1 /*
2  * drivers.c
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Copyright (c) 1999 The Puffin Group
10  * Copyright (c) 2001 Matthew Wilcox for Hewlett Packard
11  * Copyright (c) 2001 Helge Deller <deller@gmx.de>
12  * Copyright (c) 2001,2002 Ryan Bradetich
13  * Copyright (c) 2004-2005 Thibaut VARENE <varenet@parisc-linux.org>
14  *
15  * The file handles registering devices and drivers, then matching them.
16  * It's the closest we get to a dating agency.
17  *
18  * If you're thinking about modifying this file, here are some gotchas to
19  * bear in mind:
20  *  - 715/Mirage device paths have a dummy device between Lasi and its children
21  *  - The EISA adapter may show up as a sibling or child of Wax
22  *  - Dino has an optionally functional serial port.  If firmware enables it,
23  *    it shows up as a child of Dino.  If firmware disables it, the buswalk
24  *    finds it and it shows up as a child of Cujo
25  *  - Dino has both parisc and pci devices as children
26  *  - parisc devices are discovered in a random order, including children
27  *    before parents in some cases.
28  */
29 
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/pci.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/export.h>
37 #include <asm/hardware.h>
38 #include <asm/io.h>
39 #include <asm/pdc.h>
40 #include <asm/parisc-device.h>
41 
42 /* See comments in include/asm-parisc/pci.h */
43 struct hppa_dma_ops *hppa_dma_ops __read_mostly;
44 EXPORT_SYMBOL(hppa_dma_ops);
45 
46 static struct device root = {
47 	.init_name = "parisc",
48 };
49 
check_dev(struct device * dev)50 static inline int check_dev(struct device *dev)
51 {
52 	if (dev->bus == &parisc_bus_type) {
53 		struct parisc_device *pdev;
54 		pdev = to_parisc_device(dev);
55 		return pdev->id.hw_type != HPHW_FAULTY;
56 	}
57 	return 1;
58 }
59 
60 static struct device *
61 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath);
62 
63 struct recurse_struct {
64 	void * obj;
65 	int (*fn)(struct device *, void *);
66 };
67 
descend_children(struct device * dev,void * data)68 static int descend_children(struct device * dev, void * data)
69 {
70 	struct recurse_struct * recurse_data = (struct recurse_struct *)data;
71 
72 	if (recurse_data->fn(dev, recurse_data->obj))
73 		return 1;
74 	else
75 		return device_for_each_child(dev, recurse_data, descend_children);
76 }
77 
78 /**
79  *	for_each_padev - Iterate over all devices in the tree
80  *	@fn:	Function to call for each device.
81  *	@data:	Data to pass to the called function.
82  *
83  *	This performs a depth-first traversal of the tree, calling the
84  *	function passed for each node.  It calls the function for parents
85  *	before children.
86  */
87 
for_each_padev(int (* fn)(struct device *,void *),void * data)88 static int for_each_padev(int (*fn)(struct device *, void *), void * data)
89 {
90 	struct recurse_struct recurse_data = {
91 		.obj	= data,
92 		.fn	= fn,
93 	};
94 	return device_for_each_child(&root, &recurse_data, descend_children);
95 }
96 
97 /**
98  * match_device - Report whether this driver can handle this device
99  * @driver: the PA-RISC driver to try
100  * @dev: the PA-RISC device to try
101  */
match_device(struct parisc_driver * driver,struct parisc_device * dev)102 static int match_device(struct parisc_driver *driver, struct parisc_device *dev)
103 {
104 	const struct parisc_device_id *ids;
105 
106 	for (ids = driver->id_table; ids->sversion; ids++) {
107 		if ((ids->sversion != SVERSION_ANY_ID) &&
108 		    (ids->sversion != dev->id.sversion))
109 			continue;
110 
111 		if ((ids->hw_type != HWTYPE_ANY_ID) &&
112 		    (ids->hw_type != dev->id.hw_type))
113 			continue;
114 
115 		if ((ids->hversion != HVERSION_ANY_ID) &&
116 		    (ids->hversion != dev->id.hversion))
117 			continue;
118 
119 		return 1;
120 	}
121 	return 0;
122 }
123 
parisc_driver_probe(struct device * dev)124 static int parisc_driver_probe(struct device *dev)
125 {
126 	int rc;
127 	struct parisc_device *pa_dev = to_parisc_device(dev);
128 	struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
129 
130 	rc = pa_drv->probe(pa_dev);
131 
132 	if (!rc)
133 		pa_dev->driver = pa_drv;
134 
135 	return rc;
136 }
137 
parisc_driver_remove(struct device * dev)138 static int parisc_driver_remove(struct device *dev)
139 {
140 	struct parisc_device *pa_dev = to_parisc_device(dev);
141 	struct parisc_driver *pa_drv = to_parisc_driver(dev->driver);
142 	if (pa_drv->remove)
143 		pa_drv->remove(pa_dev);
144 
145 	return 0;
146 }
147 
148 
149 /**
150  * register_parisc_driver - Register this driver if it can handle a device
151  * @driver: the PA-RISC driver to try
152  */
register_parisc_driver(struct parisc_driver * driver)153 int register_parisc_driver(struct parisc_driver *driver)
154 {
155 	/* FIXME: we need this because apparently the sti
156 	 * driver can be registered twice */
157 	if(driver->drv.name) {
158 		printk(KERN_WARNING
159 		       "BUG: skipping previously registered driver %s\n",
160 		       driver->name);
161 		return 1;
162 	}
163 
164 	if (!driver->probe) {
165 		printk(KERN_WARNING
166 		       "BUG: driver %s has no probe routine\n",
167 		       driver->name);
168 		return 1;
169 	}
170 
171 	driver->drv.bus = &parisc_bus_type;
172 
173 	/* We install our own probe and remove routines */
174 	WARN_ON(driver->drv.probe != NULL);
175 	WARN_ON(driver->drv.remove != NULL);
176 
177 	driver->drv.name = driver->name;
178 
179 	return driver_register(&driver->drv);
180 }
181 EXPORT_SYMBOL(register_parisc_driver);
182 
183 
184 struct match_count {
185 	struct parisc_driver * driver;
186 	int count;
187 };
188 
match_and_count(struct device * dev,void * data)189 static int match_and_count(struct device * dev, void * data)
190 {
191 	struct match_count * m = data;
192 	struct parisc_device * pdev = to_parisc_device(dev);
193 
194 	if (check_dev(dev)) {
195 		if (match_device(m->driver, pdev))
196 			m->count++;
197 	}
198 	return 0;
199 }
200 
201 /**
202  * count_parisc_driver - count # of devices this driver would match
203  * @driver: the PA-RISC driver to try
204  *
205  * Use by IOMMU support to "guess" the right size IOPdir.
206  * Formula is something like memsize/(num_iommu * entry_size).
207  */
count_parisc_driver(struct parisc_driver * driver)208 int count_parisc_driver(struct parisc_driver *driver)
209 {
210 	struct match_count m = {
211 		.driver	= driver,
212 		.count	= 0,
213 	};
214 
215 	for_each_padev(match_and_count, &m);
216 
217 	return m.count;
218 }
219 
220 
221 
222 /**
223  * unregister_parisc_driver - Unregister this driver from the list of drivers
224  * @driver: the PA-RISC driver to unregister
225  */
unregister_parisc_driver(struct parisc_driver * driver)226 int unregister_parisc_driver(struct parisc_driver *driver)
227 {
228 	driver_unregister(&driver->drv);
229 	return 0;
230 }
231 EXPORT_SYMBOL(unregister_parisc_driver);
232 
233 struct find_data {
234 	unsigned long hpa;
235 	struct parisc_device * dev;
236 };
237 
find_device(struct device * dev,void * data)238 static int find_device(struct device * dev, void * data)
239 {
240 	struct parisc_device * pdev = to_parisc_device(dev);
241 	struct find_data * d = (struct find_data*)data;
242 
243 	if (check_dev(dev)) {
244 		if (pdev->hpa.start == d->hpa) {
245 			d->dev = pdev;
246 			return 1;
247 		}
248 	}
249 	return 0;
250 }
251 
find_device_by_addr(unsigned long hpa)252 static struct parisc_device *find_device_by_addr(unsigned long hpa)
253 {
254 	struct find_data d = {
255 		.hpa	= hpa,
256 	};
257 	int ret;
258 
259 	ret = for_each_padev(find_device, &d);
260 	return ret ? d.dev : NULL;
261 }
262 
263 /**
264  * find_pa_parent_type - Find a parent of a specific type
265  * @dev: The device to start searching from
266  * @type: The device type to search for.
267  *
268  * Walks up the device tree looking for a device of the specified type.
269  * If it finds it, it returns it.  If not, it returns NULL.
270  */
271 const struct parisc_device *
find_pa_parent_type(const struct parisc_device * padev,int type)272 find_pa_parent_type(const struct parisc_device *padev, int type)
273 {
274 	const struct device *dev = &padev->dev;
275 	while (dev != &root) {
276 		struct parisc_device *candidate = to_parisc_device(dev);
277 		if (candidate->id.hw_type == type)
278 			return candidate;
279 		dev = dev->parent;
280 	}
281 
282 	return NULL;
283 }
284 
285 #ifdef CONFIG_PCI
is_pci_dev(struct device * dev)286 static inline int is_pci_dev(struct device *dev)
287 {
288 	return dev->bus == &pci_bus_type;
289 }
290 #else
is_pci_dev(struct device * dev)291 static inline int is_pci_dev(struct device *dev)
292 {
293 	return 0;
294 }
295 #endif
296 
297 /*
298  * get_node_path fills in @path with the firmware path to the device.
299  * Note that if @node is a parisc device, we don't fill in the 'mod' field.
300  * This is because both callers pass the parent and fill in the mod
301  * themselves.  If @node is a PCI device, we do fill it in, even though this
302  * is inconsistent.
303  */
get_node_path(struct device * dev,struct hardware_path * path)304 static void get_node_path(struct device *dev, struct hardware_path *path)
305 {
306 	int i = 5;
307 	memset(&path->bc, -1, 6);
308 
309 	if (is_pci_dev(dev)) {
310 		unsigned int devfn = to_pci_dev(dev)->devfn;
311 		path->mod = PCI_FUNC(devfn);
312 		path->bc[i--] = PCI_SLOT(devfn);
313 		dev = dev->parent;
314 	}
315 
316 	while (dev != &root) {
317 		if (is_pci_dev(dev)) {
318 			unsigned int devfn = to_pci_dev(dev)->devfn;
319 			path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5);
320 		} else if (dev->bus == &parisc_bus_type) {
321 			path->bc[i--] = to_parisc_device(dev)->hw_path;
322 		}
323 		dev = dev->parent;
324 	}
325 }
326 
print_hwpath(struct hardware_path * path,char * output)327 static char *print_hwpath(struct hardware_path *path, char *output)
328 {
329 	int i;
330 	for (i = 0; i < 6; i++) {
331 		if (path->bc[i] == -1)
332 			continue;
333 		output += sprintf(output, "%u/", (unsigned char) path->bc[i]);
334 	}
335 	output += sprintf(output, "%u", (unsigned char) path->mod);
336 	return output;
337 }
338 
339 /**
340  * print_pa_hwpath - Returns hardware path for PA devices
341  * dev: The device to return the path for
342  * output: Pointer to a previously-allocated array to place the path in.
343  *
344  * This function fills in the output array with a human-readable path
345  * to a PA device.  This string is compatible with that used by PDC, and
346  * may be printed on the outside of the box.
347  */
print_pa_hwpath(struct parisc_device * dev,char * output)348 char *print_pa_hwpath(struct parisc_device *dev, char *output)
349 {
350 	struct hardware_path path;
351 
352 	get_node_path(dev->dev.parent, &path);
353 	path.mod = dev->hw_path;
354 	return print_hwpath(&path, output);
355 }
356 EXPORT_SYMBOL(print_pa_hwpath);
357 
358 #if defined(CONFIG_PCI) || defined(CONFIG_ISA)
359 /**
360  * get_pci_node_path - Determines the hardware path for a PCI device
361  * @pdev: The device to return the path for
362  * @path: Pointer to a previously-allocated array to place the path in.
363  *
364  * This function fills in the hardware_path structure with the route to
365  * the specified PCI device.  This structure is suitable for passing to
366  * PDC calls.
367  */
get_pci_node_path(struct pci_dev * pdev,struct hardware_path * path)368 void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path)
369 {
370 	get_node_path(&pdev->dev, path);
371 }
372 EXPORT_SYMBOL(get_pci_node_path);
373 
374 /**
375  * print_pci_hwpath - Returns hardware path for PCI devices
376  * dev: The device to return the path for
377  * output: Pointer to a previously-allocated array to place the path in.
378  *
379  * This function fills in the output array with a human-readable path
380  * to a PCI device.  This string is compatible with that used by PDC, and
381  * may be printed on the outside of the box.
382  */
print_pci_hwpath(struct pci_dev * dev,char * output)383 char *print_pci_hwpath(struct pci_dev *dev, char *output)
384 {
385 	struct hardware_path path;
386 
387 	get_pci_node_path(dev, &path);
388 	return print_hwpath(&path, output);
389 }
390 EXPORT_SYMBOL(print_pci_hwpath);
391 
392 #endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */
393 
setup_bus_id(struct parisc_device * padev)394 static void setup_bus_id(struct parisc_device *padev)
395 {
396 	struct hardware_path path;
397 	char name[20];
398 	char *output = name;
399 	int i;
400 
401 	get_node_path(padev->dev.parent, &path);
402 
403 	for (i = 0; i < 6; i++) {
404 		if (path.bc[i] == -1)
405 			continue;
406 		output += sprintf(output, "%u:", (unsigned char) path.bc[i]);
407 	}
408 	sprintf(output, "%u", (unsigned char) padev->hw_path);
409 	dev_set_name(&padev->dev, name);
410 }
411 
create_tree_node(char id,struct device * parent)412 struct parisc_device * create_tree_node(char id, struct device *parent)
413 {
414 	struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
415 	if (!dev)
416 		return NULL;
417 
418 	dev->hw_path = id;
419 	dev->id.hw_type = HPHW_FAULTY;
420 
421 	dev->dev.parent = parent;
422 	setup_bus_id(dev);
423 
424 	dev->dev.bus = &parisc_bus_type;
425 	dev->dma_mask = 0xffffffffUL;	/* PARISC devices are 32-bit */
426 
427 	/* make the generic dma mask a pointer to the parisc one */
428 	dev->dev.dma_mask = &dev->dma_mask;
429 	dev->dev.coherent_dma_mask = dev->dma_mask;
430 	if (device_register(&dev->dev)) {
431 		kfree(dev);
432 		return NULL;
433 	}
434 
435 	return dev;
436 }
437 
438 struct match_id_data {
439 	char id;
440 	struct parisc_device * dev;
441 };
442 
match_by_id(struct device * dev,void * data)443 static int match_by_id(struct device * dev, void * data)
444 {
445 	struct parisc_device * pdev = to_parisc_device(dev);
446 	struct match_id_data * d = data;
447 
448 	if (pdev->hw_path == d->id) {
449 		d->dev = pdev;
450 		return 1;
451 	}
452 	return 0;
453 }
454 
455 /**
456  * alloc_tree_node - returns a device entry in the iotree
457  * @parent: the parent node in the tree
458  * @id: the element of the module path for this entry
459  *
460  * Checks all the children of @parent for a matching @id.  If none
461  * found, it allocates a new device and returns it.
462  */
alloc_tree_node(struct device * parent,char id)463 static struct parisc_device * alloc_tree_node(struct device *parent, char id)
464 {
465 	struct match_id_data d = {
466 		.id = id,
467 	};
468 	if (device_for_each_child(parent, &d, match_by_id))
469 		return d.dev;
470 	else
471 		return create_tree_node(id, parent);
472 }
473 
create_parisc_device(struct hardware_path * modpath)474 static struct parisc_device *create_parisc_device(struct hardware_path *modpath)
475 {
476 	int i;
477 	struct device *parent = &root;
478 	for (i = 0; i < 6; i++) {
479 		if (modpath->bc[i] == -1)
480 			continue;
481 		parent = &alloc_tree_node(parent, modpath->bc[i])->dev;
482 	}
483 	return alloc_tree_node(parent, modpath->mod);
484 }
485 
486 struct parisc_device *
alloc_pa_dev(unsigned long hpa,struct hardware_path * mod_path)487 alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path)
488 {
489 	int status;
490 	unsigned long bytecnt;
491 	u8 iodc_data[32];
492 	struct parisc_device *dev;
493 	const char *name;
494 
495 	/* Check to make sure this device has not already been added - Ryan */
496 	if (find_device_by_addr(hpa) != NULL)
497 		return NULL;
498 
499 	status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32);
500 	if (status != PDC_OK)
501 		return NULL;
502 
503 	dev = create_parisc_device(mod_path);
504 	if (dev->id.hw_type != HPHW_FAULTY) {
505 		printk(KERN_ERR "Two devices have hardware path [%s].  "
506 				"IODC data for second device: "
507 				"%02x%02x%02x%02x%02x%02x\n"
508 				"Rearranging GSC cards sometimes helps\n",
509 			parisc_pathname(dev), iodc_data[0], iodc_data[1],
510 			iodc_data[3], iodc_data[4], iodc_data[5], iodc_data[6]);
511 		return NULL;
512 	}
513 
514 	dev->id.hw_type = iodc_data[3] & 0x1f;
515 	dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4);
516 	dev->id.hversion_rev = iodc_data[1] & 0x0f;
517 	dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) |
518 			(iodc_data[5] << 8) | iodc_data[6];
519 	dev->hpa.name = parisc_pathname(dev);
520 	dev->hpa.start = hpa;
521 	/* This is awkward.  The STI spec says that gfx devices may occupy
522 	 * 32MB or 64MB.  Unfortunately, we don't know how to tell whether
523 	 * it's the former or the latter.  Assumptions either way can hurt us.
524 	 */
525 	if (hpa == 0xf4000000 || hpa == 0xf8000000) {
526 		dev->hpa.end = hpa + 0x03ffffff;
527 	} else if (hpa == 0xf6000000 || hpa == 0xfa000000) {
528 		dev->hpa.end = hpa + 0x01ffffff;
529 	} else {
530 		dev->hpa.end = hpa + 0xfff;
531 	}
532 	dev->hpa.flags = IORESOURCE_MEM;
533 	name = parisc_hardware_description(&dev->id);
534 	if (name) {
535 		strlcpy(dev->name, name, sizeof(dev->name));
536 	}
537 
538 	/* Silently fail things like mouse ports which are subsumed within
539 	 * the keyboard controller
540 	 */
541 	if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa))
542 		printk("Unable to claim HPA %lx for device %s\n",
543 				hpa, name);
544 
545 	return dev;
546 }
547 
parisc_generic_match(struct device * dev,struct device_driver * drv)548 static int parisc_generic_match(struct device *dev, struct device_driver *drv)
549 {
550 	return match_device(to_parisc_driver(drv), to_parisc_device(dev));
551 }
552 
make_modalias(struct device * dev,char * buf)553 static ssize_t make_modalias(struct device *dev, char *buf)
554 {
555 	const struct parisc_device *padev = to_parisc_device(dev);
556 	const struct parisc_device_id *id = &padev->id;
557 
558 	return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n",
559 		(u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev,
560 		(u32)id->sversion);
561 }
562 
parisc_uevent(struct device * dev,struct kobj_uevent_env * env)563 static int parisc_uevent(struct device *dev, struct kobj_uevent_env *env)
564 {
565 	const struct parisc_device *padev;
566 	char modalias[40];
567 
568 	if (!dev)
569 		return -ENODEV;
570 
571 	padev = to_parisc_device(dev);
572 	if (!padev)
573 		return -ENODEV;
574 
575 	if (add_uevent_var(env, "PARISC_NAME=%s", padev->name))
576 		return -ENOMEM;
577 
578 	make_modalias(dev, modalias);
579 	if (add_uevent_var(env, "MODALIAS=%s", modalias))
580 		return -ENOMEM;
581 
582 	return 0;
583 }
584 
585 #define pa_dev_attr(name, field, format_string)				\
586 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf)		\
587 {									\
588 	struct parisc_device *padev = to_parisc_device(dev);		\
589 	return sprintf(buf, format_string, padev->field);		\
590 }
591 
592 #define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format)
593 
594 pa_dev_attr(irq, irq, "%u\n");
595 pa_dev_attr_id(hw_type, "0x%02x\n");
596 pa_dev_attr(rev, id.hversion_rev, "0x%x\n");
597 pa_dev_attr_id(hversion, "0x%03x\n");
598 pa_dev_attr_id(sversion, "0x%05x\n");
599 
modalias_show(struct device * dev,struct device_attribute * attr,char * buf)600 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
601 {
602 	return make_modalias(dev, buf);
603 }
604 
605 static struct device_attribute parisc_device_attrs[] = {
606 	__ATTR_RO(irq),
607 	__ATTR_RO(hw_type),
608 	__ATTR_RO(rev),
609 	__ATTR_RO(hversion),
610 	__ATTR_RO(sversion),
611 	__ATTR_RO(modalias),
612 	__ATTR_NULL,
613 };
614 
615 struct bus_type parisc_bus_type = {
616 	.name = "parisc",
617 	.match = parisc_generic_match,
618 	.uevent = parisc_uevent,
619 	.dev_attrs = parisc_device_attrs,
620 	.probe = parisc_driver_probe,
621 	.remove = parisc_driver_remove,
622 };
623 
624 /**
625  * register_parisc_device - Locate a driver to manage this device.
626  * @dev: The parisc device.
627  *
628  * Search the driver list for a driver that is willing to manage
629  * this device.
630  */
register_parisc_device(struct parisc_device * dev)631 int register_parisc_device(struct parisc_device *dev)
632 {
633 	if (!dev)
634 		return 0;
635 
636 	if (dev->driver)
637 		return 1;
638 
639 	return 0;
640 }
641 
642 /**
643  * match_pci_device - Matches a pci device against a given hardware path
644  * entry.
645  * @dev: the generic device (known to be contained by a pci_dev).
646  * @index: the current BC index
647  * @modpath: the hardware path.
648  * @return: true if the device matches the hardware path.
649  */
match_pci_device(struct device * dev,int index,struct hardware_path * modpath)650 static int match_pci_device(struct device *dev, int index,
651 		struct hardware_path *modpath)
652 {
653 	struct pci_dev *pdev = to_pci_dev(dev);
654 	int id;
655 
656 	if (index == 5) {
657 		/* we are at the end of the path, and on the actual device */
658 		unsigned int devfn = pdev->devfn;
659 		return ((modpath->bc[5] == PCI_SLOT(devfn)) &&
660 					(modpath->mod == PCI_FUNC(devfn)));
661 	}
662 
663 	id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5);
664 	return (modpath->bc[index] == id);
665 }
666 
667 /**
668  * match_parisc_device - Matches a parisc device against a given hardware
669  * path entry.
670  * @dev: the generic device (known to be contained by a parisc_device).
671  * @index: the current BC index
672  * @modpath: the hardware path.
673  * @return: true if the device matches the hardware path.
674  */
match_parisc_device(struct device * dev,int index,struct hardware_path * modpath)675 static int match_parisc_device(struct device *dev, int index,
676 		struct hardware_path *modpath)
677 {
678 	struct parisc_device *curr = to_parisc_device(dev);
679 	char id = (index == 6) ? modpath->mod : modpath->bc[index];
680 
681 	return (curr->hw_path == id);
682 }
683 
684 struct parse_tree_data {
685 	int index;
686 	struct hardware_path * modpath;
687 	struct device * dev;
688 };
689 
check_parent(struct device * dev,void * data)690 static int check_parent(struct device * dev, void * data)
691 {
692 	struct parse_tree_data * d = data;
693 
694 	if (check_dev(dev)) {
695 		if (dev->bus == &parisc_bus_type) {
696 			if (match_parisc_device(dev, d->index, d->modpath))
697 				d->dev = dev;
698 		} else if (is_pci_dev(dev)) {
699 			if (match_pci_device(dev, d->index, d->modpath))
700 				d->dev = dev;
701 		} else if (dev->bus == NULL) {
702 			/* we are on a bus bridge */
703 			struct device *new = parse_tree_node(dev, d->index, d->modpath);
704 			if (new)
705 				d->dev = new;
706 		}
707 	}
708 	return d->dev != NULL;
709 }
710 
711 /**
712  * parse_tree_node - returns a device entry in the iotree
713  * @parent: the parent node in the tree
714  * @index: the current BC index
715  * @modpath: the hardware_path struct to match a device against
716  * @return: The corresponding device if found, NULL otherwise.
717  *
718  * Checks all the children of @parent for a matching @id.  If none
719  * found, it returns NULL.
720  */
721 static struct device *
parse_tree_node(struct device * parent,int index,struct hardware_path * modpath)722 parse_tree_node(struct device *parent, int index, struct hardware_path *modpath)
723 {
724 	struct parse_tree_data d = {
725 		.index          = index,
726 		.modpath        = modpath,
727 	};
728 
729 	struct recurse_struct recurse_data = {
730 		.obj	= &d,
731 		.fn	= check_parent,
732 	};
733 
734 	if (device_for_each_child(parent, &recurse_data, descend_children))
735 		/* nothing */;
736 
737 	return d.dev;
738 }
739 
740 /**
741  * hwpath_to_device - Finds the generic device corresponding to a given hardware path.
742  * @modpath: the hardware path.
743  * @return: The target device, NULL if not found.
744  */
hwpath_to_device(struct hardware_path * modpath)745 struct device *hwpath_to_device(struct hardware_path *modpath)
746 {
747 	int i;
748 	struct device *parent = &root;
749 	for (i = 0; i < 6; i++) {
750 		if (modpath->bc[i] == -1)
751 			continue;
752 		parent = parse_tree_node(parent, i, modpath);
753 		if (!parent)
754 			return NULL;
755 	}
756 	if (is_pci_dev(parent)) /* pci devices already parse MOD */
757 		return parent;
758 	else
759 		return parse_tree_node(parent, 6, modpath);
760 }
761 EXPORT_SYMBOL(hwpath_to_device);
762 
763 /**
764  * device_to_hwpath - Populates the hwpath corresponding to the given device.
765  * @param dev the target device
766  * @param path pointer to a previously allocated hwpath struct to be filled in
767  */
device_to_hwpath(struct device * dev,struct hardware_path * path)768 void device_to_hwpath(struct device *dev, struct hardware_path *path)
769 {
770 	struct parisc_device *padev;
771 	if (dev->bus == &parisc_bus_type) {
772 		padev = to_parisc_device(dev);
773 		get_node_path(dev->parent, path);
774 		path->mod = padev->hw_path;
775 	} else if (is_pci_dev(dev)) {
776 		get_node_path(dev, path);
777 	}
778 }
779 EXPORT_SYMBOL(device_to_hwpath);
780 
781 #define BC_PORT_MASK 0x8
782 #define BC_LOWER_PORT 0x8
783 
784 #define BUS_CONVERTER(dev) \
785         ((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT))
786 
787 #define IS_LOWER_PORT(dev) \
788         ((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \
789                 & BC_PORT_MASK) == BC_LOWER_PORT)
790 
791 #define MAX_NATIVE_DEVICES 64
792 #define NATIVE_DEVICE_OFFSET 0x1000
793 
794 #define FLEX_MASK 	F_EXTEND(0xfffc0000)
795 #define IO_IO_LOW	offsetof(struct bc_module, io_io_low)
796 #define IO_IO_HIGH	offsetof(struct bc_module, io_io_high)
797 #define READ_IO_IO_LOW(dev)  (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW)
798 #define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH)
799 
800 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
801                             struct device *parent);
802 
walk_lower_bus(struct parisc_device * dev)803 void walk_lower_bus(struct parisc_device *dev)
804 {
805 	unsigned long io_io_low, io_io_high;
806 
807 	if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev))
808 		return;
809 
810 	if (dev->id.hw_type == HPHW_IOA) {
811 		io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16);
812 		io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET;
813 	} else {
814 		io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK;
815 		io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK;
816 	}
817 
818 	walk_native_bus(io_io_low, io_io_high, &dev->dev);
819 }
820 
821 /**
822  * walk_native_bus -- Probe a bus for devices
823  * @io_io_low: Base address of this bus.
824  * @io_io_high: Last address of this bus.
825  * @parent: The parent bus device.
826  *
827  * A native bus (eg Runway or GSC) may have up to 64 devices on it,
828  * spaced at intervals of 0x1000 bytes.  PDC may not inform us of these
829  * devices, so we have to probe for them.  Unfortunately, we may find
830  * devices which are not physically connected (such as extra serial &
831  * keyboard ports).  This problem is not yet solved.
832  */
walk_native_bus(unsigned long io_io_low,unsigned long io_io_high,struct device * parent)833 static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high,
834                             struct device *parent)
835 {
836 	int i, devices_found = 0;
837 	unsigned long hpa = io_io_low;
838 	struct hardware_path path;
839 
840 	get_node_path(parent, &path);
841 	do {
842 		for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) {
843 			struct parisc_device *dev;
844 
845 			/* Was the device already added by Firmware? */
846 			dev = find_device_by_addr(hpa);
847 			if (!dev) {
848 				path.mod = i;
849 				dev = alloc_pa_dev(hpa, &path);
850 				if (!dev)
851 					continue;
852 
853 				register_parisc_device(dev);
854 				devices_found++;
855 			}
856 			walk_lower_bus(dev);
857 		}
858 	} while(!devices_found && hpa < io_io_high);
859 }
860 
861 #define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000)
862 
863 /**
864  * walk_central_bus - Find devices attached to the central bus
865  *
866  * PDC doesn't tell us about all devices in the system.  This routine
867  * finds devices connected to the central bus.
868  */
walk_central_bus(void)869 void walk_central_bus(void)
870 {
871 	walk_native_bus(CENTRAL_BUS_ADDR,
872 			CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET),
873 			&root);
874 }
875 
print_parisc_device(struct parisc_device * dev)876 static void print_parisc_device(struct parisc_device *dev)
877 {
878 	char hw_path[64];
879 	static int count;
880 
881 	print_pa_hwpath(dev, hw_path);
882 	printk(KERN_INFO "%d. %s at 0x%p [%s] { %d, 0x%x, 0x%.3x, 0x%.5x }",
883 		++count, dev->name, (void*) dev->hpa.start, hw_path, dev->id.hw_type,
884 		dev->id.hversion_rev, dev->id.hversion, dev->id.sversion);
885 
886 	if (dev->num_addrs) {
887 		int k;
888 		printk(", additional addresses: ");
889 		for (k = 0; k < dev->num_addrs; k++)
890 			printk("0x%lx ", dev->addr[k]);
891 	}
892 	printk("\n");
893 }
894 
895 /**
896  * init_parisc_bus - Some preparation to be done before inventory
897  */
init_parisc_bus(void)898 void init_parisc_bus(void)
899 {
900 	if (bus_register(&parisc_bus_type))
901 		panic("Could not register PA-RISC bus type\n");
902 	if (device_register(&root))
903 		panic("Could not register PA-RISC root device\n");
904 	get_device(&root);
905 }
906 
907 
print_one_device(struct device * dev,void * data)908 static int print_one_device(struct device * dev, void * data)
909 {
910 	struct parisc_device * pdev = to_parisc_device(dev);
911 
912 	if (check_dev(dev))
913 		print_parisc_device(pdev);
914 	return 0;
915 }
916 
917 /**
918  * print_parisc_devices - Print out a list of devices found in this system
919  */
print_parisc_devices(void)920 void print_parisc_devices(void)
921 {
922 	for_each_padev(print_one_device, NULL);
923 }
924