1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_gfx.h"
29 #include "amdgpu_rlc.h"
30 #include "amdgpu_ras.h"
31 #include "amdgpu_xcp.h"
32
33 /* delay 0.1 second to enable gfx off feature */
34 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
35
36 #define GFX_OFF_NO_DELAY 0
37
38 /*
39 * GPU GFX IP block helpers function.
40 */
41
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)42 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
43 int pipe, int queue)
44 {
45 int bit = 0;
46
47 bit += mec * adev->gfx.mec.num_pipe_per_mec
48 * adev->gfx.mec.num_queue_per_pipe;
49 bit += pipe * adev->gfx.mec.num_queue_per_pipe;
50 bit += queue;
51
52 return bit;
53 }
54
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)55 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
56 int *mec, int *pipe, int *queue)
57 {
58 *queue = bit % adev->gfx.mec.num_queue_per_pipe;
59 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
60 % adev->gfx.mec.num_pipe_per_mec;
61 *mec = (bit / adev->gfx.mec.num_queue_per_pipe)
62 / adev->gfx.mec.num_pipe_per_mec;
63
64 }
65
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)66 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
67 int xcc_id, int mec, int pipe, int queue)
68 {
69 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
70 adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
71 }
72
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)73 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
74 int me, int pipe, int queue)
75 {
76 int bit = 0;
77
78 bit += me * adev->gfx.me.num_pipe_per_me
79 * adev->gfx.me.num_queue_per_pipe;
80 bit += pipe * adev->gfx.me.num_queue_per_pipe;
81 bit += queue;
82
83 return bit;
84 }
85
amdgpu_gfx_bit_to_me_queue(struct amdgpu_device * adev,int bit,int * me,int * pipe,int * queue)86 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
87 int *me, int *pipe, int *queue)
88 {
89 *queue = bit % adev->gfx.me.num_queue_per_pipe;
90 *pipe = (bit / adev->gfx.me.num_queue_per_pipe)
91 % adev->gfx.me.num_pipe_per_me;
92 *me = (bit / adev->gfx.me.num_queue_per_pipe)
93 / adev->gfx.me.num_pipe_per_me;
94 }
95
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)96 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
97 int me, int pipe, int queue)
98 {
99 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
100 adev->gfx.me.queue_bitmap);
101 }
102
103 /**
104 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
105 *
106 * @mask: array in which the per-shader array disable masks will be stored
107 * @max_se: number of SEs
108 * @max_sh: number of SHs
109 *
110 * The bitmask of CUs to be disabled in the shader array determined by se and
111 * sh is stored in mask[se * max_sh + sh].
112 */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)113 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
114 {
115 unsigned int se, sh, cu;
116 const char *p;
117
118 memset(mask, 0, sizeof(*mask) * max_se * max_sh);
119
120 if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
121 return;
122
123 p = amdgpu_disable_cu;
124 for (;;) {
125 char *next;
126 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
127
128 if (ret < 3) {
129 DRM_ERROR("amdgpu: could not parse disable_cu\n");
130 return;
131 }
132
133 if (se < max_se && sh < max_sh && cu < 16) {
134 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
135 mask[se * max_sh + sh] |= 1u << cu;
136 } else {
137 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
138 se, sh, cu);
139 }
140
141 next = strchr(p, ',');
142 if (!next)
143 break;
144 p = next + 1;
145 }
146 }
147
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)148 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
149 {
150 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
151 }
152
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)153 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
154 {
155 if (amdgpu_compute_multipipe != -1) {
156 DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
157 amdgpu_compute_multipipe);
158 return amdgpu_compute_multipipe == 1;
159 }
160
161 if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
162 return true;
163
164 /* FIXME: spreading the queues across pipes causes perf regressions
165 * on POLARIS11 compute workloads */
166 if (adev->asic_type == CHIP_POLARIS11)
167 return false;
168
169 return adev->gfx.mec.num_mec > 1;
170 }
171
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)172 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
173 struct amdgpu_ring *ring)
174 {
175 int queue = ring->queue;
176 int pipe = ring->pipe;
177
178 /* Policy: use pipe1 queue0 as high priority graphics queue if we
179 * have more than one gfx pipe.
180 */
181 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
182 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
183 int me = ring->me;
184 int bit;
185
186 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
187 if (ring == &adev->gfx.gfx_ring[bit])
188 return true;
189 }
190
191 return false;
192 }
193
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)194 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
195 struct amdgpu_ring *ring)
196 {
197 /* Policy: use 1st queue as high priority compute queue if we
198 * have more than one compute queue.
199 */
200 if (adev->gfx.num_compute_rings > 1 &&
201 ring == &adev->gfx.compute_ring[0])
202 return true;
203
204 return false;
205 }
206
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)207 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
208 {
209 int i, j, queue, pipe;
210 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
211 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
212 adev->gfx.mec.num_queue_per_pipe,
213 adev->gfx.num_compute_rings);
214 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
215
216 if (multipipe_policy) {
217 /* policy: make queues evenly cross all pipes on MEC1 only
218 * for multiple xcc, just use the original policy for simplicity */
219 for (j = 0; j < num_xcc; j++) {
220 for (i = 0; i < max_queues_per_mec; i++) {
221 pipe = i % adev->gfx.mec.num_pipe_per_mec;
222 queue = (i / adev->gfx.mec.num_pipe_per_mec) %
223 adev->gfx.mec.num_queue_per_pipe;
224
225 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
226 adev->gfx.mec_bitmap[j].queue_bitmap);
227 }
228 }
229 } else {
230 /* policy: amdgpu owns all queues in the given pipe */
231 for (j = 0; j < num_xcc; j++) {
232 for (i = 0; i < max_queues_per_mec; ++i)
233 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
234 }
235 }
236
237 for (j = 0; j < num_xcc; j++) {
238 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
239 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
240 }
241 }
242
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)243 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
244 {
245 int i, queue, pipe;
246 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
247 int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
248 adev->gfx.me.num_queue_per_pipe;
249
250 if (multipipe_policy) {
251 /* policy: amdgpu owns the first queue per pipe at this stage
252 * will extend to mulitple queues per pipe later */
253 for (i = 0; i < max_queues_per_me; i++) {
254 pipe = i % adev->gfx.me.num_pipe_per_me;
255 queue = (i / adev->gfx.me.num_pipe_per_me) %
256 adev->gfx.me.num_queue_per_pipe;
257
258 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
259 adev->gfx.me.queue_bitmap);
260 }
261 } else {
262 for (i = 0; i < max_queues_per_me; ++i)
263 set_bit(i, adev->gfx.me.queue_bitmap);
264 }
265
266 /* update the number of active graphics rings */
267 adev->gfx.num_gfx_rings =
268 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
269 }
270
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)271 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
272 struct amdgpu_ring *ring, int xcc_id)
273 {
274 int queue_bit;
275 int mec, pipe, queue;
276
277 queue_bit = adev->gfx.mec.num_mec
278 * adev->gfx.mec.num_pipe_per_mec
279 * adev->gfx.mec.num_queue_per_pipe;
280
281 while (--queue_bit >= 0) {
282 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
283 continue;
284
285 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
286
287 /*
288 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
289 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
290 * only can be issued on queue 0.
291 */
292 if ((mec == 1 && pipe > 1) || queue != 0)
293 continue;
294
295 ring->me = mec + 1;
296 ring->pipe = pipe;
297 ring->queue = queue;
298
299 return 0;
300 }
301
302 dev_err(adev->dev, "Failed to find a queue for KIQ\n");
303 return -EINVAL;
304 }
305
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,struct amdgpu_ring * ring,struct amdgpu_irq_src * irq,int xcc_id)306 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
307 struct amdgpu_ring *ring,
308 struct amdgpu_irq_src *irq, int xcc_id)
309 {
310 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
311 int r = 0;
312
313 spin_lock_init(&kiq->ring_lock);
314
315 ring->adev = NULL;
316 ring->ring_obj = NULL;
317 ring->use_doorbell = true;
318 ring->xcc_id = xcc_id;
319 ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
320 ring->doorbell_index =
321 (adev->doorbell_index.kiq +
322 xcc_id * adev->doorbell_index.xcc_doorbell_range)
323 << 1;
324
325 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
326 if (r)
327 return r;
328
329 ring->eop_gpu_addr = kiq->eop_gpu_addr;
330 ring->no_scheduler = true;
331 sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
332 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
333 AMDGPU_RING_PRIO_DEFAULT, NULL);
334 if (r)
335 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
336
337 return r;
338 }
339
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)340 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
341 {
342 amdgpu_ring_fini(ring);
343 }
344
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)345 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
346 {
347 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
348
349 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
350 }
351
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)352 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
353 unsigned int hpd_size, int xcc_id)
354 {
355 int r;
356 u32 *hpd;
357 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
358
359 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
360 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
361 &kiq->eop_gpu_addr, (void **)&hpd);
362 if (r) {
363 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
364 return r;
365 }
366
367 memset(hpd, 0, hpd_size);
368
369 r = amdgpu_bo_reserve(kiq->eop_obj, true);
370 if (unlikely(r != 0))
371 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
372 amdgpu_bo_kunmap(kiq->eop_obj);
373 amdgpu_bo_unreserve(kiq->eop_obj);
374
375 return 0;
376 }
377
378 /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)379 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
380 unsigned int mqd_size, int xcc_id)
381 {
382 int r, i, j;
383 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
384 struct amdgpu_ring *ring = &kiq->ring;
385 u32 domain = AMDGPU_GEM_DOMAIN_GTT;
386
387 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
388 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
389 if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
390 domain |= AMDGPU_GEM_DOMAIN_VRAM;
391 #endif
392
393 /* create MQD for KIQ */
394 if (!adev->enable_mes_kiq && !ring->mqd_obj) {
395 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
396 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
397 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
398 * KIQ MQD no matter SRIOV or Bare-metal
399 */
400 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
401 AMDGPU_GEM_DOMAIN_VRAM |
402 AMDGPU_GEM_DOMAIN_GTT,
403 &ring->mqd_obj,
404 &ring->mqd_gpu_addr,
405 &ring->mqd_ptr);
406 if (r) {
407 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
408 return r;
409 }
410
411 /* prepare MQD backup */
412 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
413 if (!kiq->mqd_backup) {
414 dev_warn(adev->dev,
415 "no memory to create MQD backup for ring %s\n", ring->name);
416 return -ENOMEM;
417 }
418 }
419
420 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
421 /* create MQD for each KGQ */
422 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
423 ring = &adev->gfx.gfx_ring[i];
424 if (!ring->mqd_obj) {
425 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
426 domain, &ring->mqd_obj,
427 &ring->mqd_gpu_addr, &ring->mqd_ptr);
428 if (r) {
429 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
430 return r;
431 }
432
433 ring->mqd_size = mqd_size;
434 /* prepare MQD backup */
435 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
436 if (!adev->gfx.me.mqd_backup[i]) {
437 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
438 return -ENOMEM;
439 }
440 }
441 }
442 }
443
444 /* create MQD for each KCQ */
445 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
446 j = i + xcc_id * adev->gfx.num_compute_rings;
447 ring = &adev->gfx.compute_ring[j];
448 if (!ring->mqd_obj) {
449 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
450 domain, &ring->mqd_obj,
451 &ring->mqd_gpu_addr, &ring->mqd_ptr);
452 if (r) {
453 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
454 return r;
455 }
456
457 ring->mqd_size = mqd_size;
458 /* prepare MQD backup */
459 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
460 if (!adev->gfx.mec.mqd_backup[j]) {
461 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
462 return -ENOMEM;
463 }
464 }
465 }
466
467 return 0;
468 }
469
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)470 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
471 {
472 struct amdgpu_ring *ring = NULL;
473 int i, j;
474 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
475
476 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
477 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
478 ring = &adev->gfx.gfx_ring[i];
479 kfree(adev->gfx.me.mqd_backup[i]);
480 amdgpu_bo_free_kernel(&ring->mqd_obj,
481 &ring->mqd_gpu_addr,
482 &ring->mqd_ptr);
483 }
484 }
485
486 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
487 j = i + xcc_id * adev->gfx.num_compute_rings;
488 ring = &adev->gfx.compute_ring[j];
489 kfree(adev->gfx.mec.mqd_backup[j]);
490 amdgpu_bo_free_kernel(&ring->mqd_obj,
491 &ring->mqd_gpu_addr,
492 &ring->mqd_ptr);
493 }
494
495 ring = &kiq->ring;
496 kfree(kiq->mqd_backup);
497 amdgpu_bo_free_kernel(&ring->mqd_obj,
498 &ring->mqd_gpu_addr,
499 &ring->mqd_ptr);
500 }
501
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)502 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
503 {
504 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
505 struct amdgpu_ring *kiq_ring = &kiq->ring;
506 int i, r = 0;
507 int j;
508
509 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
510 return -EINVAL;
511
512 spin_lock(&kiq->ring_lock);
513 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
514 adev->gfx.num_compute_rings)) {
515 spin_unlock(&kiq->ring_lock);
516 return -ENOMEM;
517 }
518
519 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
520 j = i + xcc_id * adev->gfx.num_compute_rings;
521 kiq->pmf->kiq_unmap_queues(kiq_ring,
522 &adev->gfx.compute_ring[j],
523 RESET_QUEUES, 0, 0);
524 }
525
526 if (kiq_ring->sched.ready && !adev->job_hang)
527 r = amdgpu_ring_test_helper(kiq_ring);
528 spin_unlock(&kiq->ring_lock);
529
530 return r;
531 }
532
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)533 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
534 {
535 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
536 struct amdgpu_ring *kiq_ring = &kiq->ring;
537 int i, r = 0;
538 int j;
539
540 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
541 return -EINVAL;
542
543 spin_lock(&kiq->ring_lock);
544 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
545 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
546 adev->gfx.num_gfx_rings)) {
547 spin_unlock(&kiq->ring_lock);
548 return -ENOMEM;
549 }
550
551 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
552 j = i + xcc_id * adev->gfx.num_gfx_rings;
553 kiq->pmf->kiq_unmap_queues(kiq_ring,
554 &adev->gfx.gfx_ring[j],
555 PREEMPT_QUEUES, 0, 0);
556 }
557 }
558
559 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
560 r = amdgpu_ring_test_helper(kiq_ring);
561 spin_unlock(&kiq->ring_lock);
562
563 return r;
564 }
565
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)566 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
567 int queue_bit)
568 {
569 int mec, pipe, queue;
570 int set_resource_bit = 0;
571
572 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
573
574 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
575
576 return set_resource_bit;
577 }
578
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)579 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
580 {
581 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
582 struct amdgpu_ring *kiq_ring = &kiq->ring;
583 uint64_t queue_mask = 0;
584 int r, i, j;
585
586 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
587 return -EINVAL;
588
589 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
590 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
591 continue;
592
593 /* This situation may be hit in the future if a new HW
594 * generation exposes more than 64 queues. If so, the
595 * definition of queue_mask needs updating */
596 if (WARN_ON(i > (sizeof(queue_mask)*8))) {
597 DRM_ERROR("Invalid KCQ enabled: %d\n", i);
598 break;
599 }
600
601 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
602 }
603
604 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
605 kiq_ring->queue);
606 amdgpu_device_flush_hdp(adev, NULL);
607
608 spin_lock(&kiq->ring_lock);
609 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
610 adev->gfx.num_compute_rings +
611 kiq->pmf->set_resources_size);
612 if (r) {
613 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
614 spin_unlock(&kiq->ring_lock);
615 return r;
616 }
617
618 if (adev->enable_mes)
619 queue_mask = ~0ULL;
620
621 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
622 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
623 j = i + xcc_id * adev->gfx.num_compute_rings;
624 kiq->pmf->kiq_map_queues(kiq_ring,
625 &adev->gfx.compute_ring[j]);
626 }
627
628 r = amdgpu_ring_test_helper(kiq_ring);
629 spin_unlock(&kiq->ring_lock);
630 if (r)
631 DRM_ERROR("KCQ enable failed\n");
632
633 return r;
634 }
635
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)636 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
637 {
638 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
639 struct amdgpu_ring *kiq_ring = &kiq->ring;
640 int r, i, j;
641
642 if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
643 return -EINVAL;
644
645 amdgpu_device_flush_hdp(adev, NULL);
646
647 spin_lock(&kiq->ring_lock);
648 /* No need to map kcq on the slave */
649 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
650 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
651 adev->gfx.num_gfx_rings);
652 if (r) {
653 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
654 spin_unlock(&kiq->ring_lock);
655 return r;
656 }
657
658 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
659 j = i + xcc_id * adev->gfx.num_gfx_rings;
660 kiq->pmf->kiq_map_queues(kiq_ring,
661 &adev->gfx.gfx_ring[j]);
662 }
663 }
664
665 r = amdgpu_ring_test_helper(kiq_ring);
666 spin_unlock(&kiq->ring_lock);
667 if (r)
668 DRM_ERROR("KCQ enable failed\n");
669
670 return r;
671 }
672
673 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
674 *
675 * @adev: amdgpu_device pointer
676 * @bool enable true: enable gfx off feature, false: disable gfx off feature
677 *
678 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
679 * 2. other client can send request to disable gfx off feature, the request should be honored.
680 * 3. other client can cancel their request of disable gfx off feature
681 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
682 */
683
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)684 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
685 {
686 unsigned long delay = GFX_OFF_DELAY_ENABLE;
687
688 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
689 return;
690
691 mutex_lock(&adev->gfx.gfx_off_mutex);
692
693 if (enable) {
694 /* If the count is already 0, it means there's an imbalance bug somewhere.
695 * Note that the bug may be in a different caller than the one which triggers the
696 * WARN_ON_ONCE.
697 */
698 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
699 goto unlock;
700
701 adev->gfx.gfx_off_req_count--;
702
703 if (adev->gfx.gfx_off_req_count == 0 &&
704 !adev->gfx.gfx_off_state) {
705 /* If going to s2idle, no need to wait */
706 if (adev->in_s0ix) {
707 if (!amdgpu_dpm_set_powergating_by_smu(adev,
708 AMD_IP_BLOCK_TYPE_GFX, true))
709 adev->gfx.gfx_off_state = true;
710 } else {
711 schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
712 delay);
713 }
714 }
715 } else {
716 if (adev->gfx.gfx_off_req_count == 0) {
717 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
718
719 if (adev->gfx.gfx_off_state &&
720 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
721 adev->gfx.gfx_off_state = false;
722
723 if (adev->gfx.funcs->init_spm_golden) {
724 dev_dbg(adev->dev,
725 "GFXOFF is disabled, re-init SPM golden settings\n");
726 amdgpu_gfx_init_spm_golden(adev);
727 }
728 }
729 }
730
731 adev->gfx.gfx_off_req_count++;
732 }
733
734 unlock:
735 mutex_unlock(&adev->gfx.gfx_off_mutex);
736 }
737
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)738 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
739 {
740 int r = 0;
741
742 mutex_lock(&adev->gfx.gfx_off_mutex);
743
744 r = amdgpu_dpm_set_residency_gfxoff(adev, value);
745
746 mutex_unlock(&adev->gfx.gfx_off_mutex);
747
748 return r;
749 }
750
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)751 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
752 {
753 int r = 0;
754
755 mutex_lock(&adev->gfx.gfx_off_mutex);
756
757 r = amdgpu_dpm_get_residency_gfxoff(adev, value);
758
759 mutex_unlock(&adev->gfx.gfx_off_mutex);
760
761 return r;
762 }
763
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)764 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
765 {
766 int r = 0;
767
768 mutex_lock(&adev->gfx.gfx_off_mutex);
769
770 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
771
772 mutex_unlock(&adev->gfx.gfx_off_mutex);
773
774 return r;
775 }
776
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)777 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
778 {
779
780 int r = 0;
781
782 mutex_lock(&adev->gfx.gfx_off_mutex);
783
784 r = amdgpu_dpm_get_status_gfxoff(adev, value);
785
786 mutex_unlock(&adev->gfx.gfx_off_mutex);
787
788 return r;
789 }
790
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)791 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
792 {
793 int r;
794
795 if (amdgpu_ras_is_supported(adev, ras_block->block)) {
796 if (!amdgpu_persistent_edc_harvesting_supported(adev))
797 amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
798
799 r = amdgpu_ras_block_late_init(adev, ras_block);
800 if (r)
801 return r;
802
803 if (adev->gfx.cp_ecc_error_irq.funcs) {
804 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
805 if (r)
806 goto late_fini;
807 }
808 } else {
809 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
810 }
811
812 return 0;
813 late_fini:
814 amdgpu_ras_block_late_fini(adev, ras_block);
815 return r;
816 }
817
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)818 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
819 {
820 int err = 0;
821 struct amdgpu_gfx_ras *ras = NULL;
822
823 /* adev->gfx.ras is NULL, which means gfx does not
824 * support ras function, then do nothing here.
825 */
826 if (!adev->gfx.ras)
827 return 0;
828
829 ras = adev->gfx.ras;
830
831 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
832 if (err) {
833 dev_err(adev->dev, "Failed to register gfx ras block!\n");
834 return err;
835 }
836
837 strcpy(ras->ras_block.ras_comm.name, "gfx");
838 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
839 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
840 adev->gfx.ras_if = &ras->ras_block.ras_comm;
841
842 /* If not define special ras_late_init function, use gfx default ras_late_init */
843 if (!ras->ras_block.ras_late_init)
844 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
845
846 /* If not defined special ras_cb function, use default ras_cb */
847 if (!ras->ras_block.ras_cb)
848 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
849
850 return 0;
851 }
852
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)853 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
854 struct amdgpu_iv_entry *entry)
855 {
856 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
857 return adev->gfx.ras->poison_consumption_handler(adev, entry);
858
859 return 0;
860 }
861
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)862 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
863 void *err_data,
864 struct amdgpu_iv_entry *entry)
865 {
866 /* TODO ue will trigger an interrupt.
867 *
868 * When “Full RAS” is enabled, the per-IP interrupt sources should
869 * be disabled and the driver should only look for the aggregated
870 * interrupt via sync flood
871 */
872 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
873 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
874 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
875 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
876 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
877 amdgpu_ras_reset_gpu(adev);
878 }
879 return AMDGPU_RAS_SUCCESS;
880 }
881
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)882 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
883 struct amdgpu_irq_src *source,
884 struct amdgpu_iv_entry *entry)
885 {
886 struct ras_common_if *ras_if = adev->gfx.ras_if;
887 struct ras_dispatch_if ih_data = {
888 .entry = entry,
889 };
890
891 if (!ras_if)
892 return 0;
893
894 ih_data.head = *ras_if;
895
896 DRM_ERROR("CP ECC ERROR IRQ\n");
897 amdgpu_ras_interrupt_dispatch(adev, &ih_data);
898 return 0;
899 }
900
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))901 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
902 void *ras_error_status,
903 void (*func)(struct amdgpu_device *adev, void *ras_error_status,
904 int xcc_id))
905 {
906 int i;
907 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
908 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
909 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
910
911 if (err_data) {
912 err_data->ue_count = 0;
913 err_data->ce_count = 0;
914 }
915
916 for_each_inst(i, xcc_mask)
917 func(adev, ras_error_status, i);
918 }
919
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg)920 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
921 {
922 signed long r, cnt = 0;
923 unsigned long flags;
924 uint32_t seq, reg_val_offs = 0, value = 0;
925 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
926 struct amdgpu_ring *ring = &kiq->ring;
927
928 if (amdgpu_device_skip_hw_access(adev))
929 return 0;
930
931 if (adev->mes.ring.sched.ready)
932 return amdgpu_mes_rreg(adev, reg);
933
934 BUG_ON(!ring->funcs->emit_rreg);
935
936 spin_lock_irqsave(&kiq->ring_lock, flags);
937 if (amdgpu_device_wb_get(adev, ®_val_offs)) {
938 pr_err("critical bug! too many kiq readers\n");
939 goto failed_unlock;
940 }
941 amdgpu_ring_alloc(ring, 32);
942 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
943 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
944 if (r)
945 goto failed_undo;
946
947 amdgpu_ring_commit(ring);
948 spin_unlock_irqrestore(&kiq->ring_lock, flags);
949
950 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
951
952 /* don't wait anymore for gpu reset case because this way may
953 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
954 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
955 * never return if we keep waiting in virt_kiq_rreg, which cause
956 * gpu_recover() hang there.
957 *
958 * also don't wait anymore for IRQ context
959 * */
960 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
961 goto failed_kiq_read;
962
963 might_sleep();
964 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
965 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
966 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
967 }
968
969 if (cnt > MAX_KIQ_REG_TRY)
970 goto failed_kiq_read;
971
972 mb();
973 value = adev->wb.wb[reg_val_offs];
974 amdgpu_device_wb_free(adev, reg_val_offs);
975 return value;
976
977 failed_undo:
978 amdgpu_ring_undo(ring);
979 failed_unlock:
980 spin_unlock_irqrestore(&kiq->ring_lock, flags);
981 failed_kiq_read:
982 if (reg_val_offs)
983 amdgpu_device_wb_free(adev, reg_val_offs);
984 dev_err(adev->dev, "failed to read reg:%x\n", reg);
985 return ~0;
986 }
987
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v)988 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
989 {
990 signed long r, cnt = 0;
991 unsigned long flags;
992 uint32_t seq;
993 struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
994 struct amdgpu_ring *ring = &kiq->ring;
995
996 BUG_ON(!ring->funcs->emit_wreg);
997
998 if (amdgpu_device_skip_hw_access(adev))
999 return;
1000
1001 if (adev->mes.ring.sched.ready) {
1002 amdgpu_mes_wreg(adev, reg, v);
1003 return;
1004 }
1005
1006 spin_lock_irqsave(&kiq->ring_lock, flags);
1007 amdgpu_ring_alloc(ring, 32);
1008 amdgpu_ring_emit_wreg(ring, reg, v);
1009 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1010 if (r)
1011 goto failed_undo;
1012
1013 amdgpu_ring_commit(ring);
1014 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1015
1016 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1017
1018 /* don't wait anymore for gpu reset case because this way may
1019 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1020 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1021 * never return if we keep waiting in virt_kiq_rreg, which cause
1022 * gpu_recover() hang there.
1023 *
1024 * also don't wait anymore for IRQ context
1025 * */
1026 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1027 goto failed_kiq_write;
1028
1029 might_sleep();
1030 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1031
1032 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1033 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1034 }
1035
1036 if (cnt > MAX_KIQ_REG_TRY)
1037 goto failed_kiq_write;
1038
1039 return;
1040
1041 failed_undo:
1042 amdgpu_ring_undo(ring);
1043 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1044 failed_kiq_write:
1045 dev_err(adev->dev, "failed to write reg:%x\n", reg);
1046 }
1047
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1048 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1049 {
1050 if (amdgpu_num_kcq == -1) {
1051 return 8;
1052 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1053 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1054 return 8;
1055 }
1056 return amdgpu_num_kcq;
1057 }
1058
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1059 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1060 uint32_t ucode_id)
1061 {
1062 const struct gfx_firmware_header_v1_0 *cp_hdr;
1063 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1064 struct amdgpu_firmware_info *info = NULL;
1065 const struct firmware *ucode_fw;
1066 unsigned int fw_size;
1067
1068 switch (ucode_id) {
1069 case AMDGPU_UCODE_ID_CP_PFP:
1070 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1071 adev->gfx.pfp_fw->data;
1072 adev->gfx.pfp_fw_version =
1073 le32_to_cpu(cp_hdr->header.ucode_version);
1074 adev->gfx.pfp_feature_version =
1075 le32_to_cpu(cp_hdr->ucode_feature_version);
1076 ucode_fw = adev->gfx.pfp_fw;
1077 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1078 break;
1079 case AMDGPU_UCODE_ID_CP_RS64_PFP:
1080 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1081 adev->gfx.pfp_fw->data;
1082 adev->gfx.pfp_fw_version =
1083 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1084 adev->gfx.pfp_feature_version =
1085 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1086 ucode_fw = adev->gfx.pfp_fw;
1087 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1088 break;
1089 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1090 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1091 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1092 adev->gfx.pfp_fw->data;
1093 ucode_fw = adev->gfx.pfp_fw;
1094 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1095 break;
1096 case AMDGPU_UCODE_ID_CP_ME:
1097 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1098 adev->gfx.me_fw->data;
1099 adev->gfx.me_fw_version =
1100 le32_to_cpu(cp_hdr->header.ucode_version);
1101 adev->gfx.me_feature_version =
1102 le32_to_cpu(cp_hdr->ucode_feature_version);
1103 ucode_fw = adev->gfx.me_fw;
1104 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1105 break;
1106 case AMDGPU_UCODE_ID_CP_RS64_ME:
1107 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1108 adev->gfx.me_fw->data;
1109 adev->gfx.me_fw_version =
1110 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1111 adev->gfx.me_feature_version =
1112 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1113 ucode_fw = adev->gfx.me_fw;
1114 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1115 break;
1116 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1117 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1118 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1119 adev->gfx.me_fw->data;
1120 ucode_fw = adev->gfx.me_fw;
1121 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1122 break;
1123 case AMDGPU_UCODE_ID_CP_CE:
1124 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1125 adev->gfx.ce_fw->data;
1126 adev->gfx.ce_fw_version =
1127 le32_to_cpu(cp_hdr->header.ucode_version);
1128 adev->gfx.ce_feature_version =
1129 le32_to_cpu(cp_hdr->ucode_feature_version);
1130 ucode_fw = adev->gfx.ce_fw;
1131 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1132 break;
1133 case AMDGPU_UCODE_ID_CP_MEC1:
1134 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1135 adev->gfx.mec_fw->data;
1136 adev->gfx.mec_fw_version =
1137 le32_to_cpu(cp_hdr->header.ucode_version);
1138 adev->gfx.mec_feature_version =
1139 le32_to_cpu(cp_hdr->ucode_feature_version);
1140 ucode_fw = adev->gfx.mec_fw;
1141 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1142 le32_to_cpu(cp_hdr->jt_size) * 4;
1143 break;
1144 case AMDGPU_UCODE_ID_CP_MEC1_JT:
1145 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1146 adev->gfx.mec_fw->data;
1147 ucode_fw = adev->gfx.mec_fw;
1148 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1149 break;
1150 case AMDGPU_UCODE_ID_CP_MEC2:
1151 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1152 adev->gfx.mec2_fw->data;
1153 adev->gfx.mec2_fw_version =
1154 le32_to_cpu(cp_hdr->header.ucode_version);
1155 adev->gfx.mec2_feature_version =
1156 le32_to_cpu(cp_hdr->ucode_feature_version);
1157 ucode_fw = adev->gfx.mec2_fw;
1158 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1159 le32_to_cpu(cp_hdr->jt_size) * 4;
1160 break;
1161 case AMDGPU_UCODE_ID_CP_MEC2_JT:
1162 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1163 adev->gfx.mec2_fw->data;
1164 ucode_fw = adev->gfx.mec2_fw;
1165 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1166 break;
1167 case AMDGPU_UCODE_ID_CP_RS64_MEC:
1168 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1169 adev->gfx.mec_fw->data;
1170 adev->gfx.mec_fw_version =
1171 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1172 adev->gfx.mec_feature_version =
1173 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1174 ucode_fw = adev->gfx.mec_fw;
1175 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1176 break;
1177 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1178 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1179 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1180 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1181 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1182 adev->gfx.mec_fw->data;
1183 ucode_fw = adev->gfx.mec_fw;
1184 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1185 break;
1186 default:
1187 break;
1188 }
1189
1190 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1191 info = &adev->firmware.ucode[ucode_id];
1192 info->ucode_id = ucode_id;
1193 info->fw = ucode_fw;
1194 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1195 }
1196 }
1197
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1198 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1199 {
1200 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1201 adev->gfx.num_xcc_per_xcp : 1));
1202 }
1203
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1204 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1205 struct device_attribute *addr,
1206 char *buf)
1207 {
1208 struct drm_device *ddev = dev_get_drvdata(dev);
1209 struct amdgpu_device *adev = drm_to_adev(ddev);
1210 int mode;
1211
1212 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1213 AMDGPU_XCP_FL_NONE);
1214
1215 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1216 }
1217
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1218 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1219 struct device_attribute *addr,
1220 const char *buf, size_t count)
1221 {
1222 struct drm_device *ddev = dev_get_drvdata(dev);
1223 struct amdgpu_device *adev = drm_to_adev(ddev);
1224 enum amdgpu_gfx_partition mode;
1225 int ret = 0, num_xcc;
1226
1227 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1228 if (num_xcc % 2 != 0)
1229 return -EINVAL;
1230
1231 if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1232 mode = AMDGPU_SPX_PARTITION_MODE;
1233 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1234 /*
1235 * DPX mode needs AIDs to be in multiple of 2.
1236 * Each AID connects 2 XCCs.
1237 */
1238 if (num_xcc%4)
1239 return -EINVAL;
1240 mode = AMDGPU_DPX_PARTITION_MODE;
1241 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1242 if (num_xcc != 6)
1243 return -EINVAL;
1244 mode = AMDGPU_TPX_PARTITION_MODE;
1245 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1246 if (num_xcc != 8)
1247 return -EINVAL;
1248 mode = AMDGPU_QPX_PARTITION_MODE;
1249 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1250 mode = AMDGPU_CPX_PARTITION_MODE;
1251 } else {
1252 return -EINVAL;
1253 }
1254
1255 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1256
1257 if (ret)
1258 return ret;
1259
1260 return count;
1261 }
1262
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1263 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1264 struct device_attribute *addr,
1265 char *buf)
1266 {
1267 struct drm_device *ddev = dev_get_drvdata(dev);
1268 struct amdgpu_device *adev = drm_to_adev(ddev);
1269 char *supported_partition;
1270
1271 /* TBD */
1272 switch (NUM_XCC(adev->gfx.xcc_mask)) {
1273 case 8:
1274 supported_partition = "SPX, DPX, QPX, CPX";
1275 break;
1276 case 6:
1277 supported_partition = "SPX, TPX, CPX";
1278 break;
1279 case 4:
1280 supported_partition = "SPX, DPX, CPX";
1281 break;
1282 /* this seems only existing in emulation phase */
1283 case 2:
1284 supported_partition = "SPX, CPX";
1285 break;
1286 default:
1287 supported_partition = "Not supported";
1288 break;
1289 }
1290
1291 return sysfs_emit(buf, "%s\n", supported_partition);
1292 }
1293
1294 static DEVICE_ATTR(current_compute_partition, 0644,
1295 amdgpu_gfx_get_current_compute_partition,
1296 amdgpu_gfx_set_compute_partition);
1297
1298 static DEVICE_ATTR(available_compute_partition, 0444,
1299 amdgpu_gfx_get_available_compute_partition, NULL);
1300
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1301 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1302 {
1303 int r;
1304
1305 r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1306 if (r)
1307 return r;
1308
1309 r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1310
1311 return r;
1312 }
1313
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1314 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1315 {
1316 device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1317 device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1318 }
1319