1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/apic.h>
22 #include <asm/syscalls.h>
23 #include <asm/idle.h>
24 #include <asm/uaccess.h>
25 #include <asm/i387.h>
26 #include <asm/fpu-internal.h>
27 #include <asm/debugreg.h>
28 #include <asm/nmi.h>
29 
30 #ifdef CONFIG_X86_64
31 static DEFINE_PER_CPU(unsigned char, is_idle);
32 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
33 
idle_notifier_register(struct notifier_block * n)34 void idle_notifier_register(struct notifier_block *n)
35 {
36 	atomic_notifier_chain_register(&idle_notifier, n);
37 }
38 EXPORT_SYMBOL_GPL(idle_notifier_register);
39 
idle_notifier_unregister(struct notifier_block * n)40 void idle_notifier_unregister(struct notifier_block *n)
41 {
42 	atomic_notifier_chain_unregister(&idle_notifier, n);
43 }
44 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
45 #endif
46 
47 struct kmem_cache *task_xstate_cachep;
48 EXPORT_SYMBOL_GPL(task_xstate_cachep);
49 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)50 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
51 {
52 	int ret;
53 
54 	*dst = *src;
55 	if (fpu_allocated(&src->thread.fpu)) {
56 		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
57 		ret = fpu_alloc(&dst->thread.fpu);
58 		if (ret)
59 			return ret;
60 		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
61 	}
62 	return 0;
63 }
64 
free_thread_xstate(struct task_struct * tsk)65 void free_thread_xstate(struct task_struct *tsk)
66 {
67 	fpu_free(&tsk->thread.fpu);
68 }
69 
free_thread_info(struct thread_info * ti)70 void free_thread_info(struct thread_info *ti)
71 {
72 	free_thread_xstate(ti->task);
73 	free_pages((unsigned long)ti, THREAD_ORDER);
74 }
75 
arch_task_cache_init(void)76 void arch_task_cache_init(void)
77 {
78         task_xstate_cachep =
79         	kmem_cache_create("task_xstate", xstate_size,
80 				  __alignof__(union thread_xstate),
81 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
82 }
83 
84 /*
85  * Free current thread data structures etc..
86  */
exit_thread(void)87 void exit_thread(void)
88 {
89 	struct task_struct *me = current;
90 	struct thread_struct *t = &me->thread;
91 	unsigned long *bp = t->io_bitmap_ptr;
92 
93 	if (bp) {
94 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
95 
96 		t->io_bitmap_ptr = NULL;
97 		clear_thread_flag(TIF_IO_BITMAP);
98 		/*
99 		 * Careful, clear this in the TSS too:
100 		 */
101 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
102 		t->io_bitmap_max = 0;
103 		put_cpu();
104 		kfree(bp);
105 	}
106 }
107 
show_regs(struct pt_regs * regs)108 void show_regs(struct pt_regs *regs)
109 {
110 	show_registers(regs);
111 	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
112 }
113 
show_regs_common(void)114 void show_regs_common(void)
115 {
116 	const char *vendor, *product, *board;
117 
118 	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
119 	if (!vendor)
120 		vendor = "";
121 	product = dmi_get_system_info(DMI_PRODUCT_NAME);
122 	if (!product)
123 		product = "";
124 
125 	/* Board Name is optional */
126 	board = dmi_get_system_info(DMI_BOARD_NAME);
127 
128 	printk(KERN_CONT "\n");
129 	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
130 		current->pid, current->comm, print_tainted(),
131 		init_utsname()->release,
132 		(int)strcspn(init_utsname()->version, " "),
133 		init_utsname()->version);
134 	printk(KERN_CONT " %s %s", vendor, product);
135 	if (board)
136 		printk(KERN_CONT "/%s", board);
137 	printk(KERN_CONT "\n");
138 }
139 
flush_thread(void)140 void flush_thread(void)
141 {
142 	struct task_struct *tsk = current;
143 
144 	flush_ptrace_hw_breakpoint(tsk);
145 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
146 	/*
147 	 * Forget coprocessor state..
148 	 */
149 	tsk->fpu_counter = 0;
150 	clear_fpu(tsk);
151 	clear_used_math();
152 }
153 
hard_disable_TSC(void)154 static void hard_disable_TSC(void)
155 {
156 	write_cr4(read_cr4() | X86_CR4_TSD);
157 }
158 
disable_TSC(void)159 void disable_TSC(void)
160 {
161 	preempt_disable();
162 	if (!test_and_set_thread_flag(TIF_NOTSC))
163 		/*
164 		 * Must flip the CPU state synchronously with
165 		 * TIF_NOTSC in the current running context.
166 		 */
167 		hard_disable_TSC();
168 	preempt_enable();
169 }
170 
hard_enable_TSC(void)171 static void hard_enable_TSC(void)
172 {
173 	write_cr4(read_cr4() & ~X86_CR4_TSD);
174 }
175 
enable_TSC(void)176 static void enable_TSC(void)
177 {
178 	preempt_disable();
179 	if (test_and_clear_thread_flag(TIF_NOTSC))
180 		/*
181 		 * Must flip the CPU state synchronously with
182 		 * TIF_NOTSC in the current running context.
183 		 */
184 		hard_enable_TSC();
185 	preempt_enable();
186 }
187 
get_tsc_mode(unsigned long adr)188 int get_tsc_mode(unsigned long adr)
189 {
190 	unsigned int val;
191 
192 	if (test_thread_flag(TIF_NOTSC))
193 		val = PR_TSC_SIGSEGV;
194 	else
195 		val = PR_TSC_ENABLE;
196 
197 	return put_user(val, (unsigned int __user *)adr);
198 }
199 
set_tsc_mode(unsigned int val)200 int set_tsc_mode(unsigned int val)
201 {
202 	if (val == PR_TSC_SIGSEGV)
203 		disable_TSC();
204 	else if (val == PR_TSC_ENABLE)
205 		enable_TSC();
206 	else
207 		return -EINVAL;
208 
209 	return 0;
210 }
211 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)212 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
213 		      struct tss_struct *tss)
214 {
215 	struct thread_struct *prev, *next;
216 
217 	prev = &prev_p->thread;
218 	next = &next_p->thread;
219 
220 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
221 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
222 		unsigned long debugctl = get_debugctlmsr();
223 
224 		debugctl &= ~DEBUGCTLMSR_BTF;
225 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
226 			debugctl |= DEBUGCTLMSR_BTF;
227 
228 		update_debugctlmsr(debugctl);
229 	}
230 
231 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
232 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
233 		/* prev and next are different */
234 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
235 			hard_disable_TSC();
236 		else
237 			hard_enable_TSC();
238 	}
239 
240 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
241 		/*
242 		 * Copy the relevant range of the IO bitmap.
243 		 * Normally this is 128 bytes or less:
244 		 */
245 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
246 		       max(prev->io_bitmap_max, next->io_bitmap_max));
247 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
248 		/*
249 		 * Clear any possible leftover bits:
250 		 */
251 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
252 	}
253 	propagate_user_return_notify(prev_p, next_p);
254 }
255 
sys_fork(struct pt_regs * regs)256 int sys_fork(struct pt_regs *regs)
257 {
258 	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
259 }
260 
261 /*
262  * This is trivial, and on the face of it looks like it
263  * could equally well be done in user mode.
264  *
265  * Not so, for quite unobvious reasons - register pressure.
266  * In user mode vfork() cannot have a stack frame, and if
267  * done by calling the "clone()" system call directly, you
268  * do not have enough call-clobbered registers to hold all
269  * the information you need.
270  */
sys_vfork(struct pt_regs * regs)271 int sys_vfork(struct pt_regs *regs)
272 {
273 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
274 		       NULL, NULL);
275 }
276 
277 long
sys_clone(unsigned long clone_flags,unsigned long newsp,void __user * parent_tid,void __user * child_tid,struct pt_regs * regs)278 sys_clone(unsigned long clone_flags, unsigned long newsp,
279 	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
280 {
281 	if (!newsp)
282 		newsp = regs->sp;
283 	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
284 }
285 
286 /*
287  * This gets run with %si containing the
288  * function to call, and %di containing
289  * the "args".
290  */
291 extern void kernel_thread_helper(void);
292 
293 /*
294  * Create a kernel thread
295  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)296 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
297 {
298 	struct pt_regs regs;
299 
300 	memset(&regs, 0, sizeof(regs));
301 
302 	regs.si = (unsigned long) fn;
303 	regs.di = (unsigned long) arg;
304 
305 #ifdef CONFIG_X86_32
306 	regs.ds = __USER_DS;
307 	regs.es = __USER_DS;
308 	regs.fs = __KERNEL_PERCPU;
309 	regs.gs = __KERNEL_STACK_CANARY;
310 #else
311 	regs.ss = __KERNEL_DS;
312 #endif
313 
314 	regs.orig_ax = -1;
315 	regs.ip = (unsigned long) kernel_thread_helper;
316 	regs.cs = __KERNEL_CS | get_kernel_rpl();
317 	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
318 
319 	/* Ok, create the new process.. */
320 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
321 }
322 EXPORT_SYMBOL(kernel_thread);
323 
324 /*
325  * sys_execve() executes a new program.
326  */
sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)327 long sys_execve(const char __user *name,
328 		const char __user *const __user *argv,
329 		const char __user *const __user *envp, struct pt_regs *regs)
330 {
331 	long error;
332 	char *filename;
333 
334 	filename = getname(name);
335 	error = PTR_ERR(filename);
336 	if (IS_ERR(filename))
337 		return error;
338 	error = do_execve(filename, argv, envp, regs);
339 
340 #ifdef CONFIG_X86_32
341 	if (error == 0) {
342 		/* Make sure we don't return using sysenter.. */
343                 set_thread_flag(TIF_IRET);
344         }
345 #endif
346 
347 	putname(filename);
348 	return error;
349 }
350 
351 /*
352  * Idle related variables and functions
353  */
354 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
355 EXPORT_SYMBOL(boot_option_idle_override);
356 
357 /*
358  * Powermanagement idle function, if any..
359  */
360 void (*pm_idle)(void);
361 #ifdef CONFIG_APM_MODULE
362 EXPORT_SYMBOL(pm_idle);
363 #endif
364 
hlt_use_halt(void)365 static inline int hlt_use_halt(void)
366 {
367 	return 1;
368 }
369 
370 #ifndef CONFIG_SMP
play_dead(void)371 static inline void play_dead(void)
372 {
373 	BUG();
374 }
375 #endif
376 
377 #ifdef CONFIG_X86_64
enter_idle(void)378 void enter_idle(void)
379 {
380 	percpu_write(is_idle, 1);
381 	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
382 }
383 
__exit_idle(void)384 static void __exit_idle(void)
385 {
386 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
387 		return;
388 	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
389 }
390 
391 /* Called from interrupts to signify idle end */
exit_idle(void)392 void exit_idle(void)
393 {
394 	/* idle loop has pid 0 */
395 	if (current->pid)
396 		return;
397 	__exit_idle();
398 }
399 #endif
400 
401 /*
402  * The idle thread. There's no useful work to be
403  * done, so just try to conserve power and have a
404  * low exit latency (ie sit in a loop waiting for
405  * somebody to say that they'd like to reschedule)
406  */
cpu_idle(void)407 void cpu_idle(void)
408 {
409 	/*
410 	 * If we're the non-boot CPU, nothing set the stack canary up
411 	 * for us.  CPU0 already has it initialized but no harm in
412 	 * doing it again.  This is a good place for updating it, as
413 	 * we wont ever return from this function (so the invalid
414 	 * canaries already on the stack wont ever trigger).
415 	 */
416 	boot_init_stack_canary();
417 	current_thread_info()->status |= TS_POLLING;
418 
419 	while (1) {
420 		tick_nohz_idle_enter();
421 
422 		while (!need_resched()) {
423 			rmb();
424 
425 			if (cpu_is_offline(smp_processor_id()))
426 				play_dead();
427 
428 			/*
429 			 * Idle routines should keep interrupts disabled
430 			 * from here on, until they go to idle.
431 			 * Otherwise, idle callbacks can misfire.
432 			 */
433 			local_touch_nmi();
434 			local_irq_disable();
435 
436 			enter_idle();
437 
438 			/* Don't trace irqs off for idle */
439 			stop_critical_timings();
440 
441 			/* enter_idle() needs rcu for notifiers */
442 			rcu_idle_enter();
443 
444 			if (cpuidle_idle_call())
445 				pm_idle();
446 
447 			rcu_idle_exit();
448 			start_critical_timings();
449 
450 			/* In many cases the interrupt that ended idle
451 			   has already called exit_idle. But some idle
452 			   loops can be woken up without interrupt. */
453 			__exit_idle();
454 		}
455 
456 		tick_nohz_idle_exit();
457 		preempt_enable_no_resched();
458 		schedule();
459 		preempt_disable();
460 	}
461 }
462 
463 /*
464  * We use this if we don't have any better
465  * idle routine..
466  */
default_idle(void)467 void default_idle(void)
468 {
469 	if (hlt_use_halt()) {
470 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
471 		trace_cpu_idle_rcuidle(1, smp_processor_id());
472 		current_thread_info()->status &= ~TS_POLLING;
473 		/*
474 		 * TS_POLLING-cleared state must be visible before we
475 		 * test NEED_RESCHED:
476 		 */
477 		smp_mb();
478 
479 		if (!need_resched())
480 			safe_halt();	/* enables interrupts racelessly */
481 		else
482 			local_irq_enable();
483 		current_thread_info()->status |= TS_POLLING;
484 		trace_power_end_rcuidle(smp_processor_id());
485 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
486 	} else {
487 		local_irq_enable();
488 		/* loop is done by the caller */
489 		cpu_relax();
490 	}
491 }
492 #ifdef CONFIG_APM_MODULE
493 EXPORT_SYMBOL(default_idle);
494 #endif
495 
set_pm_idle_to_default(void)496 bool set_pm_idle_to_default(void)
497 {
498 	bool ret = !!pm_idle;
499 
500 	pm_idle = default_idle;
501 
502 	return ret;
503 }
stop_this_cpu(void * dummy)504 void stop_this_cpu(void *dummy)
505 {
506 	local_irq_disable();
507 	/*
508 	 * Remove this CPU:
509 	 */
510 	set_cpu_online(smp_processor_id(), false);
511 	disable_local_APIC();
512 
513 	for (;;) {
514 		if (hlt_works(smp_processor_id()))
515 			halt();
516 	}
517 }
518 
do_nothing(void * unused)519 static void do_nothing(void *unused)
520 {
521 }
522 
523 /*
524  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
525  * pm_idle and update to new pm_idle value. Required while changing pm_idle
526  * handler on SMP systems.
527  *
528  * Caller must have changed pm_idle to the new value before the call. Old
529  * pm_idle value will not be used by any CPU after the return of this function.
530  */
cpu_idle_wait(void)531 void cpu_idle_wait(void)
532 {
533 	smp_mb();
534 	/* kick all the CPUs so that they exit out of pm_idle */
535 	smp_call_function(do_nothing, NULL, 1);
536 }
537 EXPORT_SYMBOL_GPL(cpu_idle_wait);
538 
539 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
mwait_idle(void)540 static void mwait_idle(void)
541 {
542 	if (!need_resched()) {
543 		trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
544 		trace_cpu_idle_rcuidle(1, smp_processor_id());
545 		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
546 			clflush((void *)&current_thread_info()->flags);
547 
548 		__monitor((void *)&current_thread_info()->flags, 0, 0);
549 		smp_mb();
550 		if (!need_resched())
551 			__sti_mwait(0, 0);
552 		else
553 			local_irq_enable();
554 		trace_power_end_rcuidle(smp_processor_id());
555 		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
556 	} else
557 		local_irq_enable();
558 }
559 
560 /*
561  * On SMP it's slightly faster (but much more power-consuming!)
562  * to poll the ->work.need_resched flag instead of waiting for the
563  * cross-CPU IPI to arrive. Use this option with caution.
564  */
poll_idle(void)565 static void poll_idle(void)
566 {
567 	trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
568 	trace_cpu_idle_rcuidle(0, smp_processor_id());
569 	local_irq_enable();
570 	while (!need_resched())
571 		cpu_relax();
572 	trace_power_end_rcuidle(smp_processor_id());
573 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
574 }
575 
576 /*
577  * mwait selection logic:
578  *
579  * It depends on the CPU. For AMD CPUs that support MWAIT this is
580  * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
581  * then depend on a clock divisor and current Pstate of the core. If
582  * all cores of a processor are in halt state (C1) the processor can
583  * enter the C1E (C1 enhanced) state. If mwait is used this will never
584  * happen.
585  *
586  * idle=mwait overrides this decision and forces the usage of mwait.
587  */
588 
589 #define MWAIT_INFO			0x05
590 #define MWAIT_ECX_EXTENDED_INFO		0x01
591 #define MWAIT_EDX_C1			0xf0
592 
mwait_usable(const struct cpuinfo_x86 * c)593 int mwait_usable(const struct cpuinfo_x86 *c)
594 {
595 	u32 eax, ebx, ecx, edx;
596 
597 	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
598 		return 1;
599 
600 	if (c->cpuid_level < MWAIT_INFO)
601 		return 0;
602 
603 	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
604 	/* Check, whether EDX has extended info about MWAIT */
605 	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
606 		return 1;
607 
608 	/*
609 	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
610 	 * C1  supports MWAIT
611 	 */
612 	return (edx & MWAIT_EDX_C1);
613 }
614 
615 bool amd_e400_c1e_detected;
616 EXPORT_SYMBOL(amd_e400_c1e_detected);
617 
618 static cpumask_var_t amd_e400_c1e_mask;
619 
amd_e400_remove_cpu(int cpu)620 void amd_e400_remove_cpu(int cpu)
621 {
622 	if (amd_e400_c1e_mask != NULL)
623 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
624 }
625 
626 /*
627  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
628  * pending message MSR. If we detect C1E, then we handle it the same
629  * way as C3 power states (local apic timer and TSC stop)
630  */
amd_e400_idle(void)631 static void amd_e400_idle(void)
632 {
633 	if (need_resched())
634 		return;
635 
636 	if (!amd_e400_c1e_detected) {
637 		u32 lo, hi;
638 
639 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
640 
641 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
642 			amd_e400_c1e_detected = true;
643 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
644 				mark_tsc_unstable("TSC halt in AMD C1E");
645 			printk(KERN_INFO "System has AMD C1E enabled\n");
646 		}
647 	}
648 
649 	if (amd_e400_c1e_detected) {
650 		int cpu = smp_processor_id();
651 
652 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
653 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
654 			/*
655 			 * Force broadcast so ACPI can not interfere.
656 			 */
657 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
658 					   &cpu);
659 			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
660 			       cpu);
661 		}
662 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
663 
664 		default_idle();
665 
666 		/*
667 		 * The switch back from broadcast mode needs to be
668 		 * called with interrupts disabled.
669 		 */
670 		 local_irq_disable();
671 		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
672 		 local_irq_enable();
673 	} else
674 		default_idle();
675 }
676 
select_idle_routine(const struct cpuinfo_x86 * c)677 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
678 {
679 #ifdef CONFIG_SMP
680 	if (pm_idle == poll_idle && smp_num_siblings > 1) {
681 		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
682 			" performance may degrade.\n");
683 	}
684 #endif
685 	if (pm_idle)
686 		return;
687 
688 	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
689 		/*
690 		 * One CPU supports mwait => All CPUs supports mwait
691 		 */
692 		printk(KERN_INFO "using mwait in idle threads.\n");
693 		pm_idle = mwait_idle;
694 	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
695 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
696 		printk(KERN_INFO "using AMD E400 aware idle routine\n");
697 		pm_idle = amd_e400_idle;
698 	} else
699 		pm_idle = default_idle;
700 }
701 
init_amd_e400_c1e_mask(void)702 void __init init_amd_e400_c1e_mask(void)
703 {
704 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
705 	if (pm_idle == amd_e400_idle)
706 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
707 }
708 
idle_setup(char * str)709 static int __init idle_setup(char *str)
710 {
711 	if (!str)
712 		return -EINVAL;
713 
714 	if (!strcmp(str, "poll")) {
715 		printk("using polling idle threads.\n");
716 		pm_idle = poll_idle;
717 		boot_option_idle_override = IDLE_POLL;
718 	} else if (!strcmp(str, "mwait")) {
719 		boot_option_idle_override = IDLE_FORCE_MWAIT;
720 		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
721 	} else if (!strcmp(str, "halt")) {
722 		/*
723 		 * When the boot option of idle=halt is added, halt is
724 		 * forced to be used for CPU idle. In such case CPU C2/C3
725 		 * won't be used again.
726 		 * To continue to load the CPU idle driver, don't touch
727 		 * the boot_option_idle_override.
728 		 */
729 		pm_idle = default_idle;
730 		boot_option_idle_override = IDLE_HALT;
731 	} else if (!strcmp(str, "nomwait")) {
732 		/*
733 		 * If the boot option of "idle=nomwait" is added,
734 		 * it means that mwait will be disabled for CPU C2/C3
735 		 * states. In such case it won't touch the variable
736 		 * of boot_option_idle_override.
737 		 */
738 		boot_option_idle_override = IDLE_NOMWAIT;
739 	} else
740 		return -1;
741 
742 	return 0;
743 }
744 early_param("idle", idle_setup);
745 
arch_align_stack(unsigned long sp)746 unsigned long arch_align_stack(unsigned long sp)
747 {
748 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
749 		sp -= get_random_int() % 8192;
750 	return sp & ~0xf;
751 }
752 
arch_randomize_brk(struct mm_struct * mm)753 unsigned long arch_randomize_brk(struct mm_struct *mm)
754 {
755 	unsigned long range_end = mm->brk + 0x02000000;
756 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
757 }
758 
759