1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/amba/bus.h>
15 #include <linux/platform_device.h>
16 #include <linux/pci-ats.h>
17 #include <linux/bitmap.h>
18 #include <linux/slab.h>
19 #include <linux/debugfs.h>
20 #include <linux/scatterlist.h>
21 #include <linux/dma-map-ops.h>
22 #include <linux/dma-direct.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/iommu-helper.h>
25 #include <linux/delay.h>
26 #include <linux/amd-iommu.h>
27 #include <linux/notifier.h>
28 #include <linux/export.h>
29 #include <linux/irq.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/io-pgtable.h>
34 #include <linux/cc_platform.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/io_apic.h>
37 #include <asm/apic.h>
38 #include <asm/hw_irq.h>
39 #include <asm/proto.h>
40 #include <asm/iommu.h>
41 #include <asm/gart.h>
42 #include <asm/dma.h>
43 
44 #include "amd_iommu.h"
45 #include "../irq_remapping.h"
46 
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48 
49 #define LOOP_TIMEOUT	100000
50 
51 /* IO virtual address start page frame number */
52 #define IOVA_START_PFN		(1)
53 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
54 
55 /* Reserved IOVA ranges */
56 #define MSI_RANGE_START		(0xfee00000)
57 #define MSI_RANGE_END		(0xfeefffff)
58 #define HT_RANGE_START		(0xfd00000000ULL)
59 #define HT_RANGE_END		(0xffffffffffULL)
60 
61 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
62 
63 static DEFINE_SPINLOCK(pd_bitmap_lock);
64 
65 /* List of all available dev_data structures */
66 static LLIST_HEAD(dev_data_list);
67 
68 LIST_HEAD(ioapic_map);
69 LIST_HEAD(hpet_map);
70 LIST_HEAD(acpihid_map);
71 
72 /*
73  * Domain for untranslated devices - only allocated
74  * if iommu=pt passed on kernel cmd line.
75  */
76 const struct iommu_ops amd_iommu_ops;
77 
78 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
79 int amd_iommu_max_glx_val = -1;
80 
81 /*
82  * general struct to manage commands send to an IOMMU
83  */
84 struct iommu_cmd {
85 	u32 data[4];
86 };
87 
88 struct kmem_cache *amd_iommu_irq_cache;
89 
90 static void detach_device(struct device *dev);
91 
92 /****************************************************************************
93  *
94  * Helper functions
95  *
96  ****************************************************************************/
97 
get_pci_device_id(struct device * dev)98 static inline u16 get_pci_device_id(struct device *dev)
99 {
100 	struct pci_dev *pdev = to_pci_dev(dev);
101 
102 	return pci_dev_id(pdev);
103 }
104 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)105 static inline int get_acpihid_device_id(struct device *dev,
106 					struct acpihid_map_entry **entry)
107 {
108 	struct acpi_device *adev = ACPI_COMPANION(dev);
109 	struct acpihid_map_entry *p;
110 
111 	if (!adev)
112 		return -ENODEV;
113 
114 	list_for_each_entry(p, &acpihid_map, list) {
115 		if (acpi_dev_hid_uid_match(adev, p->hid,
116 					   p->uid[0] ? p->uid : NULL)) {
117 			if (entry)
118 				*entry = p;
119 			return p->devid;
120 		}
121 	}
122 	return -EINVAL;
123 }
124 
get_device_id(struct device * dev)125 static inline int get_device_id(struct device *dev)
126 {
127 	int devid;
128 
129 	if (dev_is_pci(dev))
130 		devid = get_pci_device_id(dev);
131 	else
132 		devid = get_acpihid_device_id(dev, NULL);
133 
134 	return devid;
135 }
136 
to_pdomain(struct iommu_domain * dom)137 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
138 {
139 	return container_of(dom, struct protection_domain, domain);
140 }
141 
alloc_dev_data(u16 devid)142 static struct iommu_dev_data *alloc_dev_data(u16 devid)
143 {
144 	struct iommu_dev_data *dev_data;
145 
146 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
147 	if (!dev_data)
148 		return NULL;
149 
150 	spin_lock_init(&dev_data->lock);
151 	dev_data->devid = devid;
152 	ratelimit_default_init(&dev_data->rs);
153 
154 	llist_add(&dev_data->dev_data_list, &dev_data_list);
155 	return dev_data;
156 }
157 
search_dev_data(u16 devid)158 static struct iommu_dev_data *search_dev_data(u16 devid)
159 {
160 	struct iommu_dev_data *dev_data;
161 	struct llist_node *node;
162 
163 	if (llist_empty(&dev_data_list))
164 		return NULL;
165 
166 	node = dev_data_list.first;
167 	llist_for_each_entry(dev_data, node, dev_data_list) {
168 		if (dev_data->devid == devid)
169 			return dev_data;
170 	}
171 
172 	return NULL;
173 }
174 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)175 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
176 {
177 	u16 devid = pci_dev_id(pdev);
178 
179 	if (devid == alias)
180 		return 0;
181 
182 	amd_iommu_rlookup_table[alias] =
183 		amd_iommu_rlookup_table[devid];
184 	memcpy(amd_iommu_dev_table[alias].data,
185 	       amd_iommu_dev_table[devid].data,
186 	       sizeof(amd_iommu_dev_table[alias].data));
187 
188 	return 0;
189 }
190 
clone_aliases(struct pci_dev * pdev)191 static void clone_aliases(struct pci_dev *pdev)
192 {
193 	if (!pdev)
194 		return;
195 
196 	/*
197 	 * The IVRS alias stored in the alias table may not be
198 	 * part of the PCI DMA aliases if it's bus differs
199 	 * from the original device.
200 	 */
201 	clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL);
202 
203 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
204 }
205 
setup_aliases(struct device * dev)206 static struct pci_dev *setup_aliases(struct device *dev)
207 {
208 	struct pci_dev *pdev = to_pci_dev(dev);
209 	u16 ivrs_alias;
210 
211 	/* For ACPI HID devices, there are no aliases */
212 	if (!dev_is_pci(dev))
213 		return NULL;
214 
215 	/*
216 	 * Add the IVRS alias to the pci aliases if it is on the same
217 	 * bus. The IVRS table may know about a quirk that we don't.
218 	 */
219 	ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)];
220 	if (ivrs_alias != pci_dev_id(pdev) &&
221 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
222 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
223 
224 	clone_aliases(pdev);
225 
226 	return pdev;
227 }
228 
find_dev_data(u16 devid)229 static struct iommu_dev_data *find_dev_data(u16 devid)
230 {
231 	struct iommu_dev_data *dev_data;
232 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
233 
234 	dev_data = search_dev_data(devid);
235 
236 	if (dev_data == NULL) {
237 		dev_data = alloc_dev_data(devid);
238 		if (!dev_data)
239 			return NULL;
240 
241 		if (translation_pre_enabled(iommu))
242 			dev_data->defer_attach = true;
243 	}
244 
245 	return dev_data;
246 }
247 
248 /*
249 * Find or create an IOMMU group for a acpihid device.
250 */
acpihid_device_group(struct device * dev)251 static struct iommu_group *acpihid_device_group(struct device *dev)
252 {
253 	struct acpihid_map_entry *p, *entry = NULL;
254 	int devid;
255 
256 	devid = get_acpihid_device_id(dev, &entry);
257 	if (devid < 0)
258 		return ERR_PTR(devid);
259 
260 	list_for_each_entry(p, &acpihid_map, list) {
261 		if ((devid == p->devid) && p->group)
262 			entry->group = p->group;
263 	}
264 
265 	if (!entry->group)
266 		entry->group = generic_device_group(dev);
267 	else
268 		iommu_group_ref_get(entry->group);
269 
270 	return entry->group;
271 }
272 
pci_iommuv2_capable(struct pci_dev * pdev)273 static bool pci_iommuv2_capable(struct pci_dev *pdev)
274 {
275 	static const int caps[] = {
276 		PCI_EXT_CAP_ID_PRI,
277 		PCI_EXT_CAP_ID_PASID,
278 	};
279 	int i, pos;
280 
281 	if (!pci_ats_supported(pdev))
282 		return false;
283 
284 	for (i = 0; i < 2; ++i) {
285 		pos = pci_find_ext_capability(pdev, caps[i]);
286 		if (pos == 0)
287 			return false;
288 	}
289 
290 	return true;
291 }
292 
293 /*
294  * This function checks if the driver got a valid device from the caller to
295  * avoid dereferencing invalid pointers.
296  */
check_device(struct device * dev)297 static bool check_device(struct device *dev)
298 {
299 	int devid;
300 
301 	if (!dev)
302 		return false;
303 
304 	devid = get_device_id(dev);
305 	if (devid < 0)
306 		return false;
307 
308 	/* Out of our scope? */
309 	if (devid > amd_iommu_last_bdf)
310 		return false;
311 
312 	if (amd_iommu_rlookup_table[devid] == NULL)
313 		return false;
314 
315 	return true;
316 }
317 
iommu_init_device(struct device * dev)318 static int iommu_init_device(struct device *dev)
319 {
320 	struct iommu_dev_data *dev_data;
321 	int devid;
322 
323 	if (dev_iommu_priv_get(dev))
324 		return 0;
325 
326 	devid = get_device_id(dev);
327 	if (devid < 0)
328 		return devid;
329 
330 	dev_data = find_dev_data(devid);
331 	if (!dev_data)
332 		return -ENOMEM;
333 
334 	dev_data->pdev = setup_aliases(dev);
335 
336 	/*
337 	 * By default we use passthrough mode for IOMMUv2 capable device.
338 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
339 	 * invalid address), we ignore the capability for the device so
340 	 * it'll be forced to go into translation mode.
341 	 */
342 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
343 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
344 		struct amd_iommu *iommu;
345 
346 		iommu = amd_iommu_rlookup_table[dev_data->devid];
347 		dev_data->iommu_v2 = iommu->is_iommu_v2;
348 	}
349 
350 	dev_iommu_priv_set(dev, dev_data);
351 
352 	return 0;
353 }
354 
iommu_ignore_device(struct device * dev)355 static void iommu_ignore_device(struct device *dev)
356 {
357 	int devid;
358 
359 	devid = get_device_id(dev);
360 	if (devid < 0)
361 		return;
362 
363 	amd_iommu_rlookup_table[devid] = NULL;
364 	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
365 
366 	setup_aliases(dev);
367 }
368 
amd_iommu_uninit_device(struct device * dev)369 static void amd_iommu_uninit_device(struct device *dev)
370 {
371 	struct iommu_dev_data *dev_data;
372 
373 	dev_data = dev_iommu_priv_get(dev);
374 	if (!dev_data)
375 		return;
376 
377 	if (dev_data->domain)
378 		detach_device(dev);
379 
380 	dev_iommu_priv_set(dev, NULL);
381 
382 	/*
383 	 * We keep dev_data around for unplugged devices and reuse it when the
384 	 * device is re-plugged - not doing so would introduce a ton of races.
385 	 */
386 }
387 
388 /****************************************************************************
389  *
390  * Interrupt handling functions
391  *
392  ****************************************************************************/
393 
dump_dte_entry(u16 devid)394 static void dump_dte_entry(u16 devid)
395 {
396 	int i;
397 
398 	for (i = 0; i < 4; ++i)
399 		pr_err("DTE[%d]: %016llx\n", i,
400 			amd_iommu_dev_table[devid].data[i]);
401 }
402 
dump_command(unsigned long phys_addr)403 static void dump_command(unsigned long phys_addr)
404 {
405 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
406 	int i;
407 
408 	for (i = 0; i < 4; ++i)
409 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
410 }
411 
amd_iommu_report_rmp_hw_error(volatile u32 * event)412 static void amd_iommu_report_rmp_hw_error(volatile u32 *event)
413 {
414 	struct iommu_dev_data *dev_data = NULL;
415 	int devid, vmg_tag, flags;
416 	struct pci_dev *pdev;
417 	u64 spa;
418 
419 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
420 	vmg_tag = (event[1]) & 0xFFFF;
421 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
422 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
423 
424 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
425 					   devid & 0xff);
426 	if (pdev)
427 		dev_data = dev_iommu_priv_get(&pdev->dev);
428 
429 	if (dev_data) {
430 		if (__ratelimit(&dev_data->rs)) {
431 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
432 				vmg_tag, spa, flags);
433 		}
434 	} else {
435 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
436 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
437 			vmg_tag, spa, flags);
438 	}
439 
440 	if (pdev)
441 		pci_dev_put(pdev);
442 }
443 
amd_iommu_report_rmp_fault(volatile u32 * event)444 static void amd_iommu_report_rmp_fault(volatile u32 *event)
445 {
446 	struct iommu_dev_data *dev_data = NULL;
447 	int devid, flags_rmp, vmg_tag, flags;
448 	struct pci_dev *pdev;
449 	u64 gpa;
450 
451 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
452 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
453 	vmg_tag   = (event[1]) & 0xFFFF;
454 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
455 	gpa       = ((u64)event[3] << 32) | event[2];
456 
457 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
458 					   devid & 0xff);
459 	if (pdev)
460 		dev_data = dev_iommu_priv_get(&pdev->dev);
461 
462 	if (dev_data) {
463 		if (__ratelimit(&dev_data->rs)) {
464 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
465 				vmg_tag, gpa, flags_rmp, flags);
466 		}
467 	} else {
468 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
469 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
470 			vmg_tag, gpa, flags_rmp, flags);
471 	}
472 
473 	if (pdev)
474 		pci_dev_put(pdev);
475 }
476 
477 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
478 	(((flags) & EVENT_FLAG_I) == 0)
479 
480 #define IS_WRITE_REQUEST(flags)			\
481 	((flags) & EVENT_FLAG_RW)
482 
amd_iommu_report_page_fault(u16 devid,u16 domain_id,u64 address,int flags)483 static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
484 					u64 address, int flags)
485 {
486 	struct iommu_dev_data *dev_data = NULL;
487 	struct pci_dev *pdev;
488 
489 	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
490 					   devid & 0xff);
491 	if (pdev)
492 		dev_data = dev_iommu_priv_get(&pdev->dev);
493 
494 	if (dev_data) {
495 		/*
496 		 * If this is a DMA fault (for which the I(nterrupt)
497 		 * bit will be unset), allow report_iommu_fault() to
498 		 * prevent logging it.
499 		 */
500 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
501 			if (!report_iommu_fault(&dev_data->domain->domain,
502 						&pdev->dev, address,
503 						IS_WRITE_REQUEST(flags) ?
504 							IOMMU_FAULT_WRITE :
505 							IOMMU_FAULT_READ))
506 				goto out;
507 		}
508 
509 		if (__ratelimit(&dev_data->rs)) {
510 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
511 				domain_id, address, flags);
512 		}
513 	} else {
514 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
515 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
516 			domain_id, address, flags);
517 	}
518 
519 out:
520 	if (pdev)
521 		pci_dev_put(pdev);
522 }
523 
iommu_print_event(struct amd_iommu * iommu,void * __evt)524 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
525 {
526 	struct device *dev = iommu->iommu.dev;
527 	int type, devid, flags, tag;
528 	volatile u32 *event = __evt;
529 	int count = 0;
530 	u64 address;
531 	u32 pasid;
532 
533 retry:
534 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
535 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
536 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
537 		  (event[1] & EVENT_DOMID_MASK_LO);
538 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
539 	address = (u64)(((u64)event[3]) << 32) | event[2];
540 
541 	if (type == 0) {
542 		/* Did we hit the erratum? */
543 		if (++count == LOOP_TIMEOUT) {
544 			pr_err("No event written to event log\n");
545 			return;
546 		}
547 		udelay(1);
548 		goto retry;
549 	}
550 
551 	if (type == EVENT_TYPE_IO_FAULT) {
552 		amd_iommu_report_page_fault(devid, pasid, address, flags);
553 		return;
554 	}
555 
556 	switch (type) {
557 	case EVENT_TYPE_ILL_DEV:
558 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
559 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
560 			pasid, address, flags);
561 		dump_dte_entry(devid);
562 		break;
563 	case EVENT_TYPE_DEV_TAB_ERR:
564 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
565 			"address=0x%llx flags=0x%04x]\n",
566 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
567 			address, flags);
568 		break;
569 	case EVENT_TYPE_PAGE_TAB_ERR:
570 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
571 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
572 			pasid, address, flags);
573 		break;
574 	case EVENT_TYPE_ILL_CMD:
575 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
576 		dump_command(address);
577 		break;
578 	case EVENT_TYPE_CMD_HARD_ERR:
579 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
580 			address, flags);
581 		break;
582 	case EVENT_TYPE_IOTLB_INV_TO:
583 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n",
584 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 			address);
586 		break;
587 	case EVENT_TYPE_INV_DEV_REQ:
588 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
589 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
590 			pasid, address, flags);
591 		break;
592 	case EVENT_TYPE_RMP_FAULT:
593 		amd_iommu_report_rmp_fault(event);
594 		break;
595 	case EVENT_TYPE_RMP_HW_ERR:
596 		amd_iommu_report_rmp_hw_error(event);
597 		break;
598 	case EVENT_TYPE_INV_PPR_REQ:
599 		pasid = PPR_PASID(*((u64 *)__evt));
600 		tag = event[1] & 0x03FF;
601 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
602 			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
603 			pasid, address, flags, tag);
604 		break;
605 	default:
606 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
607 			event[0], event[1], event[2], event[3]);
608 	}
609 
610 	memset(__evt, 0, 4 * sizeof(u32));
611 }
612 
iommu_poll_events(struct amd_iommu * iommu)613 static void iommu_poll_events(struct amd_iommu *iommu)
614 {
615 	u32 head, tail;
616 
617 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
618 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
619 
620 	while (head != tail) {
621 		iommu_print_event(iommu, iommu->evt_buf + head);
622 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
623 	}
624 
625 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
626 }
627 
iommu_handle_ppr_entry(struct amd_iommu * iommu,u64 * raw)628 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
629 {
630 	struct amd_iommu_fault fault;
631 
632 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
633 		pr_err_ratelimited("Unknown PPR request received\n");
634 		return;
635 	}
636 
637 	fault.address   = raw[1];
638 	fault.pasid     = PPR_PASID(raw[0]);
639 	fault.device_id = PPR_DEVID(raw[0]);
640 	fault.tag       = PPR_TAG(raw[0]);
641 	fault.flags     = PPR_FLAGS(raw[0]);
642 
643 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
644 }
645 
iommu_poll_ppr_log(struct amd_iommu * iommu)646 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
647 {
648 	u32 head, tail;
649 
650 	if (iommu->ppr_log == NULL)
651 		return;
652 
653 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
654 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
655 
656 	while (head != tail) {
657 		volatile u64 *raw;
658 		u64 entry[2];
659 		int i;
660 
661 		raw = (u64 *)(iommu->ppr_log + head);
662 
663 		/*
664 		 * Hardware bug: Interrupt may arrive before the entry is
665 		 * written to memory. If this happens we need to wait for the
666 		 * entry to arrive.
667 		 */
668 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
669 			if (PPR_REQ_TYPE(raw[0]) != 0)
670 				break;
671 			udelay(1);
672 		}
673 
674 		/* Avoid memcpy function-call overhead */
675 		entry[0] = raw[0];
676 		entry[1] = raw[1];
677 
678 		/*
679 		 * To detect the hardware bug we need to clear the entry
680 		 * back to zero.
681 		 */
682 		raw[0] = raw[1] = 0UL;
683 
684 		/* Update head pointer of hardware ring-buffer */
685 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
686 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
687 
688 		/* Handle PPR entry */
689 		iommu_handle_ppr_entry(iommu, entry);
690 
691 		/* Refresh ring-buffer information */
692 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
693 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
694 	}
695 }
696 
697 #ifdef CONFIG_IRQ_REMAP
698 static int (*iommu_ga_log_notifier)(u32);
699 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))700 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
701 {
702 	iommu_ga_log_notifier = notifier;
703 
704 	return 0;
705 }
706 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
707 
iommu_poll_ga_log(struct amd_iommu * iommu)708 static void iommu_poll_ga_log(struct amd_iommu *iommu)
709 {
710 	u32 head, tail, cnt = 0;
711 
712 	if (iommu->ga_log == NULL)
713 		return;
714 
715 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
716 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
717 
718 	while (head != tail) {
719 		volatile u64 *raw;
720 		u64 log_entry;
721 
722 		raw = (u64 *)(iommu->ga_log + head);
723 		cnt++;
724 
725 		/* Avoid memcpy function-call overhead */
726 		log_entry = *raw;
727 
728 		/* Update head pointer of hardware ring-buffer */
729 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
730 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
731 
732 		/* Handle GA entry */
733 		switch (GA_REQ_TYPE(log_entry)) {
734 		case GA_GUEST_NR:
735 			if (!iommu_ga_log_notifier)
736 				break;
737 
738 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
739 				 __func__, GA_DEVID(log_entry),
740 				 GA_TAG(log_entry));
741 
742 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
743 				pr_err("GA log notifier failed.\n");
744 			break;
745 		default:
746 			break;
747 		}
748 	}
749 }
750 
751 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)752 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
753 {
754 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
755 	    pci_dev_has_special_msi_domain(to_pci_dev(dev)))
756 		return;
757 
758 	dev_set_msi_domain(dev, iommu->msi_domain);
759 }
760 
761 #else /* CONFIG_IRQ_REMAP */
762 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)763 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
764 #endif /* !CONFIG_IRQ_REMAP */
765 
766 #define AMD_IOMMU_INT_MASK	\
767 	(MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \
768 	 MMIO_STATUS_EVT_INT_MASK | \
769 	 MMIO_STATUS_PPR_INT_MASK | \
770 	 MMIO_STATUS_GALOG_INT_MASK)
771 
amd_iommu_int_thread(int irq,void * data)772 irqreturn_t amd_iommu_int_thread(int irq, void *data)
773 {
774 	struct amd_iommu *iommu = (struct amd_iommu *) data;
775 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
776 
777 	while (status & AMD_IOMMU_INT_MASK) {
778 		/* Enable interrupt sources again */
779 		writel(AMD_IOMMU_INT_MASK,
780 			iommu->mmio_base + MMIO_STATUS_OFFSET);
781 
782 		if (status & MMIO_STATUS_EVT_INT_MASK) {
783 			pr_devel("Processing IOMMU Event Log\n");
784 			iommu_poll_events(iommu);
785 		}
786 
787 		if (status & MMIO_STATUS_PPR_INT_MASK) {
788 			pr_devel("Processing IOMMU PPR Log\n");
789 			iommu_poll_ppr_log(iommu);
790 		}
791 
792 #ifdef CONFIG_IRQ_REMAP
793 		if (status & MMIO_STATUS_GALOG_INT_MASK) {
794 			pr_devel("Processing IOMMU GA Log\n");
795 			iommu_poll_ga_log(iommu);
796 		}
797 #endif
798 
799 		if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) {
800 			pr_info_ratelimited("IOMMU event log overflow\n");
801 			amd_iommu_restart_event_logging(iommu);
802 		}
803 
804 		/*
805 		 * Hardware bug: ERBT1312
806 		 * When re-enabling interrupt (by writing 1
807 		 * to clear the bit), the hardware might also try to set
808 		 * the interrupt bit in the event status register.
809 		 * In this scenario, the bit will be set, and disable
810 		 * subsequent interrupts.
811 		 *
812 		 * Workaround: The IOMMU driver should read back the
813 		 * status register and check if the interrupt bits are cleared.
814 		 * If not, driver will need to go through the interrupt handler
815 		 * again and re-clear the bits
816 		 */
817 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
818 	}
819 	return IRQ_HANDLED;
820 }
821 
amd_iommu_int_handler(int irq,void * data)822 irqreturn_t amd_iommu_int_handler(int irq, void *data)
823 {
824 	return IRQ_WAKE_THREAD;
825 }
826 
827 /****************************************************************************
828  *
829  * IOMMU command queuing functions
830  *
831  ****************************************************************************/
832 
wait_on_sem(struct amd_iommu * iommu,u64 data)833 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
834 {
835 	int i = 0;
836 
837 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
838 		udelay(1);
839 		i += 1;
840 	}
841 
842 	if (i == LOOP_TIMEOUT) {
843 		pr_alert("Completion-Wait loop timed out\n");
844 		return -EIO;
845 	}
846 
847 	return 0;
848 }
849 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)850 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
851 			       struct iommu_cmd *cmd)
852 {
853 	u8 *target;
854 	u32 tail;
855 
856 	/* Copy command to buffer */
857 	tail = iommu->cmd_buf_tail;
858 	target = iommu->cmd_buf + tail;
859 	memcpy(target, cmd, sizeof(*cmd));
860 
861 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
862 	iommu->cmd_buf_tail = tail;
863 
864 	/* Tell the IOMMU about it */
865 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
866 }
867 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)868 static void build_completion_wait(struct iommu_cmd *cmd,
869 				  struct amd_iommu *iommu,
870 				  u64 data)
871 {
872 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
873 
874 	memset(cmd, 0, sizeof(*cmd));
875 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
876 	cmd->data[1] = upper_32_bits(paddr);
877 	cmd->data[2] = lower_32_bits(data);
878 	cmd->data[3] = upper_32_bits(data);
879 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
880 }
881 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)882 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
883 {
884 	memset(cmd, 0, sizeof(*cmd));
885 	cmd->data[0] = devid;
886 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
887 }
888 
889 /*
890  * Builds an invalidation address which is suitable for one page or multiple
891  * pages. Sets the size bit (S) as needed is more than one page is flushed.
892  */
build_inv_address(u64 address,size_t size)893 static inline u64 build_inv_address(u64 address, size_t size)
894 {
895 	u64 pages, end, msb_diff;
896 
897 	pages = iommu_num_pages(address, size, PAGE_SIZE);
898 
899 	if (pages == 1)
900 		return address & PAGE_MASK;
901 
902 	end = address + size - 1;
903 
904 	/*
905 	 * msb_diff would hold the index of the most significant bit that
906 	 * flipped between the start and end.
907 	 */
908 	msb_diff = fls64(end ^ address) - 1;
909 
910 	/*
911 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
912 	 * between the start and the end, invalidate everything.
913 	 */
914 	if (unlikely(msb_diff > 51)) {
915 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
916 	} else {
917 		/*
918 		 * The msb-bit must be clear on the address. Just set all the
919 		 * lower bits.
920 		 */
921 		address |= (1ull << msb_diff) - 1;
922 	}
923 
924 	/* Clear bits 11:0 */
925 	address &= PAGE_MASK;
926 
927 	/* Set the size bit - we flush more than one 4kb page */
928 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
929 }
930 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,int pde)931 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
932 				  size_t size, u16 domid, int pde)
933 {
934 	u64 inv_address = build_inv_address(address, size);
935 
936 	memset(cmd, 0, sizeof(*cmd));
937 	cmd->data[1] |= domid;
938 	cmd->data[2]  = lower_32_bits(inv_address);
939 	cmd->data[3]  = upper_32_bits(inv_address);
940 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
941 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
942 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
943 }
944 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size)945 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
946 				  u64 address, size_t size)
947 {
948 	u64 inv_address = build_inv_address(address, size);
949 
950 	memset(cmd, 0, sizeof(*cmd));
951 	cmd->data[0]  = devid;
952 	cmd->data[0] |= (qdep & 0xff) << 24;
953 	cmd->data[1]  = devid;
954 	cmd->data[2]  = lower_32_bits(inv_address);
955 	cmd->data[3]  = upper_32_bits(inv_address);
956 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
957 }
958 
build_inv_iommu_pasid(struct iommu_cmd * cmd,u16 domid,u32 pasid,u64 address,bool size)959 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
960 				  u64 address, bool size)
961 {
962 	memset(cmd, 0, sizeof(*cmd));
963 
964 	address &= ~(0xfffULL);
965 
966 	cmd->data[0]  = pasid;
967 	cmd->data[1]  = domid;
968 	cmd->data[2]  = lower_32_bits(address);
969 	cmd->data[3]  = upper_32_bits(address);
970 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
971 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
972 	if (size)
973 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
974 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
975 }
976 
build_inv_iotlb_pasid(struct iommu_cmd * cmd,u16 devid,u32 pasid,int qdep,u64 address,bool size)977 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
978 				  int qdep, u64 address, bool size)
979 {
980 	memset(cmd, 0, sizeof(*cmd));
981 
982 	address &= ~(0xfffULL);
983 
984 	cmd->data[0]  = devid;
985 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
986 	cmd->data[0] |= (qdep  & 0xff) << 24;
987 	cmd->data[1]  = devid;
988 	cmd->data[1] |= (pasid & 0xff) << 16;
989 	cmd->data[2]  = lower_32_bits(address);
990 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
991 	cmd->data[3]  = upper_32_bits(address);
992 	if (size)
993 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
994 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
995 }
996 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,bool gn)997 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
998 			       int status, int tag, bool gn)
999 {
1000 	memset(cmd, 0, sizeof(*cmd));
1001 
1002 	cmd->data[0]  = devid;
1003 	if (gn) {
1004 		cmd->data[1]  = pasid;
1005 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1006 	}
1007 	cmd->data[3]  = tag & 0x1ff;
1008 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1009 
1010 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011 }
1012 
build_inv_all(struct iommu_cmd * cmd)1013 static void build_inv_all(struct iommu_cmd *cmd)
1014 {
1015 	memset(cmd, 0, sizeof(*cmd));
1016 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017 }
1018 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1019 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1020 {
1021 	memset(cmd, 0, sizeof(*cmd));
1022 	cmd->data[0] = devid;
1023 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1024 }
1025 
1026 /*
1027  * Writes the command to the IOMMUs command buffer and informs the
1028  * hardware about the new command.
1029  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1030 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1031 				      struct iommu_cmd *cmd,
1032 				      bool sync)
1033 {
1034 	unsigned int count = 0;
1035 	u32 left, next_tail;
1036 
1037 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1038 again:
1039 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1040 
1041 	if (left <= 0x20) {
1042 		/* Skip udelay() the first time around */
1043 		if (count++) {
1044 			if (count == LOOP_TIMEOUT) {
1045 				pr_err("Command buffer timeout\n");
1046 				return -EIO;
1047 			}
1048 
1049 			udelay(1);
1050 		}
1051 
1052 		/* Update head and recheck remaining space */
1053 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1054 					    MMIO_CMD_HEAD_OFFSET);
1055 
1056 		goto again;
1057 	}
1058 
1059 	copy_cmd_to_buffer(iommu, cmd);
1060 
1061 	/* Do we need to make sure all commands are processed? */
1062 	iommu->need_sync = sync;
1063 
1064 	return 0;
1065 }
1066 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1067 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1068 				    struct iommu_cmd *cmd,
1069 				    bool sync)
1070 {
1071 	unsigned long flags;
1072 	int ret;
1073 
1074 	raw_spin_lock_irqsave(&iommu->lock, flags);
1075 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1076 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1077 
1078 	return ret;
1079 }
1080 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1081 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1082 {
1083 	return iommu_queue_command_sync(iommu, cmd, true);
1084 }
1085 
1086 /*
1087  * This function queues a completion wait command into the command
1088  * buffer of an IOMMU
1089  */
iommu_completion_wait(struct amd_iommu * iommu)1090 static int iommu_completion_wait(struct amd_iommu *iommu)
1091 {
1092 	struct iommu_cmd cmd;
1093 	unsigned long flags;
1094 	int ret;
1095 	u64 data;
1096 
1097 	if (!iommu->need_sync)
1098 		return 0;
1099 
1100 	raw_spin_lock_irqsave(&iommu->lock, flags);
1101 
1102 	data = ++iommu->cmd_sem_val;
1103 	build_completion_wait(&cmd, iommu, data);
1104 
1105 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1106 	if (ret)
1107 		goto out_unlock;
1108 
1109 	ret = wait_on_sem(iommu, data);
1110 
1111 out_unlock:
1112 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1113 
1114 	return ret;
1115 }
1116 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1117 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1118 {
1119 	struct iommu_cmd cmd;
1120 
1121 	build_inv_dte(&cmd, devid);
1122 
1123 	return iommu_queue_command(iommu, &cmd);
1124 }
1125 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1126 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1127 {
1128 	u32 devid;
1129 
1130 	for (devid = 0; devid <= 0xffff; ++devid)
1131 		iommu_flush_dte(iommu, devid);
1132 
1133 	iommu_completion_wait(iommu);
1134 }
1135 
1136 /*
1137  * This function uses heavy locking and may disable irqs for some time. But
1138  * this is no issue because it is only called during resume.
1139  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1140 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1141 {
1142 	u32 dom_id;
1143 
1144 	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1145 		struct iommu_cmd cmd;
1146 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1147 				      dom_id, 1);
1148 		iommu_queue_command(iommu, &cmd);
1149 	}
1150 
1151 	iommu_completion_wait(iommu);
1152 }
1153 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1154 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1155 {
1156 	struct iommu_cmd cmd;
1157 
1158 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1159 			      dom_id, 1);
1160 	iommu_queue_command(iommu, &cmd);
1161 
1162 	iommu_completion_wait(iommu);
1163 }
1164 
amd_iommu_flush_all(struct amd_iommu * iommu)1165 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1166 {
1167 	struct iommu_cmd cmd;
1168 
1169 	build_inv_all(&cmd);
1170 
1171 	iommu_queue_command(iommu, &cmd);
1172 	iommu_completion_wait(iommu);
1173 }
1174 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1175 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1176 {
1177 	struct iommu_cmd cmd;
1178 
1179 	build_inv_irt(&cmd, devid);
1180 
1181 	iommu_queue_command(iommu, &cmd);
1182 }
1183 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1184 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1185 {
1186 	u32 devid;
1187 
1188 	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1189 		iommu_flush_irt(iommu, devid);
1190 
1191 	iommu_completion_wait(iommu);
1192 }
1193 
iommu_flush_all_caches(struct amd_iommu * iommu)1194 void iommu_flush_all_caches(struct amd_iommu *iommu)
1195 {
1196 	if (iommu_feature(iommu, FEATURE_IA)) {
1197 		amd_iommu_flush_all(iommu);
1198 	} else {
1199 		amd_iommu_flush_dte_all(iommu);
1200 		amd_iommu_flush_irt_all(iommu);
1201 		amd_iommu_flush_tlb_all(iommu);
1202 	}
1203 }
1204 
1205 /*
1206  * Command send function for flushing on-device TLB
1207  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size)1208 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1209 			      u64 address, size_t size)
1210 {
1211 	struct amd_iommu *iommu;
1212 	struct iommu_cmd cmd;
1213 	int qdep;
1214 
1215 	qdep     = dev_data->ats.qdep;
1216 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1217 
1218 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1219 
1220 	return iommu_queue_command(iommu, &cmd);
1221 }
1222 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1223 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1224 {
1225 	struct amd_iommu *iommu = data;
1226 
1227 	return iommu_flush_dte(iommu, alias);
1228 }
1229 
1230 /*
1231  * Command send function for invalidating a device table entry
1232  */
device_flush_dte(struct iommu_dev_data * dev_data)1233 static int device_flush_dte(struct iommu_dev_data *dev_data)
1234 {
1235 	struct amd_iommu *iommu;
1236 	u16 alias;
1237 	int ret;
1238 
1239 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1240 
1241 	if (dev_data->pdev)
1242 		ret = pci_for_each_dma_alias(dev_data->pdev,
1243 					     device_flush_dte_alias, iommu);
1244 	else
1245 		ret = iommu_flush_dte(iommu, dev_data->devid);
1246 	if (ret)
1247 		return ret;
1248 
1249 	alias = amd_iommu_alias_table[dev_data->devid];
1250 	if (alias != dev_data->devid) {
1251 		ret = iommu_flush_dte(iommu, alias);
1252 		if (ret)
1253 			return ret;
1254 	}
1255 
1256 	if (dev_data->ats.enabled)
1257 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1258 
1259 	return ret;
1260 }
1261 
1262 /*
1263  * TLB invalidation function which is called from the mapping functions.
1264  * It invalidates a single PTE if the range to flush is within a single
1265  * page. Otherwise it flushes the whole TLB of the IOMMU.
1266  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1267 static void __domain_flush_pages(struct protection_domain *domain,
1268 				 u64 address, size_t size, int pde)
1269 {
1270 	struct iommu_dev_data *dev_data;
1271 	struct iommu_cmd cmd;
1272 	int ret = 0, i;
1273 
1274 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1275 
1276 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1277 		if (!domain->dev_iommu[i])
1278 			continue;
1279 
1280 		/*
1281 		 * Devices of this domain are behind this IOMMU
1282 		 * We need a TLB flush
1283 		 */
1284 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1285 	}
1286 
1287 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1288 
1289 		if (!dev_data->ats.enabled)
1290 			continue;
1291 
1292 		ret |= device_flush_iotlb(dev_data, address, size);
1293 	}
1294 
1295 	WARN_ON(ret);
1296 }
1297 
domain_flush_pages(struct protection_domain * domain,u64 address,size_t size,int pde)1298 static void domain_flush_pages(struct protection_domain *domain,
1299 			       u64 address, size_t size, int pde)
1300 {
1301 	if (likely(!amd_iommu_np_cache)) {
1302 		__domain_flush_pages(domain, address, size, pde);
1303 		return;
1304 	}
1305 
1306 	/*
1307 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1308 	 * In such setups it is best to avoid flushes of ranges which are not
1309 	 * naturally aligned, since it would lead to flushes of unmodified
1310 	 * PTEs. Such flushes would require the hypervisor to do more work than
1311 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1312 	 * until you cover the range. Each iteration flushes the smaller
1313 	 * between the natural alignment of the address that we flush and the
1314 	 * greatest naturally aligned region that fits in the range.
1315 	 */
1316 	while (size != 0) {
1317 		int addr_alignment = __ffs(address);
1318 		int size_alignment = __fls(size);
1319 		int min_alignment;
1320 		size_t flush_size;
1321 
1322 		/*
1323 		 * size is always non-zero, but address might be zero, causing
1324 		 * addr_alignment to be negative. As the casting of the
1325 		 * argument in __ffs(address) to long might trim the high bits
1326 		 * of the address on x86-32, cast to long when doing the check.
1327 		 */
1328 		if (likely((unsigned long)address != 0))
1329 			min_alignment = min(addr_alignment, size_alignment);
1330 		else
1331 			min_alignment = size_alignment;
1332 
1333 		flush_size = 1ul << min_alignment;
1334 
1335 		__domain_flush_pages(domain, address, flush_size, pde);
1336 		address += flush_size;
1337 		size -= flush_size;
1338 	}
1339 }
1340 
1341 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_tlb_pde(struct protection_domain * domain)1342 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1343 {
1344 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1345 }
1346 
amd_iommu_domain_flush_complete(struct protection_domain * domain)1347 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1348 {
1349 	int i;
1350 
1351 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1352 		if (domain && !domain->dev_iommu[i])
1353 			continue;
1354 
1355 		/*
1356 		 * Devices of this domain are behind this IOMMU
1357 		 * We need to wait for completion of all commands.
1358 		 */
1359 		iommu_completion_wait(amd_iommus[i]);
1360 	}
1361 }
1362 
1363 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1364 static void domain_flush_np_cache(struct protection_domain *domain,
1365 		dma_addr_t iova, size_t size)
1366 {
1367 	if (unlikely(amd_iommu_np_cache)) {
1368 		unsigned long flags;
1369 
1370 		spin_lock_irqsave(&domain->lock, flags);
1371 		domain_flush_pages(domain, iova, size, 1);
1372 		amd_iommu_domain_flush_complete(domain);
1373 		spin_unlock_irqrestore(&domain->lock, flags);
1374 	}
1375 }
1376 
1377 
1378 /*
1379  * This function flushes the DTEs for all devices in domain
1380  */
domain_flush_devices(struct protection_domain * domain)1381 static void domain_flush_devices(struct protection_domain *domain)
1382 {
1383 	struct iommu_dev_data *dev_data;
1384 
1385 	list_for_each_entry(dev_data, &domain->dev_list, list)
1386 		device_flush_dte(dev_data);
1387 }
1388 
1389 /****************************************************************************
1390  *
1391  * The next functions belong to the domain allocation. A domain is
1392  * allocated for every IOMMU as the default domain. If device isolation
1393  * is enabled, every device get its own domain. The most important thing
1394  * about domains is the page table mapping the DMA address space they
1395  * contain.
1396  *
1397  ****************************************************************************/
1398 
domain_id_alloc(void)1399 static u16 domain_id_alloc(void)
1400 {
1401 	int id;
1402 
1403 	spin_lock(&pd_bitmap_lock);
1404 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1405 	BUG_ON(id == 0);
1406 	if (id > 0 && id < MAX_DOMAIN_ID)
1407 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1408 	else
1409 		id = 0;
1410 	spin_unlock(&pd_bitmap_lock);
1411 
1412 	return id;
1413 }
1414 
domain_id_free(int id)1415 static void domain_id_free(int id)
1416 {
1417 	spin_lock(&pd_bitmap_lock);
1418 	if (id > 0 && id < MAX_DOMAIN_ID)
1419 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1420 	spin_unlock(&pd_bitmap_lock);
1421 }
1422 
free_gcr3_tbl_level1(u64 * tbl)1423 static void free_gcr3_tbl_level1(u64 *tbl)
1424 {
1425 	u64 *ptr;
1426 	int i;
1427 
1428 	for (i = 0; i < 512; ++i) {
1429 		if (!(tbl[i] & GCR3_VALID))
1430 			continue;
1431 
1432 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1433 
1434 		free_page((unsigned long)ptr);
1435 	}
1436 }
1437 
free_gcr3_tbl_level2(u64 * tbl)1438 static void free_gcr3_tbl_level2(u64 *tbl)
1439 {
1440 	u64 *ptr;
1441 	int i;
1442 
1443 	for (i = 0; i < 512; ++i) {
1444 		if (!(tbl[i] & GCR3_VALID))
1445 			continue;
1446 
1447 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1448 
1449 		free_gcr3_tbl_level1(ptr);
1450 	}
1451 }
1452 
free_gcr3_table(struct protection_domain * domain)1453 static void free_gcr3_table(struct protection_domain *domain)
1454 {
1455 	if (domain->glx == 2)
1456 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1457 	else if (domain->glx == 1)
1458 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1459 	else
1460 		BUG_ON(domain->glx != 0);
1461 
1462 	free_page((unsigned long)domain->gcr3_tbl);
1463 }
1464 
set_dte_entry(u16 devid,struct protection_domain * domain,bool ats,bool ppr)1465 static void set_dte_entry(u16 devid, struct protection_domain *domain,
1466 			  bool ats, bool ppr)
1467 {
1468 	u64 pte_root = 0;
1469 	u64 flags = 0;
1470 	u32 old_domid;
1471 
1472 	if (domain->iop.mode != PAGE_MODE_NONE)
1473 		pte_root = iommu_virt_to_phys(domain->iop.root);
1474 
1475 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1476 		    << DEV_ENTRY_MODE_SHIFT;
1477 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1478 
1479 	flags = amd_iommu_dev_table[devid].data[1];
1480 
1481 	if (ats)
1482 		flags |= DTE_FLAG_IOTLB;
1483 
1484 	if (ppr) {
1485 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1486 
1487 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1488 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1489 	}
1490 
1491 	if (domain->flags & PD_IOMMUV2_MASK) {
1492 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1493 		u64 glx  = domain->glx;
1494 		u64 tmp;
1495 
1496 		pte_root |= DTE_FLAG_GV;
1497 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1498 
1499 		/* First mask out possible old values for GCR3 table */
1500 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1501 		flags    &= ~tmp;
1502 
1503 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1504 		flags    &= ~tmp;
1505 
1506 		/* Encode GCR3 table into DTE */
1507 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1508 		pte_root |= tmp;
1509 
1510 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1511 		flags    |= tmp;
1512 
1513 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1514 		flags    |= tmp;
1515 	}
1516 
1517 	flags &= ~DEV_DOMID_MASK;
1518 	flags |= domain->id;
1519 
1520 	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1521 	amd_iommu_dev_table[devid].data[1]  = flags;
1522 	amd_iommu_dev_table[devid].data[0]  = pte_root;
1523 
1524 	/*
1525 	 * A kdump kernel might be replacing a domain ID that was copied from
1526 	 * the previous kernel--if so, it needs to flush the translation cache
1527 	 * entries for the old domain ID that is being overwritten
1528 	 */
1529 	if (old_domid) {
1530 		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1531 
1532 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1533 	}
1534 }
1535 
clear_dte_entry(u16 devid)1536 static void clear_dte_entry(u16 devid)
1537 {
1538 	/* remove entry from the device table seen by the hardware */
1539 	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1540 	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1541 
1542 	amd_iommu_apply_erratum_63(devid);
1543 }
1544 
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)1545 static void do_attach(struct iommu_dev_data *dev_data,
1546 		      struct protection_domain *domain)
1547 {
1548 	struct amd_iommu *iommu;
1549 	bool ats;
1550 
1551 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1552 	ats   = dev_data->ats.enabled;
1553 
1554 	/* Update data structures */
1555 	dev_data->domain = domain;
1556 	list_add(&dev_data->list, &domain->dev_list);
1557 
1558 	/* Do reference counting */
1559 	domain->dev_iommu[iommu->index] += 1;
1560 	domain->dev_cnt                 += 1;
1561 
1562 	/* Update device table */
1563 	set_dte_entry(dev_data->devid, domain,
1564 		      ats, dev_data->iommu_v2);
1565 	clone_aliases(dev_data->pdev);
1566 
1567 	device_flush_dte(dev_data);
1568 }
1569 
do_detach(struct iommu_dev_data * dev_data)1570 static void do_detach(struct iommu_dev_data *dev_data)
1571 {
1572 	struct protection_domain *domain = dev_data->domain;
1573 	struct amd_iommu *iommu;
1574 
1575 	iommu = amd_iommu_rlookup_table[dev_data->devid];
1576 
1577 	/* Update data structures */
1578 	dev_data->domain = NULL;
1579 	list_del(&dev_data->list);
1580 	clear_dte_entry(dev_data->devid);
1581 	clone_aliases(dev_data->pdev);
1582 
1583 	/* Flush the DTE entry */
1584 	device_flush_dte(dev_data);
1585 
1586 	/* Flush IOTLB */
1587 	amd_iommu_domain_flush_tlb_pde(domain);
1588 
1589 	/* Wait for the flushes to finish */
1590 	amd_iommu_domain_flush_complete(domain);
1591 
1592 	/* decrease reference counters - needs to happen after the flushes */
1593 	domain->dev_iommu[iommu->index] -= 1;
1594 	domain->dev_cnt                 -= 1;
1595 }
1596 
pdev_iommuv2_disable(struct pci_dev * pdev)1597 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1598 {
1599 	pci_disable_ats(pdev);
1600 	pci_disable_pri(pdev);
1601 	pci_disable_pasid(pdev);
1602 }
1603 
pdev_iommuv2_enable(struct pci_dev * pdev)1604 static int pdev_iommuv2_enable(struct pci_dev *pdev)
1605 {
1606 	int ret;
1607 
1608 	/* Only allow access to user-accessible pages */
1609 	ret = pci_enable_pasid(pdev, 0);
1610 	if (ret)
1611 		goto out_err;
1612 
1613 	/* First reset the PRI state of the device */
1614 	ret = pci_reset_pri(pdev);
1615 	if (ret)
1616 		goto out_err;
1617 
1618 	/* Enable PRI */
1619 	/* FIXME: Hardcode number of outstanding requests for now */
1620 	ret = pci_enable_pri(pdev, 32);
1621 	if (ret)
1622 		goto out_err;
1623 
1624 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1625 	if (ret)
1626 		goto out_err;
1627 
1628 	return 0;
1629 
1630 out_err:
1631 	pci_disable_pri(pdev);
1632 	pci_disable_pasid(pdev);
1633 
1634 	return ret;
1635 }
1636 
1637 /*
1638  * If a device is not yet associated with a domain, this function makes the
1639  * device visible in the domain
1640  */
attach_device(struct device * dev,struct protection_domain * domain)1641 static int attach_device(struct device *dev,
1642 			 struct protection_domain *domain)
1643 {
1644 	struct iommu_dev_data *dev_data;
1645 	struct pci_dev *pdev;
1646 	unsigned long flags;
1647 	int ret;
1648 
1649 	spin_lock_irqsave(&domain->lock, flags);
1650 
1651 	dev_data = dev_iommu_priv_get(dev);
1652 
1653 	spin_lock(&dev_data->lock);
1654 
1655 	ret = -EBUSY;
1656 	if (dev_data->domain != NULL)
1657 		goto out;
1658 
1659 	if (!dev_is_pci(dev))
1660 		goto skip_ats_check;
1661 
1662 	pdev = to_pci_dev(dev);
1663 	if (domain->flags & PD_IOMMUV2_MASK) {
1664 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1665 
1666 		ret = -EINVAL;
1667 		if (def_domain->type != IOMMU_DOMAIN_IDENTITY)
1668 			goto out;
1669 
1670 		if (dev_data->iommu_v2) {
1671 			if (pdev_iommuv2_enable(pdev) != 0)
1672 				goto out;
1673 
1674 			dev_data->ats.enabled = true;
1675 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1676 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1677 		}
1678 	} else if (amd_iommu_iotlb_sup &&
1679 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1680 		dev_data->ats.enabled = true;
1681 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1682 	}
1683 
1684 skip_ats_check:
1685 	ret = 0;
1686 
1687 	do_attach(dev_data, domain);
1688 
1689 	/*
1690 	 * We might boot into a crash-kernel here. The crashed kernel
1691 	 * left the caches in the IOMMU dirty. So we have to flush
1692 	 * here to evict all dirty stuff.
1693 	 */
1694 	amd_iommu_domain_flush_tlb_pde(domain);
1695 
1696 	amd_iommu_domain_flush_complete(domain);
1697 
1698 out:
1699 	spin_unlock(&dev_data->lock);
1700 
1701 	spin_unlock_irqrestore(&domain->lock, flags);
1702 
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Removes a device from a protection domain (with devtable_lock held)
1708  */
detach_device(struct device * dev)1709 static void detach_device(struct device *dev)
1710 {
1711 	struct protection_domain *domain;
1712 	struct iommu_dev_data *dev_data;
1713 	unsigned long flags;
1714 
1715 	dev_data = dev_iommu_priv_get(dev);
1716 	domain   = dev_data->domain;
1717 
1718 	spin_lock_irqsave(&domain->lock, flags);
1719 
1720 	spin_lock(&dev_data->lock);
1721 
1722 	/*
1723 	 * First check if the device is still attached. It might already
1724 	 * be detached from its domain because the generic
1725 	 * iommu_detach_group code detached it and we try again here in
1726 	 * our alias handling.
1727 	 */
1728 	if (WARN_ON(!dev_data->domain))
1729 		goto out;
1730 
1731 	do_detach(dev_data);
1732 
1733 	if (!dev_is_pci(dev))
1734 		goto out;
1735 
1736 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1737 		pdev_iommuv2_disable(to_pci_dev(dev));
1738 	else if (dev_data->ats.enabled)
1739 		pci_disable_ats(to_pci_dev(dev));
1740 
1741 	dev_data->ats.enabled = false;
1742 
1743 out:
1744 	spin_unlock(&dev_data->lock);
1745 
1746 	spin_unlock_irqrestore(&domain->lock, flags);
1747 }
1748 
amd_iommu_probe_device(struct device * dev)1749 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1750 {
1751 	struct iommu_device *iommu_dev;
1752 	struct amd_iommu *iommu;
1753 	int ret, devid;
1754 
1755 	if (!check_device(dev))
1756 		return ERR_PTR(-ENODEV);
1757 
1758 	devid = get_device_id(dev);
1759 	iommu = amd_iommu_rlookup_table[devid];
1760 
1761 	if (dev_iommu_priv_get(dev))
1762 		return &iommu->iommu;
1763 
1764 	ret = iommu_init_device(dev);
1765 	if (ret) {
1766 		if (ret != -ENOTSUPP)
1767 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1768 		iommu_dev = ERR_PTR(ret);
1769 		iommu_ignore_device(dev);
1770 	} else {
1771 		amd_iommu_set_pci_msi_domain(dev, iommu);
1772 		iommu_dev = &iommu->iommu;
1773 	}
1774 
1775 	iommu_completion_wait(iommu);
1776 
1777 	return iommu_dev;
1778 }
1779 
amd_iommu_probe_finalize(struct device * dev)1780 static void amd_iommu_probe_finalize(struct device *dev)
1781 {
1782 	/* Domains are initialized for this device - have a look what we ended up with */
1783 	set_dma_ops(dev, NULL);
1784 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1785 }
1786 
amd_iommu_release_device(struct device * dev)1787 static void amd_iommu_release_device(struct device *dev)
1788 {
1789 	int devid = get_device_id(dev);
1790 	struct amd_iommu *iommu;
1791 
1792 	if (!check_device(dev))
1793 		return;
1794 
1795 	iommu = amd_iommu_rlookup_table[devid];
1796 
1797 	amd_iommu_uninit_device(dev);
1798 	iommu_completion_wait(iommu);
1799 }
1800 
amd_iommu_device_group(struct device * dev)1801 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1802 {
1803 	if (dev_is_pci(dev))
1804 		return pci_device_group(dev);
1805 
1806 	return acpihid_device_group(dev);
1807 }
1808 
1809 /*****************************************************************************
1810  *
1811  * The next functions belong to the dma_ops mapping/unmapping code.
1812  *
1813  *****************************************************************************/
1814 
update_device_table(struct protection_domain * domain)1815 static void update_device_table(struct protection_domain *domain)
1816 {
1817 	struct iommu_dev_data *dev_data;
1818 
1819 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1820 		set_dte_entry(dev_data->devid, domain,
1821 			      dev_data->ats.enabled, dev_data->iommu_v2);
1822 		clone_aliases(dev_data->pdev);
1823 	}
1824 }
1825 
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1826 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1827 {
1828 	update_device_table(domain);
1829 	domain_flush_devices(domain);
1830 }
1831 
amd_iommu_domain_update(struct protection_domain * domain)1832 void amd_iommu_domain_update(struct protection_domain *domain)
1833 {
1834 	/* Update device table */
1835 	amd_iommu_update_and_flush_device_table(domain);
1836 
1837 	/* Flush domain TLB(s) and wait for completion */
1838 	amd_iommu_domain_flush_tlb_pde(domain);
1839 	amd_iommu_domain_flush_complete(domain);
1840 }
1841 
amd_iommu_init_api(void)1842 int __init amd_iommu_init_api(void)
1843 {
1844 	int err;
1845 
1846 	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
1847 	if (err)
1848 		return err;
1849 #ifdef CONFIG_ARM_AMBA
1850 	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
1851 	if (err)
1852 		return err;
1853 #endif
1854 	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
1855 	if (err)
1856 		return err;
1857 
1858 	return 0;
1859 }
1860 
1861 /*****************************************************************************
1862  *
1863  * The following functions belong to the exported interface of AMD IOMMU
1864  *
1865  * This interface allows access to lower level functions of the IOMMU
1866  * like protection domain handling and assignement of devices to domains
1867  * which is not possible with the dma_ops interface.
1868  *
1869  *****************************************************************************/
1870 
cleanup_domain(struct protection_domain * domain)1871 static void cleanup_domain(struct protection_domain *domain)
1872 {
1873 	struct iommu_dev_data *entry;
1874 	unsigned long flags;
1875 
1876 	spin_lock_irqsave(&domain->lock, flags);
1877 
1878 	while (!list_empty(&domain->dev_list)) {
1879 		entry = list_first_entry(&domain->dev_list,
1880 					 struct iommu_dev_data, list);
1881 		BUG_ON(!entry->domain);
1882 		do_detach(entry);
1883 	}
1884 
1885 	spin_unlock_irqrestore(&domain->lock, flags);
1886 }
1887 
protection_domain_free(struct protection_domain * domain)1888 static void protection_domain_free(struct protection_domain *domain)
1889 {
1890 	if (!domain)
1891 		return;
1892 
1893 	if (domain->id)
1894 		domain_id_free(domain->id);
1895 
1896 	if (domain->iop.pgtbl_cfg.tlb)
1897 		free_io_pgtable_ops(&domain->iop.iop.ops);
1898 
1899 	kfree(domain);
1900 }
1901 
protection_domain_init_v1(struct protection_domain * domain,int mode)1902 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
1903 {
1904 	u64 *pt_root = NULL;
1905 
1906 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
1907 
1908 	spin_lock_init(&domain->lock);
1909 	domain->id = domain_id_alloc();
1910 	if (!domain->id)
1911 		return -ENOMEM;
1912 	INIT_LIST_HEAD(&domain->dev_list);
1913 
1914 	if (mode != PAGE_MODE_NONE) {
1915 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1916 		if (!pt_root)
1917 			return -ENOMEM;
1918 	}
1919 
1920 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
1921 
1922 	return 0;
1923 }
1924 
protection_domain_alloc(unsigned int type)1925 static struct protection_domain *protection_domain_alloc(unsigned int type)
1926 {
1927 	struct io_pgtable_ops *pgtbl_ops;
1928 	struct protection_domain *domain;
1929 	int pgtable = amd_iommu_pgtable;
1930 	int mode = DEFAULT_PGTABLE_LEVEL;
1931 	int ret;
1932 
1933 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1934 	if (!domain)
1935 		return NULL;
1936 
1937 	/*
1938 	 * Force IOMMU v1 page table when iommu=pt and
1939 	 * when allocating domain for pass-through devices.
1940 	 */
1941 	if (type == IOMMU_DOMAIN_IDENTITY) {
1942 		pgtable = AMD_IOMMU_V1;
1943 		mode = PAGE_MODE_NONE;
1944 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
1945 		pgtable = AMD_IOMMU_V1;
1946 	}
1947 
1948 	switch (pgtable) {
1949 	case AMD_IOMMU_V1:
1950 		ret = protection_domain_init_v1(domain, mode);
1951 		break;
1952 	default:
1953 		ret = -EINVAL;
1954 	}
1955 
1956 	if (ret)
1957 		goto out_err;
1958 
1959 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
1960 	if (!pgtbl_ops)
1961 		goto out_err;
1962 
1963 	return domain;
1964 out_err:
1965 	kfree(domain);
1966 	return NULL;
1967 }
1968 
amd_iommu_domain_alloc(unsigned type)1969 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
1970 {
1971 	struct protection_domain *domain;
1972 
1973 	domain = protection_domain_alloc(type);
1974 	if (!domain)
1975 		return NULL;
1976 
1977 	domain->domain.geometry.aperture_start = 0;
1978 	domain->domain.geometry.aperture_end   = ~0ULL;
1979 	domain->domain.geometry.force_aperture = true;
1980 
1981 	return &domain->domain;
1982 }
1983 
amd_iommu_domain_free(struct iommu_domain * dom)1984 static void amd_iommu_domain_free(struct iommu_domain *dom)
1985 {
1986 	struct protection_domain *domain;
1987 
1988 	domain = to_pdomain(dom);
1989 
1990 	if (domain->dev_cnt > 0)
1991 		cleanup_domain(domain);
1992 
1993 	BUG_ON(domain->dev_cnt != 0);
1994 
1995 	if (!dom)
1996 		return;
1997 
1998 	if (domain->flags & PD_IOMMUV2_MASK)
1999 		free_gcr3_table(domain);
2000 
2001 	protection_domain_free(domain);
2002 }
2003 
amd_iommu_detach_device(struct iommu_domain * dom,struct device * dev)2004 static void amd_iommu_detach_device(struct iommu_domain *dom,
2005 				    struct device *dev)
2006 {
2007 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2008 	int devid = get_device_id(dev);
2009 	struct amd_iommu *iommu;
2010 
2011 	if (!check_device(dev))
2012 		return;
2013 
2014 	if (dev_data->domain != NULL)
2015 		detach_device(dev);
2016 
2017 	iommu = amd_iommu_rlookup_table[devid];
2018 	if (!iommu)
2019 		return;
2020 
2021 #ifdef CONFIG_IRQ_REMAP
2022 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
2023 	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
2024 		dev_data->use_vapic = 0;
2025 #endif
2026 
2027 	iommu_completion_wait(iommu);
2028 }
2029 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2030 static int amd_iommu_attach_device(struct iommu_domain *dom,
2031 				   struct device *dev)
2032 {
2033 	struct protection_domain *domain = to_pdomain(dom);
2034 	struct iommu_dev_data *dev_data;
2035 	struct amd_iommu *iommu;
2036 	int ret;
2037 
2038 	if (!check_device(dev))
2039 		return -EINVAL;
2040 
2041 	dev_data = dev_iommu_priv_get(dev);
2042 	dev_data->defer_attach = false;
2043 
2044 	iommu = amd_iommu_rlookup_table[dev_data->devid];
2045 	if (!iommu)
2046 		return -EINVAL;
2047 
2048 	if (dev_data->domain)
2049 		detach_device(dev);
2050 
2051 	ret = attach_device(dev, domain);
2052 
2053 #ifdef CONFIG_IRQ_REMAP
2054 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2055 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2056 			dev_data->use_vapic = 1;
2057 		else
2058 			dev_data->use_vapic = 0;
2059 	}
2060 #endif
2061 
2062 	iommu_completion_wait(iommu);
2063 
2064 	return ret;
2065 }
2066 
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2067 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2068 				     unsigned long iova, size_t size)
2069 {
2070 	struct protection_domain *domain = to_pdomain(dom);
2071 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2072 
2073 	if (ops->map)
2074 		domain_flush_np_cache(domain, iova, size);
2075 }
2076 
amd_iommu_map(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t page_size,int iommu_prot,gfp_t gfp)2077 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2078 			 phys_addr_t paddr, size_t page_size, int iommu_prot,
2079 			 gfp_t gfp)
2080 {
2081 	struct protection_domain *domain = to_pdomain(dom);
2082 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2083 	int prot = 0;
2084 	int ret = -EINVAL;
2085 
2086 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2087 	    (domain->iop.mode == PAGE_MODE_NONE))
2088 		return -EINVAL;
2089 
2090 	if (iommu_prot & IOMMU_READ)
2091 		prot |= IOMMU_PROT_IR;
2092 	if (iommu_prot & IOMMU_WRITE)
2093 		prot |= IOMMU_PROT_IW;
2094 
2095 	if (ops->map)
2096 		ret = ops->map(ops, iova, paddr, page_size, prot, gfp);
2097 
2098 	return ret;
2099 }
2100 
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2101 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2102 					    struct iommu_iotlb_gather *gather,
2103 					    unsigned long iova, size_t size)
2104 {
2105 	/*
2106 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2107 	 * Unless we run in a virtual machine, which can be inferred according
2108 	 * to whether "non-present cache" is on, it is probably best to prefer
2109 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2110 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2111 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2112 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2113 	 * should be avoided.
2114 	 */
2115 	if (amd_iommu_np_cache &&
2116 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2117 		iommu_iotlb_sync(domain, gather);
2118 
2119 	iommu_iotlb_gather_add_range(gather, iova, size);
2120 }
2121 
amd_iommu_unmap(struct iommu_domain * dom,unsigned long iova,size_t page_size,struct iommu_iotlb_gather * gather)2122 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2123 			      size_t page_size,
2124 			      struct iommu_iotlb_gather *gather)
2125 {
2126 	struct protection_domain *domain = to_pdomain(dom);
2127 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2128 	size_t r;
2129 
2130 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2131 	    (domain->iop.mode == PAGE_MODE_NONE))
2132 		return 0;
2133 
2134 	r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0;
2135 
2136 	amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size);
2137 
2138 	return r;
2139 }
2140 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2141 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2142 					  dma_addr_t iova)
2143 {
2144 	struct protection_domain *domain = to_pdomain(dom);
2145 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2146 
2147 	return ops->iova_to_phys(ops, iova);
2148 }
2149 
amd_iommu_capable(enum iommu_cap cap)2150 static bool amd_iommu_capable(enum iommu_cap cap)
2151 {
2152 	switch (cap) {
2153 	case IOMMU_CAP_CACHE_COHERENCY:
2154 		return true;
2155 	case IOMMU_CAP_INTR_REMAP:
2156 		return (irq_remapping_enabled == 1);
2157 	case IOMMU_CAP_NOEXEC:
2158 		return false;
2159 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2160 		return amdr_ivrs_remap_support;
2161 	default:
2162 		break;
2163 	}
2164 
2165 	return false;
2166 }
2167 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2168 static void amd_iommu_get_resv_regions(struct device *dev,
2169 				       struct list_head *head)
2170 {
2171 	struct iommu_resv_region *region;
2172 	struct unity_map_entry *entry;
2173 	int devid;
2174 
2175 	devid = get_device_id(dev);
2176 	if (devid < 0)
2177 		return;
2178 
2179 	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
2180 		int type, prot = 0;
2181 		size_t length;
2182 
2183 		if (devid < entry->devid_start || devid > entry->devid_end)
2184 			continue;
2185 
2186 		type   = IOMMU_RESV_DIRECT;
2187 		length = entry->address_end - entry->address_start;
2188 		if (entry->prot & IOMMU_PROT_IR)
2189 			prot |= IOMMU_READ;
2190 		if (entry->prot & IOMMU_PROT_IW)
2191 			prot |= IOMMU_WRITE;
2192 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2193 			/* Exclusion range */
2194 			type = IOMMU_RESV_RESERVED;
2195 
2196 		region = iommu_alloc_resv_region(entry->address_start,
2197 						 length, prot, type);
2198 		if (!region) {
2199 			dev_err(dev, "Out of memory allocating dm-regions\n");
2200 			return;
2201 		}
2202 		list_add_tail(&region->list, head);
2203 	}
2204 
2205 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2206 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2207 					 0, IOMMU_RESV_MSI);
2208 	if (!region)
2209 		return;
2210 	list_add_tail(&region->list, head);
2211 
2212 	region = iommu_alloc_resv_region(HT_RANGE_START,
2213 					 HT_RANGE_END - HT_RANGE_START + 1,
2214 					 0, IOMMU_RESV_RESERVED);
2215 	if (!region)
2216 		return;
2217 	list_add_tail(&region->list, head);
2218 }
2219 
amd_iommu_is_attach_deferred(struct device * dev)2220 bool amd_iommu_is_attach_deferred(struct device *dev)
2221 {
2222 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2223 
2224 	return dev_data->defer_attach;
2225 }
2226 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2227 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2228 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2229 {
2230 	struct protection_domain *dom = to_pdomain(domain);
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(&dom->lock, flags);
2234 	amd_iommu_domain_flush_tlb_pde(dom);
2235 	amd_iommu_domain_flush_complete(dom);
2236 	spin_unlock_irqrestore(&dom->lock, flags);
2237 }
2238 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2239 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2240 				 struct iommu_iotlb_gather *gather)
2241 {
2242 	struct protection_domain *dom = to_pdomain(domain);
2243 	unsigned long flags;
2244 
2245 	spin_lock_irqsave(&dom->lock, flags);
2246 	domain_flush_pages(dom, gather->start, gather->end - gather->start, 1);
2247 	amd_iommu_domain_flush_complete(dom);
2248 	spin_unlock_irqrestore(&dom->lock, flags);
2249 }
2250 
amd_iommu_def_domain_type(struct device * dev)2251 static int amd_iommu_def_domain_type(struct device *dev)
2252 {
2253 	struct iommu_dev_data *dev_data;
2254 
2255 	dev_data = dev_iommu_priv_get(dev);
2256 	if (!dev_data)
2257 		return 0;
2258 
2259 	/*
2260 	 * Do not identity map IOMMUv2 capable devices when memory encryption is
2261 	 * active, because some of those devices (AMD GPUs) don't have the
2262 	 * encryption bit in their DMA-mask and require remapping.
2263 	 */
2264 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT) && dev_data->iommu_v2)
2265 		return IOMMU_DOMAIN_IDENTITY;
2266 
2267 	return 0;
2268 }
2269 
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2270 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2271 {
2272 	/* IOMMU_PTE_FC is always set */
2273 	return true;
2274 }
2275 
2276 const struct iommu_ops amd_iommu_ops = {
2277 	.capable = amd_iommu_capable,
2278 	.domain_alloc = amd_iommu_domain_alloc,
2279 	.probe_device = amd_iommu_probe_device,
2280 	.release_device = amd_iommu_release_device,
2281 	.probe_finalize = amd_iommu_probe_finalize,
2282 	.device_group = amd_iommu_device_group,
2283 	.get_resv_regions = amd_iommu_get_resv_regions,
2284 	.put_resv_regions = generic_iommu_put_resv_regions,
2285 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2286 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2287 	.def_domain_type = amd_iommu_def_domain_type,
2288 	.default_domain_ops = &(const struct iommu_domain_ops) {
2289 		.attach_dev	= amd_iommu_attach_device,
2290 		.detach_dev	= amd_iommu_detach_device,
2291 		.map		= amd_iommu_map,
2292 		.unmap		= amd_iommu_unmap,
2293 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2294 		.iova_to_phys	= amd_iommu_iova_to_phys,
2295 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2296 		.iotlb_sync	= amd_iommu_iotlb_sync,
2297 		.free		= amd_iommu_domain_free,
2298 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2299 	}
2300 };
2301 
2302 /*****************************************************************************
2303  *
2304  * The next functions do a basic initialization of IOMMU for pass through
2305  * mode
2306  *
2307  * In passthrough mode the IOMMU is initialized and enabled but not used for
2308  * DMA-API translation.
2309  *
2310  *****************************************************************************/
2311 
2312 /* IOMMUv2 specific functions */
amd_iommu_register_ppr_notifier(struct notifier_block * nb)2313 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2314 {
2315 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2316 }
2317 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2318 
amd_iommu_unregister_ppr_notifier(struct notifier_block * nb)2319 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2320 {
2321 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2322 }
2323 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2324 
amd_iommu_domain_direct_map(struct iommu_domain * dom)2325 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2326 {
2327 	struct protection_domain *domain = to_pdomain(dom);
2328 	unsigned long flags;
2329 
2330 	spin_lock_irqsave(&domain->lock, flags);
2331 
2332 	if (domain->iop.pgtbl_cfg.tlb)
2333 		free_io_pgtable_ops(&domain->iop.iop.ops);
2334 
2335 	spin_unlock_irqrestore(&domain->lock, flags);
2336 }
2337 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2338 
amd_iommu_domain_enable_v2(struct iommu_domain * dom,int pasids)2339 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2340 {
2341 	struct protection_domain *domain = to_pdomain(dom);
2342 	unsigned long flags;
2343 	int levels, ret;
2344 
2345 	/* Number of GCR3 table levels required */
2346 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2347 		levels += 1;
2348 
2349 	if (levels > amd_iommu_max_glx_val)
2350 		return -EINVAL;
2351 
2352 	spin_lock_irqsave(&domain->lock, flags);
2353 
2354 	/*
2355 	 * Save us all sanity checks whether devices already in the
2356 	 * domain support IOMMUv2. Just force that the domain has no
2357 	 * devices attached when it is switched into IOMMUv2 mode.
2358 	 */
2359 	ret = -EBUSY;
2360 	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
2361 		goto out;
2362 
2363 	ret = -ENOMEM;
2364 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2365 	if (domain->gcr3_tbl == NULL)
2366 		goto out;
2367 
2368 	domain->glx      = levels;
2369 	domain->flags   |= PD_IOMMUV2_MASK;
2370 
2371 	amd_iommu_domain_update(domain);
2372 
2373 	ret = 0;
2374 
2375 out:
2376 	spin_unlock_irqrestore(&domain->lock, flags);
2377 
2378 	return ret;
2379 }
2380 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2381 
__flush_pasid(struct protection_domain * domain,u32 pasid,u64 address,bool size)2382 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2383 			 u64 address, bool size)
2384 {
2385 	struct iommu_dev_data *dev_data;
2386 	struct iommu_cmd cmd;
2387 	int i, ret;
2388 
2389 	if (!(domain->flags & PD_IOMMUV2_MASK))
2390 		return -EINVAL;
2391 
2392 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2393 
2394 	/*
2395 	 * IOMMU TLB needs to be flushed before Device TLB to
2396 	 * prevent device TLB refill from IOMMU TLB
2397 	 */
2398 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2399 		if (domain->dev_iommu[i] == 0)
2400 			continue;
2401 
2402 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2403 		if (ret != 0)
2404 			goto out;
2405 	}
2406 
2407 	/* Wait until IOMMU TLB flushes are complete */
2408 	amd_iommu_domain_flush_complete(domain);
2409 
2410 	/* Now flush device TLBs */
2411 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2412 		struct amd_iommu *iommu;
2413 		int qdep;
2414 
2415 		/*
2416 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2417 		 * domain.
2418 		 */
2419 		if (!dev_data->ats.enabled)
2420 			continue;
2421 
2422 		qdep  = dev_data->ats.qdep;
2423 		iommu = amd_iommu_rlookup_table[dev_data->devid];
2424 
2425 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2426 				      qdep, address, size);
2427 
2428 		ret = iommu_queue_command(iommu, &cmd);
2429 		if (ret != 0)
2430 			goto out;
2431 	}
2432 
2433 	/* Wait until all device TLBs are flushed */
2434 	amd_iommu_domain_flush_complete(domain);
2435 
2436 	ret = 0;
2437 
2438 out:
2439 
2440 	return ret;
2441 }
2442 
__amd_iommu_flush_page(struct protection_domain * domain,u32 pasid,u64 address)2443 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2444 				  u64 address)
2445 {
2446 	return __flush_pasid(domain, pasid, address, false);
2447 }
2448 
amd_iommu_flush_page(struct iommu_domain * dom,u32 pasid,u64 address)2449 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2450 			 u64 address)
2451 {
2452 	struct protection_domain *domain = to_pdomain(dom);
2453 	unsigned long flags;
2454 	int ret;
2455 
2456 	spin_lock_irqsave(&domain->lock, flags);
2457 	ret = __amd_iommu_flush_page(domain, pasid, address);
2458 	spin_unlock_irqrestore(&domain->lock, flags);
2459 
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL(amd_iommu_flush_page);
2463 
__amd_iommu_flush_tlb(struct protection_domain * domain,u32 pasid)2464 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2465 {
2466 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2467 			     true);
2468 }
2469 
amd_iommu_flush_tlb(struct iommu_domain * dom,u32 pasid)2470 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2471 {
2472 	struct protection_domain *domain = to_pdomain(dom);
2473 	unsigned long flags;
2474 	int ret;
2475 
2476 	spin_lock_irqsave(&domain->lock, flags);
2477 	ret = __amd_iommu_flush_tlb(domain, pasid);
2478 	spin_unlock_irqrestore(&domain->lock, flags);
2479 
2480 	return ret;
2481 }
2482 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2483 
__get_gcr3_pte(u64 * root,int level,u32 pasid,bool alloc)2484 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2485 {
2486 	int index;
2487 	u64 *pte;
2488 
2489 	while (true) {
2490 
2491 		index = (pasid >> (9 * level)) & 0x1ff;
2492 		pte   = &root[index];
2493 
2494 		if (level == 0)
2495 			break;
2496 
2497 		if (!(*pte & GCR3_VALID)) {
2498 			if (!alloc)
2499 				return NULL;
2500 
2501 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2502 			if (root == NULL)
2503 				return NULL;
2504 
2505 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2506 		}
2507 
2508 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2509 
2510 		level -= 1;
2511 	}
2512 
2513 	return pte;
2514 }
2515 
__set_gcr3(struct protection_domain * domain,u32 pasid,unsigned long cr3)2516 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2517 		      unsigned long cr3)
2518 {
2519 	u64 *pte;
2520 
2521 	if (domain->iop.mode != PAGE_MODE_NONE)
2522 		return -EINVAL;
2523 
2524 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2525 	if (pte == NULL)
2526 		return -ENOMEM;
2527 
2528 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2529 
2530 	return __amd_iommu_flush_tlb(domain, pasid);
2531 }
2532 
__clear_gcr3(struct protection_domain * domain,u32 pasid)2533 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2534 {
2535 	u64 *pte;
2536 
2537 	if (domain->iop.mode != PAGE_MODE_NONE)
2538 		return -EINVAL;
2539 
2540 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2541 	if (pte == NULL)
2542 		return 0;
2543 
2544 	*pte = 0;
2545 
2546 	return __amd_iommu_flush_tlb(domain, pasid);
2547 }
2548 
amd_iommu_domain_set_gcr3(struct iommu_domain * dom,u32 pasid,unsigned long cr3)2549 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2550 			      unsigned long cr3)
2551 {
2552 	struct protection_domain *domain = to_pdomain(dom);
2553 	unsigned long flags;
2554 	int ret;
2555 
2556 	spin_lock_irqsave(&domain->lock, flags);
2557 	ret = __set_gcr3(domain, pasid, cr3);
2558 	spin_unlock_irqrestore(&domain->lock, flags);
2559 
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2563 
amd_iommu_domain_clear_gcr3(struct iommu_domain * dom,u32 pasid)2564 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2565 {
2566 	struct protection_domain *domain = to_pdomain(dom);
2567 	unsigned long flags;
2568 	int ret;
2569 
2570 	spin_lock_irqsave(&domain->lock, flags);
2571 	ret = __clear_gcr3(domain, pasid);
2572 	spin_unlock_irqrestore(&domain->lock, flags);
2573 
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2577 
amd_iommu_complete_ppr(struct pci_dev * pdev,u32 pasid,int status,int tag)2578 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2579 			   int status, int tag)
2580 {
2581 	struct iommu_dev_data *dev_data;
2582 	struct amd_iommu *iommu;
2583 	struct iommu_cmd cmd;
2584 
2585 	dev_data = dev_iommu_priv_get(&pdev->dev);
2586 	iommu    = amd_iommu_rlookup_table[dev_data->devid];
2587 
2588 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2589 			   tag, dev_data->pri_tlp);
2590 
2591 	return iommu_queue_command(iommu, &cmd);
2592 }
2593 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2594 
amd_iommu_device_info(struct pci_dev * pdev,struct amd_iommu_device_info * info)2595 int amd_iommu_device_info(struct pci_dev *pdev,
2596                           struct amd_iommu_device_info *info)
2597 {
2598 	int max_pasids;
2599 	int pos;
2600 
2601 	if (pdev == NULL || info == NULL)
2602 		return -EINVAL;
2603 
2604 	if (!amd_iommu_v2_supported())
2605 		return -EINVAL;
2606 
2607 	memset(info, 0, sizeof(*info));
2608 
2609 	if (pci_ats_supported(pdev))
2610 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2611 
2612 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2613 	if (pos)
2614 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2615 
2616 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2617 	if (pos) {
2618 		int features;
2619 
2620 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2621 		max_pasids = min(max_pasids, (1 << 20));
2622 
2623 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2624 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2625 
2626 		features = pci_pasid_features(pdev);
2627 		if (features & PCI_PASID_CAP_EXEC)
2628 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2629 		if (features & PCI_PASID_CAP_PRIV)
2630 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2631 	}
2632 
2633 	return 0;
2634 }
2635 EXPORT_SYMBOL(amd_iommu_device_info);
2636 
2637 #ifdef CONFIG_IRQ_REMAP
2638 
2639 /*****************************************************************************
2640  *
2641  * Interrupt Remapping Implementation
2642  *
2643  *****************************************************************************/
2644 
2645 static struct irq_chip amd_ir_chip;
2646 static DEFINE_SPINLOCK(iommu_table_lock);
2647 
set_dte_irq_entry(u16 devid,struct irq_remap_table * table)2648 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
2649 {
2650 	u64 dte;
2651 
2652 	dte	= amd_iommu_dev_table[devid].data[2];
2653 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2654 	dte	|= iommu_virt_to_phys(table->table);
2655 	dte	|= DTE_IRQ_REMAP_INTCTL;
2656 	dte	|= DTE_INTTABLEN;
2657 	dte	|= DTE_IRQ_REMAP_ENABLE;
2658 
2659 	amd_iommu_dev_table[devid].data[2] = dte;
2660 }
2661 
get_irq_table(u16 devid)2662 static struct irq_remap_table *get_irq_table(u16 devid)
2663 {
2664 	struct irq_remap_table *table;
2665 
2666 	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
2667 		      "%s: no iommu for devid %x\n", __func__, devid))
2668 		return NULL;
2669 
2670 	table = irq_lookup_table[devid];
2671 	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
2672 		return NULL;
2673 
2674 	return table;
2675 }
2676 
__alloc_irq_table(void)2677 static struct irq_remap_table *__alloc_irq_table(void)
2678 {
2679 	struct irq_remap_table *table;
2680 
2681 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2682 	if (!table)
2683 		return NULL;
2684 
2685 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2686 	if (!table->table) {
2687 		kfree(table);
2688 		return NULL;
2689 	}
2690 	raw_spin_lock_init(&table->lock);
2691 
2692 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2693 		memset(table->table, 0,
2694 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2695 	else
2696 		memset(table->table, 0,
2697 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2698 	return table;
2699 }
2700 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2701 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2702 				  struct irq_remap_table *table)
2703 {
2704 	irq_lookup_table[devid] = table;
2705 	set_dte_irq_entry(devid, table);
2706 	iommu_flush_dte(iommu, devid);
2707 }
2708 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)2709 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2710 				       void *data)
2711 {
2712 	struct irq_remap_table *table = data;
2713 
2714 	irq_lookup_table[alias] = table;
2715 	set_dte_irq_entry(alias, table);
2716 
2717 	iommu_flush_dte(amd_iommu_rlookup_table[alias], alias);
2718 
2719 	return 0;
2720 }
2721 
alloc_irq_table(u16 devid,struct pci_dev * pdev)2722 static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev)
2723 {
2724 	struct irq_remap_table *table = NULL;
2725 	struct irq_remap_table *new_table = NULL;
2726 	struct amd_iommu *iommu;
2727 	unsigned long flags;
2728 	u16 alias;
2729 
2730 	spin_lock_irqsave(&iommu_table_lock, flags);
2731 
2732 	iommu = amd_iommu_rlookup_table[devid];
2733 	if (!iommu)
2734 		goto out_unlock;
2735 
2736 	table = irq_lookup_table[devid];
2737 	if (table)
2738 		goto out_unlock;
2739 
2740 	alias = amd_iommu_alias_table[devid];
2741 	table = irq_lookup_table[alias];
2742 	if (table) {
2743 		set_remap_table_entry(iommu, devid, table);
2744 		goto out_wait;
2745 	}
2746 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2747 
2748 	/* Nothing there yet, allocate new irq remapping table */
2749 	new_table = __alloc_irq_table();
2750 	if (!new_table)
2751 		return NULL;
2752 
2753 	spin_lock_irqsave(&iommu_table_lock, flags);
2754 
2755 	table = irq_lookup_table[devid];
2756 	if (table)
2757 		goto out_unlock;
2758 
2759 	table = irq_lookup_table[alias];
2760 	if (table) {
2761 		set_remap_table_entry(iommu, devid, table);
2762 		goto out_wait;
2763 	}
2764 
2765 	table = new_table;
2766 	new_table = NULL;
2767 
2768 	if (pdev)
2769 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
2770 				       table);
2771 	else
2772 		set_remap_table_entry(iommu, devid, table);
2773 
2774 	if (devid != alias)
2775 		set_remap_table_entry(iommu, alias, table);
2776 
2777 out_wait:
2778 	iommu_completion_wait(iommu);
2779 
2780 out_unlock:
2781 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2782 
2783 	if (new_table) {
2784 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
2785 		kfree(new_table);
2786 	}
2787 	return table;
2788 }
2789 
alloc_irq_index(u16 devid,int count,bool align,struct pci_dev * pdev)2790 static int alloc_irq_index(u16 devid, int count, bool align,
2791 			   struct pci_dev *pdev)
2792 {
2793 	struct irq_remap_table *table;
2794 	int index, c, alignment = 1;
2795 	unsigned long flags;
2796 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
2797 
2798 	if (!iommu)
2799 		return -ENODEV;
2800 
2801 	table = alloc_irq_table(devid, pdev);
2802 	if (!table)
2803 		return -ENODEV;
2804 
2805 	if (align)
2806 		alignment = roundup_pow_of_two(count);
2807 
2808 	raw_spin_lock_irqsave(&table->lock, flags);
2809 
2810 	/* Scan table for free entries */
2811 	for (index = ALIGN(table->min_index, alignment), c = 0;
2812 	     index < MAX_IRQS_PER_TABLE;) {
2813 		if (!iommu->irte_ops->is_allocated(table, index)) {
2814 			c += 1;
2815 		} else {
2816 			c     = 0;
2817 			index = ALIGN(index + 1, alignment);
2818 			continue;
2819 		}
2820 
2821 		if (c == count)	{
2822 			for (; c != 0; --c)
2823 				iommu->irte_ops->set_allocated(table, index - c + 1);
2824 
2825 			index -= count - 1;
2826 			goto out;
2827 		}
2828 
2829 		index++;
2830 	}
2831 
2832 	index = -ENOSPC;
2833 
2834 out:
2835 	raw_spin_unlock_irqrestore(&table->lock, flags);
2836 
2837 	return index;
2838 }
2839 
modify_irte_ga(u16 devid,int index,struct irte_ga * irte,struct amd_ir_data * data)2840 static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
2841 			  struct amd_ir_data *data)
2842 {
2843 	bool ret;
2844 	struct irq_remap_table *table;
2845 	struct amd_iommu *iommu;
2846 	unsigned long flags;
2847 	struct irte_ga *entry;
2848 
2849 	iommu = amd_iommu_rlookup_table[devid];
2850 	if (iommu == NULL)
2851 		return -EINVAL;
2852 
2853 	table = get_irq_table(devid);
2854 	if (!table)
2855 		return -ENOMEM;
2856 
2857 	raw_spin_lock_irqsave(&table->lock, flags);
2858 
2859 	entry = (struct irte_ga *)table->table;
2860 	entry = &entry[index];
2861 
2862 	ret = cmpxchg_double(&entry->lo.val, &entry->hi.val,
2863 			     entry->lo.val, entry->hi.val,
2864 			     irte->lo.val, irte->hi.val);
2865 	/*
2866 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
2867 	 * and it cannot be updated by the hardware or other processors
2868 	 * behind us, so the return value of cmpxchg16 should be the
2869 	 * same as the old value.
2870 	 */
2871 	WARN_ON(!ret);
2872 
2873 	if (data)
2874 		data->ref = entry;
2875 
2876 	raw_spin_unlock_irqrestore(&table->lock, flags);
2877 
2878 	iommu_flush_irt(iommu, devid);
2879 	iommu_completion_wait(iommu);
2880 
2881 	return 0;
2882 }
2883 
modify_irte(u16 devid,int index,union irte * irte)2884 static int modify_irte(u16 devid, int index, union irte *irte)
2885 {
2886 	struct irq_remap_table *table;
2887 	struct amd_iommu *iommu;
2888 	unsigned long flags;
2889 
2890 	iommu = amd_iommu_rlookup_table[devid];
2891 	if (iommu == NULL)
2892 		return -EINVAL;
2893 
2894 	table = get_irq_table(devid);
2895 	if (!table)
2896 		return -ENOMEM;
2897 
2898 	raw_spin_lock_irqsave(&table->lock, flags);
2899 	table->table[index] = irte->val;
2900 	raw_spin_unlock_irqrestore(&table->lock, flags);
2901 
2902 	iommu_flush_irt(iommu, devid);
2903 	iommu_completion_wait(iommu);
2904 
2905 	return 0;
2906 }
2907 
free_irte(u16 devid,int index)2908 static void free_irte(u16 devid, int index)
2909 {
2910 	struct irq_remap_table *table;
2911 	struct amd_iommu *iommu;
2912 	unsigned long flags;
2913 
2914 	iommu = amd_iommu_rlookup_table[devid];
2915 	if (iommu == NULL)
2916 		return;
2917 
2918 	table = get_irq_table(devid);
2919 	if (!table)
2920 		return;
2921 
2922 	raw_spin_lock_irqsave(&table->lock, flags);
2923 	iommu->irte_ops->clear_allocated(table, index);
2924 	raw_spin_unlock_irqrestore(&table->lock, flags);
2925 
2926 	iommu_flush_irt(iommu, devid);
2927 	iommu_completion_wait(iommu);
2928 }
2929 
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2930 static void irte_prepare(void *entry,
2931 			 u32 delivery_mode, bool dest_mode,
2932 			 u8 vector, u32 dest_apicid, int devid)
2933 {
2934 	union irte *irte = (union irte *) entry;
2935 
2936 	irte->val                = 0;
2937 	irte->fields.vector      = vector;
2938 	irte->fields.int_type    = delivery_mode;
2939 	irte->fields.destination = dest_apicid;
2940 	irte->fields.dm          = dest_mode;
2941 	irte->fields.valid       = 1;
2942 }
2943 
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)2944 static void irte_ga_prepare(void *entry,
2945 			    u32 delivery_mode, bool dest_mode,
2946 			    u8 vector, u32 dest_apicid, int devid)
2947 {
2948 	struct irte_ga *irte = (struct irte_ga *) entry;
2949 
2950 	irte->lo.val                      = 0;
2951 	irte->hi.val                      = 0;
2952 	irte->lo.fields_remap.int_type    = delivery_mode;
2953 	irte->lo.fields_remap.dm          = dest_mode;
2954 	irte->hi.fields.vector            = vector;
2955 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
2956 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
2957 	irte->lo.fields_remap.valid       = 1;
2958 }
2959 
irte_activate(void * entry,u16 devid,u16 index)2960 static void irte_activate(void *entry, u16 devid, u16 index)
2961 {
2962 	union irte *irte = (union irte *) entry;
2963 
2964 	irte->fields.valid = 1;
2965 	modify_irte(devid, index, irte);
2966 }
2967 
irte_ga_activate(void * entry,u16 devid,u16 index)2968 static void irte_ga_activate(void *entry, u16 devid, u16 index)
2969 {
2970 	struct irte_ga *irte = (struct irte_ga *) entry;
2971 
2972 	irte->lo.fields_remap.valid = 1;
2973 	modify_irte_ga(devid, index, irte, NULL);
2974 }
2975 
irte_deactivate(void * entry,u16 devid,u16 index)2976 static void irte_deactivate(void *entry, u16 devid, u16 index)
2977 {
2978 	union irte *irte = (union irte *) entry;
2979 
2980 	irte->fields.valid = 0;
2981 	modify_irte(devid, index, irte);
2982 }
2983 
irte_ga_deactivate(void * entry,u16 devid,u16 index)2984 static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
2985 {
2986 	struct irte_ga *irte = (struct irte_ga *) entry;
2987 
2988 	irte->lo.fields_remap.valid = 0;
2989 	modify_irte_ga(devid, index, irte, NULL);
2990 }
2991 
irte_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)2992 static void irte_set_affinity(void *entry, u16 devid, u16 index,
2993 			      u8 vector, u32 dest_apicid)
2994 {
2995 	union irte *irte = (union irte *) entry;
2996 
2997 	irte->fields.vector = vector;
2998 	irte->fields.destination = dest_apicid;
2999 	modify_irte(devid, index, irte);
3000 }
3001 
irte_ga_set_affinity(void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3002 static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
3003 				 u8 vector, u32 dest_apicid)
3004 {
3005 	struct irte_ga *irte = (struct irte_ga *) entry;
3006 
3007 	if (!irte->lo.fields_remap.guest_mode) {
3008 		irte->hi.fields.vector = vector;
3009 		irte->lo.fields_remap.destination =
3010 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3011 		irte->hi.fields.destination =
3012 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3013 		modify_irte_ga(devid, index, irte, NULL);
3014 	}
3015 }
3016 
3017 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3018 static void irte_set_allocated(struct irq_remap_table *table, int index)
3019 {
3020 	table->table[index] = IRTE_ALLOCATED;
3021 }
3022 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3023 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3024 {
3025 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3026 	struct irte_ga *irte = &ptr[index];
3027 
3028 	memset(&irte->lo.val, 0, sizeof(u64));
3029 	memset(&irte->hi.val, 0, sizeof(u64));
3030 	irte->hi.fields.vector = 0xff;
3031 }
3032 
irte_is_allocated(struct irq_remap_table * table,int index)3033 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3034 {
3035 	union irte *ptr = (union irte *)table->table;
3036 	union irte *irte = &ptr[index];
3037 
3038 	return irte->val != 0;
3039 }
3040 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3041 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3042 {
3043 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3044 	struct irte_ga *irte = &ptr[index];
3045 
3046 	return irte->hi.fields.vector != 0;
3047 }
3048 
irte_clear_allocated(struct irq_remap_table * table,int index)3049 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3050 {
3051 	table->table[index] = 0;
3052 }
3053 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3054 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3055 {
3056 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3057 	struct irte_ga *irte = &ptr[index];
3058 
3059 	memset(&irte->lo.val, 0, sizeof(u64));
3060 	memset(&irte->hi.val, 0, sizeof(u64));
3061 }
3062 
get_devid(struct irq_alloc_info * info)3063 static int get_devid(struct irq_alloc_info *info)
3064 {
3065 	switch (info->type) {
3066 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3067 		return get_ioapic_devid(info->devid);
3068 	case X86_IRQ_ALLOC_TYPE_HPET:
3069 		return get_hpet_devid(info->devid);
3070 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3071 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3072 		return get_device_id(msi_desc_to_dev(info->desc));
3073 	default:
3074 		WARN_ON_ONCE(1);
3075 		return -1;
3076 	}
3077 }
3078 
3079 struct irq_remap_ops amd_iommu_irq_ops = {
3080 	.prepare		= amd_iommu_prepare,
3081 	.enable			= amd_iommu_enable,
3082 	.disable		= amd_iommu_disable,
3083 	.reenable		= amd_iommu_reenable,
3084 	.enable_faulting	= amd_iommu_enable_faulting,
3085 };
3086 
fill_msi_msg(struct msi_msg * msg,u32 index)3087 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3088 {
3089 	msg->data = index;
3090 	msg->address_lo = 0;
3091 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3092 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3093 }
3094 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3095 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3096 				       struct irq_cfg *irq_cfg,
3097 				       struct irq_alloc_info *info,
3098 				       int devid, int index, int sub_handle)
3099 {
3100 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3101 	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
3102 
3103 	if (!iommu)
3104 		return;
3105 
3106 	data->irq_2_irte.devid = devid;
3107 	data->irq_2_irte.index = index + sub_handle;
3108 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3109 				 apic->dest_mode_logical, irq_cfg->vector,
3110 				 irq_cfg->dest_apicid, devid);
3111 
3112 	switch (info->type) {
3113 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3114 	case X86_IRQ_ALLOC_TYPE_HPET:
3115 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3116 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3117 		fill_msi_msg(&data->msi_entry, irte_info->index);
3118 		break;
3119 
3120 	default:
3121 		BUG_ON(1);
3122 		break;
3123 	}
3124 }
3125 
3126 struct amd_irte_ops irte_32_ops = {
3127 	.prepare = irte_prepare,
3128 	.activate = irte_activate,
3129 	.deactivate = irte_deactivate,
3130 	.set_affinity = irte_set_affinity,
3131 	.set_allocated = irte_set_allocated,
3132 	.is_allocated = irte_is_allocated,
3133 	.clear_allocated = irte_clear_allocated,
3134 };
3135 
3136 struct amd_irte_ops irte_128_ops = {
3137 	.prepare = irte_ga_prepare,
3138 	.activate = irte_ga_activate,
3139 	.deactivate = irte_ga_deactivate,
3140 	.set_affinity = irte_ga_set_affinity,
3141 	.set_allocated = irte_ga_set_allocated,
3142 	.is_allocated = irte_ga_is_allocated,
3143 	.clear_allocated = irte_ga_clear_allocated,
3144 };
3145 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3146 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3147 			       unsigned int nr_irqs, void *arg)
3148 {
3149 	struct irq_alloc_info *info = arg;
3150 	struct irq_data *irq_data;
3151 	struct amd_ir_data *data = NULL;
3152 	struct irq_cfg *cfg;
3153 	int i, ret, devid;
3154 	int index;
3155 
3156 	if (!info)
3157 		return -EINVAL;
3158 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
3159 	    info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
3160 		return -EINVAL;
3161 
3162 	/*
3163 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
3164 	 * to support multiple MSI interrupts.
3165 	 */
3166 	if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
3167 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3168 
3169 	devid = get_devid(info);
3170 	if (devid < 0)
3171 		return -EINVAL;
3172 
3173 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3174 	if (ret < 0)
3175 		return ret;
3176 
3177 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3178 		struct irq_remap_table *table;
3179 		struct amd_iommu *iommu;
3180 
3181 		table = alloc_irq_table(devid, NULL);
3182 		if (table) {
3183 			if (!table->min_index) {
3184 				/*
3185 				 * Keep the first 32 indexes free for IOAPIC
3186 				 * interrupts.
3187 				 */
3188 				table->min_index = 32;
3189 				iommu = amd_iommu_rlookup_table[devid];
3190 				for (i = 0; i < 32; ++i)
3191 					iommu->irte_ops->set_allocated(table, i);
3192 			}
3193 			WARN_ON(table->min_index != 32);
3194 			index = info->ioapic.pin;
3195 		} else {
3196 			index = -ENOMEM;
3197 		}
3198 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3199 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3200 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3201 
3202 		index = alloc_irq_index(devid, nr_irqs, align,
3203 					msi_desc_to_pci_dev(info->desc));
3204 	} else {
3205 		index = alloc_irq_index(devid, nr_irqs, false, NULL);
3206 	}
3207 
3208 	if (index < 0) {
3209 		pr_warn("Failed to allocate IRTE\n");
3210 		ret = index;
3211 		goto out_free_parent;
3212 	}
3213 
3214 	for (i = 0; i < nr_irqs; i++) {
3215 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3216 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3217 		if (!cfg) {
3218 			ret = -EINVAL;
3219 			goto out_free_data;
3220 		}
3221 
3222 		ret = -ENOMEM;
3223 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3224 		if (!data)
3225 			goto out_free_data;
3226 
3227 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3228 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3229 		else
3230 			data->entry = kzalloc(sizeof(struct irte_ga),
3231 						     GFP_KERNEL);
3232 		if (!data->entry) {
3233 			kfree(data);
3234 			goto out_free_data;
3235 		}
3236 
3237 		irq_data->hwirq = (devid << 16) + i;
3238 		irq_data->chip_data = data;
3239 		irq_data->chip = &amd_ir_chip;
3240 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3241 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3242 	}
3243 
3244 	return 0;
3245 
3246 out_free_data:
3247 	for (i--; i >= 0; i--) {
3248 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3249 		if (irq_data)
3250 			kfree(irq_data->chip_data);
3251 	}
3252 	for (i = 0; i < nr_irqs; i++)
3253 		free_irte(devid, index + i);
3254 out_free_parent:
3255 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3256 	return ret;
3257 }
3258 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3259 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3260 			       unsigned int nr_irqs)
3261 {
3262 	struct irq_2_irte *irte_info;
3263 	struct irq_data *irq_data;
3264 	struct amd_ir_data *data;
3265 	int i;
3266 
3267 	for (i = 0; i < nr_irqs; i++) {
3268 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3269 		if (irq_data && irq_data->chip_data) {
3270 			data = irq_data->chip_data;
3271 			irte_info = &data->irq_2_irte;
3272 			free_irte(irte_info->devid, irte_info->index);
3273 			kfree(data->entry);
3274 			kfree(data);
3275 		}
3276 	}
3277 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3278 }
3279 
3280 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3281 			       struct amd_ir_data *ir_data,
3282 			       struct irq_2_irte *irte_info,
3283 			       struct irq_cfg *cfg);
3284 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3285 static int irq_remapping_activate(struct irq_domain *domain,
3286 				  struct irq_data *irq_data, bool reserve)
3287 {
3288 	struct amd_ir_data *data = irq_data->chip_data;
3289 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3290 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3291 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3292 
3293 	if (!iommu)
3294 		return 0;
3295 
3296 	iommu->irte_ops->activate(data->entry, irte_info->devid,
3297 				  irte_info->index);
3298 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3299 	return 0;
3300 }
3301 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3302 static void irq_remapping_deactivate(struct irq_domain *domain,
3303 				     struct irq_data *irq_data)
3304 {
3305 	struct amd_ir_data *data = irq_data->chip_data;
3306 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3307 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3308 
3309 	if (iommu)
3310 		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
3311 					    irte_info->index);
3312 }
3313 
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3314 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3315 				enum irq_domain_bus_token bus_token)
3316 {
3317 	struct amd_iommu *iommu;
3318 	int devid = -1;
3319 
3320 	if (!amd_iommu_irq_remap)
3321 		return 0;
3322 
3323 	if (x86_fwspec_is_ioapic(fwspec))
3324 		devid = get_ioapic_devid(fwspec->param[0]);
3325 	else if (x86_fwspec_is_hpet(fwspec))
3326 		devid = get_hpet_devid(fwspec->param[0]);
3327 
3328 	if (devid < 0)
3329 		return 0;
3330 
3331 	iommu = amd_iommu_rlookup_table[devid];
3332 	return iommu && iommu->ir_domain == d;
3333 }
3334 
3335 static const struct irq_domain_ops amd_ir_domain_ops = {
3336 	.select = irq_remapping_select,
3337 	.alloc = irq_remapping_alloc,
3338 	.free = irq_remapping_free,
3339 	.activate = irq_remapping_activate,
3340 	.deactivate = irq_remapping_deactivate,
3341 };
3342 
amd_iommu_activate_guest_mode(void * data)3343 int amd_iommu_activate_guest_mode(void *data)
3344 {
3345 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3346 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3347 	u64 valid;
3348 
3349 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3350 	    !entry || entry->lo.fields_vapic.guest_mode)
3351 		return 0;
3352 
3353 	valid = entry->lo.fields_vapic.valid;
3354 
3355 	entry->lo.val = 0;
3356 	entry->hi.val = 0;
3357 
3358 	entry->lo.fields_vapic.valid       = valid;
3359 	entry->lo.fields_vapic.guest_mode  = 1;
3360 	entry->lo.fields_vapic.ga_log_intr = 1;
3361 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3362 	entry->hi.fields.vector            = ir_data->ga_vector;
3363 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3364 
3365 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3366 			      ir_data->irq_2_irte.index, entry, ir_data);
3367 }
3368 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3369 
amd_iommu_deactivate_guest_mode(void * data)3370 int amd_iommu_deactivate_guest_mode(void *data)
3371 {
3372 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3373 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3374 	struct irq_cfg *cfg = ir_data->cfg;
3375 	u64 valid;
3376 
3377 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3378 	    !entry || !entry->lo.fields_vapic.guest_mode)
3379 		return 0;
3380 
3381 	valid = entry->lo.fields_remap.valid;
3382 
3383 	entry->lo.val = 0;
3384 	entry->hi.val = 0;
3385 
3386 	entry->lo.fields_remap.valid       = valid;
3387 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3388 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3389 	entry->hi.fields.vector            = cfg->vector;
3390 	entry->lo.fields_remap.destination =
3391 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3392 	entry->hi.fields.destination =
3393 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3394 
3395 	return modify_irte_ga(ir_data->irq_2_irte.devid,
3396 			      ir_data->irq_2_irte.index, entry, ir_data);
3397 }
3398 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3399 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3400 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3401 {
3402 	int ret;
3403 	struct amd_iommu *iommu;
3404 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3405 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3406 	struct amd_ir_data *ir_data = data->chip_data;
3407 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3408 	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);
3409 
3410 	/* Note:
3411 	 * This device has never been set up for guest mode.
3412 	 * we should not modify the IRTE
3413 	 */
3414 	if (!dev_data || !dev_data->use_vapic)
3415 		return 0;
3416 
3417 	ir_data->cfg = irqd_cfg(data);
3418 	pi_data->ir_data = ir_data;
3419 
3420 	/* Note:
3421 	 * SVM tries to set up for VAPIC mode, but we are in
3422 	 * legacy mode. So, we force legacy mode instead.
3423 	 */
3424 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3425 		pr_debug("%s: Fall back to using intr legacy remap\n",
3426 			 __func__);
3427 		pi_data->is_guest_mode = false;
3428 	}
3429 
3430 	iommu = amd_iommu_rlookup_table[irte_info->devid];
3431 	if (iommu == NULL)
3432 		return -EINVAL;
3433 
3434 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3435 	if (pi_data->is_guest_mode) {
3436 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3437 		ir_data->ga_vector = vcpu_pi_info->vector;
3438 		ir_data->ga_tag = pi_data->ga_tag;
3439 		ret = amd_iommu_activate_guest_mode(ir_data);
3440 		if (!ret)
3441 			ir_data->cached_ga_tag = pi_data->ga_tag;
3442 	} else {
3443 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3444 
3445 		/*
3446 		 * This communicates the ga_tag back to the caller
3447 		 * so that it can do all the necessary clean up.
3448 		 */
3449 		if (!ret)
3450 			ir_data->cached_ga_tag = 0;
3451 	}
3452 
3453 	return ret;
3454 }
3455 
3456 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3457 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3458 			       struct amd_ir_data *ir_data,
3459 			       struct irq_2_irte *irte_info,
3460 			       struct irq_cfg *cfg)
3461 {
3462 
3463 	/*
3464 	 * Atomically updates the IRTE with the new destination, vector
3465 	 * and flushes the interrupt entry cache.
3466 	 */
3467 	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
3468 				      irte_info->index, cfg->vector,
3469 				      cfg->dest_apicid);
3470 }
3471 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3472 static int amd_ir_set_affinity(struct irq_data *data,
3473 			       const struct cpumask *mask, bool force)
3474 {
3475 	struct amd_ir_data *ir_data = data->chip_data;
3476 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3477 	struct irq_cfg *cfg = irqd_cfg(data);
3478 	struct irq_data *parent = data->parent_data;
3479 	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
3480 	int ret;
3481 
3482 	if (!iommu)
3483 		return -ENODEV;
3484 
3485 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3486 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3487 		return ret;
3488 
3489 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3490 	/*
3491 	 * After this point, all the interrupts will start arriving
3492 	 * at the new destination. So, time to cleanup the previous
3493 	 * vector allocation.
3494 	 */
3495 	send_cleanup_vector(cfg);
3496 
3497 	return IRQ_SET_MASK_OK_DONE;
3498 }
3499 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3500 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3501 {
3502 	struct amd_ir_data *ir_data = irq_data->chip_data;
3503 
3504 	*msg = ir_data->msi_entry;
3505 }
3506 
3507 static struct irq_chip amd_ir_chip = {
3508 	.name			= "AMD-IR",
3509 	.irq_ack		= apic_ack_irq,
3510 	.irq_set_affinity	= amd_ir_set_affinity,
3511 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3512 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3513 };
3514 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3515 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3516 {
3517 	struct fwnode_handle *fn;
3518 
3519 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3520 	if (!fn)
3521 		return -ENOMEM;
3522 	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
3523 	if (!iommu->ir_domain) {
3524 		irq_domain_free_fwnode(fn);
3525 		return -ENOMEM;
3526 	}
3527 
3528 	iommu->ir_domain->parent = arch_get_ir_parent_domain();
3529 	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
3530 							     "AMD-IR-MSI",
3531 							     iommu->index);
3532 	return 0;
3533 }
3534 
amd_iommu_update_ga(int cpu,bool is_run,void * data)3535 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3536 {
3537 	unsigned long flags;
3538 	struct amd_iommu *iommu;
3539 	struct irq_remap_table *table;
3540 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3541 	int devid = ir_data->irq_2_irte.devid;
3542 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3543 	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;
3544 
3545 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3546 	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
3547 		return 0;
3548 
3549 	iommu = amd_iommu_rlookup_table[devid];
3550 	if (!iommu)
3551 		return -ENODEV;
3552 
3553 	table = get_irq_table(devid);
3554 	if (!table)
3555 		return -ENODEV;
3556 
3557 	raw_spin_lock_irqsave(&table->lock, flags);
3558 
3559 	if (ref->lo.fields_vapic.guest_mode) {
3560 		if (cpu >= 0) {
3561 			ref->lo.fields_vapic.destination =
3562 						APICID_TO_IRTE_DEST_LO(cpu);
3563 			ref->hi.fields.destination =
3564 						APICID_TO_IRTE_DEST_HI(cpu);
3565 		}
3566 		ref->lo.fields_vapic.is_run = is_run;
3567 		barrier();
3568 	}
3569 
3570 	raw_spin_unlock_irqrestore(&table->lock, flags);
3571 
3572 	iommu_flush_irt(iommu, devid);
3573 	iommu_completion_wait(iommu);
3574 	return 0;
3575 }
3576 EXPORT_SYMBOL(amd_iommu_update_ga);
3577 #endif
3578