1 use alloc::string::ToString; 2 use core::cmp::Ordering; 3 use core::intrinsics::unlikely; 4 use core::{any::Any, fmt::Debug}; 5 use hashbrown::HashMap; 6 use log::error; 7 use system_error::SystemError; 8 9 use alloc::{ 10 string::String, 11 sync::{Arc, Weak}, 12 vec::Vec, 13 }; 14 15 use crate::driver::base::block::gendisk::GenDisk; 16 use crate::driver::base::device::device_number::DeviceNumber; 17 use crate::filesystem::vfs::file::PageCache; 18 use crate::filesystem::vfs::utils::DName; 19 use crate::filesystem::vfs::{Magic, SpecialNodeData, SuperBlock}; 20 use crate::ipc::pipe::LockedPipeInode; 21 use crate::mm::fault::{PageFaultHandler, PageFaultMessage}; 22 use crate::mm::VmFaultReason; 23 use crate::{ 24 driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom}, 25 filesystem::vfs::{ 26 core::generate_inode_id, 27 file::{FileMode, FilePrivateData}, 28 syscall::ModeType, 29 FileSystem, FileType, IndexNode, InodeId, Metadata, 30 }, 31 libs::{ 32 spinlock::{SpinLock, SpinLockGuard}, 33 vec_cursor::VecCursor, 34 }, 35 time::PosixTimeSpec, 36 }; 37 38 use super::entry::FATFile; 39 use super::utils::{to_search_name, to_search_name_string}; 40 use super::{ 41 bpb::{BiosParameterBlock, FATType}, 42 entry::{FATDir, FATDirEntry, FATDirIter, FATEntry}, 43 utils::RESERVED_CLUSTERS, 44 }; 45 46 const FAT_MAX_NAMELEN: u64 = 255; 47 48 /// FAT32文件系统的最大的文件大小 49 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff; 50 51 /// @brief 表示当前簇和上一个簇的关系的结构体 52 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。 53 #[allow(dead_code)] 54 #[derive(Debug, Clone, Copy, Default)] 55 pub struct Cluster { 56 pub cluster_num: u64, 57 pub parent_cluster: u64, 58 } 59 60 impl PartialOrd for Cluster { 61 /// @brief 根据当前簇号比较大小 partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering>62 fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { 63 return self.cluster_num.partial_cmp(&other.cluster_num); 64 } 65 } 66 67 impl PartialEq for Cluster { 68 /// @brief 根据当前簇号比较是否相等 eq(&self, other: &Self) -> bool69 fn eq(&self, other: &Self) -> bool { 70 self.cluster_num == other.cluster_num 71 } 72 } 73 74 impl Eq for Cluster {} 75 76 #[derive(Debug)] 77 pub struct FATFileSystem { 78 /// 当前文件系统所在的分区 79 pub gendisk: Arc<GenDisk>, 80 /// 当前文件系统的BOPB 81 pub bpb: BiosParameterBlock, 82 /// 当前文件系统的第一个数据扇区(相对分区开始位置) 83 pub first_data_sector: u64, 84 /// 文件系统信息结构体 85 pub fs_info: Arc<LockedFATFsInfo>, 86 /// 文件系统的根inode 87 root_inode: Arc<LockedFATInode>, 88 } 89 90 /// FAT文件系统的Inode 91 #[derive(Debug)] 92 pub struct LockedFATInode(SpinLock<FATInode>); 93 94 #[derive(Debug)] 95 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>); 96 97 impl LockedFATFsInfo { 98 #[inline] new(fs_info: FATFsInfo) -> Self99 pub fn new(fs_info: FATFsInfo) -> Self { 100 return Self(SpinLock::new(fs_info)); 101 } 102 } 103 104 #[derive(Debug)] 105 pub struct FATInode { 106 /// 指向父Inode的弱引用 107 parent: Weak<LockedFATInode>, 108 /// 指向自身的弱引用 109 self_ref: Weak<LockedFATInode>, 110 /// 子Inode的map. 该数据结构用作缓存区。其中,它的key表示inode的名称。 111 /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。 112 children: HashMap<String, Arc<LockedFATInode>>, 113 /// 当前inode的元数据 114 metadata: Metadata, 115 /// 指向inode所在的文件系统对象的指针 116 fs: Weak<FATFileSystem>, 117 118 /// 根据不同的Inode类型,创建不同的私有字段 119 inode_type: FATDirEntry, 120 121 /// 若该节点是特殊文件节点,该字段则为真正的文件节点 122 special_node: Option<SpecialNodeData>, 123 124 /// 目录名 125 dname: DName, 126 127 /// 页缓存 128 page_cache: Option<Arc<PageCache>>, 129 } 130 131 impl FATInode { 132 /// @brief 更新当前inode的元数据 update_metadata(&mut self)133 pub fn update_metadata(&mut self) { 134 // todo: 更新文件的访问时间等信息 135 match &self.inode_type { 136 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 137 self.metadata.size = f.size() as i64; 138 } 139 FATDirEntry::Dir(d) => { 140 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64; 141 } 142 FATDirEntry::UnInit => { 143 error!("update_metadata: Uninitialized FATDirEntry: {:?}", self); 144 return; 145 } 146 }; 147 } 148 find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError>149 fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> { 150 match &self.inode_type { 151 FATDirEntry::Dir(d) => { 152 let search_name = to_search_name(name); 153 // 尝试在缓存区查找 154 if let Some(entry) = self.children.get(&search_name) { 155 return Ok(entry.clone()); 156 } 157 // 在缓存区找不到 158 // 在磁盘查找 159 let fat_entry: FATDirEntry = 160 d.find_entry(name, None, None, self.fs.upgrade().unwrap())?; 161 let dname = DName::from(name); 162 // 创建新的inode 163 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 164 dname, 165 self.fs.upgrade().unwrap(), 166 self.self_ref.clone(), 167 fat_entry, 168 ); 169 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 170 self.children.insert(search_name, entry_inode.clone()); 171 return Ok(entry_inode); 172 } 173 FATDirEntry::UnInit => { 174 panic!( 175 "Uninitialized FAT Inode, fs = {:?}, inode={self:?}", 176 self.fs 177 ) 178 } 179 _ => { 180 return Err(SystemError::ENOTDIR); 181 } 182 } 183 } 184 } 185 186 impl LockedFATInode { new( dname: DName, fs: Arc<FATFileSystem>, parent: Weak<LockedFATInode>, inode_type: FATDirEntry, ) -> Arc<LockedFATInode>187 pub fn new( 188 dname: DName, 189 fs: Arc<FATFileSystem>, 190 parent: Weak<LockedFATInode>, 191 inode_type: FATDirEntry, 192 ) -> Arc<LockedFATInode> { 193 let file_type = if let FATDirEntry::Dir(_) = inode_type { 194 FileType::Dir 195 } else { 196 FileType::File 197 }; 198 199 let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 200 parent, 201 self_ref: Weak::default(), 202 children: HashMap::new(), 203 fs: Arc::downgrade(&fs), 204 inode_type, 205 metadata: Metadata { 206 dev_id: 0, 207 inode_id: generate_inode_id(), 208 size: 0, 209 blk_size: fs.bpb.bytes_per_sector as usize, 210 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type { 211 fs.bpb.total_sectors_32 as usize 212 } else { 213 fs.bpb.total_sectors_16 as usize 214 }, 215 atime: PosixTimeSpec::default(), 216 mtime: PosixTimeSpec::default(), 217 ctime: PosixTimeSpec::default(), 218 file_type, 219 mode: ModeType::from_bits_truncate(0o777), 220 nlinks: 1, 221 uid: 0, 222 gid: 0, 223 raw_dev: DeviceNumber::default(), 224 }, 225 special_node: None, 226 dname, 227 page_cache: None, 228 }))); 229 230 if !inode.0.lock().inode_type.is_dir() { 231 let page_cache = PageCache::new(Some(Arc::downgrade(&inode) as Weak<dyn IndexNode>)); 232 inode.0.lock().page_cache = Some(page_cache); 233 } 234 235 inode.0.lock().self_ref = Arc::downgrade(&inode); 236 237 inode.0.lock().update_metadata(); 238 239 return inode; 240 } 241 } 242 243 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘) 244 #[derive(Debug)] 245 pub struct FATFsInfo { 246 /// Lead Signature - must equal 0x41615252 247 lead_sig: u32, 248 /// Value must equal 0x61417272 249 struc_sig: u32, 250 /// 空闲簇数目 251 free_count: u32, 252 /// 第一个空闲簇的位置(不一定准确,仅供加速查找) 253 next_free: u32, 254 /// 0xAA550000 255 trail_sig: u32, 256 /// Dirty flag to flush to disk 257 dirty: bool, 258 /// FsInfo Structure 在磁盘上的字节偏移量 259 /// Not present for FAT12 and FAT16 260 offset: Option<u64>, 261 } 262 263 impl FileSystem for FATFileSystem { root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode>264 fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> { 265 return self.root_inode.clone(); 266 } 267 info(&self) -> crate::filesystem::vfs::FsInfo268 fn info(&self) -> crate::filesystem::vfs::FsInfo { 269 todo!() 270 } 271 272 /// @brief 本函数用于实现动态转换。 273 /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self as_any_ref(&self) -> &dyn Any274 fn as_any_ref(&self) -> &dyn Any { 275 self 276 } 277 name(&self) -> &str278 fn name(&self) -> &str { 279 "fat" 280 } 281 super_block(&self) -> SuperBlock282 fn super_block(&self) -> SuperBlock { 283 SuperBlock::new( 284 Magic::FAT_MAGIC, 285 self.bpb.bytes_per_sector.into(), 286 FAT_MAX_NAMELEN, 287 ) 288 } 289 fault(&self, pfm: &mut PageFaultMessage) -> VmFaultReason290 unsafe fn fault(&self, pfm: &mut PageFaultMessage) -> VmFaultReason { 291 PageFaultHandler::filemap_fault(pfm) 292 } 293 map_pages( &self, pfm: &mut PageFaultMessage, start_pgoff: usize, end_pgoff: usize, ) -> VmFaultReason294 unsafe fn map_pages( 295 &self, 296 pfm: &mut PageFaultMessage, 297 start_pgoff: usize, 298 end_pgoff: usize, 299 ) -> VmFaultReason { 300 PageFaultHandler::filemap_map_pages(pfm, start_pgoff, end_pgoff) 301 } 302 } 303 304 impl FATFileSystem { 305 /// FAT12允许的最大簇号 306 pub const FAT12_MAX_CLUSTER: u32 = 0xFF5; 307 /// FAT16允许的最大簇号 308 pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5; 309 /// FAT32允许的最大簇号 310 pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7; 311 new(gendisk: Arc<GenDisk>) -> Result<Arc<FATFileSystem>, SystemError>312 pub fn new(gendisk: Arc<GenDisk>) -> Result<Arc<FATFileSystem>, SystemError> { 313 let bpb = BiosParameterBlock::new(&gendisk)?; 314 // 从磁盘上读取FAT32文件系统的FsInfo结构体 315 let fs_info: FATFsInfo = match bpb.fat_type { 316 FATType::FAT32(bpb32) => { 317 let fs_info_in_gendisk_bytes_offset = 318 bpb32.fs_info as usize * bpb.bytes_per_sector as usize; 319 FATFsInfo::new( 320 &gendisk, 321 fs_info_in_gendisk_bytes_offset, 322 bpb.bytes_per_sector as usize, 323 )? 324 } 325 _ => FATFsInfo::default(), 326 }; 327 328 // 根目录项占用的扇区数(向上取整) 329 let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32) 330 + (bpb.bytes_per_sector as u64 - 1)) 331 / (bpb.bytes_per_sector as u64); 332 333 // FAT表大小(单位:扇区) 334 let fat_size = if bpb.fat_size_16 != 0 { 335 bpb.fat_size_16 as u64 336 } else { 337 match bpb.fat_type { 338 FATType::FAT32(x) => x.fat_size_32 as u64, 339 _ => { 340 error!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 341 return Err(SystemError::EINVAL); 342 } 343 } 344 }; 345 346 let first_data_sector = 347 bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors; 348 349 // 创建文件系统的根节点 350 let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode { 351 parent: Weak::default(), 352 self_ref: Weak::default(), 353 children: HashMap::new(), 354 fs: Weak::default(), 355 inode_type: FATDirEntry::UnInit, 356 metadata: Metadata { 357 dev_id: 0, 358 inode_id: generate_inode_id(), 359 size: 0, 360 blk_size: bpb.bytes_per_sector as usize, 361 blocks: if let FATType::FAT32(_) = bpb.fat_type { 362 bpb.total_sectors_32 as usize 363 } else { 364 bpb.total_sectors_16 as usize 365 }, 366 atime: PosixTimeSpec::default(), 367 mtime: PosixTimeSpec::default(), 368 ctime: PosixTimeSpec::default(), 369 file_type: FileType::Dir, 370 mode: ModeType::from_bits_truncate(0o777), 371 nlinks: 1, 372 uid: 0, 373 gid: 0, 374 raw_dev: DeviceNumber::default(), 375 }, 376 special_node: None, 377 dname: DName::default(), 378 page_cache: None, 379 }))); 380 381 let result: Arc<FATFileSystem> = Arc::new(FATFileSystem { 382 gendisk, 383 bpb, 384 first_data_sector, 385 fs_info: Arc::new(LockedFATFsInfo::new(fs_info)), 386 root_inode, 387 }); 388 389 // 对root inode加锁,并继续完成初始化工作 390 let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock(); 391 root_guard.inode_type = FATDirEntry::Dir(result.root_dir()); 392 root_guard.parent = Arc::downgrade(&result.root_inode); 393 root_guard.self_ref = Arc::downgrade(&result.root_inode); 394 root_guard.fs = Arc::downgrade(&result); 395 // 释放锁 396 drop(root_guard); 397 398 return Ok(result); 399 } 400 401 /// @brief 计算每个簇有多少个字节 402 #[inline] bytes_per_cluster(&self) -> u64403 pub fn bytes_per_cluster(&self) -> u64 { 404 return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64); 405 } 406 407 /// @brief 读取当前簇在FAT表中存储的信息 408 /// 409 /// @param cluster 当前簇 410 /// 411 /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释) 412 /// @return Err(SystemError) 错误码 get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError>413 pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> { 414 let current_cluster = cluster.cluster_num; 415 if current_cluster < 2 { 416 // 0号簇和1号簇是保留簇,不允许用户使用 417 return Err(SystemError::EINVAL); 418 } 419 420 let fat_type: FATType = self.bpb.fat_type; 421 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 422 let fat_start_sector = self.fat_start_sector(); 423 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 424 425 // cluster对应的FAT表项在分区内的字节偏移量 426 let fat_bytes_offset = 427 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 428 429 // FAT表项所在的分区内LBA地址 430 let fat_ent_lba = fat_bytes_offset / LBA_SIZE as u64; 431 432 // FAT表项在逻辑块内的字节偏移量 433 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 434 435 let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize]; 436 self.gendisk.read_at(&mut v, fat_ent_lba as usize)?; 437 438 let mut cursor = VecCursor::new(v); 439 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 440 441 let res: FATEntry = match self.bpb.fat_type { 442 FATType::FAT12(_) => { 443 let mut entry = cursor.read_u16()?; 444 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。 445 if (current_cluster & 1) > 0 { 446 entry >>= 4; 447 } else { 448 entry &= 0x0fff; 449 } 450 451 if entry == 0 { 452 FATEntry::Unused 453 } else if entry == 0x0ff7 { 454 FATEntry::Bad 455 } else if entry >= 0x0ff8 { 456 FATEntry::EndOfChain 457 } else { 458 FATEntry::Next(Cluster { 459 cluster_num: entry as u64, 460 parent_cluster: current_cluster, 461 }) 462 } 463 } 464 FATType::FAT16(_) => { 465 let entry = cursor.read_u16()?; 466 467 if entry == 0 { 468 FATEntry::Unused 469 } else if entry == 0xfff7 { 470 FATEntry::Bad 471 } else if entry >= 0xfff8 { 472 FATEntry::EndOfChain 473 } else { 474 FATEntry::Next(Cluster { 475 cluster_num: entry as u64, 476 parent_cluster: current_cluster, 477 }) 478 } 479 } 480 FATType::FAT32(_) => { 481 let entry = cursor.read_u32()? & 0x0fffffff; 482 483 match entry { 484 _n if (0x0ffffff7..=0x0fffffff).contains(¤t_cluster) => { 485 // 当前簇号不是一个能被获得的簇(可能是文件系统出错了) 486 error!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster); 487 FATEntry::Bad 488 } 489 0 => FATEntry::Unused, 490 0x0ffffff7 => FATEntry::Bad, 491 0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain, 492 _n => FATEntry::Next(Cluster { 493 cluster_num: entry as u64, 494 parent_cluster: current_cluster, 495 }), 496 } 497 } 498 }; 499 return Ok(res); 500 } 501 502 /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理) 503 /// 504 /// @param cluster 当前簇 505 /// 506 /// @return Ok(u64) 当前簇在FAT表中,存储的信息。 507 /// @return Err(SystemError) 错误码 get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError>508 pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> { 509 let current_cluster = cluster.cluster_num; 510 511 let fat_type: FATType = self.bpb.fat_type; 512 // 获取FAT表的起始扇区(相对分区起始扇区的偏移量) 513 let fat_start_sector = self.fat_start_sector(); 514 let bytes_per_sec = self.bpb.bytes_per_sector as u64; 515 516 // cluster对应的FAT表项在分区内的字节偏移量 517 let fat_bytes_offset = 518 fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec); 519 520 // FAT表项所在的分区内LBA地址 521 let fat_ent_lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_bytes_offset)); 522 523 // FAT表项在逻辑块内的字节偏移量 524 let blk_offset = self.get_in_block_offset(fat_bytes_offset); 525 526 let mut v: Vec<u8> = vec![0; self.bpb.bytes_per_sector as usize]; 527 self.gendisk.read_at(&mut v, fat_ent_lba)?; 528 529 let mut cursor = VecCursor::new(v); 530 cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?; 531 532 let res = match self.bpb.fat_type { 533 FATType::FAT12(_) => { 534 let mut entry = cursor.read_u16()?; 535 entry = if (current_cluster & 0x0001) > 0 { 536 entry >> 4 537 } else { 538 entry & 0x0fff 539 }; 540 entry as u64 541 } 542 FATType::FAT16(_) => { 543 let entry = (cursor.read_u16()?) as u64; 544 entry 545 } 546 FATType::FAT32(_) => { 547 let entry = cursor.read_u32()? & 0x0fff_ffff; 548 entry as u64 549 } 550 }; 551 552 return Ok(res); 553 } 554 555 /// @brief 获取当前文件系统的root inode,在分区内的字节偏移量 root_dir_bytes_offset(&self) -> u64556 pub fn root_dir_bytes_offset(&self) -> u64 { 557 match self.bpb.fat_type { 558 FATType::FAT32(s) => { 559 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2) 560 * (self.bpb.sector_per_cluster as u64) 561 + self.first_data_sector; 562 return (self.gendisk_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64; 563 } 564 _ => { 565 let root_sec = (self.bpb.rsvd_sec_cnt as u64) 566 + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64); 567 return (self.gendisk_lba_from_offset(root_sec) * LBA_SIZE) as u64; 568 } 569 } 570 } 571 572 /// @brief 获取当前文件系统的根目录项区域的结束位置,在分区内的字节偏移量。 573 /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None root_dir_end_bytes_offset(&self) -> Option<u64>574 pub fn root_dir_end_bytes_offset(&self) -> Option<u64> { 575 match self.bpb.fat_type { 576 FATType::FAT12(_) | FATType::FAT16(_) => { 577 return Some( 578 self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32, 579 ); 580 } 581 _ => { 582 return None; 583 } 584 } 585 } 586 587 /// 获取簇在分区内的字节偏移量 cluster_bytes_offset(&self, cluster: Cluster) -> u64588 pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 { 589 if cluster.cluster_num >= 2 { 590 // 指定簇的第一个扇区号 591 let first_sec_of_cluster = (cluster.cluster_num - 2) 592 * (self.bpb.sector_per_cluster as u64) 593 + self.first_data_sector; 594 return first_sec_of_cluster * (self.bpb.bytes_per_sector as u64); 595 } else { 596 return 0; 597 } 598 } 599 600 /// @brief 获取一个空闲簇 601 /// 602 /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。 603 /// 604 /// @return Ok(Cluster) 新获取的空闲簇 605 /// @return Err(SystemError) 错误码 allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError>606 pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> { 607 let end_cluster: Cluster = self.max_cluster_number(); 608 let start_cluster: Cluster = match self.bpb.fat_type { 609 FATType::FAT32(_) => { 610 let next_free: u64 = self.fs_info.0.lock().next_free().unwrap_or(0xffffffff); 611 if next_free < end_cluster.cluster_num { 612 Cluster::new(next_free) 613 } else { 614 Cluster::new(RESERVED_CLUSTERS as u64) 615 } 616 } 617 _ => Cluster::new(RESERVED_CLUSTERS as u64), 618 }; 619 620 // 寻找一个空的簇 621 let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) { 622 Ok(c) => c, 623 Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => { 624 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)? 625 } 626 Err(e) => return Err(e), 627 }; 628 629 self.set_entry(free_cluster, FATEntry::EndOfChain)?; 630 // 减少空闲簇计数 631 self.fs_info.0.lock().update_free_count_delta(-1); 632 // 更新搜索空闲簇的参考量 633 self.fs_info 634 .0 635 .lock() 636 .update_next_free((free_cluster.cluster_num + 1) as u32); 637 638 // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。 639 if let Some(prev_cluster) = prev_cluster { 640 // debug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}"); 641 self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?; 642 } 643 // 清空新获取的这个簇 644 self.zero_cluster(free_cluster)?; 645 return Ok(free_cluster); 646 } 647 648 /// @brief 释放簇链上的所有簇 649 /// 650 /// @param start_cluster 簇链的第一个簇 deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError>651 pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> { 652 let clusters: Vec<Cluster> = self.clusters(start_cluster); 653 for c in clusters { 654 self.deallocate_cluster(c)?; 655 } 656 return Ok(()); 657 } 658 659 /// @brief 释放簇 660 /// 661 /// @param 要释放的簇 deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError>662 pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 663 let entry: FATEntry = self.get_fat_entry(cluster)?; 664 // 如果不是坏簇 665 if entry != FATEntry::Bad { 666 self.set_entry(cluster, FATEntry::Unused)?; 667 self.fs_info.0.lock().update_free_count_delta(1); 668 // 安全选项:清空被释放的簇 669 #[cfg(feature = "fatfs-secure")] 670 self.zero_cluster(cluster)?; 671 return Ok(()); 672 } else { 673 // 不能释放坏簇 674 error!("Bad clusters cannot be freed."); 675 return Err(SystemError::EFAULT); 676 } 677 } 678 679 /// @brief 获取文件系统的根目录项 root_dir(&self) -> FATDir680 pub fn root_dir(&self) -> FATDir { 681 match self.bpb.fat_type { 682 FATType::FAT32(s) => { 683 return FATDir { 684 first_cluster: Cluster::new(s.root_cluster as u64), 685 dir_name: String::from("/"), 686 root_offset: None, 687 short_dir_entry: None, 688 loc: None, 689 }; 690 } 691 _ => FATDir { 692 first_cluster: Cluster::new(0), 693 dir_name: String::from("/"), 694 root_offset: Some(self.root_dir_bytes_offset()), 695 short_dir_entry: None, 696 loc: None, 697 }, 698 } 699 } 700 701 /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量) fat_start_sector(&self) -> u64702 pub fn fat_start_sector(&self) -> u64 { 703 let active_fat = self.active_fat(); 704 let fat_size = self.fat_size(); 705 return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size; 706 } 707 708 /// @brief 获取当前活动的FAT表 active_fat(&self) -> u64709 pub fn active_fat(&self) -> u64 { 710 if self.mirroring_enabled() { 711 return 0; 712 } else { 713 match self.bpb.fat_type { 714 FATType::FAT32(bpb32) => { 715 return (bpb32.ext_flags & 0x0f) as u64; 716 } 717 _ => { 718 return 0; 719 } 720 } 721 } 722 } 723 724 /// @brief 获取当前文件系统的每个FAT表的大小 fat_size(&self) -> u64725 pub fn fat_size(&self) -> u64 { 726 if self.bpb.fat_size_16 != 0 { 727 return self.bpb.fat_size_16 as u64; 728 } else { 729 match self.bpb.fat_type { 730 FATType::FAT32(bpb32) => { 731 return bpb32.fat_size_32 as u64; 732 } 733 734 _ => { 735 panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16"); 736 } 737 } 738 } 739 } 740 741 /// @brief 判断当前文件系统是否启用了FAT表镜像 mirroring_enabled(&self) -> bool742 pub fn mirroring_enabled(&self) -> bool { 743 match self.bpb.fat_type { 744 FATType::FAT32(bpb32) => { 745 return (bpb32.ext_flags & 0x80) == 0; 746 } 747 _ => { 748 return false; 749 } 750 } 751 } 752 753 /// 获取分区内的扇区偏移量 754 #[inline] gendisk_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize755 pub fn gendisk_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize { 756 return (in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64)) 757 as usize; 758 } 759 760 /// @brief 获取每个扇区占用多少个LBA 761 #[inline] lba_per_sector(&self) -> usize762 pub fn lba_per_sector(&self) -> usize { 763 return self.bpb.bytes_per_sector as usize / LBA_SIZE; 764 } 765 766 /// @brief 将分区内字节偏移量转换为扇区偏移量 767 #[inline] bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64768 pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 { 769 return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64); 770 } 771 772 /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量 773 #[inline] get_in_block_offset(&self, bytes_offset: u64) -> u64774 pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 { 775 return bytes_offset % LBA_SIZE as u64; 776 } 777 778 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息 779 /// 780 /// @param start_cluster 整个FAT链的起始簇号 clusters(&self, start_cluster: Cluster) -> Vec<Cluster>781 pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> { 782 return self.cluster_iter(start_cluster).collect(); 783 } 784 785 /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇) 786 /// 787 /// @param start_cluster 整个FAT链的起始簇号 num_clusters_chain(&self, start_cluster: Cluster) -> u64788 pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 { 789 return self 790 .cluster_iter(start_cluster) 791 .fold(0, |size, _cluster| size + 1); 792 } 793 /// @brief 获取一个簇迭代器对象 794 /// 795 /// @param start_cluster 整个FAT链的起始簇号 cluster_iter(&self, start_cluster: Cluster) -> ClusterIter796 fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter { 797 return ClusterIter { 798 current_cluster: Some(start_cluster), 799 fs: self, 800 }; 801 } 802 803 /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始) 804 #[inline] get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster>805 pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> { 806 return self.cluster_iter(start_cluster).nth(n); 807 } 808 809 /// @brief 获取整个簇链的最后一个簇 810 #[inline] get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster>811 pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> { 812 return self.cluster_iter(start_cluster).last(); 813 } 814 815 /// @brief 判断FAT文件系统的shut bit是否正常。 816 /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的” 817 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 818 /// 819 /// @return Ok(true) 正常 820 /// @return Ok(false) 不正常 821 /// @return Err(SystemError) 在判断时发生错误 822 #[allow(dead_code)] is_shut_bit_ok(&mut self) -> Result<bool, SystemError>823 pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> { 824 match self.bpb.fat_type { 825 FATType::FAT32(_) => { 826 // 对于FAT32, error bit位于第一个扇区的第8字节。 827 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000; 828 return Ok(bit > 0); 829 } 830 FATType::FAT16(_) => { 831 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000; 832 return Ok(bit > 0); 833 } 834 _ => return Ok(true), 835 } 836 } 837 838 /// @brief 判断FAT文件系统的hard error bit是否正常。 839 /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明 840 /// 卷上的某些扇区可能已损坏。 841 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 842 /// 843 /// @return Ok(true) 正常 844 /// @return Ok(false) 不正常 845 /// @return Err(SystemError) 在判断时发生错误 is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError>846 pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> { 847 match self.bpb.fat_type { 848 FATType::FAT32(_) => { 849 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000; 850 return Ok(bit > 0); 851 } 852 FATType::FAT16(_) => { 853 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000; 854 return Ok(bit > 0); 855 } 856 _ => return Ok(true), 857 } 858 } 859 860 /// @brief 设置文件系统的shut bit为正常状态 861 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 862 /// 863 /// @return Ok(()) 设置成功 864 /// @return Err(SystemError) 在设置过程中,出现错误 set_shut_bit_ok(&mut self) -> Result<(), SystemError>865 pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> { 866 match self.bpb.fat_type { 867 FATType::FAT32(_) => { 868 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000; 869 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 870 871 return Ok(()); 872 } 873 874 FATType::FAT16(_) => { 875 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000; 876 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 877 return Ok(()); 878 } 879 _ => return Ok(()), 880 } 881 } 882 883 /// @brief 设置文件系统的hard error bit为正常状态 884 /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html 885 /// 886 /// @return Ok(()) 设置成功 887 /// @return Err(SystemError) 在设置过程中,出现错误 set_hard_error_bit_ok(&mut self) -> Result<(), SystemError>888 pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> { 889 match self.bpb.fat_type { 890 FATType::FAT32(_) => { 891 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000; 892 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 893 return Ok(()); 894 } 895 896 FATType::FAT16(_) => { 897 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000; 898 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?; 899 return Ok(()); 900 } 901 _ => return Ok(()), 902 } 903 } 904 905 /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘 umount(&mut self) -> Result<(), SystemError>906 pub fn umount(&mut self) -> Result<(), SystemError> { 907 self.fs_info.0.lock().flush(&self.gendisk)?; 908 909 self.set_shut_bit_ok()?; 910 911 self.set_hard_error_bit_ok()?; 912 913 self.gendisk.sync()?; 914 915 return Ok(()); 916 } 917 918 /// @brief 获取文件系统的最大簇号 max_cluster_number(&self) -> Cluster919 pub fn max_cluster_number(&self) -> Cluster { 920 match self.bpb.fat_type { 921 FATType::FAT32(s) => { 922 // FAT32 923 924 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区) 925 let data_sec: u64 = self.bpb.total_sectors_32 as u64 926 - (self.bpb.rsvd_sec_cnt as u64 927 + self.bpb.num_fats as u64 * s.fat_size_32 as u64); 928 929 // 数据区的簇数量 930 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64; 931 932 // 返回最大的簇号 933 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 934 } 935 936 _ => { 937 // FAT12 / FAT16 938 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32) 939 + self.bpb.bytes_per_sector as u64 940 - 1) 941 / self.bpb.bytes_per_sector as u64; 942 // 数据区扇区数 943 let data_sec: u64 = self.bpb.total_sectors_16 as u64 944 - (self.bpb.rsvd_sec_cnt as u64 945 + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64) 946 + root_dir_sectors); 947 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64; 948 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1); 949 } 950 } 951 } 952 953 /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇 954 /// 955 /// @param start_cluster 起始簇号 956 /// @param end_cluster 终止簇号(不包含) 957 /// 958 /// @return Ok(Cluster) 寻找到的空闲簇 959 /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC. get_free_cluster( &self, start_cluster: Cluster, end_cluster: Cluster, ) -> Result<Cluster, SystemError>960 pub fn get_free_cluster( 961 &self, 962 start_cluster: Cluster, 963 end_cluster: Cluster, 964 ) -> Result<Cluster, SystemError> { 965 let max_cluster: Cluster = self.max_cluster_number(); 966 let mut cluster: u64 = start_cluster.cluster_num; 967 968 let fat_type: FATType = self.bpb.fat_type; 969 let fat_start_sector: u64 = self.fat_start_sector(); 970 let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64; 971 972 match fat_type { 973 FATType::FAT12(_) => { 974 let part_bytes_offset: u64 = 975 fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec); 976 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 977 978 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 979 980 // 由于FAT12的FAT表不大于6K,因此直接读取6K 981 let num_lba = (6 * 1024) / LBA_SIZE; 982 let mut v: Vec<u8> = vec![0; num_lba * LBA_SIZE]; 983 self.gendisk.read_at(&mut v, lba)?; 984 985 let mut cursor: VecCursor = VecCursor::new(v); 986 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 987 988 let mut packed_val: u16 = cursor.read_u16()?; 989 loop { 990 let val = if (cluster & 0x1) > 0 { 991 packed_val >> 4 992 } else { 993 packed_val & 0x0fff 994 }; 995 if val == 0 { 996 return Ok(Cluster::new(cluster)); 997 } 998 999 cluster += 1; 1000 1001 // 磁盘无剩余空间,或者簇号达到给定的最大值 1002 if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num { 1003 return Err(SystemError::ENOSPC); 1004 } 1005 1006 packed_val = match cluster & 1 { 1007 0 => cursor.read_u16()?, 1008 _ => { 1009 let next_byte = cursor.read_u8()? as u16; 1010 (packed_val >> 8) | (next_byte << 8) 1011 } 1012 }; 1013 } 1014 } 1015 FATType::FAT16(_) => { 1016 // todo: 优化这里,减少读取磁盘的次数。 1017 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 1018 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 1019 Cluster::new(cluster), 1020 fat_start_sector, 1021 bytes_per_sec, 1022 ); 1023 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 1024 1025 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 1026 1027 let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE]; 1028 self.gendisk.read_at(&mut v, lba)?; 1029 1030 let mut cursor: VecCursor = VecCursor::new(v); 1031 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1032 1033 let val = cursor.read_u16()?; 1034 // 找到空闲簇 1035 if val == 0 { 1036 return Ok(Cluster::new(val as u64)); 1037 } 1038 cluster += 1; 1039 } 1040 1041 // 磁盘无剩余空间,或者簇号达到给定的最大值 1042 return Err(SystemError::ENOSPC); 1043 } 1044 FATType::FAT32(_) => { 1045 // todo: 优化这里,减少读取磁盘的次数。 1046 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num { 1047 let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset( 1048 Cluster::new(cluster), 1049 fat_start_sector, 1050 bytes_per_sec, 1051 ); 1052 let in_block_offset = self.get_in_block_offset(part_bytes_offset); 1053 1054 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(part_bytes_offset)); 1055 1056 let mut v: Vec<u8> = vec![0; self.lba_per_sector() * LBA_SIZE]; 1057 self.gendisk.read_at(&mut v, lba)?; 1058 1059 let mut cursor: VecCursor = VecCursor::new(v); 1060 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1061 1062 let val = cursor.read_u32()? & 0x0fffffff; 1063 1064 if val == 0 { 1065 return Ok(Cluster::new(cluster)); 1066 } 1067 cluster += 1; 1068 } 1069 1070 // 磁盘无剩余空间,或者簇号达到给定的最大值 1071 return Err(SystemError::ENOSPC); 1072 } 1073 } 1074 } 1075 1076 /// @brief 在FAT表中,设置指定的簇的信息。 1077 /// 1078 /// @param cluster 目标簇 1079 /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号) set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError>1080 pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> { 1081 // fat表项在分区上的字节偏移量 1082 let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset( 1083 cluster, 1084 self.fat_start_sector(), 1085 self.bpb.bytes_per_sector as u64, 1086 ); 1087 1088 match self.bpb.fat_type { 1089 FATType::FAT12(_) => { 1090 // 计算要写入的值 1091 let raw_val: u16 = match fat_entry { 1092 FATEntry::Unused => 0, 1093 FATEntry::Bad => 0xff7, 1094 FATEntry::EndOfChain => 0xfff, 1095 FATEntry::Next(c) => c.cluster_num as u16, 1096 }; 1097 1098 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1099 1100 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1101 1102 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1103 self.gendisk.read_at(&mut v, lba)?; 1104 1105 let mut cursor: VecCursor = VecCursor::new(v); 1106 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1107 1108 let old_val: u16 = cursor.read_u16()?; 1109 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 { 1110 (old_val & 0x000f) | (raw_val << 4) 1111 } else { 1112 (old_val & 0xf000) | raw_val 1113 }; 1114 1115 // 写回数据到磁盘上 1116 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1117 cursor.write_u16(new_val)?; 1118 self.gendisk.write_at(cursor.as_slice(), lba)?; 1119 return Ok(()); 1120 } 1121 FATType::FAT16(_) => { 1122 // 计算要写入的值 1123 let raw_val: u16 = match fat_entry { 1124 FATEntry::Unused => 0, 1125 FATEntry::Bad => 0xfff7, 1126 FATEntry::EndOfChain => 0xfdff, 1127 FATEntry::Next(c) => c.cluster_num as u16, 1128 }; 1129 1130 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset); 1131 1132 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset)); 1133 1134 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1135 self.gendisk.read_at(&mut v, lba)?; 1136 1137 let mut cursor: VecCursor = VecCursor::new(v); 1138 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1139 1140 cursor.write_u16(raw_val)?; 1141 self.gendisk.write_at(cursor.as_slice(), lba)?; 1142 1143 return Ok(()); 1144 } 1145 FATType::FAT32(_) => { 1146 let fat_size: u64 = self.fat_size(); 1147 let bound: u64 = if self.mirroring_enabled() { 1148 1 1149 } else { 1150 self.bpb.num_fats as u64 1151 }; 1152 // debug!("set entry, bound={bound}, fat_size={fat_size}"); 1153 for i in 0..bound { 1154 // 当前操作的FAT表在磁盘上的字节偏移量 1155 let f_offset: u64 = fat_part_bytes_offset + i * fat_size; 1156 let in_block_offset: u64 = self.get_in_block_offset(f_offset); 1157 let lba = self.gendisk_lba_from_offset(self.bytes_to_sector(f_offset)); 1158 1159 // debug!("set entry, lba={lba}, in_block_offset={in_block_offset}"); 1160 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1161 self.gendisk.read_at(&mut v, lba)?; 1162 1163 let mut cursor: VecCursor = VecCursor::new(v); 1164 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1165 1166 // FAT32的高4位保留 1167 let old_bits = cursor.read_u32()? & 0xf0000000; 1168 1169 if fat_entry == FATEntry::Unused 1170 && cluster.cluster_num >= 0x0ffffff7 1171 && cluster.cluster_num <= 0x0fffffff 1172 { 1173 error!( 1174 "FAT32: Reserved Cluster {:?} cannot be marked as free", 1175 cluster 1176 ); 1177 return Err(SystemError::EPERM); 1178 } 1179 1180 // 计算要写入的值 1181 let mut raw_val: u32 = match fat_entry { 1182 FATEntry::Unused => 0, 1183 FATEntry::Bad => 0x0FFFFFF7, 1184 FATEntry::EndOfChain => 0x0FFFFFFF, 1185 FATEntry::Next(c) => c.cluster_num as u32, 1186 }; 1187 1188 // 恢复保留位 1189 raw_val |= old_bits; 1190 1191 // debug!("sent entry, raw_val={raw_val}"); 1192 1193 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1194 cursor.write_u32(raw_val)?; 1195 1196 self.gendisk.write_at(cursor.as_slice(), lba)?; 1197 } 1198 1199 return Ok(()); 1200 } 1201 } 1202 } 1203 1204 /// # 清空指定的簇 1205 /// 1206 /// # 参数 1207 /// - cluster 要被清空的簇 zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError>1208 pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> { 1209 // 准备数据,用于写入 1210 let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize]; 1211 let offset = self.cluster_bytes_offset(cluster) as usize; 1212 self.gendisk.write_at_bytes(&zeros, offset)?; 1213 return Ok(()); 1214 } 1215 } 1216 1217 impl Drop for FATFileSystem { drop(&mut self)1218 fn drop(&mut self) { 1219 let r = self.umount(); 1220 if r.is_err() { 1221 error!( 1222 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}", 1223 r.as_ref().unwrap_err() 1224 ); 1225 } 1226 } 1227 } 1228 1229 impl FATFsInfo { 1230 const LEAD_SIG: u32 = 0x41615252; 1231 const STRUC_SIG: u32 = 0x61417272; 1232 const TRAIL_SIG: u32 = 0xAA550000; 1233 #[allow(dead_code)] 1234 const FS_INFO_SIZE: u64 = 512; 1235 1236 /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体 1237 /// 1238 /// @param partition 磁盘分区 1239 /// @param in_gendisk_fs_info_offset FSInfo扇区在gendisk内的字节偏移量(单位:字节) 1240 /// @param bytes_per_sec 每扇区字节数 new( gendisk: &Arc<GenDisk>, in_gendisk_fs_info_offset: usize, bytes_per_sec: usize, ) -> Result<Self, SystemError>1241 pub fn new( 1242 gendisk: &Arc<GenDisk>, 1243 in_gendisk_fs_info_offset: usize, 1244 bytes_per_sec: usize, 1245 ) -> Result<Self, SystemError> { 1246 let mut v = vec![0; bytes_per_sec]; 1247 1248 // 读取磁盘上的FsInfo扇区 1249 gendisk.read_at_bytes(&mut v, in_gendisk_fs_info_offset)?; 1250 1251 let mut cursor = VecCursor::new(v); 1252 1253 let mut fsinfo = FATFsInfo { 1254 lead_sig: cursor.read_u32()?, 1255 ..Default::default() 1256 }; 1257 cursor.seek(SeekFrom::SeekCurrent(480))?; 1258 fsinfo.struc_sig = cursor.read_u32()?; 1259 fsinfo.free_count = cursor.read_u32()?; 1260 fsinfo.next_free = cursor.read_u32()?; 1261 1262 cursor.seek(SeekFrom::SeekCurrent(12))?; 1263 1264 fsinfo.trail_sig = cursor.read_u32()?; 1265 fsinfo.dirty = false; 1266 fsinfo.offset = Some(gendisk.disk_bytes_offset(in_gendisk_fs_info_offset) as u64); 1267 1268 if fsinfo.is_valid() { 1269 return Ok(fsinfo); 1270 } else { 1271 error!("Error occurred while parsing FATFsInfo."); 1272 return Err(SystemError::EINVAL); 1273 } 1274 } 1275 1276 /// @brief 判断是否为正确的FsInfo结构体 is_valid(&self) -> bool1277 fn is_valid(&self) -> bool { 1278 self.lead_sig == Self::LEAD_SIG 1279 && self.struc_sig == Self::STRUC_SIG 1280 && self.trail_sig == Self::TRAIL_SIG 1281 } 1282 1283 /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量 1284 /// 1285 /// @param 当前文件系统的最大簇号 count_free_cluster(&self, max_cluster: Cluster) -> Option<u64>1286 pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> { 1287 let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1; 1288 // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值 1289 if self.free_count as u64 > count_clusters { 1290 return None; 1291 } else { 1292 match self.free_count { 1293 // free count字段不可用 1294 0xffffffff => return None, 1295 // 返回FsInfo中存储的数据 1296 n => return Some(n as u64), 1297 } 1298 } 1299 } 1300 1301 /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count 1302 /// 1303 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 update_free_count_abs(&mut self, new_count: u32)1304 pub fn update_free_count_abs(&mut self, new_count: u32) { 1305 self.free_count = new_count; 1306 } 1307 1308 /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta. 1309 /// 1310 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 update_free_count_delta(&mut self, delta: i32)1311 pub fn update_free_count_delta(&mut self, delta: i32) { 1312 self.free_count = (self.free_count as i32 + delta) as u32; 1313 } 1314 1315 /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free. 1316 /// 1317 /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘 update_next_free(&mut self, next_free: u32)1318 pub fn update_next_free(&mut self, next_free: u32) { 1319 // 这个值是参考量,不一定要准确,仅供加速查找 1320 self.next_free = next_free; 1321 } 1322 1323 /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考) next_free(&self) -> Option<u64>1324 pub fn next_free(&self) -> Option<u64> { 1325 match self.next_free { 1326 0xffffffff => return None, 1327 0 | 1 => return None, 1328 n => return Some(n as u64), 1329 }; 1330 } 1331 1332 /// @brief 把fs info刷入磁盘 1333 /// 1334 /// @param partition fs info所在的分区 flush(&self, gendisk: &Arc<GenDisk>) -> Result<(), SystemError>1335 pub fn flush(&self, gendisk: &Arc<GenDisk>) -> Result<(), SystemError> { 1336 if let Some(off) = self.offset { 1337 let in_block_offset = off % LBA_SIZE as u64; 1338 1339 let lba = off as usize / LBA_SIZE; 1340 1341 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1342 gendisk.read_at(&mut v, lba)?; 1343 1344 let mut cursor: VecCursor = VecCursor::new(v); 1345 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1346 1347 cursor.write_u32(self.lead_sig)?; 1348 cursor.seek(SeekFrom::SeekCurrent(480))?; 1349 cursor.write_u32(self.struc_sig)?; 1350 cursor.write_u32(self.free_count)?; 1351 cursor.write_u32(self.next_free)?; 1352 cursor.seek(SeekFrom::SeekCurrent(12))?; 1353 cursor.write_u32(self.trail_sig)?; 1354 1355 gendisk.write_at(cursor.as_slice(), lba)?; 1356 } 1357 return Ok(()); 1358 } 1359 1360 /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中 1361 /// 1362 /// @param partition fs info所在的分区 update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError>1363 pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> { 1364 if let Some(off) = self.offset { 1365 let in_block_offset = off % LBA_SIZE as u64; 1366 1367 let lba = off as usize / LBA_SIZE; 1368 1369 let mut v: Vec<u8> = vec![0; LBA_SIZE]; 1370 partition.disk().read_at(lba, 1, &mut v)?; 1371 let mut cursor: VecCursor = VecCursor::new(v); 1372 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?; 1373 self.lead_sig = cursor.read_u32()?; 1374 1375 cursor.seek(SeekFrom::SeekCurrent(480))?; 1376 self.struc_sig = cursor.read_u32()?; 1377 self.free_count = cursor.read_u32()?; 1378 self.next_free = cursor.read_u32()?; 1379 cursor.seek(SeekFrom::SeekCurrent(12))?; 1380 self.trail_sig = cursor.read_u32()?; 1381 } 1382 return Ok(()); 1383 } 1384 } 1385 1386 impl IndexNode for LockedFATInode { read_at( &self, offset: usize, len: usize, buf: &mut [u8], _data: SpinLockGuard<FilePrivateData>, ) -> Result<usize, SystemError>1387 fn read_at( 1388 &self, 1389 offset: usize, 1390 len: usize, 1391 buf: &mut [u8], 1392 _data: SpinLockGuard<FilePrivateData>, 1393 ) -> Result<usize, SystemError> { 1394 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1395 match &guard.inode_type { 1396 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1397 let r = f.read( 1398 &guard.fs.upgrade().unwrap(), 1399 &mut buf[0..len], 1400 offset as u64, 1401 ); 1402 guard.update_metadata(); 1403 return r; 1404 } 1405 FATDirEntry::Dir(_) => { 1406 return Err(SystemError::EISDIR); 1407 } 1408 FATDirEntry::UnInit => { 1409 error!("FATFS: param: Inode_type uninitialized."); 1410 return Err(SystemError::EROFS); 1411 } 1412 } 1413 } 1414 write_at( &self, offset: usize, len: usize, buf: &[u8], _data: SpinLockGuard<FilePrivateData>, ) -> Result<usize, SystemError>1415 fn write_at( 1416 &self, 1417 offset: usize, 1418 len: usize, 1419 buf: &[u8], 1420 _data: SpinLockGuard<FilePrivateData>, 1421 ) -> Result<usize, SystemError> { 1422 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1423 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1424 1425 match &mut guard.inode_type { 1426 FATDirEntry::File(f) | FATDirEntry::VolId(f) => { 1427 let r = f.write(fs, &buf[0..len], offset as u64); 1428 guard.update_metadata(); 1429 return r; 1430 } 1431 FATDirEntry::Dir(_) => { 1432 return Err(SystemError::EISDIR); 1433 } 1434 FATDirEntry::UnInit => { 1435 error!("FATFS: param: Inode_type uninitialized."); 1436 return Err(SystemError::EROFS); 1437 } 1438 } 1439 } 1440 create( &self, name: &str, file_type: FileType, _mode: ModeType, ) -> Result<Arc<dyn IndexNode>, SystemError>1441 fn create( 1442 &self, 1443 name: &str, 1444 file_type: FileType, 1445 _mode: ModeType, 1446 ) -> Result<Arc<dyn IndexNode>, SystemError> { 1447 // 由于FAT32不支持文件权限的功能,因此忽略mode参数 1448 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1449 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1450 1451 match &mut guard.inode_type { 1452 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1453 return Err(SystemError::ENOTDIR); 1454 } 1455 FATDirEntry::Dir(d) => match file_type { 1456 FileType::File => { 1457 d.create_file(name, fs)?; 1458 return Ok(guard.find(name)?); 1459 } 1460 FileType::Dir => { 1461 d.create_dir(name, fs)?; 1462 return Ok(guard.find(name)?); 1463 } 1464 1465 FileType::SymLink => return Err(SystemError::ENOSYS), 1466 _ => return Err(SystemError::EINVAL), 1467 }, 1468 FATDirEntry::UnInit => { 1469 error!("FATFS: param: Inode_type uninitialized."); 1470 return Err(SystemError::EROFS); 1471 } 1472 } 1473 } 1474 fs(&self) -> Arc<dyn FileSystem>1475 fn fs(&self) -> Arc<dyn FileSystem> { 1476 return self.0.lock().fs.upgrade().unwrap(); 1477 } 1478 as_any_ref(&self) -> &dyn core::any::Any1479 fn as_any_ref(&self) -> &dyn core::any::Any { 1480 return self; 1481 } 1482 metadata(&self) -> Result<Metadata, SystemError>1483 fn metadata(&self) -> Result<Metadata, SystemError> { 1484 return Ok(self.0.lock().metadata.clone()); 1485 } set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError>1486 fn set_metadata(&self, metadata: &Metadata) -> Result<(), SystemError> { 1487 let inode = &mut self.0.lock(); 1488 inode.metadata.atime = metadata.atime; 1489 inode.metadata.mtime = metadata.mtime; 1490 inode.metadata.ctime = metadata.ctime; 1491 inode.metadata.mode = metadata.mode; 1492 inode.metadata.uid = metadata.uid; 1493 inode.metadata.gid = metadata.gid; 1494 Ok(()) 1495 } resize(&self, len: usize) -> Result<(), SystemError>1496 fn resize(&self, len: usize) -> Result<(), SystemError> { 1497 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1498 let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap(); 1499 let old_size = guard.metadata.size as usize; 1500 1501 match &mut guard.inode_type { 1502 FATDirEntry::File(file) | FATDirEntry::VolId(file) => { 1503 // 如果新的长度和旧的长度相同,那么就直接返回 1504 match len.cmp(&old_size) { 1505 Ordering::Equal => { 1506 return Ok(()); 1507 } 1508 Ordering::Greater => { 1509 // 如果新的长度比旧的长度大,那么就在文件末尾添加空白 1510 let mut buf: Vec<u8> = Vec::new(); 1511 let mut remain_size = len - old_size; 1512 let buf_size = remain_size; 1513 // let buf_size = core::cmp::min(remain_size, 512 * 1024); 1514 buf.resize(buf_size, 0); 1515 1516 let mut offset = old_size; 1517 while remain_size > 0 { 1518 let write_size = core::cmp::min(remain_size, buf_size); 1519 file.write(fs, &buf[0..write_size], offset as u64)?; 1520 remain_size -= write_size; 1521 offset += write_size; 1522 } 1523 } 1524 Ordering::Less => { 1525 file.truncate(fs, len as u64)?; 1526 } 1527 } 1528 guard.update_metadata(); 1529 return Ok(()); 1530 } 1531 FATDirEntry::Dir(_) => return Err(SystemError::ENOSYS), 1532 FATDirEntry::UnInit => { 1533 error!("FATFS: param: Inode_type uninitialized."); 1534 return Err(SystemError::EROFS); 1535 } 1536 } 1537 } 1538 truncate(&self, len: usize) -> Result<(), SystemError>1539 fn truncate(&self, len: usize) -> Result<(), SystemError> { 1540 let guard: SpinLockGuard<FATInode> = self.0.lock(); 1541 let old_size = guard.metadata.size as usize; 1542 if len < old_size { 1543 drop(guard); 1544 self.resize(len) 1545 } else { 1546 Ok(()) 1547 } 1548 } 1549 list(&self) -> Result<Vec<String>, SystemError>1550 fn list(&self) -> Result<Vec<String>, SystemError> { 1551 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1552 let fatent: &FATDirEntry = &guard.inode_type; 1553 match fatent { 1554 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1555 return Err(SystemError::ENOTDIR); 1556 } 1557 FATDirEntry::Dir(dir) => { 1558 // 获取当前目录下的所有目录项 1559 let mut ret: Vec<String> = Vec::new(); 1560 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap()); 1561 for ent in dir_iter { 1562 ret.push(ent.name()); 1563 1564 // ====== 生成inode缓存 1565 let search_name = to_search_name_string(ent.name()); 1566 // debug!("name={name}"); 1567 1568 if !guard.children.contains_key(&search_name) 1569 && search_name != "." 1570 && search_name != ".." 1571 { 1572 let name = DName::from(ent.name()); 1573 // 创建新的inode 1574 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new( 1575 name.clone(), 1576 guard.fs.upgrade().unwrap(), 1577 guard.self_ref.clone(), 1578 ent, 1579 ); 1580 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的 1581 guard.children.insert(search_name, entry_inode.clone()); 1582 } 1583 } 1584 return Ok(ret); 1585 } 1586 FATDirEntry::UnInit => { 1587 error!("FATFS: param: Inode_type uninitialized."); 1588 return Err(SystemError::EROFS); 1589 } 1590 } 1591 } 1592 find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError>1593 fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> { 1594 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1595 let target = guard.find(name)?; 1596 return Ok(target); 1597 } 1598 open( &self, _data: SpinLockGuard<FilePrivateData>, _mode: &FileMode, ) -> Result<(), SystemError>1599 fn open( 1600 &self, 1601 _data: SpinLockGuard<FilePrivateData>, 1602 _mode: &FileMode, 1603 ) -> Result<(), SystemError> { 1604 return Ok(()); 1605 } 1606 close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError>1607 fn close(&self, _data: SpinLockGuard<FilePrivateData>) -> Result<(), SystemError> { 1608 return Ok(()); 1609 } 1610 unlink(&self, name: &str) -> Result<(), SystemError>1611 fn unlink(&self, name: &str) -> Result<(), SystemError> { 1612 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1613 let target: Arc<LockedFATInode> = guard.find(name)?; 1614 // 对目标inode上锁,以防更改 1615 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1616 // 先从缓存删除 1617 let nod = guard.children.remove(&to_search_name(name)); 1618 1619 // 若删除缓存中为管道的文件,则不需要再到磁盘删除 1620 if nod.is_some() { 1621 let file_type = target_guard.metadata.file_type; 1622 if file_type == FileType::Pipe { 1623 return Ok(()); 1624 } 1625 } 1626 1627 let dir = match &guard.inode_type { 1628 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1629 return Err(SystemError::ENOTDIR); 1630 } 1631 FATDirEntry::Dir(d) => d, 1632 FATDirEntry::UnInit => { 1633 error!("FATFS: param: Inode_type uninitialized."); 1634 return Err(SystemError::EROFS); 1635 } 1636 }; 1637 // 检查文件是否存在 1638 dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?; 1639 1640 // 再从磁盘删除 1641 let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1642 drop(target_guard); 1643 return r; 1644 } 1645 rmdir(&self, name: &str) -> Result<(), SystemError>1646 fn rmdir(&self, name: &str) -> Result<(), SystemError> { 1647 let mut guard: SpinLockGuard<FATInode> = self.0.lock(); 1648 let target: Arc<LockedFATInode> = guard.find(name)?; 1649 // 对目标inode上锁,以防更改 1650 let target_guard: SpinLockGuard<FATInode> = target.0.lock(); 1651 // 先从缓存删除 1652 guard.children.remove(&to_search_name(name)); 1653 1654 let dir = match &guard.inode_type { 1655 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1656 return Err(SystemError::ENOTDIR); 1657 } 1658 FATDirEntry::Dir(d) => d, 1659 FATDirEntry::UnInit => { 1660 error!("FATFS: param: Inode_type uninitialized."); 1661 return Err(SystemError::EROFS); 1662 } 1663 }; 1664 // 检查文件夹是否存在 1665 dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?; 1666 1667 // 再从磁盘删除 1668 let r: Result<(), SystemError> = 1669 dir.remove(guard.fs.upgrade().unwrap().clone(), name, true); 1670 match r { 1671 Ok(_) => return r, 1672 Err(r) => { 1673 if r == SystemError::ENOTEMPTY { 1674 // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存 1675 guard.children.insert(to_search_name(name), target.clone()); 1676 drop(target_guard); 1677 } 1678 return Err(r); 1679 } 1680 } 1681 } 1682 move_to( &self, old_name: &str, target: &Arc<dyn IndexNode>, new_name: &str, ) -> Result<(), SystemError>1683 fn move_to( 1684 &self, 1685 old_name: &str, 1686 target: &Arc<dyn IndexNode>, 1687 new_name: &str, 1688 ) -> Result<(), SystemError> { 1689 let old_id = self.metadata().unwrap().inode_id; 1690 let new_id = target.metadata().unwrap().inode_id; 1691 // 若在同一父目录下 1692 if old_id == new_id { 1693 let mut guard = self.0.lock(); 1694 let old_inode: Arc<LockedFATInode> = guard.find(old_name)?; 1695 // 对目标inode上锁,以防更改 1696 let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock(); 1697 let fs = old_inode_guard.fs.upgrade().unwrap(); 1698 // 从缓存删除 1699 let old_dir = match &guard.inode_type { 1700 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1701 return Err(SystemError::ENOTDIR); 1702 } 1703 FATDirEntry::Dir(d) => d, 1704 FATDirEntry::UnInit => { 1705 error!("FATFS: param: Inode_type uninitialized."); 1706 return Err(SystemError::EROFS); 1707 } 1708 }; 1709 // 检查文件是否存在 1710 // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?; 1711 1712 old_dir.rename(fs, old_name, new_name)?; 1713 let _nod = guard.children.remove(&to_search_name(old_name)); 1714 } else { 1715 let mut old_guard = self.0.lock(); 1716 let other: &LockedFATInode = target 1717 .downcast_ref::<LockedFATInode>() 1718 .ok_or(SystemError::EPERM)?; 1719 1720 let new_guard = other.0.lock(); 1721 let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?; 1722 // 对目标inode上锁,以防更改 1723 let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock(); 1724 let fs = old_inode_guard.fs.upgrade().unwrap(); 1725 1726 let old_dir = match &old_guard.inode_type { 1727 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1728 return Err(SystemError::ENOTDIR); 1729 } 1730 FATDirEntry::Dir(d) => d, 1731 FATDirEntry::UnInit => { 1732 error!("FATFS: param: Inode_type uninitialized."); 1733 return Err(SystemError::EROFS); 1734 } 1735 }; 1736 let new_dir = match &new_guard.inode_type { 1737 FATDirEntry::File(_) | FATDirEntry::VolId(_) => { 1738 return Err(SystemError::ENOTDIR); 1739 } 1740 FATDirEntry::Dir(d) => d, 1741 FATDirEntry::UnInit => { 1742 error!("FATFA: param: Inode_type uninitialized."); 1743 return Err(SystemError::EROFS); 1744 } 1745 }; 1746 // 检查文件是否存在 1747 old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?; 1748 old_dir.rename_across(fs, new_dir, old_name, new_name)?; 1749 // 从缓存删除 1750 let _nod = old_guard.children.remove(&to_search_name(old_name)); 1751 } 1752 1753 return Ok(()); 1754 } 1755 get_entry_name(&self, ino: InodeId) -> Result<String, SystemError>1756 fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> { 1757 let guard: SpinLockGuard<FATInode> = self.0.lock(); 1758 if guard.metadata.file_type != FileType::Dir { 1759 return Err(SystemError::ENOTDIR); 1760 } 1761 match ino.into() { 1762 0 => { 1763 return Ok(String::from(".")); 1764 } 1765 1 => { 1766 return Ok(String::from("..")); 1767 } 1768 ino => { 1769 // 暴力遍历所有的children,判断inode id是否相同 1770 // TODO: 优化这里,这个地方性能很差! 1771 let mut key: Vec<String> = guard 1772 .children 1773 .iter() 1774 .filter_map(|(k, v)| { 1775 if v.0.lock().metadata.inode_id.into() == ino { 1776 Some(k.to_string()) 1777 } else { 1778 None 1779 } 1780 }) 1781 .collect(); 1782 1783 match key.len() { 1784 0=>{return Err(SystemError::ENOENT);} 1785 1=>{return Ok(key.remove(0));} 1786 _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino) 1787 } 1788 } 1789 } 1790 } 1791 mknod( &self, filename: &str, mode: ModeType, _dev_t: DeviceNumber, ) -> Result<Arc<dyn IndexNode>, SystemError>1792 fn mknod( 1793 &self, 1794 filename: &str, 1795 mode: ModeType, 1796 _dev_t: DeviceNumber, 1797 ) -> Result<Arc<dyn IndexNode>, SystemError> { 1798 let mut inode = self.0.lock(); 1799 if inode.metadata.file_type != FileType::Dir { 1800 return Err(SystemError::ENOTDIR); 1801 } 1802 1803 // 判断需要创建的类型 1804 if unlikely(mode.contains(ModeType::S_IFREG)) { 1805 // 普通文件 1806 return self.create(filename, FileType::File, mode); 1807 } 1808 1809 let dname = DName::from(filename); 1810 let nod = LockedFATInode::new( 1811 dname, 1812 inode.fs.upgrade().unwrap(), 1813 inode.self_ref.clone(), 1814 FATDirEntry::File(FATFile::default()), 1815 ); 1816 1817 if mode.contains(ModeType::S_IFIFO) { 1818 nod.0.lock().metadata.file_type = FileType::Pipe; 1819 // 创建pipe文件 1820 let pipe_inode = LockedPipeInode::new(); 1821 // 设置special_node 1822 nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode)); 1823 } else if mode.contains(ModeType::S_IFBLK) { 1824 nod.0.lock().metadata.file_type = FileType::BlockDevice; 1825 unimplemented!() 1826 } else if mode.contains(ModeType::S_IFCHR) { 1827 nod.0.lock().metadata.file_type = FileType::CharDevice; 1828 unimplemented!() 1829 } else { 1830 return Err(SystemError::EINVAL); 1831 } 1832 1833 inode.children.insert(to_search_name(filename), nod.clone()); 1834 Ok(nod) 1835 } 1836 special_node(&self) -> Option<SpecialNodeData>1837 fn special_node(&self) -> Option<SpecialNodeData> { 1838 self.0.lock().special_node.clone() 1839 } 1840 dname(&self) -> Result<DName, SystemError>1841 fn dname(&self) -> Result<DName, SystemError> { 1842 Ok(self.0.lock().dname.clone()) 1843 } 1844 parent(&self) -> Result<Arc<dyn IndexNode>, SystemError>1845 fn parent(&self) -> Result<Arc<dyn IndexNode>, SystemError> { 1846 self.0 1847 .lock() 1848 .parent 1849 .upgrade() 1850 .map(|item| item as Arc<dyn IndexNode>) 1851 .ok_or(SystemError::EINVAL) 1852 } 1853 page_cache(&self) -> Option<Arc<PageCache>>1854 fn page_cache(&self) -> Option<Arc<PageCache>> { 1855 self.0.lock().page_cache.clone() 1856 } 1857 } 1858 1859 impl Default for FATFsInfo { default() -> Self1860 fn default() -> Self { 1861 return FATFsInfo { 1862 lead_sig: FATFsInfo::LEAD_SIG, 1863 struc_sig: FATFsInfo::STRUC_SIG, 1864 free_count: 0xFFFFFFFF, 1865 next_free: RESERVED_CLUSTERS, 1866 trail_sig: FATFsInfo::TRAIL_SIG, 1867 dirty: false, 1868 offset: None, 1869 }; 1870 } 1871 } 1872 1873 impl Cluster { new(cluster: u64) -> Self1874 pub fn new(cluster: u64) -> Self { 1875 return Cluster { 1876 cluster_num: cluster, 1877 parent_cluster: 0, 1878 }; 1879 } 1880 } 1881 1882 /// @brief 用于迭代FAT表的内容的簇迭代器对象 1883 #[derive(Debug)] 1884 struct ClusterIter<'a> { 1885 /// 迭代器的next要返回的簇 1886 current_cluster: Option<Cluster>, 1887 /// 属于的文件系统 1888 fs: &'a FATFileSystem, 1889 } 1890 1891 impl<'a> Iterator for ClusterIter<'a> { 1892 type Item = Cluster; 1893 next(&mut self) -> Option<Self::Item>1894 fn next(&mut self) -> Option<Self::Item> { 1895 // 当前要返回的簇 1896 let ret: Option<Cluster> = self.current_cluster; 1897 1898 // 获得下一个要返回簇 1899 let new: Option<Cluster> = match self.current_cluster { 1900 Some(c) => { 1901 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok(); 1902 match entry { 1903 Some(FATEntry::Next(c)) => Some(c), 1904 _ => None, 1905 } 1906 } 1907 _ => None, 1908 }; 1909 1910 self.current_cluster = new; 1911 return ret; 1912 } 1913 } 1914