job_submit(job, &adev->mman.entity,
2051 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2052 	if (r)
2053 		goto error_free;
2054 
2055 	return 0;
2056 
2057 error_free:
2058 	amdgpu_job_free(job);
2059 	return r;
2060 }
2061 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f)2062 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2063 			uint32_t src_data,
2064 			struct dma_resv *resv,
2065 			struct dma_fence **f)
2066 {
2067 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2068 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2069 	struct dma_fence *fence = NULL;
2070 	struct amdgpu_res_cursor dst;
2071 	int r;
2072 
2073 	if (!adev->mman.buffer_funcs_enabled) {
2074 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2079 
2080 	mutex_lock(&adev->mman.gtt_window_lock);
2081 	while (dst.remaining) {
2082 		struct dma_fence *next;
2083 		uint64_t cur_size, to;
2084 
2085 		/* Never fill more than 256MiB at once to avoid timeouts */
2086 		cur_size = min(dst.size, 256ULL << 20);
2087 
2088 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2089 					  1, ring, false, &cur_size, &to);
2090 		if (r)
2091 			goto error;
2092 
2093 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2094 					&next, true);
2095 		if (r)
2096 			goto error;
2097 
2098 		dma_fence_put(fence);
2099 		fence = next;
2100 
2101 		amdgpu_res_next(&dst, cur_size);
2102 	}
2103 error:
2104 	mutex_unlock(&adev->mman.gtt_window_lock);
2105 	if (f)
2106 		*f = dma_fence_get(fence);
2107 	dma_fence_put(fence);
2108 	return r;
2109 }
2110 
2111 /**
2112  * amdgpu_ttm_evict_resources - evict memory buffers
2113  * @adev: amdgpu device object
2114  * @mem_type: evicted BO's memory type
2115  *
2116  * Evicts all @mem_type buffers on the lru list of the memory type.
2117  *
2118  * Returns:
2119  * 0 for success or a negative error code on failure.
2120  */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2121 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2122 {
2123 	struct ttm_resource_manager *man;
2124 
2125 	switch (mem_type) {
2126 	case TTM_PL_VRAM:
2127 	case TTM_PL_TT:
2128 	case AMDGPU_PL_GWS:
2129 	case AMDGPU_PL_GDS:
2130 	case AMDGPU_PL_OA:
2131 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2132 		break;
2133 	default:
2134 		DRM_ERROR("Trying to evict invalid memory type\n");
2135 		return -EINVAL;
2136 	}
2137 
2138 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2139 }
2140 
2141 #if defined(CONFIG_DEBUG_FS)
2142 
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2143 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2144 {
2145 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2146 
2147 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2148 }
2149 
2150 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2151 
2152 /*
2153  * amdgpu_ttm_vram_read - Linear read access to VRAM
2154  *
2155  * Accesses VRAM via MMIO for debugging purposes.
2156  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2157 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2158 				    size_t size, loff_t *pos)
2159 {
2160 	struct amdgpu_device *adev = file_inode(f)->i_private;
2161 	ssize_t result = 0;
2162 
2163 	if (size & 0x3 || *pos & 0x3)
2164 		return -EINVAL;
2165 
2166 	if (*pos >= adev->gmc.mc_vram_size)
2167 		return -ENXIO;
2168 
2169 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2170 	while (size) {
2171 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2172 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2173 
2174 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2175 		if (copy_to_user(buf, value, bytes))
2176 			return -EFAULT;
2177 
2178 		result += bytes;
2179 		buf += bytes;
2180 		*pos += bytes;
2181 		size -= bytes;
2182 	}
2183 
2184 	return result;
2185 }
2186 
2187 /*
2188  * amdgpu_ttm_vram_write - Linear write access to VRAM
2189  *
2190  * Accesses VRAM via MMIO for debugging purposes.
2191  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2192 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2193 				    size_t size, loff_t *pos)
2194 {
2195 	struct amdgpu_device *adev = file_inode(f)->i_private;
2196 	ssize_t result = 0;
2197 	int r;
2198 
2199 	if (size & 0x3 || *pos & 0x3)
2200 		return -EINVAL;
2201 
2202 	if (*pos >= adev->gmc.mc_vram_size)
2203 		return -ENXIO;
2204 
2205 	while (size) {
2206 		uint32_t value;
2207 
2208 		if (*pos >= adev->gmc.mc_vram_size)
2209 			return result;
2210 
2211 		r = get_user(value, (uint32_t *)buf);
2212 		if (r)
2213 			return r;
2214 
2215 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2216 
2217 		result += 4;
2218 		buf += 4;
2219 		*pos += 4;
2220 		size -= 4;
2221 	}
2222 
2223 	return result;
2224 }
2225 
2226 static const struct file_operations amdgpu_ttm_vram_fops = {
2227 	.owner = THIS_MODULE,
2228 	.read = amdgpu_ttm_vram_read,
2229 	.write = amdgpu_ttm_vram_write,
2230 	.llseek = default_llseek,
2231 };
2232 
2233 /*
2234  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2235  *
2236  * This function is used to read memory that has been mapped to the
2237  * GPU and the known addresses are not physical addresses but instead
2238  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2239  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2240 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2241 				 size_t size, loff_t *pos)
2242 {
2243 	struct amdgpu_device *adev = file_inode(f)->i_private;
2244 	struct iommu_domain *dom;
2245 	ssize_t result = 0;
2246 	int r;
2247 
2248 	/* retrieve the IOMMU domain if any for this device */
2249 	dom = iommu_get_domain_for_dev(adev->dev);
2250 
2251 	while (size) {
2252 		phys_addr_t addr = *pos & PAGE_MASK;
2253 		loff_t off = *pos & ~PAGE_MASK;
2254 		size_t bytes = PAGE_SIZE - off;
2255 		unsigned long pfn;
2256 		struct page *p;
2257 		void *ptr;
2258 
2259 		bytes = bytes < size ? bytes : size;
2260 
2261 		/* Translate the bus address to a physical address.  If
2262 		 * the domain is NULL it means there is no IOMMU active
2263 		 * and the address translation is the identity
2264 		 */
2265 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2266 
2267 		pfn = addr >> PAGE_SHIFT;
2268 		if (!pfn_valid(pfn))
2269 			return -EPERM;
2270 
2271 		p = pfn_to_page(pfn);
2272 		if (p->mapping != adev->mman.bdev.dev_mapping)
2273 			return -EPERM;
2274 
2275 		ptr = kmap(p);
2276 		r = copy_to_user(buf, ptr + off, bytes);
2277 		kunmap(p);
2278 		if (r)
2279 			return -EFAULT;
2280 
2281 		size -= bytes;
2282 		*pos += bytes;
2283 		result += bytes;
2284 	}
2285 
2286 	return result;
2287 }
2288 
2289 /*
2290  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2291  *
2292  * This function is used to write memory that has been mapped to the
2293  * GPU and the known addresses are not physical addresses but instead
2294  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2295  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2296 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2297 				 size_t size, loff_t *pos)
2298 {
2299 	struct amdgpu_device *adev = file_inode(f)->i_private;
2300 	struct iommu_domain *dom;
2301 	ssize_t result = 0;
2302 	int r;
2303 
2304 	dom = iommu_get_domain_for_dev(adev->dev);
2305 
2306 	while (size) {
2307 		phys_addr_t addr = *pos & PAGE_MASK;
2308 		loff_t off = *pos & ~PAGE_MASK;
2309 		size_t bytes = PAGE_SIZE - off;
2310 		unsigned long pfn;
2311 		struct page *p;
2312 		void *ptr;
2313 
2314 		bytes = bytes < size ? bytes : size;
2315 
2316 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2317 
2318 		pfn = addr >> PAGE_SHIFT;
2319 		if (!pfn_valid(pfn))
2320 			return -EPERM;
2321 
2322 		p = pfn_to_page(pfn);
2323 		if (p->mapping != adev->mman.bdev.dev_mapping)
2324 			return -EPERM;
2325 
2326 		ptr = kmap(p);
2327 		r = copy_from_user(ptr + off, buf, bytes);
2328 		kunmap(p);
2329 		if (r)
2330 			return -EFAULT;
2331 
2332 		size -= bytes;
2333 		*pos += bytes;
2334 		result += bytes;
2335 	}
2336 
2337 	return result;
2338 }
2339 
2340 static const struct file_operations amdgpu_ttm_iomem_fops = {
2341 	.owner = THIS_MODULE,
2342 	.read = amdgpu_iomem_read,
2343 	.write = amdgpu_iomem_write,
2344 	.llseek = default_llseek
2345 };
2346 
2347 #endif
2348 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2349 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2350 {
2351 #if defined(CONFIG_DEBUG_FS)
2352 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2353 	struct dentry *root = minor->debugfs_root;
2354 
2355 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2356 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2357 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2358 			    &amdgpu_ttm_iomem_fops);
2359 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2360 			    &amdgpu_ttm_page_pool_fops);
2361 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2362 							     TTM_PL_VRAM),
2363 					    root, "amdgpu_vram_mm");
2364 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2365 							     TTM_PL_TT),
2366 					    root, "amdgpu_gtt_mm");
2367 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2368 							     AMDGPU_PL_GDS),
2369 					    root, "amdgpu_gds_mm");
2370 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2371 							     AMDGPU_PL_GWS),
2372 					    root, "amdgpu_gws_mm");
2373 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2374 							     AMDGPU_PL_OA),
2375 					    root, "amdgpu_oa_mm");
2376 
2377 #endif
2378 }
2379