1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <joerg.roedel@amd.com>
4  *         Leo Duran <leo.duran@amd.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #include <linux/pci.h>
21 #include <linux/acpi.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/interrupt.h>
26 #include <linux/msi.h>
27 #include <asm/pci-direct.h>
28 #include <asm/amd_iommu_proto.h>
29 #include <asm/amd_iommu_types.h>
30 #include <asm/amd_iommu.h>
31 #include <asm/iommu.h>
32 #include <asm/gart.h>
33 #include <asm/x86_init.h>
34 #include <asm/iommu_table.h>
35 /*
36  * definitions for the ACPI scanning code
37  */
38 #define IVRS_HEADER_LENGTH 48
39 
40 #define ACPI_IVHD_TYPE                  0x10
41 #define ACPI_IVMD_TYPE_ALL              0x20
42 #define ACPI_IVMD_TYPE                  0x21
43 #define ACPI_IVMD_TYPE_RANGE            0x22
44 
45 #define IVHD_DEV_ALL                    0x01
46 #define IVHD_DEV_SELECT                 0x02
47 #define IVHD_DEV_SELECT_RANGE_START     0x03
48 #define IVHD_DEV_RANGE_END              0x04
49 #define IVHD_DEV_ALIAS                  0x42
50 #define IVHD_DEV_ALIAS_RANGE            0x43
51 #define IVHD_DEV_EXT_SELECT             0x46
52 #define IVHD_DEV_EXT_SELECT_RANGE       0x47
53 
54 #define IVHD_FLAG_HT_TUN_EN_MASK        0x01
55 #define IVHD_FLAG_PASSPW_EN_MASK        0x02
56 #define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
57 #define IVHD_FLAG_ISOC_EN_MASK          0x08
58 
59 #define IVMD_FLAG_EXCL_RANGE            0x08
60 #define IVMD_FLAG_UNITY_MAP             0x01
61 
62 #define ACPI_DEVFLAG_INITPASS           0x01
63 #define ACPI_DEVFLAG_EXTINT             0x02
64 #define ACPI_DEVFLAG_NMI                0x04
65 #define ACPI_DEVFLAG_SYSMGT1            0x10
66 #define ACPI_DEVFLAG_SYSMGT2            0x20
67 #define ACPI_DEVFLAG_LINT0              0x40
68 #define ACPI_DEVFLAG_LINT1              0x80
69 #define ACPI_DEVFLAG_ATSDIS             0x10000000
70 
71 /*
72  * ACPI table definitions
73  *
74  * These data structures are laid over the table to parse the important values
75  * out of it.
76  */
77 
78 /*
79  * structure describing one IOMMU in the ACPI table. Typically followed by one
80  * or more ivhd_entrys.
81  */
82 struct ivhd_header {
83 	u8 type;
84 	u8 flags;
85 	u16 length;
86 	u16 devid;
87 	u16 cap_ptr;
88 	u64 mmio_phys;
89 	u16 pci_seg;
90 	u16 info;
91 	u32 reserved;
92 } __attribute__((packed));
93 
94 /*
95  * A device entry describing which devices a specific IOMMU translates and
96  * which requestor ids they use.
97  */
98 struct ivhd_entry {
99 	u8 type;
100 	u16 devid;
101 	u8 flags;
102 	u32 ext;
103 } __attribute__((packed));
104 
105 /*
106  * An AMD IOMMU memory definition structure. It defines things like exclusion
107  * ranges for devices and regions that should be unity mapped.
108  */
109 struct ivmd_header {
110 	u8 type;
111 	u8 flags;
112 	u16 length;
113 	u16 devid;
114 	u16 aux;
115 	u64 resv;
116 	u64 range_start;
117 	u64 range_length;
118 } __attribute__((packed));
119 
120 bool amd_iommu_dump;
121 
122 static int __initdata amd_iommu_detected;
123 static bool __initdata amd_iommu_disabled;
124 
125 u16 amd_iommu_last_bdf;			/* largest PCI device id we have
126 					   to handle */
127 LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
128 					   we find in ACPI */
129 bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
130 
131 LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
132 					   system */
133 
134 /* Array to assign indices to IOMMUs*/
135 struct amd_iommu *amd_iommus[MAX_IOMMUS];
136 int amd_iommus_present;
137 
138 /* IOMMUs have a non-present cache? */
139 bool amd_iommu_np_cache __read_mostly;
140 
141 /*
142  * The ACPI table parsing functions set this variable on an error
143  */
144 static int __initdata amd_iommu_init_err;
145 
146 /*
147  * List of protection domains - used during resume
148  */
149 LIST_HEAD(amd_iommu_pd_list);
150 spinlock_t amd_iommu_pd_lock;
151 
152 /*
153  * Pointer to the device table which is shared by all AMD IOMMUs
154  * it is indexed by the PCI device id or the HT unit id and contains
155  * information about the domain the device belongs to as well as the
156  * page table root pointer.
157  */
158 struct dev_table_entry *amd_iommu_dev_table;
159 
160 /*
161  * The alias table is a driver specific data structure which contains the
162  * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
163  * More than one device can share the same requestor id.
164  */
165 u16 *amd_iommu_alias_table;
166 
167 /*
168  * The rlookup table is used to find the IOMMU which is responsible
169  * for a specific device. It is also indexed by the PCI device id.
170  */
171 struct amd_iommu **amd_iommu_rlookup_table;
172 
173 /*
174  * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
175  * to know which ones are already in use.
176  */
177 unsigned long *amd_iommu_pd_alloc_bitmap;
178 
179 static u32 dev_table_size;	/* size of the device table */
180 static u32 alias_table_size;	/* size of the alias table */
181 static u32 rlookup_table_size;	/* size if the rlookup table */
182 
update_last_devid(u16 devid)183 static inline void update_last_devid(u16 devid)
184 {
185 	if (devid > amd_iommu_last_bdf)
186 		amd_iommu_last_bdf = devid;
187 }
188 
tbl_size(int entry_size)189 static inline unsigned long tbl_size(int entry_size)
190 {
191 	unsigned shift = PAGE_SHIFT +
192 			 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
193 
194 	return 1UL << shift;
195 }
196 
197 /* Access to l1 and l2 indexed register spaces */
198 
iommu_read_l1(struct amd_iommu * iommu,u16 l1,u8 address)199 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
200 {
201 	u32 val;
202 
203 	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
204 	pci_read_config_dword(iommu->dev, 0xfc, &val);
205 	return val;
206 }
207 
iommu_write_l1(struct amd_iommu * iommu,u16 l1,u8 address,u32 val)208 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
209 {
210 	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
211 	pci_write_config_dword(iommu->dev, 0xfc, val);
212 	pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
213 }
214 
iommu_read_l2(struct amd_iommu * iommu,u8 address)215 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
216 {
217 	u32 val;
218 
219 	pci_write_config_dword(iommu->dev, 0xf0, address);
220 	pci_read_config_dword(iommu->dev, 0xf4, &val);
221 	return val;
222 }
223 
iommu_write_l2(struct amd_iommu * iommu,u8 address,u32 val)224 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
225 {
226 	pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
227 	pci_write_config_dword(iommu->dev, 0xf4, val);
228 }
229 
230 /****************************************************************************
231  *
232  * AMD IOMMU MMIO register space handling functions
233  *
234  * These functions are used to program the IOMMU device registers in
235  * MMIO space required for that driver.
236  *
237  ****************************************************************************/
238 
239 /*
240  * This function set the exclusion range in the IOMMU. DMA accesses to the
241  * exclusion range are passed through untranslated
242  */
iommu_set_exclusion_range(struct amd_iommu * iommu)243 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
244 {
245 	u64 start = iommu->exclusion_start & PAGE_MASK;
246 	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
247 	u64 entry;
248 
249 	if (!iommu->exclusion_start)
250 		return;
251 
252 	entry = start | MMIO_EXCL_ENABLE_MASK;
253 	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
254 			&entry, sizeof(entry));
255 
256 	entry = limit;
257 	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
258 			&entry, sizeof(entry));
259 }
260 
261 /* Programs the physical address of the device table into the IOMMU hardware */
iommu_set_device_table(struct amd_iommu * iommu)262 static void __init iommu_set_device_table(struct amd_iommu *iommu)
263 {
264 	u64 entry;
265 
266 	BUG_ON(iommu->mmio_base == NULL);
267 
268 	entry = virt_to_phys(amd_iommu_dev_table);
269 	entry |= (dev_table_size >> 12) - 1;
270 	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
271 			&entry, sizeof(entry));
272 }
273 
274 /* Generic functions to enable/disable certain features of the IOMMU. */
iommu_feature_enable(struct amd_iommu * iommu,u8 bit)275 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
276 {
277 	u32 ctrl;
278 
279 	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
280 	ctrl |= (1 << bit);
281 	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
282 }
283 
iommu_feature_disable(struct amd_iommu * iommu,u8 bit)284 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
285 {
286 	u32 ctrl;
287 
288 	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
289 	ctrl &= ~(1 << bit);
290 	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
291 }
292 
293 /* Function to enable the hardware */
iommu_enable(struct amd_iommu * iommu)294 static void iommu_enable(struct amd_iommu *iommu)
295 {
296 	printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
297 	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
298 
299 	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
300 }
301 
iommu_disable(struct amd_iommu * iommu)302 static void iommu_disable(struct amd_iommu *iommu)
303 {
304 	/* Disable command buffer */
305 	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
306 
307 	/* Disable event logging and event interrupts */
308 	iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
309 	iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
310 
311 	/* Disable IOMMU hardware itself */
312 	iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
313 }
314 
315 /*
316  * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
317  * the system has one.
318  */
iommu_map_mmio_space(u64 address)319 static u8 * __init iommu_map_mmio_space(u64 address)
320 {
321 	u8 *ret;
322 
323 	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu")) {
324 		pr_err("AMD-Vi: Can not reserve memory region %llx for mmio\n",
325 			address);
326 		pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
327 		return NULL;
328 	}
329 
330 	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
331 	if (ret != NULL)
332 		return ret;
333 
334 	release_mem_region(address, MMIO_REGION_LENGTH);
335 
336 	return NULL;
337 }
338 
iommu_unmap_mmio_space(struct amd_iommu * iommu)339 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
340 {
341 	if (iommu->mmio_base)
342 		iounmap(iommu->mmio_base);
343 	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
344 }
345 
346 /****************************************************************************
347  *
348  * The functions below belong to the first pass of AMD IOMMU ACPI table
349  * parsing. In this pass we try to find out the highest device id this
350  * code has to handle. Upon this information the size of the shared data
351  * structures is determined later.
352  *
353  ****************************************************************************/
354 
355 /*
356  * This function calculates the length of a given IVHD entry
357  */
ivhd_entry_length(u8 * ivhd)358 static inline int ivhd_entry_length(u8 *ivhd)
359 {
360 	return 0x04 << (*ivhd >> 6);
361 }
362 
363 /*
364  * This function reads the last device id the IOMMU has to handle from the PCI
365  * capability header for this IOMMU
366  */
find_last_devid_on_pci(int bus,int dev,int fn,int cap_ptr)367 static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
368 {
369 	u32 cap;
370 
371 	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
372 	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
373 
374 	return 0;
375 }
376 
377 /*
378  * After reading the highest device id from the IOMMU PCI capability header
379  * this function looks if there is a higher device id defined in the ACPI table
380  */
find_last_devid_from_ivhd(struct ivhd_header * h)381 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
382 {
383 	u8 *p = (void *)h, *end = (void *)h;
384 	struct ivhd_entry *dev;
385 
386 	p += sizeof(*h);
387 	end += h->length;
388 
389 	find_last_devid_on_pci(PCI_BUS(h->devid),
390 			PCI_SLOT(h->devid),
391 			PCI_FUNC(h->devid),
392 			h->cap_ptr);
393 
394 	while (p < end) {
395 		dev = (struct ivhd_entry *)p;
396 		switch (dev->type) {
397 		case IVHD_DEV_SELECT:
398 		case IVHD_DEV_RANGE_END:
399 		case IVHD_DEV_ALIAS:
400 		case IVHD_DEV_EXT_SELECT:
401 			/* all the above subfield types refer to device ids */
402 			update_last_devid(dev->devid);
403 			break;
404 		default:
405 			break;
406 		}
407 		p += ivhd_entry_length(p);
408 	}
409 
410 	WARN_ON(p != end);
411 
412 	return 0;
413 }
414 
415 /*
416  * Iterate over all IVHD entries in the ACPI table and find the highest device
417  * id which we need to handle. This is the first of three functions which parse
418  * the ACPI table. So we check the checksum here.
419  */
find_last_devid_acpi(struct acpi_table_header * table)420 static int __init find_last_devid_acpi(struct acpi_table_header *table)
421 {
422 	int i;
423 	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
424 	struct ivhd_header *h;
425 
426 	/*
427 	 * Validate checksum here so we don't need to do it when
428 	 * we actually parse the table
429 	 */
430 	for (i = 0; i < table->length; ++i)
431 		checksum += p[i];
432 	if (checksum != 0) {
433 		/* ACPI table corrupt */
434 		amd_iommu_init_err = -ENODEV;
435 		return 0;
436 	}
437 
438 	p += IVRS_HEADER_LENGTH;
439 
440 	end += table->length;
441 	while (p < end) {
442 		h = (struct ivhd_header *)p;
443 		switch (h->type) {
444 		case ACPI_IVHD_TYPE:
445 			find_last_devid_from_ivhd(h);
446 			break;
447 		default:
448 			break;
449 		}
450 		p += h->length;
451 	}
452 	WARN_ON(p != end);
453 
454 	return 0;
455 }
456 
457 /****************************************************************************
458  *
459  * The following functions belong the the code path which parses the ACPI table
460  * the second time. In this ACPI parsing iteration we allocate IOMMU specific
461  * data structures, initialize the device/alias/rlookup table and also
462  * basically initialize the hardware.
463  *
464  ****************************************************************************/
465 
466 /*
467  * Allocates the command buffer. This buffer is per AMD IOMMU. We can
468  * write commands to that buffer later and the IOMMU will execute them
469  * asynchronously
470  */
alloc_command_buffer(struct amd_iommu * iommu)471 static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
472 {
473 	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
474 			get_order(CMD_BUFFER_SIZE));
475 
476 	if (cmd_buf == NULL)
477 		return NULL;
478 
479 	iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
480 
481 	return cmd_buf;
482 }
483 
484 /*
485  * This function resets the command buffer if the IOMMU stopped fetching
486  * commands from it.
487  */
amd_iommu_reset_cmd_buffer(struct amd_iommu * iommu)488 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
489 {
490 	iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
491 
492 	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
493 	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
494 
495 	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
496 }
497 
498 /*
499  * This function writes the command buffer address to the hardware and
500  * enables it.
501  */
iommu_enable_command_buffer(struct amd_iommu * iommu)502 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
503 {
504 	u64 entry;
505 
506 	BUG_ON(iommu->cmd_buf == NULL);
507 
508 	entry = (u64)virt_to_phys(iommu->cmd_buf);
509 	entry |= MMIO_CMD_SIZE_512;
510 
511 	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
512 		    &entry, sizeof(entry));
513 
514 	amd_iommu_reset_cmd_buffer(iommu);
515 	iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
516 }
517 
free_command_buffer(struct amd_iommu * iommu)518 static void __init free_command_buffer(struct amd_iommu *iommu)
519 {
520 	free_pages((unsigned long)iommu->cmd_buf,
521 		   get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
522 }
523 
524 /* allocates the memory where the IOMMU will log its events to */
alloc_event_buffer(struct amd_iommu * iommu)525 static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
526 {
527 	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
528 						get_order(EVT_BUFFER_SIZE));
529 
530 	if (iommu->evt_buf == NULL)
531 		return NULL;
532 
533 	iommu->evt_buf_size = EVT_BUFFER_SIZE;
534 
535 	return iommu->evt_buf;
536 }
537 
iommu_enable_event_buffer(struct amd_iommu * iommu)538 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
539 {
540 	u64 entry;
541 
542 	BUG_ON(iommu->evt_buf == NULL);
543 
544 	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
545 
546 	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
547 		    &entry, sizeof(entry));
548 
549 	/* set head and tail to zero manually */
550 	writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
551 	writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
552 
553 	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
554 }
555 
free_event_buffer(struct amd_iommu * iommu)556 static void __init free_event_buffer(struct amd_iommu *iommu)
557 {
558 	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
559 }
560 
561 /* sets a specific bit in the device table entry. */
set_dev_entry_bit(u16 devid,u8 bit)562 static void set_dev_entry_bit(u16 devid, u8 bit)
563 {
564 	int i = (bit >> 5) & 0x07;
565 	int _bit = bit & 0x1f;
566 
567 	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
568 }
569 
get_dev_entry_bit(u16 devid,u8 bit)570 static int get_dev_entry_bit(u16 devid, u8 bit)
571 {
572 	int i = (bit >> 5) & 0x07;
573 	int _bit = bit & 0x1f;
574 
575 	return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
576 }
577 
578 
amd_iommu_apply_erratum_63(u16 devid)579 void amd_iommu_apply_erratum_63(u16 devid)
580 {
581 	int sysmgt;
582 
583 	sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
584 		 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
585 
586 	if (sysmgt == 0x01)
587 		set_dev_entry_bit(devid, DEV_ENTRY_IW);
588 }
589 
590 /* Writes the specific IOMMU for a device into the rlookup table */
set_iommu_for_device(struct amd_iommu * iommu,u16 devid)591 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
592 {
593 	amd_iommu_rlookup_table[devid] = iommu;
594 }
595 
596 /*
597  * This function takes the device specific flags read from the ACPI
598  * table and sets up the device table entry with that information
599  */
set_dev_entry_from_acpi(struct amd_iommu * iommu,u16 devid,u32 flags,u32 ext_flags)600 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
601 					   u16 devid, u32 flags, u32 ext_flags)
602 {
603 	if (flags & ACPI_DEVFLAG_INITPASS)
604 		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
605 	if (flags & ACPI_DEVFLAG_EXTINT)
606 		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
607 	if (flags & ACPI_DEVFLAG_NMI)
608 		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
609 	if (flags & ACPI_DEVFLAG_SYSMGT1)
610 		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
611 	if (flags & ACPI_DEVFLAG_SYSMGT2)
612 		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
613 	if (flags & ACPI_DEVFLAG_LINT0)
614 		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
615 	if (flags & ACPI_DEVFLAG_LINT1)
616 		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
617 
618 	amd_iommu_apply_erratum_63(devid);
619 
620 	set_iommu_for_device(iommu, devid);
621 }
622 
623 /*
624  * Reads the device exclusion range from ACPI and initialize IOMMU with
625  * it
626  */
set_device_exclusion_range(u16 devid,struct ivmd_header * m)627 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
628 {
629 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
630 
631 	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
632 		return;
633 
634 	if (iommu) {
635 		/*
636 		 * We only can configure exclusion ranges per IOMMU, not
637 		 * per device. But we can enable the exclusion range per
638 		 * device. This is done here
639 		 */
640 		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
641 		iommu->exclusion_start = m->range_start;
642 		iommu->exclusion_length = m->range_length;
643 	}
644 }
645 
646 /*
647  * This function reads some important data from the IOMMU PCI space and
648  * initializes the driver data structure with it. It reads the hardware
649  * capabilities and the first/last device entries
650  */
init_iommu_from_pci(struct amd_iommu * iommu)651 static void __init init_iommu_from_pci(struct amd_iommu *iommu)
652 {
653 	int cap_ptr = iommu->cap_ptr;
654 	u32 range, misc;
655 	int i, j;
656 
657 	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
658 			      &iommu->cap);
659 	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
660 			      &range);
661 	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
662 			      &misc);
663 
664 	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
665 					 MMIO_GET_FD(range));
666 	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
667 					MMIO_GET_LD(range));
668 	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
669 
670 	if (!is_rd890_iommu(iommu->dev))
671 		return;
672 
673 	/*
674 	 * Some rd890 systems may not be fully reconfigured by the BIOS, so
675 	 * it's necessary for us to store this information so it can be
676 	 * reprogrammed on resume
677 	 */
678 
679 	pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
680 			      &iommu->stored_addr_lo);
681 	pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
682 			      &iommu->stored_addr_hi);
683 
684 	/* Low bit locks writes to configuration space */
685 	iommu->stored_addr_lo &= ~1;
686 
687 	for (i = 0; i < 6; i++)
688 		for (j = 0; j < 0x12; j++)
689 			iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
690 
691 	for (i = 0; i < 0x83; i++)
692 		iommu->stored_l2[i] = iommu_read_l2(iommu, i);
693 }
694 
695 /*
696  * Takes a pointer to an AMD IOMMU entry in the ACPI table and
697  * initializes the hardware and our data structures with it.
698  */
init_iommu_from_acpi(struct amd_iommu * iommu,struct ivhd_header * h)699 static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
700 					struct ivhd_header *h)
701 {
702 	u8 *p = (u8 *)h;
703 	u8 *end = p, flags = 0;
704 	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
705 	u32 ext_flags = 0;
706 	bool alias = false;
707 	struct ivhd_entry *e;
708 
709 	/*
710 	 * First save the recommended feature enable bits from ACPI
711 	 */
712 	iommu->acpi_flags = h->flags;
713 
714 	/*
715 	 * Done. Now parse the device entries
716 	 */
717 	p += sizeof(struct ivhd_header);
718 	end += h->length;
719 
720 
721 	while (p < end) {
722 		e = (struct ivhd_entry *)p;
723 		switch (e->type) {
724 		case IVHD_DEV_ALL:
725 
726 			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
727 				    " last device %02x:%02x.%x flags: %02x\n",
728 				    PCI_BUS(iommu->first_device),
729 				    PCI_SLOT(iommu->first_device),
730 				    PCI_FUNC(iommu->first_device),
731 				    PCI_BUS(iommu->last_device),
732 				    PCI_SLOT(iommu->last_device),
733 				    PCI_FUNC(iommu->last_device),
734 				    e->flags);
735 
736 			for (dev_i = iommu->first_device;
737 					dev_i <= iommu->last_device; ++dev_i)
738 				set_dev_entry_from_acpi(iommu, dev_i,
739 							e->flags, 0);
740 			break;
741 		case IVHD_DEV_SELECT:
742 
743 			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
744 				    "flags: %02x\n",
745 				    PCI_BUS(e->devid),
746 				    PCI_SLOT(e->devid),
747 				    PCI_FUNC(e->devid),
748 				    e->flags);
749 
750 			devid = e->devid;
751 			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
752 			break;
753 		case IVHD_DEV_SELECT_RANGE_START:
754 
755 			DUMP_printk("  DEV_SELECT_RANGE_START\t "
756 				    "devid: %02x:%02x.%x flags: %02x\n",
757 				    PCI_BUS(e->devid),
758 				    PCI_SLOT(e->devid),
759 				    PCI_FUNC(e->devid),
760 				    e->flags);
761 
762 			devid_start = e->devid;
763 			flags = e->flags;
764 			ext_flags = 0;
765 			alias = false;
766 			break;
767 		case IVHD_DEV_ALIAS:
768 
769 			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
770 				    "flags: %02x devid_to: %02x:%02x.%x\n",
771 				    PCI_BUS(e->devid),
772 				    PCI_SLOT(e->devid),
773 				    PCI_FUNC(e->devid),
774 				    e->flags,
775 				    PCI_BUS(e->ext >> 8),
776 				    PCI_SLOT(e->ext >> 8),
777 				    PCI_FUNC(e->ext >> 8));
778 
779 			devid = e->devid;
780 			devid_to = e->ext >> 8;
781 			set_dev_entry_from_acpi(iommu, devid   , e->flags, 0);
782 			set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
783 			amd_iommu_alias_table[devid] = devid_to;
784 			break;
785 		case IVHD_DEV_ALIAS_RANGE:
786 
787 			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
788 				    "devid: %02x:%02x.%x flags: %02x "
789 				    "devid_to: %02x:%02x.%x\n",
790 				    PCI_BUS(e->devid),
791 				    PCI_SLOT(e->devid),
792 				    PCI_FUNC(e->devid),
793 				    e->flags,
794 				    PCI_BUS(e->ext >> 8),
795 				    PCI_SLOT(e->ext >> 8),
796 				    PCI_FUNC(e->ext >> 8));
797 
798 			devid_start = e->devid;
799 			flags = e->flags;
800 			devid_to = e->ext >> 8;
801 			ext_flags = 0;
802 			alias = true;
803 			break;
804 		case IVHD_DEV_EXT_SELECT:
805 
806 			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
807 				    "flags: %02x ext: %08x\n",
808 				    PCI_BUS(e->devid),
809 				    PCI_SLOT(e->devid),
810 				    PCI_FUNC(e->devid),
811 				    e->flags, e->ext);
812 
813 			devid = e->devid;
814 			set_dev_entry_from_acpi(iommu, devid, e->flags,
815 						e->ext);
816 			break;
817 		case IVHD_DEV_EXT_SELECT_RANGE:
818 
819 			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
820 				    "%02x:%02x.%x flags: %02x ext: %08x\n",
821 				    PCI_BUS(e->devid),
822 				    PCI_SLOT(e->devid),
823 				    PCI_FUNC(e->devid),
824 				    e->flags, e->ext);
825 
826 			devid_start = e->devid;
827 			flags = e->flags;
828 			ext_flags = e->ext;
829 			alias = false;
830 			break;
831 		case IVHD_DEV_RANGE_END:
832 
833 			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
834 				    PCI_BUS(e->devid),
835 				    PCI_SLOT(e->devid),
836 				    PCI_FUNC(e->devid));
837 
838 			devid = e->devid;
839 			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
840 				if (alias) {
841 					amd_iommu_alias_table[dev_i] = devid_to;
842 					set_dev_entry_from_acpi(iommu,
843 						devid_to, flags, ext_flags);
844 				}
845 				set_dev_entry_from_acpi(iommu, dev_i,
846 							flags, ext_flags);
847 			}
848 			break;
849 		default:
850 			break;
851 		}
852 
853 		p += ivhd_entry_length(p);
854 	}
855 }
856 
857 /* Initializes the device->iommu mapping for the driver */
init_iommu_devices(struct amd_iommu * iommu)858 static int __init init_iommu_devices(struct amd_iommu *iommu)
859 {
860 	u16 i;
861 
862 	for (i = iommu->first_device; i <= iommu->last_device; ++i)
863 		set_iommu_for_device(iommu, i);
864 
865 	return 0;
866 }
867 
free_iommu_one(struct amd_iommu * iommu)868 static void __init free_iommu_one(struct amd_iommu *iommu)
869 {
870 	free_command_buffer(iommu);
871 	free_event_buffer(iommu);
872 	iommu_unmap_mmio_space(iommu);
873 }
874 
free_iommu_all(void)875 static void __init free_iommu_all(void)
876 {
877 	struct amd_iommu *iommu, *next;
878 
879 	for_each_iommu_safe(iommu, next) {
880 		list_del(&iommu->list);
881 		free_iommu_one(iommu);
882 		kfree(iommu);
883 	}
884 }
885 
886 /*
887  * This function clues the initialization function for one IOMMU
888  * together and also allocates the command buffer and programs the
889  * hardware. It does NOT enable the IOMMU. This is done afterwards.
890  */
init_iommu_one(struct amd_iommu * iommu,struct ivhd_header * h)891 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
892 {
893 	spin_lock_init(&iommu->lock);
894 
895 	/* Add IOMMU to internal data structures */
896 	list_add_tail(&iommu->list, &amd_iommu_list);
897 	iommu->index             = amd_iommus_present++;
898 
899 	if (unlikely(iommu->index >= MAX_IOMMUS)) {
900 		WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
901 		return -ENOSYS;
902 	}
903 
904 	/* Index is fine - add IOMMU to the array */
905 	amd_iommus[iommu->index] = iommu;
906 
907 	/*
908 	 * Copy data from ACPI table entry to the iommu struct
909 	 */
910 	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
911 	if (!iommu->dev)
912 		return 1;
913 
914 	iommu->cap_ptr = h->cap_ptr;
915 	iommu->pci_seg = h->pci_seg;
916 	iommu->mmio_phys = h->mmio_phys;
917 	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
918 	if (!iommu->mmio_base)
919 		return -ENOMEM;
920 
921 	iommu->cmd_buf = alloc_command_buffer(iommu);
922 	if (!iommu->cmd_buf)
923 		return -ENOMEM;
924 
925 	iommu->evt_buf = alloc_event_buffer(iommu);
926 	if (!iommu->evt_buf)
927 		return -ENOMEM;
928 
929 	iommu->int_enabled = false;
930 
931 	init_iommu_from_pci(iommu);
932 	init_iommu_from_acpi(iommu, h);
933 	init_iommu_devices(iommu);
934 
935 	if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
936 		amd_iommu_np_cache = true;
937 
938 	return pci_enable_device(iommu->dev);
939 }
940 
941 /*
942  * Iterates over all IOMMU entries in the ACPI table, allocates the
943  * IOMMU structure and initializes it with init_iommu_one()
944  */
init_iommu_all(struct acpi_table_header * table)945 static int __init init_iommu_all(struct acpi_table_header *table)
946 {
947 	u8 *p = (u8 *)table, *end = (u8 *)table;
948 	struct ivhd_header *h;
949 	struct amd_iommu *iommu;
950 	int ret;
951 
952 	end += table->length;
953 	p += IVRS_HEADER_LENGTH;
954 
955 	while (p < end) {
956 		h = (struct ivhd_header *)p;
957 		switch (*p) {
958 		case ACPI_IVHD_TYPE:
959 
960 			DUMP_printk("device: %02x:%02x.%01x cap: %04x "
961 				    "seg: %d flags: %01x info %04x\n",
962 				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
963 				    PCI_FUNC(h->devid), h->cap_ptr,
964 				    h->pci_seg, h->flags, h->info);
965 			DUMP_printk("       mmio-addr: %016llx\n",
966 				    h->mmio_phys);
967 
968 			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
969 			if (iommu == NULL) {
970 				amd_iommu_init_err = -ENOMEM;
971 				return 0;
972 			}
973 
974 			ret = init_iommu_one(iommu, h);
975 			if (ret) {
976 				amd_iommu_init_err = ret;
977 				return 0;
978 			}
979 			break;
980 		default:
981 			break;
982 		}
983 		p += h->length;
984 
985 	}
986 	WARN_ON(p != end);
987 
988 	return 0;
989 }
990 
991 /****************************************************************************
992  *
993  * The following functions initialize the MSI interrupts for all IOMMUs
994  * in the system. Its a bit challenging because there could be multiple
995  * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
996  * pci_dev.
997  *
998  ****************************************************************************/
999 
iommu_setup_msi(struct amd_iommu * iommu)1000 static int iommu_setup_msi(struct amd_iommu *iommu)
1001 {
1002 	int r;
1003 
1004 	if (pci_enable_msi(iommu->dev))
1005 		return 1;
1006 
1007 	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
1008 			IRQF_SAMPLE_RANDOM,
1009 			"AMD-Vi",
1010 			NULL);
1011 
1012 	if (r) {
1013 		pci_disable_msi(iommu->dev);
1014 		return 1;
1015 	}
1016 
1017 	iommu->int_enabled = true;
1018 	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1019 
1020 	return 0;
1021 }
1022 
iommu_init_msi(struct amd_iommu * iommu)1023 static int iommu_init_msi(struct amd_iommu *iommu)
1024 {
1025 	if (iommu->int_enabled)
1026 		return 0;
1027 
1028 	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
1029 		return iommu_setup_msi(iommu);
1030 
1031 	return 1;
1032 }
1033 
1034 /****************************************************************************
1035  *
1036  * The next functions belong to the third pass of parsing the ACPI
1037  * table. In this last pass the memory mapping requirements are
1038  * gathered (like exclusion and unity mapping reanges).
1039  *
1040  ****************************************************************************/
1041 
free_unity_maps(void)1042 static void __init free_unity_maps(void)
1043 {
1044 	struct unity_map_entry *entry, *next;
1045 
1046 	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1047 		list_del(&entry->list);
1048 		kfree(entry);
1049 	}
1050 }
1051 
1052 /* called when we find an exclusion range definition in ACPI */
init_exclusion_range(struct ivmd_header * m)1053 static int __init init_exclusion_range(struct ivmd_header *m)
1054 {
1055 	int i;
1056 
1057 	switch (m->type) {
1058 	case ACPI_IVMD_TYPE:
1059 		set_device_exclusion_range(m->devid, m);
1060 		break;
1061 	case ACPI_IVMD_TYPE_ALL:
1062 		for (i = 0; i <= amd_iommu_last_bdf; ++i)
1063 			set_device_exclusion_range(i, m);
1064 		break;
1065 	case ACPI_IVMD_TYPE_RANGE:
1066 		for (i = m->devid; i <= m->aux; ++i)
1067 			set_device_exclusion_range(i, m);
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 /* called for unity map ACPI definition */
init_unity_map_range(struct ivmd_header * m)1077 static int __init init_unity_map_range(struct ivmd_header *m)
1078 {
1079 	struct unity_map_entry *e = 0;
1080 	char *s;
1081 
1082 	e = kzalloc(sizeof(*e), GFP_KERNEL);
1083 	if (e == NULL)
1084 		return -ENOMEM;
1085 
1086 	switch (m->type) {
1087 	default:
1088 		kfree(e);
1089 		return 0;
1090 	case ACPI_IVMD_TYPE:
1091 		s = "IVMD_TYPEi\t\t\t";
1092 		e->devid_start = e->devid_end = m->devid;
1093 		break;
1094 	case ACPI_IVMD_TYPE_ALL:
1095 		s = "IVMD_TYPE_ALL\t\t";
1096 		e->devid_start = 0;
1097 		e->devid_end = amd_iommu_last_bdf;
1098 		break;
1099 	case ACPI_IVMD_TYPE_RANGE:
1100 		s = "IVMD_TYPE_RANGE\t\t";
1101 		e->devid_start = m->devid;
1102 		e->devid_end = m->aux;
1103 		break;
1104 	}
1105 	e->address_start = PAGE_ALIGN(m->range_start);
1106 	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1107 	e->prot = m->flags >> 1;
1108 
1109 	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1110 		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
1111 		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1112 		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1113 		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1114 		    e->address_start, e->address_end, m->flags);
1115 
1116 	list_add_tail(&e->list, &amd_iommu_unity_map);
1117 
1118 	return 0;
1119 }
1120 
1121 /* iterates over all memory definitions we find in the ACPI table */
init_memory_definitions(struct acpi_table_header * table)1122 static int __init init_memory_definitions(struct acpi_table_header *table)
1123 {
1124 	u8 *p = (u8 *)table, *end = (u8 *)table;
1125 	struct ivmd_header *m;
1126 
1127 	end += table->length;
1128 	p += IVRS_HEADER_LENGTH;
1129 
1130 	while (p < end) {
1131 		m = (struct ivmd_header *)p;
1132 		if (m->flags & IVMD_FLAG_EXCL_RANGE)
1133 			init_exclusion_range(m);
1134 		else if (m->flags & IVMD_FLAG_UNITY_MAP)
1135 			init_unity_map_range(m);
1136 
1137 		p += m->length;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 /*
1144  * Init the device table to not allow DMA access for devices and
1145  * suppress all page faults
1146  */
init_device_table(void)1147 static void init_device_table(void)
1148 {
1149 	u16 devid;
1150 
1151 	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1152 		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1153 		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1154 	}
1155 }
1156 
iommu_init_flags(struct amd_iommu * iommu)1157 static void iommu_init_flags(struct amd_iommu *iommu)
1158 {
1159 	iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
1160 		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
1161 		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
1162 
1163 	iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
1164 		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
1165 		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
1166 
1167 	iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
1168 		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
1169 		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
1170 
1171 	iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
1172 		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
1173 		iommu_feature_disable(iommu, CONTROL_ISOC_EN);
1174 
1175 	/*
1176 	 * make IOMMU memory accesses cache coherent
1177 	 */
1178 	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1179 }
1180 
iommu_apply_resume_quirks(struct amd_iommu * iommu)1181 static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1182 {
1183 	int i, j;
1184 	u32 ioc_feature_control;
1185 	struct pci_dev *pdev = NULL;
1186 
1187 	/* RD890 BIOSes may not have completely reconfigured the iommu */
1188 	if (!is_rd890_iommu(iommu->dev))
1189 		return;
1190 
1191 	/*
1192 	 * First, we need to ensure that the iommu is enabled. This is
1193 	 * controlled by a register in the northbridge
1194 	 */
1195 	pdev = pci_get_bus_and_slot(iommu->dev->bus->number, PCI_DEVFN(0, 0));
1196 
1197 	if (!pdev)
1198 		return;
1199 
1200 	/* Select Northbridge indirect register 0x75 and enable writing */
1201 	pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
1202 	pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
1203 
1204 	/* Enable the iommu */
1205 	if (!(ioc_feature_control & 0x1))
1206 		pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
1207 
1208 	pci_dev_put(pdev);
1209 
1210 	/* Restore the iommu BAR */
1211 	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1212 			       iommu->stored_addr_lo);
1213 	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
1214 			       iommu->stored_addr_hi);
1215 
1216 	/* Restore the l1 indirect regs for each of the 6 l1s */
1217 	for (i = 0; i < 6; i++)
1218 		for (j = 0; j < 0x12; j++)
1219 			iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
1220 
1221 	/* Restore the l2 indirect regs */
1222 	for (i = 0; i < 0x83; i++)
1223 		iommu_write_l2(iommu, i, iommu->stored_l2[i]);
1224 
1225 	/* Lock PCI setup registers */
1226 	pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1227 			       iommu->stored_addr_lo | 1);
1228 }
1229 
1230 /*
1231  * This function finally enables all IOMMUs found in the system after
1232  * they have been initialized
1233  */
enable_iommus(void)1234 static void enable_iommus(void)
1235 {
1236 	struct amd_iommu *iommu;
1237 
1238 	for_each_iommu(iommu) {
1239 		iommu_disable(iommu);
1240 		iommu_init_flags(iommu);
1241 		iommu_set_device_table(iommu);
1242 		iommu_enable_command_buffer(iommu);
1243 		iommu_enable_event_buffer(iommu);
1244 		iommu_set_exclusion_range(iommu);
1245 		iommu_init_msi(iommu);
1246 		iommu_enable(iommu);
1247 	}
1248 }
1249 
disable_iommus(void)1250 static void disable_iommus(void)
1251 {
1252 	struct amd_iommu *iommu;
1253 
1254 	for_each_iommu(iommu)
1255 		iommu_disable(iommu);
1256 }
1257 
1258 /*
1259  * Suspend/Resume support
1260  * disable suspend until real resume implemented
1261  */
1262 
amd_iommu_resume(void)1263 static void amd_iommu_resume(void)
1264 {
1265 	struct amd_iommu *iommu;
1266 
1267 	for_each_iommu(iommu)
1268 		iommu_apply_resume_quirks(iommu);
1269 
1270 	/* re-load the hardware */
1271 	enable_iommus();
1272 
1273 	/*
1274 	 * we have to flush after the IOMMUs are enabled because a
1275 	 * disabled IOMMU will never execute the commands we send
1276 	 */
1277 	amd_iommu_flush_all_devices();
1278 	amd_iommu_flush_all_domains();
1279 }
1280 
amd_iommu_suspend(void)1281 static int amd_iommu_suspend(void)
1282 {
1283 	/* disable IOMMUs to go out of the way for BIOS */
1284 	disable_iommus();
1285 
1286 	return 0;
1287 }
1288 
1289 static struct syscore_ops amd_iommu_syscore_ops = {
1290 	.suspend = amd_iommu_suspend,
1291 	.resume = amd_iommu_resume,
1292 };
1293 
1294 /*
1295  * This is the core init function for AMD IOMMU hardware in the system.
1296  * This function is called from the generic x86 DMA layer initialization
1297  * code.
1298  *
1299  * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1300  * three times:
1301  *
1302  *	1 pass) Find the highest PCI device id the driver has to handle.
1303  *		Upon this information the size of the data structures is
1304  *		determined that needs to be allocated.
1305  *
1306  *	2 pass) Initialize the data structures just allocated with the
1307  *		information in the ACPI table about available AMD IOMMUs
1308  *		in the system. It also maps the PCI devices in the
1309  *		system to specific IOMMUs
1310  *
1311  *	3 pass) After the basic data structures are allocated and
1312  *		initialized we update them with information about memory
1313  *		remapping requirements parsed out of the ACPI table in
1314  *		this last pass.
1315  *
1316  * After that the hardware is initialized and ready to go. In the last
1317  * step we do some Linux specific things like registering the driver in
1318  * the dma_ops interface and initializing the suspend/resume support
1319  * functions. Finally it prints some information about AMD IOMMUs and
1320  * the driver state and enables the hardware.
1321  */
amd_iommu_init(void)1322 static int __init amd_iommu_init(void)
1323 {
1324 	int i, ret = 0;
1325 
1326 	/*
1327 	 * First parse ACPI tables to find the largest Bus/Dev/Func
1328 	 * we need to handle. Upon this information the shared data
1329 	 * structures for the IOMMUs in the system will be allocated
1330 	 */
1331 	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1332 		return -ENODEV;
1333 
1334 	ret = amd_iommu_init_err;
1335 	if (ret)
1336 		goto out;
1337 
1338 	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
1339 	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1340 	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1341 
1342 	ret = -ENOMEM;
1343 
1344 	/* Device table - directly used by all IOMMUs */
1345 	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1346 				      get_order(dev_table_size));
1347 	if (amd_iommu_dev_table == NULL)
1348 		goto out;
1349 
1350 	/*
1351 	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1352 	 * IOMMU see for that device
1353 	 */
1354 	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1355 			get_order(alias_table_size));
1356 	if (amd_iommu_alias_table == NULL)
1357 		goto free;
1358 
1359 	/* IOMMU rlookup table - find the IOMMU for a specific device */
1360 	amd_iommu_rlookup_table = (void *)__get_free_pages(
1361 			GFP_KERNEL | __GFP_ZERO,
1362 			get_order(rlookup_table_size));
1363 	if (amd_iommu_rlookup_table == NULL)
1364 		goto free;
1365 
1366 	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1367 					    GFP_KERNEL | __GFP_ZERO,
1368 					    get_order(MAX_DOMAIN_ID/8));
1369 	if (amd_iommu_pd_alloc_bitmap == NULL)
1370 		goto free;
1371 
1372 	/* init the device table */
1373 	init_device_table();
1374 
1375 	/*
1376 	 * let all alias entries point to itself
1377 	 */
1378 	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1379 		amd_iommu_alias_table[i] = i;
1380 
1381 	/*
1382 	 * never allocate domain 0 because its used as the non-allocated and
1383 	 * error value placeholder
1384 	 */
1385 	amd_iommu_pd_alloc_bitmap[0] = 1;
1386 
1387 	spin_lock_init(&amd_iommu_pd_lock);
1388 
1389 	/*
1390 	 * now the data structures are allocated and basically initialized
1391 	 * start the real acpi table scan
1392 	 */
1393 	ret = -ENODEV;
1394 	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1395 		goto free;
1396 
1397 	if (amd_iommu_init_err) {
1398 		ret = amd_iommu_init_err;
1399 		goto free;
1400 	}
1401 
1402 	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1403 		goto free;
1404 
1405 	if (amd_iommu_init_err) {
1406 		ret = amd_iommu_init_err;
1407 		goto free;
1408 	}
1409 
1410 	ret = amd_iommu_init_devices();
1411 	if (ret)
1412 		goto free;
1413 
1414 	enable_iommus();
1415 
1416 	if (iommu_pass_through)
1417 		ret = amd_iommu_init_passthrough();
1418 	else
1419 		ret = amd_iommu_init_dma_ops();
1420 
1421 	if (ret)
1422 		goto free_disable;
1423 
1424 	amd_iommu_init_api();
1425 
1426 	amd_iommu_init_notifier();
1427 
1428 	register_syscore_ops(&amd_iommu_syscore_ops);
1429 
1430 	if (iommu_pass_through)
1431 		goto out;
1432 
1433 	if (amd_iommu_unmap_flush)
1434 		printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1435 	else
1436 		printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1437 
1438 	x86_platform.iommu_shutdown = disable_iommus;
1439 out:
1440 	return ret;
1441 
1442 free_disable:
1443 	disable_iommus();
1444 
1445 free:
1446 	amd_iommu_uninit_devices();
1447 
1448 	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1449 		   get_order(MAX_DOMAIN_ID/8));
1450 
1451 	free_pages((unsigned long)amd_iommu_rlookup_table,
1452 		   get_order(rlookup_table_size));
1453 
1454 	free_pages((unsigned long)amd_iommu_alias_table,
1455 		   get_order(alias_table_size));
1456 
1457 	free_pages((unsigned long)amd_iommu_dev_table,
1458 		   get_order(dev_table_size));
1459 
1460 	free_iommu_all();
1461 
1462 	free_unity_maps();
1463 
1464 #ifdef CONFIG_GART_IOMMU
1465 	/*
1466 	 * We failed to initialize the AMD IOMMU - try fallback to GART
1467 	 * if possible.
1468 	 */
1469 	gart_iommu_init();
1470 
1471 #endif
1472 
1473 	goto out;
1474 }
1475 
1476 /****************************************************************************
1477  *
1478  * Early detect code. This code runs at IOMMU detection time in the DMA
1479  * layer. It just looks if there is an IVRS ACPI table to detect AMD
1480  * IOMMUs
1481  *
1482  ****************************************************************************/
early_amd_iommu_detect(struct acpi_table_header * table)1483 static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1484 {
1485 	return 0;
1486 }
1487 
amd_iommu_detect(void)1488 int __init amd_iommu_detect(void)
1489 {
1490 	if (no_iommu || (iommu_detected && !gart_iommu_aperture))
1491 		return -ENODEV;
1492 
1493 	if (amd_iommu_disabled)
1494 		return -ENODEV;
1495 
1496 	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1497 		iommu_detected = 1;
1498 		amd_iommu_detected = 1;
1499 		x86_init.iommu.iommu_init = amd_iommu_init;
1500 
1501 		/* Make sure ACS will be enabled */
1502 		pci_request_acs();
1503 		return 1;
1504 	}
1505 	return -ENODEV;
1506 }
1507 
1508 /****************************************************************************
1509  *
1510  * Parsing functions for the AMD IOMMU specific kernel command line
1511  * options.
1512  *
1513  ****************************************************************************/
1514 
parse_amd_iommu_dump(char * str)1515 static int __init parse_amd_iommu_dump(char *str)
1516 {
1517 	amd_iommu_dump = true;
1518 
1519 	return 1;
1520 }
1521 
parse_amd_iommu_options(char * str)1522 static int __init parse_amd_iommu_options(char *str)
1523 {
1524 	for (; *str; ++str) {
1525 		if (strncmp(str, "fullflush", 9) == 0)
1526 			amd_iommu_unmap_flush = true;
1527 		if (strncmp(str, "off", 3) == 0)
1528 			amd_iommu_disabled = true;
1529 	}
1530 
1531 	return 1;
1532 }
1533 
1534 __setup("amd_iommu_dump", parse_amd_iommu_dump);
1535 __setup("amd_iommu=", parse_amd_iommu_options);
1536 
1537 IOMMU_INIT_FINISH(amd_iommu_detect,
1538 		  gart_iommu_hole_init,
1539 		  0,
1540 		  0);
1541