1 /*
2  * Adaptec AIC79xx device driver for Linux.
3  *
4  * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic79xx_osm.c#169 $
5  *
6  * --------------------------------------------------------------------------
7  * Copyright (c) 1994-2000 Justin T. Gibbs.
8  * Copyright (c) 1997-1999 Doug Ledford
9  * Copyright (c) 2000-2003 Adaptec Inc.
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions, and the following disclaimer,
17  *    without modification.
18  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
19  *    substantially similar to the "NO WARRANTY" disclaimer below
20  *    ("Disclaimer") and any redistribution must be conditioned upon
21  *    including a substantially similar Disclaimer requirement for further
22  *    binary redistribution.
23  * 3. Neither the names of the above-listed copyright holders nor the names
24  *    of any contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * Alternatively, this software may be distributed under the terms of the
28  * GNU General Public License ("GPL") version 2 as published by the Free
29  * Software Foundation.
30  *
31  * NO WARRANTY
32  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
35  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
36  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
40  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
41  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
42  * POSSIBILITY OF SUCH DAMAGES.
43  */
44 
45 #include "aic79xx_osm.h"
46 #include "aic79xx_inline.h"
47 #include <scsi/scsicam.h>
48 
49 /*
50  * Include aiclib.c as part of our
51  * "module dependencies are hard" work around.
52  */
53 #include "aiclib.c"
54 
55 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
56 #include <linux/init.h>		/* __setup */
57 #endif
58 
59 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
60 #include "sd.h"			/* For geometry detection */
61 #endif
62 
63 #include <linux/mm.h>		/* For fetching system memory size */
64 
65 /*
66  * Lock protecting manipulation of the ahd softc list.
67  */
68 spinlock_t ahd_list_spinlock;
69 
70 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0)
71 struct proc_dir_entry proc_scsi_aic79xx = {
72 	PROC_SCSI_AIC79XX, 7, "aic79xx",
73 	S_IFDIR | S_IRUGO | S_IXUGO, 2,
74 	0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL
75 };
76 #endif
77 
78 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
79 /* For dynamic sglist size calculation. */
80 u_int ahd_linux_nseg;
81 #endif
82 
83 /*
84  * Bucket size for counting good commands in between bad ones.
85  */
86 #define AHD_LINUX_ERR_THRESH	1000
87 
88 /*
89  * Set this to the delay in seconds after SCSI bus reset.
90  * Note, we honor this only for the initial bus reset.
91  * The scsi error recovery code performs its own bus settle
92  * delay handling for error recovery actions.
93  */
94 #ifdef CONFIG_AIC79XX_RESET_DELAY_MS
95 #define AIC79XX_RESET_DELAY CONFIG_AIC79XX_RESET_DELAY_MS
96 #else
97 #define AIC79XX_RESET_DELAY 5000
98 #endif
99 
100 /*
101  * To change the default number of tagged transactions allowed per-device,
102  * add a line to the lilo.conf file like:
103  * append="aic79xx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
104  * which will result in the first four devices on the first two
105  * controllers being set to a tagged queue depth of 32.
106  *
107  * The tag_commands is an array of 16 to allow for wide and twin adapters.
108  * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
109  * for channel 1.
110  */
111 typedef struct {
112 	uint16_t tag_commands[16];	/* Allow for wide/twin adapters. */
113 } adapter_tag_info_t;
114 
115 /*
116  * Modify this as you see fit for your system.
117  *
118  * 0			tagged queuing disabled
119  * 1 <= n <= 253	n == max tags ever dispatched.
120  *
121  * The driver will throttle the number of commands dispatched to a
122  * device if it returns queue full.  For devices with a fixed maximum
123  * queue depth, the driver will eventually determine this depth and
124  * lock it in (a console message is printed to indicate that a lock
125  * has occurred).  On some devices, queue full is returned for a temporary
126  * resource shortage.  These devices will return queue full at varying
127  * depths.  The driver will throttle back when the queue fulls occur and
128  * attempt to slowly increase the depth over time as the device recovers
129  * from the resource shortage.
130  *
131  * In this example, the first line will disable tagged queueing for all
132  * the devices on the first probed aic79xx adapter.
133  *
134  * The second line enables tagged queueing with 4 commands/LUN for IDs
135  * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
136  * driver to attempt to use up to 64 tags for ID 1.
137  *
138  * The third line is the same as the first line.
139  *
140  * The fourth line disables tagged queueing for devices 0 and 3.  It
141  * enables tagged queueing for the other IDs, with 16 commands/LUN
142  * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
143  * IDs 2, 5-7, and 9-15.
144  */
145 
146 /*
147  * NOTE: The below structure is for reference only, the actual structure
148  *       to modify in order to change things is just below this comment block.
149 adapter_tag_info_t aic79xx_tag_info[] =
150 {
151 	{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
152 	{{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
153 	{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
154 	{{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
155 };
156 */
157 
158 #ifdef CONFIG_AIC79XX_CMDS_PER_DEVICE
159 #define AIC79XX_CMDS_PER_DEVICE CONFIG_AIC79XX_CMDS_PER_DEVICE
160 #else
161 #define AIC79XX_CMDS_PER_DEVICE AHD_MAX_QUEUE
162 #endif
163 
164 #define AIC79XX_CONFIGED_TAG_COMMANDS {					\
165 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
166 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
167 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
168 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
169 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
170 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
171 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE,		\
172 	AIC79XX_CMDS_PER_DEVICE, AIC79XX_CMDS_PER_DEVICE		\
173 }
174 
175 /*
176  * By default, use the number of commands specified by
177  * the users kernel configuration.
178  */
179 static adapter_tag_info_t aic79xx_tag_info[] =
180 {
181 	{AIC79XX_CONFIGED_TAG_COMMANDS},
182 	{AIC79XX_CONFIGED_TAG_COMMANDS},
183 	{AIC79XX_CONFIGED_TAG_COMMANDS},
184 	{AIC79XX_CONFIGED_TAG_COMMANDS},
185 	{AIC79XX_CONFIGED_TAG_COMMANDS},
186 	{AIC79XX_CONFIGED_TAG_COMMANDS},
187 	{AIC79XX_CONFIGED_TAG_COMMANDS},
188 	{AIC79XX_CONFIGED_TAG_COMMANDS},
189 	{AIC79XX_CONFIGED_TAG_COMMANDS},
190 	{AIC79XX_CONFIGED_TAG_COMMANDS},
191 	{AIC79XX_CONFIGED_TAG_COMMANDS},
192 	{AIC79XX_CONFIGED_TAG_COMMANDS},
193 	{AIC79XX_CONFIGED_TAG_COMMANDS},
194 	{AIC79XX_CONFIGED_TAG_COMMANDS},
195 	{AIC79XX_CONFIGED_TAG_COMMANDS},
196 	{AIC79XX_CONFIGED_TAG_COMMANDS}
197 };
198 
199 /*
200  * By default, read streaming is disabled.  In theory,
201  * read streaming should enhance performance, but early
202  * U320 drive firmware actually performs slower with
203  * read streaming enabled.
204  */
205 #ifdef CONFIG_AIC79XX_ENABLE_RD_STRM
206 #define AIC79XX_CONFIGED_RD_STRM 0xFFFF
207 #else
208 #define AIC79XX_CONFIGED_RD_STRM 0
209 #endif
210 
211 static uint16_t aic79xx_rd_strm_info[] =
212 {
213 	AIC79XX_CONFIGED_RD_STRM,
214 	AIC79XX_CONFIGED_RD_STRM,
215 	AIC79XX_CONFIGED_RD_STRM,
216 	AIC79XX_CONFIGED_RD_STRM,
217 	AIC79XX_CONFIGED_RD_STRM,
218 	AIC79XX_CONFIGED_RD_STRM,
219 	AIC79XX_CONFIGED_RD_STRM,
220 	AIC79XX_CONFIGED_RD_STRM,
221 	AIC79XX_CONFIGED_RD_STRM,
222 	AIC79XX_CONFIGED_RD_STRM,
223 	AIC79XX_CONFIGED_RD_STRM,
224 	AIC79XX_CONFIGED_RD_STRM,
225 	AIC79XX_CONFIGED_RD_STRM,
226 	AIC79XX_CONFIGED_RD_STRM,
227 	AIC79XX_CONFIGED_RD_STRM,
228 	AIC79XX_CONFIGED_RD_STRM
229 };
230 
231 /*
232  * DV option:
233  *
234  * positive value = DV Enabled
235  * zero		  = DV Disabled
236  * negative value = DV Default for adapter type/seeprom
237  */
238 #ifdef CONFIG_AIC79XX_DV_SETTING
239 #define AIC79XX_CONFIGED_DV CONFIG_AIC79XX_DV_SETTING
240 #else
241 #define AIC79XX_CONFIGED_DV -1
242 #endif
243 
244 static int8_t aic79xx_dv_settings[] =
245 {
246 	AIC79XX_CONFIGED_DV,
247 	AIC79XX_CONFIGED_DV,
248 	AIC79XX_CONFIGED_DV,
249 	AIC79XX_CONFIGED_DV,
250 	AIC79XX_CONFIGED_DV,
251 	AIC79XX_CONFIGED_DV,
252 	AIC79XX_CONFIGED_DV,
253 	AIC79XX_CONFIGED_DV,
254 	AIC79XX_CONFIGED_DV,
255 	AIC79XX_CONFIGED_DV,
256 	AIC79XX_CONFIGED_DV,
257 	AIC79XX_CONFIGED_DV,
258 	AIC79XX_CONFIGED_DV,
259 	AIC79XX_CONFIGED_DV,
260 	AIC79XX_CONFIGED_DV,
261 	AIC79XX_CONFIGED_DV
262 };
263 
264 /*
265  * The I/O cell on the chip is very configurable in respect to its analog
266  * characteristics.  Set the defaults here; they can be overriden with
267  * the proper insmod parameters.
268  */
269 struct ahd_linux_iocell_opts
270 {
271 	uint8_t	precomp;
272 	uint8_t	slewrate;
273 	uint8_t amplitude;
274 };
275 #define AIC79XX_DEFAULT_PRECOMP		0xFF
276 #define AIC79XX_DEFAULT_SLEWRATE	0xFF
277 #define AIC79XX_DEFAULT_AMPLITUDE	0xFF
278 #define AIC79XX_DEFAULT_IOOPTS			\
279 {						\
280 	AIC79XX_DEFAULT_PRECOMP,		\
281 	AIC79XX_DEFAULT_SLEWRATE,		\
282 	AIC79XX_DEFAULT_AMPLITUDE		\
283 }
284 #define AIC79XX_PRECOMP_INDEX	0
285 #define AIC79XX_SLEWRATE_INDEX	1
286 #define AIC79XX_AMPLITUDE_INDEX	2
287 static struct ahd_linux_iocell_opts aic79xx_iocell_info[] =
288 {
289 	AIC79XX_DEFAULT_IOOPTS,
290 	AIC79XX_DEFAULT_IOOPTS,
291 	AIC79XX_DEFAULT_IOOPTS,
292 	AIC79XX_DEFAULT_IOOPTS,
293 	AIC79XX_DEFAULT_IOOPTS,
294 	AIC79XX_DEFAULT_IOOPTS,
295 	AIC79XX_DEFAULT_IOOPTS,
296 	AIC79XX_DEFAULT_IOOPTS,
297 	AIC79XX_DEFAULT_IOOPTS,
298 	AIC79XX_DEFAULT_IOOPTS,
299 	AIC79XX_DEFAULT_IOOPTS,
300 	AIC79XX_DEFAULT_IOOPTS,
301 	AIC79XX_DEFAULT_IOOPTS,
302 	AIC79XX_DEFAULT_IOOPTS,
303 	AIC79XX_DEFAULT_IOOPTS,
304 	AIC79XX_DEFAULT_IOOPTS
305 };
306 
307 /*
308  * There should be a specific return value for this in scsi.h, but
309  * it seems that most drivers ignore it.
310  */
311 #define DID_UNDERFLOW   DID_ERROR
312 
313 void
ahd_print_path(struct ahd_softc * ahd,struct scb * scb)314 ahd_print_path(struct ahd_softc *ahd, struct scb *scb)
315 {
316 	printk("(scsi%d:%c:%d:%d): ",
317 	       ahd->platform_data->host->host_no,
318 	       scb != NULL ? SCB_GET_CHANNEL(ahd, scb) : 'X',
319 	       scb != NULL ? SCB_GET_TARGET(ahd, scb) : -1,
320 	       scb != NULL ? SCB_GET_LUN(scb) : -1);
321 }
322 
323 /*
324  * XXX - these options apply unilaterally to _all_ adapters
325  *       cards in the system.  This should be fixed.  Exceptions to this
326  *       rule are noted in the comments.
327  */
328 
329 /*
330  * Skip the scsi bus reset.  Non 0 make us skip the reset at startup.  This
331  * has no effect on any later resets that might occur due to things like
332  * SCSI bus timeouts.
333  */
334 static uint32_t aic79xx_no_reset;
335 
336 /*
337  * Certain PCI motherboards will scan PCI devices from highest to lowest,
338  * others scan from lowest to highest, and they tend to do all kinds of
339  * strange things when they come into contact with PCI bridge chips.  The
340  * net result of all this is that the PCI card that is actually used to boot
341  * the machine is very hard to detect.  Most motherboards go from lowest
342  * PCI slot number to highest, and the first SCSI controller found is the
343  * one you boot from.  The only exceptions to this are when a controller
344  * has its BIOS disabled.  So, we by default sort all of our SCSI controllers
345  * from lowest PCI slot number to highest PCI slot number.  We also force
346  * all controllers with their BIOS disabled to the end of the list.  This
347  * works on *almost* all computers.  Where it doesn't work, we have this
348  * option.  Setting this option to non-0 will reverse the order of the sort
349  * to highest first, then lowest, but will still leave cards with their BIOS
350  * disabled at the very end.  That should fix everyone up unless there are
351  * really strange cirumstances.
352  */
353 static uint32_t aic79xx_reverse_scan;
354 
355 /*
356  * Should we force EXTENDED translation on a controller.
357  *     0 == Use whatever is in the SEEPROM or default to off
358  *     1 == Use whatever is in the SEEPROM or default to on
359  */
360 static uint32_t aic79xx_extended;
361 
362 /*
363  * PCI bus parity checking of the Adaptec controllers.  This is somewhat
364  * dubious at best.  To my knowledge, this option has never actually
365  * solved a PCI parity problem, but on certain machines with broken PCI
366  * chipset configurations, it can generate tons of false error messages.
367  * It's included in the driver for completeness.
368  *   0	   = Shut off PCI parity check
369  *   non-0 = Enable PCI parity check
370  *
371  * NOTE: you can't actually pass -1 on the lilo prompt.  So, to set this
372  * variable to -1 you would actually want to simply pass the variable
373  * name without a number.  That will invert the 0 which will result in
374  * -1.
375  */
376 static uint32_t aic79xx_pci_parity = ~0;
377 
378 /*
379  * There are lots of broken chipsets in the world.  Some of them will
380  * violate the PCI spec when we issue byte sized memory writes to our
381  * controller.  I/O mapped register access, if allowed by the given
382  * platform, will work in almost all cases.
383  */
384 uint32_t aic79xx_allow_memio = ~0;
385 
386 /*
387  * aic79xx_detect() has been run, so register all device arrivals
388  * immediately with the system rather than deferring to the sorted
389  * attachment performed by aic79xx_detect().
390  */
391 int aic79xx_detect_complete;
392 
393 /*
394  * So that we can set how long each device is given as a selection timeout.
395  * The table of values goes like this:
396  *   0 - 256ms
397  *   1 - 128ms
398  *   2 - 64ms
399  *   3 - 32ms
400  * We default to 256ms because some older devices need a longer time
401  * to respond to initial selection.
402  */
403 static uint32_t aic79xx_seltime;
404 
405 /*
406  * Certain devices do not perform any aging on commands.  Should the
407  * device be saturated by commands in one portion of the disk, it is
408  * possible for transactions on far away sectors to never be serviced.
409  * To handle these devices, we can periodically send an ordered tag to
410  * force all outstanding transactions to be serviced prior to a new
411  * transaction.
412  */
413 uint32_t aic79xx_periodic_otag;
414 
415 /*
416  * Module information and settable options.
417  */
418 #ifdef MODULE
419 static char *aic79xx = NULL;
420 /*
421  * Just in case someone uses commas to separate items on the insmod
422  * command line, we define a dummy buffer here to avoid having insmod
423  * write wild stuff into our code segment
424  */
425 static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n";
426 
427 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
428 MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
429 #ifdef MODULE_LICENSE
430 MODULE_LICENSE("Dual BSD/GPL");
431 #endif
432 MODULE_PARM(aic79xx, "s");
433 MODULE_PARM_DESC(aic79xx,
434 "period delimited, options string.\n"
435 "	verbose			Enable verbose/diagnostic logging\n"
436 "	allow_memio		Allow device registers to be memory mapped\n"
437 "	debug			Bitmask of debug values to enable\n"
438 "	no_reset		Supress initial bus resets\n"
439 "	extended		Enable extended geometry on all controllers\n"
440 "	periodic_otag		Send an ordered tagged transaction\n"
441 "				periodically to prevent tag starvation.\n"
442 "				This may be required by some older disk\n"
443 "				or drives/RAID arrays.\n"
444 "	reverse_scan		Sort PCI devices highest Bus/Slot to lowest\n"
445 "	tag_info:<tag_str>	Set per-target tag depth\n"
446 "	global_tag_depth:<int>	Global tag depth for all targets on all buses\n"
447 "	rd_strm:<rd_strm_masks> Set per-target read streaming setting.\n"
448 "	dv:<dv_settings>	Set per-controller Domain Validation Setting.\n"
449 "	slewrate:<slewrate_list>Set the signal slew rate (0-15).\n"
450 "	precomp:<pcomp_list>	Set the signal precompensation (0-7).\n"
451 "	amplitude:<int>		Set the signal amplitude (0-7).\n"
452 "	seltime:<int>		Selection Timeout:\n"
453 "				(0/256ms,1/128ms,2/64ms,3/32ms)\n"
454 "\n"
455 "	Sample /etc/modules.conf line:\n"
456 "		Enable verbose logging\n"
457 "		Set tag depth on Controller 2/Target 2 to 10 tags\n"
458 "		Shorten the selection timeout to 128ms\n"
459 "\n"
460 "	options aic79xx 'aic79xx=verbose.tag_info:{{}.{}.{..10}}.seltime:1'\n"
461 "\n"
462 "	Sample /etc/modules.conf line:\n"
463 "		Change Read Streaming for Controller's 2 and 3\n"
464 "\n"
465 "	options aic79xx 'aic79xx=rd_strm:{..0xFFF0.0xC0F0}'");
466 #endif
467 
468 static void ahd_linux_handle_scsi_status(struct ahd_softc *,
469 					 struct ahd_linux_device *,
470 					 struct scb *);
471 static void ahd_linux_queue_cmd_complete(struct ahd_softc *ahd,
472 					 Scsi_Cmnd *cmd);
473 static void ahd_linux_filter_inquiry(struct ahd_softc *ahd,
474 				     struct ahd_devinfo *devinfo);
475 static void ahd_linux_dev_timed_unfreeze(u_long arg);
476 static void ahd_linux_sem_timeout(u_long arg);
477 static void ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd);
478 static void ahd_linux_size_nseg(void);
479 static void ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd);
480 static void ahd_linux_start_dv(struct ahd_softc *ahd);
481 static void ahd_linux_dv_timeout(struct scsi_cmnd *cmd);
482 static int  ahd_linux_dv_thread(void *data);
483 static void ahd_linux_kill_dv_thread(struct ahd_softc *ahd);
484 static void ahd_linux_dv_target(struct ahd_softc *ahd, u_int target);
485 static void ahd_linux_dv_transition(struct ahd_softc *ahd,
486 				    struct scsi_cmnd *cmd,
487 				    struct ahd_devinfo *devinfo,
488 				    struct ahd_linux_target *targ);
489 static void ahd_linux_dv_fill_cmd(struct ahd_softc *ahd,
490 				  struct scsi_cmnd *cmd,
491 				  struct ahd_devinfo *devinfo);
492 static void ahd_linux_dv_inq(struct ahd_softc *ahd,
493 			     struct scsi_cmnd *cmd,
494 			     struct ahd_devinfo *devinfo,
495 			     struct ahd_linux_target *targ,
496 			     u_int request_length);
497 static void ahd_linux_dv_tur(struct ahd_softc *ahd,
498 			     struct scsi_cmnd *cmd,
499 			     struct ahd_devinfo *devinfo);
500 static void ahd_linux_dv_rebd(struct ahd_softc *ahd,
501 			      struct scsi_cmnd *cmd,
502 			      struct ahd_devinfo *devinfo,
503 			      struct ahd_linux_target *targ);
504 static void ahd_linux_dv_web(struct ahd_softc *ahd,
505 			     struct scsi_cmnd *cmd,
506 			     struct ahd_devinfo *devinfo,
507 			     struct ahd_linux_target *targ);
508 static void ahd_linux_dv_reb(struct ahd_softc *ahd,
509 			     struct scsi_cmnd *cmd,
510 			     struct ahd_devinfo *devinfo,
511 			     struct ahd_linux_target *targ);
512 static void ahd_linux_dv_su(struct ahd_softc *ahd,
513 			    struct scsi_cmnd *cmd,
514 			    struct ahd_devinfo *devinfo,
515 			    struct ahd_linux_target *targ);
516 static __inline int
517 	   ahd_linux_dv_fallback(struct ahd_softc *ahd,
518 				 struct ahd_devinfo *devinfo);
519 static int ahd_linux_fallback(struct ahd_softc *ahd,
520 			      struct ahd_devinfo *devinfo);
521 static __inline int ahd_linux_dv_fallback(struct ahd_softc *ahd,
522 					  struct ahd_devinfo *devinfo);
523 static void ahd_linux_dv_complete(Scsi_Cmnd *cmd);
524 static void ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ);
525 static u_int ahd_linux_user_tagdepth(struct ahd_softc *ahd,
526 				     struct ahd_devinfo *devinfo);
527 static u_int ahd_linux_user_dv_setting(struct ahd_softc *ahd);
528 static void ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd);
529 static void ahd_linux_device_queue_depth(struct ahd_softc *ahd,
530 					 struct ahd_linux_device *dev);
531 static struct ahd_linux_target*	ahd_linux_alloc_target(struct ahd_softc*,
532 						       u_int, u_int);
533 static void			ahd_linux_free_target(struct ahd_softc*,
534 						      struct ahd_linux_target*);
535 static struct ahd_linux_device*	ahd_linux_alloc_device(struct ahd_softc*,
536 						       struct ahd_linux_target*,
537 						       u_int);
538 static void			ahd_linux_free_device(struct ahd_softc*,
539 						      struct ahd_linux_device*);
540 static void ahd_linux_run_device_queue(struct ahd_softc*,
541 				       struct ahd_linux_device*);
542 static void ahd_linux_setup_tag_info_global(char *p);
543 static aic_option_callback_t ahd_linux_setup_tag_info;
544 static aic_option_callback_t ahd_linux_setup_rd_strm_info;
545 static aic_option_callback_t ahd_linux_setup_dv;
546 static aic_option_callback_t ahd_linux_setup_iocell_info;
547 static int ahd_linux_next_unit(void);
548 static void ahd_runq_tasklet(unsigned long data);
549 static int aic79xx_setup(char *c);
550 
551 /****************************** Inlines ***************************************/
552 static __inline void ahd_schedule_completeq(struct ahd_softc *ahd);
553 static __inline void ahd_schedule_runq(struct ahd_softc *ahd);
554 static __inline void ahd_setup_runq_tasklet(struct ahd_softc *ahd);
555 static __inline void ahd_teardown_runq_tasklet(struct ahd_softc *ahd);
556 static __inline struct ahd_linux_device*
557 		     ahd_linux_get_device(struct ahd_softc *ahd, u_int channel,
558 					  u_int target, u_int lun, int alloc);
559 static struct ahd_cmd *ahd_linux_run_complete_queue(struct ahd_softc *ahd);
560 static __inline void ahd_linux_check_device_queue(struct ahd_softc *ahd,
561 						  struct ahd_linux_device *dev);
562 static __inline struct ahd_linux_device *
563 		     ahd_linux_next_device_to_run(struct ahd_softc *ahd);
564 static __inline void ahd_linux_run_device_queues(struct ahd_softc *ahd);
565 static __inline void ahd_linux_unmap_scb(struct ahd_softc*, struct scb*);
566 
567 static __inline int ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb,
568 		 		      struct ahd_dma_seg *sg,
569 				      bus_addr_t addr, bus_size_t len);
570 
571 static __inline void
ahd_schedule_completeq(struct ahd_softc * ahd)572 ahd_schedule_completeq(struct ahd_softc *ahd)
573 {
574 	if ((ahd->platform_data->flags & AHD_RUN_CMPLT_Q_TIMER) == 0) {
575 		ahd->platform_data->flags |= AHD_RUN_CMPLT_Q_TIMER;
576 		ahd->platform_data->completeq_timer.expires = jiffies;
577 		add_timer(&ahd->platform_data->completeq_timer);
578 	}
579 }
580 
581 /*
582  * Must be called with our lock held.
583  */
584 static __inline void
ahd_schedule_runq(struct ahd_softc * ahd)585 ahd_schedule_runq(struct ahd_softc *ahd)
586 {
587 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
588 	tasklet_schedule(&ahd->platform_data->runq_tasklet);
589 #else
590 	/*
591 	 * Tasklets are not available, so run inline.
592 	 */
593 	ahd_runq_tasklet((unsigned long)ahd);
594 #endif
595 }
596 
597 static __inline
ahd_setup_runq_tasklet(struct ahd_softc * ahd)598 void ahd_setup_runq_tasklet(struct ahd_softc *ahd)
599 {
600 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
601 	tasklet_init(&ahd->platform_data->runq_tasklet, ahd_runq_tasklet,
602 		     (unsigned long)ahd);
603 #endif
604 }
605 
606 static __inline void
ahd_teardown_runq_tasklet(struct ahd_softc * ahd)607 ahd_teardown_runq_tasklet(struct ahd_softc *ahd)
608 {
609 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
610 	tasklet_kill(&ahd->platform_data->runq_tasklet);
611 #endif
612 }
613 
614 static __inline struct ahd_linux_device*
ahd_linux_get_device(struct ahd_softc * ahd,u_int channel,u_int target,u_int lun,int alloc)615 ahd_linux_get_device(struct ahd_softc *ahd, u_int channel, u_int target,
616 		     u_int lun, int alloc)
617 {
618 	struct ahd_linux_target *targ;
619 	struct ahd_linux_device *dev;
620 	u_int target_offset;
621 
622 	target_offset = target;
623 	if (channel != 0)
624 		target_offset += 8;
625 	targ = ahd->platform_data->targets[target_offset];
626 	if (targ == NULL) {
627 		if (alloc != 0) {
628 			targ = ahd_linux_alloc_target(ahd, channel, target);
629 			if (targ == NULL)
630 				return (NULL);
631 		} else
632 			return (NULL);
633 	}
634 	dev = targ->devices[lun];
635 	if (dev == NULL && alloc != 0)
636 		dev = ahd_linux_alloc_device(ahd, targ, lun);
637 	return (dev);
638 }
639 
640 #define AHD_LINUX_MAX_RETURNED_ERRORS 4
641 static struct ahd_cmd *
ahd_linux_run_complete_queue(struct ahd_softc * ahd)642 ahd_linux_run_complete_queue(struct ahd_softc *ahd)
643 {
644 	struct	ahd_cmd *acmd;
645 	u_long	done_flags;
646 	int	with_errors;
647 
648 	with_errors = 0;
649 	ahd_done_lock(ahd, &done_flags);
650 	while ((acmd = TAILQ_FIRST(&ahd->platform_data->completeq)) != NULL) {
651 		Scsi_Cmnd *cmd;
652 
653 		if (with_errors > AHD_LINUX_MAX_RETURNED_ERRORS) {
654 			/*
655 			 * Linux uses stack recursion to requeue
656 			 * commands that need to be retried.  Avoid
657 			 * blowing out the stack by "spoon feeding"
658 			 * commands that completed with error back
659 			 * the operating system in case they are going
660 			 * to be retried. "ick"
661 			 */
662 			ahd_schedule_completeq(ahd);
663 			break;
664 		}
665 		TAILQ_REMOVE(&ahd->platform_data->completeq,
666 			     acmd, acmd_links.tqe);
667 		cmd = &acmd_scsi_cmd(acmd);
668 		cmd->host_scribble = NULL;
669 		if (ahd_cmd_get_transaction_status(cmd) != DID_OK
670 		 || (cmd->result & 0xFF) != SCSI_STATUS_OK)
671 			with_errors++;
672 
673 		cmd->scsi_done(cmd);
674 	}
675 	ahd_done_unlock(ahd, &done_flags);
676 	return (acmd);
677 }
678 
679 static __inline void
ahd_linux_check_device_queue(struct ahd_softc * ahd,struct ahd_linux_device * dev)680 ahd_linux_check_device_queue(struct ahd_softc *ahd,
681 			     struct ahd_linux_device *dev)
682 {
683 	if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) != 0
684 	 && dev->active == 0) {
685 		dev->flags &= ~AHD_DEV_FREEZE_TIL_EMPTY;
686 		dev->qfrozen--;
687 	}
688 
689 	if (TAILQ_FIRST(&dev->busyq) == NULL
690 	 || dev->openings == 0 || dev->qfrozen != 0)
691 		return;
692 
693 	ahd_linux_run_device_queue(ahd, dev);
694 }
695 
696 static __inline struct ahd_linux_device *
ahd_linux_next_device_to_run(struct ahd_softc * ahd)697 ahd_linux_next_device_to_run(struct ahd_softc *ahd)
698 {
699 
700 	if ((ahd->flags & AHD_RESOURCE_SHORTAGE) != 0
701 	 || (ahd->platform_data->qfrozen != 0
702 	  && AHD_DV_SIMQ_FROZEN(ahd) == 0))
703 		return (NULL);
704 	return (TAILQ_FIRST(&ahd->platform_data->device_runq));
705 }
706 
707 static __inline void
ahd_linux_run_device_queues(struct ahd_softc * ahd)708 ahd_linux_run_device_queues(struct ahd_softc *ahd)
709 {
710 	struct ahd_linux_device *dev;
711 
712 	while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
713 		TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
714 		dev->flags &= ~AHD_DEV_ON_RUN_LIST;
715 		ahd_linux_check_device_queue(ahd, dev);
716 	}
717 }
718 
719 static __inline void
ahd_linux_unmap_scb(struct ahd_softc * ahd,struct scb * scb)720 ahd_linux_unmap_scb(struct ahd_softc *ahd, struct scb *scb)
721 {
722 	Scsi_Cmnd *cmd;
723 	int direction;
724 
725 	cmd = scb->io_ctx;
726 	direction = scsi_to_pci_dma_dir(cmd->sc_data_direction);
727 	ahd_sync_sglist(ahd, scb, BUS_DMASYNC_POSTWRITE);
728 	if (cmd->use_sg != 0) {
729 		struct scatterlist *sg;
730 
731 		sg = (struct scatterlist *)cmd->request_buffer;
732 		pci_unmap_sg(ahd->dev_softc, sg, cmd->use_sg, direction);
733 	} else if (cmd->request_bufflen != 0) {
734 		pci_unmap_single(ahd->dev_softc,
735 				 scb->platform_data->buf_busaddr,
736 				 cmd->request_bufflen, direction);
737 	}
738 }
739 
740 static __inline int
ahd_linux_map_seg(struct ahd_softc * ahd,struct scb * scb,struct ahd_dma_seg * sg,bus_addr_t addr,bus_size_t len)741 ahd_linux_map_seg(struct ahd_softc *ahd, struct scb *scb,
742 		  struct ahd_dma_seg *sg, bus_addr_t addr, bus_size_t len)
743 {
744 	int	 consumed;
745 
746 	if ((scb->sg_count + 1) > AHD_NSEG)
747 		panic("Too few segs for dma mapping.  "
748 		      "Increase AHD_NSEG\n");
749 
750 	consumed = 1;
751 	sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
752 	scb->platform_data->xfer_len += len;
753 
754 	if (sizeof(bus_addr_t) > 4
755 	 && (ahd->flags & AHD_39BIT_ADDRESSING) != 0)
756 		len |= (addr >> 8) & AHD_SG_HIGH_ADDR_MASK;
757 
758 	sg->len = ahd_htole32(len);
759 	return (consumed);
760 }
761 
762 /******************************** Macros **************************************/
763 #define BUILD_SCSIID(ahd, cmd)						\
764 	((((cmd)->device->id << TID_SHIFT) & TID) | (ahd)->our_id)
765 
766 /************************  Host template entry points *************************/
767 static int	   ahd_linux_detect(Scsi_Host_Template *);
768 static const char *ahd_linux_info(struct Scsi_Host *);
769 static int	   ahd_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
770 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
771 static int	   ahd_linux_slave_alloc(Scsi_Device *);
772 static int	   ahd_linux_slave_configure(Scsi_Device *);
773 static void	   ahd_linux_slave_destroy(Scsi_Device *);
774 #if defined(__i386__)
775 static int	   ahd_linux_biosparam(struct scsi_device*,
776 				       struct block_device*, sector_t, int[]);
777 #endif
778 #else
779 static int	   ahd_linux_release(struct Scsi_Host *);
780 static void	   ahd_linux_select_queue_depth(struct Scsi_Host *host,
781 						Scsi_Device *scsi_devs);
782 #if defined(__i386__)
783 static int	   ahd_linux_biosparam(Disk *, kdev_t, int[]);
784 #endif
785 #endif
786 static int	   ahd_linux_bus_reset(Scsi_Cmnd *);
787 static int	   ahd_linux_dev_reset(Scsi_Cmnd *);
788 static int	   ahd_linux_abort(Scsi_Cmnd *);
789 
790 /*
791  * Calculate a safe value for AHD_NSEG (as expressed through ahd_linux_nseg).
792  *
793  * In pre-2.5.X...
794  * The midlayer allocates an S/G array dynamically when a command is issued
795  * using SCSI malloc.  This array, which is in an OS dependent format that
796  * must later be copied to our private S/G list, is sized to house just the
797  * number of segments needed for the current transfer.  Since the code that
798  * sizes the SCSI malloc pool does not take into consideration fragmentation
799  * of the pool, executing transactions numbering just a fraction of our
800  * concurrent transaction limit with SG list lengths aproaching AHC_NSEG will
801  * quickly depleat the SCSI malloc pool of usable space.  Unfortunately, the
802  * mid-layer does not properly handle this scsi malloc failures for the S/G
803  * array and the result can be a lockup of the I/O subsystem.  We try to size
804  * our S/G list so that it satisfies our drivers allocation requirements in
805  * addition to avoiding fragmentation of the SCSI malloc pool.
806  */
807 static void
ahd_linux_size_nseg(void)808 ahd_linux_size_nseg(void)
809 {
810 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
811 	u_int cur_size;
812 	u_int best_size;
813 
814 	/*
815 	 * The SCSI allocator rounds to the nearest 512 bytes
816 	 * an cannot allocate across a page boundary.  Our algorithm
817 	 * is to start at 1K of scsi malloc space per-command and
818 	 * loop through all factors of the PAGE_SIZE and pick the best.
819 	 */
820 	best_size = 0;
821 	for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
822 		u_int nseg;
823 
824 		nseg = cur_size / sizeof(struct scatterlist);
825 		if (nseg < AHD_LINUX_MIN_NSEG)
826 			continue;
827 
828 		if (best_size == 0) {
829 			best_size = cur_size;
830 			ahd_linux_nseg = nseg;
831 		} else {
832 			u_int best_rem;
833 			u_int cur_rem;
834 
835 			/*
836 			 * Compare the traits of the current "best_size"
837 			 * with the current size to determine if the
838 			 * current size is a better size.
839 			 */
840 			best_rem = best_size % sizeof(struct scatterlist);
841 			cur_rem = cur_size % sizeof(struct scatterlist);
842 			if (cur_rem < best_rem) {
843 				best_size = cur_size;
844 				ahd_linux_nseg = nseg;
845 			}
846 		}
847 	}
848 #endif
849 }
850 
851 /*
852  * Try to detect an Adaptec 79XX controller.
853  */
854 static int
ahd_linux_detect(Scsi_Host_Template * template)855 ahd_linux_detect(Scsi_Host_Template *template)
856 {
857 	struct	ahd_softc *ahd;
858 	int     found;
859 
860 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
861 	/*
862 	 * It is a bug that the upper layer takes
863 	 * this lock just prior to calling us.
864 	 */
865 	spin_unlock_irq(&io_request_lock);
866 #endif
867 
868 	/*
869 	 * Sanity checking of Linux SCSI data structures so
870 	 * that some of our hacks^H^H^H^H^Hassumptions aren't
871 	 * violated.
872 	 */
873 	if (offsetof(struct ahd_cmd_internal, end)
874 	  > offsetof(struct scsi_cmnd, host_scribble)) {
875 		printf("ahd_linux_detect: SCSI data structures changed.\n");
876 		printf("ahd_linux_detect: Unable to attach\n");
877 		return (0);
878 	}
879 	/*
880 	 * Determine an appropriate size for our Scatter Gatther lists.
881 	 */
882 	ahd_linux_size_nseg();
883 #ifdef MODULE
884 	/*
885 	 * If we've been passed any parameters, process them now.
886 	 */
887 	if (aic79xx)
888 		aic79xx_setup(aic79xx);
889 	if (dummy_buffer[0] != 'P')
890 		printk(KERN_WARNING
891 "aic79xx: Please read the file /usr/src/linux/drivers/scsi/README.aic79xx\n"
892 "aic79xx: to see the proper way to specify options to the aic79xx module\n"
893 "aic79xx: Specifically, don't use any commas when passing arguments to\n"
894 "aic79xx: insmod or else it might trash certain memory areas.\n");
895 #endif
896 
897 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
898 	template->proc_name = "aic79xx";
899 #else
900 	template->proc_dir = &proc_scsi_aic79xx;
901 #endif
902 
903 	/*
904 	 * Initialize our softc list lock prior to
905 	 * probing for any adapters.
906 	 */
907 	ahd_list_lockinit();
908 
909 #ifdef CONFIG_PCI
910 	ahd_linux_pci_init();
911 #endif
912 
913 	/*
914 	 * Register with the SCSI layer all
915 	 * controllers we've found.
916 	 */
917 	found = 0;
918 	TAILQ_FOREACH(ahd, &ahd_tailq, links) {
919 
920 		if (ahd_linux_register_host(ahd, template) == 0)
921 			found++;
922 	}
923 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
924 	spin_lock_irq(&io_request_lock);
925 #endif
926 	aic79xx_detect_complete++;
927 	return (found);
928 }
929 
930 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
931 /*
932  * Free the passed in Scsi_Host memory structures prior to unloading the
933  * module.
934  */
935 static int
ahd_linux_release(struct Scsi_Host * host)936 ahd_linux_release(struct Scsi_Host * host)
937 {
938 	struct ahd_softc *ahd;
939 	u_long l;
940 
941 	ahd_list_lock(&l);
942 	if (host != NULL) {
943 
944 		/*
945 		 * We should be able to just perform
946 		 * the free directly, but check our
947 		 * list for extra sanity.
948 		 */
949 		ahd = ahd_find_softc(*(struct ahd_softc **)host->hostdata);
950 		if (ahd != NULL) {
951 			u_long s;
952 
953 			ahd_lock(ahd, &s);
954 			ahd_intr_enable(ahd, FALSE);
955 			ahd_unlock(ahd, &s);
956 			ahd_free(ahd);
957 		}
958 	}
959 	ahd_list_unlock(&l);
960 	return (0);
961 }
962 #endif
963 
964 /*
965  * Return a string describing the driver.
966  */
967 static const char *
ahd_linux_info(struct Scsi_Host * host)968 ahd_linux_info(struct Scsi_Host *host)
969 {
970 	static char buffer[512];
971 	char	ahd_info[256];
972 	char   *bp;
973 	struct ahd_softc *ahd;
974 
975 	bp = &buffer[0];
976 	ahd = *(struct ahd_softc **)host->hostdata;
977 	memset(bp, 0, sizeof(buffer));
978 	strcpy(bp, "Adaptec AIC79XX PCI-X SCSI HBA DRIVER, Rev ");
979 	strcat(bp, AIC79XX_DRIVER_VERSION);
980 	strcat(bp, "\n");
981 	strcat(bp, "        <");
982 	strcat(bp, ahd->description);
983 	strcat(bp, ">\n");
984 	strcat(bp, "        ");
985 	ahd_controller_info(ahd, ahd_info);
986 	strcat(bp, ahd_info);
987 	strcat(bp, "\n");
988 
989 	return (bp);
990 }
991 
992 /*
993  * Queue an SCB to the controller.
994  */
995 static int
ahd_linux_queue(Scsi_Cmnd * cmd,void (* scsi_done)(Scsi_Cmnd *))996 ahd_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
997 {
998 	struct	 ahd_softc *ahd;
999 	struct	 ahd_linux_device *dev;
1000 	u_long	 flags;
1001 
1002 	ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1003 
1004 	/*
1005 	 * Save the callback on completion function.
1006 	 */
1007 	cmd->scsi_done = scsi_done;
1008 
1009 	ahd_midlayer_entrypoint_lock(ahd, &flags);
1010 
1011 	/*
1012 	 * Close the race of a command that was in the process of
1013 	 * being queued to us just as our simq was frozen.  Let
1014 	 * DV commands through so long as we are only frozen to
1015 	 * perform DV.
1016 	 */
1017 	if (ahd->platform_data->qfrozen != 0
1018 	 && AHD_DV_CMD(cmd) == 0) {
1019 
1020 		ahd_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
1021 		ahd_linux_queue_cmd_complete(ahd, cmd);
1022 		ahd_schedule_completeq(ahd);
1023 		ahd_midlayer_entrypoint_unlock(ahd, &flags);
1024 		return (0);
1025 	}
1026 	dev = ahd_linux_get_device(ahd, cmd->device->channel,
1027 				   cmd->device->id, cmd->device->lun,
1028 				   /*alloc*/TRUE);
1029 	if (dev == NULL) {
1030 		ahd_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
1031 		ahd_linux_queue_cmd_complete(ahd, cmd);
1032 		ahd_schedule_completeq(ahd);
1033 		ahd_midlayer_entrypoint_unlock(ahd, &flags);
1034 		printf("%s: aic79xx_linux_queue - Unable to allocate device!\n",
1035 		       ahd_name(ahd));
1036 		return (0);
1037 	}
1038 	if (cmd->cmd_len > MAX_CDB_LEN)
1039 		return (-EINVAL);
1040 	cmd->result = CAM_REQ_INPROG << 16;
1041 	TAILQ_INSERT_TAIL(&dev->busyq, (struct ahd_cmd *)cmd, acmd_links.tqe);
1042 	if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
1043 		TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
1044 		dev->flags |= AHD_DEV_ON_RUN_LIST;
1045 		ahd_linux_run_device_queues(ahd);
1046 	}
1047 	ahd_midlayer_entrypoint_unlock(ahd, &flags);
1048 	return (0);
1049 }
1050 
1051 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1052 static int
ahd_linux_slave_alloc(Scsi_Device * device)1053 ahd_linux_slave_alloc(Scsi_Device *device)
1054 {
1055 	struct	ahd_softc *ahd;
1056 
1057 	ahd = *((struct ahd_softc **)device->host->hostdata);
1058 	if (bootverbose)
1059 		printf("%s: Slave Alloc %d\n", ahd_name(ahd), device->id);
1060 	return (0);
1061 }
1062 
1063 static int
ahd_linux_slave_configure(Scsi_Device * device)1064 ahd_linux_slave_configure(Scsi_Device *device)
1065 {
1066 	struct	ahd_softc *ahd;
1067 	struct	ahd_linux_device *dev;
1068 	u_long	flags;
1069 
1070 	ahd = *((struct ahd_softc **)device->host->hostdata);
1071 	if (bootverbose)
1072 		printf("%s: Slave Configure %d\n", ahd_name(ahd), device->id);
1073 	ahd_midlayer_entrypoint_lock(ahd, &flags);
1074 	/*
1075 	 * Since Linux has attached to the device, configure
1076 	 * it so we don't free and allocate the device
1077 	 * structure on every command.
1078 	 */
1079 	dev = ahd_linux_get_device(ahd, device->channel,
1080 				   device->id, device->lun,
1081 				   /*alloc*/TRUE);
1082 	if (dev != NULL) {
1083 		dev->flags &= ~AHD_DEV_UNCONFIGURED;
1084 		dev->flags |= AHD_DEV_SLAVE_CONFIGURED;
1085 		dev->scsi_device = device;
1086 		ahd_linux_device_queue_depth(ahd, dev);
1087 	}
1088 	ahd_midlayer_entrypoint_unlock(ahd, &flags);
1089 	return (0);
1090 }
1091 
1092 static void
ahd_linux_slave_destroy(Scsi_Device * device)1093 ahd_linux_slave_destroy(Scsi_Device *device)
1094 {
1095 	struct	ahd_softc *ahd;
1096 	struct	ahd_linux_device *dev;
1097 	u_long	flags;
1098 
1099 	ahd = *((struct ahd_softc **)device->host->hostdata);
1100 	if (bootverbose)
1101 		printf("%s: Slave Destroy %d\n", ahd_name(ahd), device->id);
1102 	ahd_midlayer_entrypoint_lock(ahd, &flags);
1103 	dev = ahd_linux_get_device(ahd, device->channel,
1104 				   device->id, device->lun,
1105 					   /*alloc*/FALSE);
1106 
1107 	/*
1108 	 * Filter out "silly" deletions of real devices by only
1109 	 * deleting devices that have had slave_configure()
1110 	 * called on them.  All other devices that have not
1111 	 * been configured will automatically be deleted by
1112 	 * the refcounting process.
1113 	 */
1114 	if (dev != NULL
1115 	 && (dev->flags & AHD_DEV_SLAVE_CONFIGURED) != 0) {
1116 		dev->flags |= AHD_DEV_UNCONFIGURED;
1117 		if (TAILQ_EMPTY(&dev->busyq)
1118 		 && dev->active == 0
1119 		 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
1120 			ahd_linux_free_device(ahd, dev);
1121 	}
1122 	ahd_midlayer_entrypoint_unlock(ahd, &flags);
1123 }
1124 #else
1125 /*
1126  * Sets the queue depth for each SCSI device hanging
1127  * off the input host adapter.
1128  */
1129 static void
ahd_linux_select_queue_depth(struct Scsi_Host * host,Scsi_Device * scsi_devs)1130 ahd_linux_select_queue_depth(struct Scsi_Host * host,
1131 			     Scsi_Device * scsi_devs)
1132 {
1133 	Scsi_Device *device;
1134 	Scsi_Device *ldev;
1135 	struct	ahd_softc *ahd;
1136 	u_long	flags;
1137 
1138 	ahd = *((struct ahd_softc **)host->hostdata);
1139 	ahd_lock(ahd, &flags);
1140 	for (device = scsi_devs; device != NULL; device = device->next) {
1141 
1142 		/*
1143 		 * Watch out for duplicate devices.  This works around
1144 		 * some quirks in how the SCSI scanning code does its
1145 		 * device management.
1146 		 */
1147 		for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
1148 			if (ldev->host == device->host
1149 			 && ldev->channel == device->channel
1150 			 && ldev->id == device->id
1151 			 && ldev->lun == device->lun)
1152 				break;
1153 		}
1154 		/* Skip duplicate. */
1155 		if (ldev != device)
1156 			continue;
1157 
1158 		if (device->host == host) {
1159 			struct	 ahd_linux_device *dev;
1160 
1161 			/*
1162 			 * Since Linux has attached to the device, configure
1163 			 * it so we don't free and allocate the device
1164 			 * structure on every command.
1165 			 */
1166 			dev = ahd_linux_get_device(ahd, device->channel,
1167 						   device->id, device->lun,
1168 						   /*alloc*/TRUE);
1169 			if (dev != NULL) {
1170 				dev->flags &= ~AHD_DEV_UNCONFIGURED;
1171 				dev->scsi_device = device;
1172 				ahd_linux_device_queue_depth(ahd, dev);
1173 				device->queue_depth = dev->openings
1174 						    + dev->active;
1175 				if ((dev->flags & (AHD_DEV_Q_BASIC
1176 						| AHD_DEV_Q_TAGGED)) == 0) {
1177 					/*
1178 					 * We allow the OS to queue 2 untagged
1179 					 * transactions to us at any time even
1180 					 * though we can only execute them
1181 					 * serially on the controller/device.
1182 					 * This should remove some latency.
1183 					 */
1184 					device->queue_depth = 2;
1185 				}
1186 			}
1187 		}
1188 	}
1189 	ahd_unlock(ahd, &flags);
1190 }
1191 #endif
1192 
1193 #if defined(__i386__)
1194 /*
1195  * Return the disk geometry for the given SCSI device.
1196  */
1197 static int
1198 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
ahd_linux_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int geom[])1199 ahd_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
1200 		    sector_t capacity, int geom[])
1201 {
1202 	uint8_t *bh;
1203 #else
1204 ahd_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
1205 {
1206 	struct	scsi_device *sdev = disk->device;
1207 	u_long	capacity = disk->capacity;
1208 	struct	buffer_head *bh;
1209 #endif
1210 	int	 heads;
1211 	int	 sectors;
1212 	int	 cylinders;
1213 	int	 ret;
1214 	int	 extended;
1215 	struct	 ahd_softc *ahd;
1216 
1217 	ahd = *((struct ahd_softc **)sdev->host->hostdata);
1218 
1219 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1220 	bh = scsi_bios_ptable(bdev);
1221 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
1222 	bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
1223 #else
1224 	bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
1225 #endif
1226 
1227 	if (bh) {
1228 		ret = scsi_partsize(bh, capacity,
1229 				    &geom[2], &geom[0], &geom[1]);
1230 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1231 		kfree(bh);
1232 #else
1233 		brelse(bh);
1234 #endif
1235 		if (ret != -1)
1236 			return (ret);
1237 	}
1238 	heads = 64;
1239 	sectors = 32;
1240 	cylinders = aic_sector_div(capacity, heads, sectors);
1241 
1242 	if (aic79xx_extended != 0)
1243 		extended = 1;
1244 	else
1245 		extended = (ahd->flags & AHD_EXTENDED_TRANS_A) != 0;
1246 	if (extended && cylinders >= 1024) {
1247 		heads = 255;
1248 		sectors = 63;
1249 		cylinders = aic_sector_div(capacity, heads, sectors);
1250 	}
1251 	geom[0] = heads;
1252 	geom[1] = sectors;
1253 	geom[2] = cylinders;
1254 	return (0);
1255 }
1256 #endif
1257 
1258 /*
1259  * Abort the current SCSI command(s).
1260  */
1261 static int
1262 ahd_linux_abort(Scsi_Cmnd *cmd)
1263 {
1264 	struct ahd_softc *ahd;
1265 	struct ahd_cmd *acmd;
1266 	struct ahd_cmd *list_acmd;
1267 	struct ahd_linux_device *dev;
1268 	struct scb *pending_scb;
1269 	u_long s;
1270 	u_int  saved_scbptr;
1271 	u_int  active_scbptr;
1272 	u_int  last_phase;
1273 	u_int  cdb_byte;
1274 	int    retval;
1275 	int    was_paused;
1276 	int    paused;
1277 	int    wait;
1278 	int    disconnected;
1279 	ahd_mode_state saved_modes;
1280 
1281 	pending_scb = NULL;
1282 	paused = FALSE;
1283 	wait = FALSE;
1284 	ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1285 	acmd = (struct ahd_cmd *)cmd;
1286 
1287 	printf("%s:%d:%d:%d: Attempting to abort cmd %p:",
1288 	       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1289 	       cmd->device->lun, cmd);
1290 	for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
1291 		printf(" 0x%x", cmd->cmnd[cdb_byte]);
1292 	printf("\n");
1293 
1294 	/*
1295 	 * In all versions of Linux, we have to work around
1296 	 * a major flaw in how the mid-layer is locked down
1297 	 * if we are to sleep successfully in our error handler
1298 	 * while allowing our interrupt handler to run.  Since
1299 	 * the midlayer acquires either the io_request_lock or
1300 	 * our lock prior to calling us, we must use the
1301 	 * spin_unlock_irq() method for unlocking our lock.
1302 	 * This will force interrupts to be enabled on the
1303 	 * current CPU.  Since the EH thread should not have
1304 	 * been running with CPU interrupts disabled other than
1305 	 * by acquiring either the io_request_lock or our own
1306 	 * lock, this *should* be safe.
1307 	 */
1308 	ahd_midlayer_entrypoint_lock(ahd, &s);
1309 
1310 	/*
1311 	 * First determine if we currently own this command.
1312 	 * Start by searching the device queue.  If not found
1313 	 * there, check the pending_scb list.  If not found
1314 	 * at all, and the system wanted us to just abort the
1315 	 * command, return success.
1316 	 */
1317 	dev = ahd_linux_get_device(ahd, cmd->device->channel,
1318 				   cmd->device->id, cmd->device->lun,
1319 				   /*alloc*/FALSE);
1320 
1321 	if (dev == NULL) {
1322 		/*
1323 		 * No target device for this command exists,
1324 		 * so we must not still own the command.
1325 		 */
1326 		printf("%s:%d:%d:%d: Is not an active device\n",
1327 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1328 		       cmd->device->lun);
1329 		retval = SUCCESS;
1330 		goto no_cmd;
1331 	}
1332 
1333 	TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
1334 		if (list_acmd == acmd)
1335 			break;
1336 	}
1337 
1338 	if (list_acmd != NULL) {
1339 		printf("%s:%d:%d:%d: Command found on device queue\n",
1340 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1341 		       cmd->device->lun);
1342 		TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
1343 		cmd->result = DID_ABORT << 16;
1344 		ahd_linux_queue_cmd_complete(ahd, cmd);
1345 		retval = SUCCESS;
1346 		goto done;
1347 	}
1348 
1349 	/*
1350 	 * See if we can find a matching cmd in the pending list.
1351 	 */
1352 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
1353 		if (pending_scb->io_ctx == cmd)
1354 			break;
1355 	}
1356 
1357 	if (pending_scb == NULL) {
1358 		printf("%s:%d:%d:%d: Command not found\n",
1359 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1360 		       cmd->device->lun);
1361 		goto no_cmd;
1362 	}
1363 
1364 	if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
1365 		/*
1366 		 * We can't queue two recovery actions using the same SCB
1367 		 */
1368 		retval = FAILED;
1369 		goto  done;
1370 	}
1371 
1372 	/*
1373 	 * Ensure that the card doesn't do anything
1374 	 * behind our back.  Also make sure that we
1375 	 * didn't "just" miss an interrupt that would
1376 	 * affect this cmd.
1377 	 */
1378 	was_paused = ahd_is_paused(ahd);
1379 	ahd_pause_and_flushwork(ahd);
1380 	paused = TRUE;
1381 
1382 	if ((pending_scb->flags & SCB_ACTIVE) == 0) {
1383 		printf("%s:%d:%d:%d: Command already completed\n",
1384 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1385 		       cmd->device->lun);
1386 		goto no_cmd;
1387 	}
1388 
1389 	printf("%s: At time of recovery, card was %spaused\n",
1390 	       ahd_name(ahd), was_paused ? "" : "not ");
1391 	ahd_dump_card_state(ahd);
1392 
1393 	disconnected = TRUE;
1394 	if (ahd_search_qinfifo(ahd, cmd->device->id, cmd->device->channel + 'A',
1395 			       cmd->device->lun, SCB_GET_TAG(pending_scb),
1396 			       ROLE_INITIATOR, CAM_REQ_ABORTED,
1397 			       SEARCH_COMPLETE) > 0) {
1398 		printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
1399 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1400 				cmd->device->lun);
1401 		retval = SUCCESS;
1402 		goto done;
1403 	}
1404 
1405 	saved_modes = ahd_save_modes(ahd);
1406 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1407 	last_phase = ahd_inb(ahd, LASTPHASE);
1408 	saved_scbptr = ahd_get_scbptr(ahd);
1409 	active_scbptr = saved_scbptr;
1410 	if (disconnected && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
1411 		struct scb *bus_scb;
1412 
1413 		bus_scb = ahd_lookup_scb(ahd, active_scbptr);
1414 		if (bus_scb == pending_scb)
1415 			disconnected = FALSE;
1416 	}
1417 
1418 	/*
1419 	 * At this point, pending_scb is the scb associated with the
1420 	 * passed in command.  That command is currently active on the
1421 	 * bus or is in the disconnected state.
1422 	 */
1423 	if (last_phase != P_BUSFREE
1424 	 && SCB_GET_TAG(pending_scb) == active_scbptr) {
1425 
1426 		/*
1427 		 * We're active on the bus, so assert ATN
1428 		 * and hope that the target responds.
1429 		 */
1430 		pending_scb = ahd_lookup_scb(ahd, active_scbptr);
1431 		pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1432 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
1433 		ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
1434 		printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
1435 		       ahd_name(ahd), cmd->device->channel,
1436 		       cmd->device->id, cmd->device->lun);
1437 		wait = TRUE;
1438 	} else if (disconnected) {
1439 
1440 		/*
1441 		 * Actually re-queue this SCB in an attempt
1442 		 * to select the device before it reconnects.
1443 		 */
1444 		pending_scb->flags |= SCB_RECOVERY_SCB|SCB_ABORT;
1445 		ahd_set_scbptr(ahd, SCB_GET_TAG(pending_scb));
1446 		pending_scb->hscb->cdb_len = 0;
1447 		pending_scb->hscb->task_attribute = 0;
1448 		pending_scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
1449 
1450 		if ((pending_scb->flags & SCB_PACKETIZED) != 0) {
1451 			/*
1452 			 * Mark the SCB has having an outstanding
1453 			 * task management function.  Should the command
1454 			 * complete normally before the task management
1455 			 * function can be sent, the host will be notified
1456 			 * to abort our requeued SCB.
1457 			 */
1458 			ahd_outb(ahd, SCB_TASK_MANAGEMENT,
1459 				 pending_scb->hscb->task_management);
1460 		} else {
1461 			/*
1462 			 * If non-packetized, set the MK_MESSAGE control
1463 			 * bit indicating that we desire to send a message.
1464 			 * We also set the disconnected flag since there is
1465 			 * no guarantee that our SCB control byte matches
1466 			 * the version on the card.  We don't want the
1467 			 * sequencer to abort the command thinking an
1468 			 * unsolicited reselection occurred.
1469 			 */
1470 			pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
1471 
1472 			/*
1473 			 * The sequencer will never re-reference the
1474 			 * in-core SCB.  To make sure we are notified
1475 			 * during reslection, set the MK_MESSAGE flag in
1476 			 * the card's copy of the SCB.
1477 			 */
1478 			ahd_outb(ahd, SCB_CONTROL,
1479 				 ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
1480 		}
1481 
1482 		/*
1483 		 * Clear out any entries in the QINFIFO first
1484 		 * so we are the next SCB for this target
1485 		 * to run.
1486 		 */
1487 		ahd_search_qinfifo(ahd, cmd->device->id,
1488 				   cmd->device->channel + 'A', cmd->device->lun,
1489 				   SCB_LIST_NULL, ROLE_INITIATOR,
1490 				   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
1491 		ahd_qinfifo_requeue_tail(ahd, pending_scb);
1492 		ahd_set_scbptr(ahd, saved_scbptr);
1493 		ahd_print_path(ahd, pending_scb);
1494 		printf("Device is disconnected, re-queuing SCB\n");
1495 		wait = TRUE;
1496 	} else {
1497 		printf("%s:%d:%d:%d: Unable to deliver message\n",
1498 		       ahd_name(ahd), cmd->device->channel,
1499 		       cmd->device->id, cmd->device->lun);
1500 		retval = FAILED;
1501 		goto done;
1502 	}
1503 
1504 no_cmd:
1505 	/*
1506 	 * Our assumption is that if we don't have the command, no
1507 	 * recovery action was required, so we return success.  Again,
1508 	 * the semantics of the mid-layer recovery engine are not
1509 	 * well defined, so this may change in time.
1510 	 */
1511 	retval = SUCCESS;
1512 done:
1513 	if (paused)
1514 		ahd_unpause(ahd);
1515 	if (wait) {
1516 		struct timer_list timer;
1517 		int ret;
1518 
1519 		pending_scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1520 		spin_unlock_irq(&ahd->platform_data->spin_lock);
1521 		init_timer(&timer);
1522 		timer.data = (u_long)pending_scb;
1523 		timer.expires = jiffies + (5 * HZ);
1524 		timer.function = ahd_linux_sem_timeout;
1525 		add_timer(&timer);
1526 		printf("Recovery code sleeping\n");
1527 		down(&ahd->platform_data->eh_sem);
1528 		printf("Recovery code awake\n");
1529         	ret = del_timer_sync(&timer);
1530 		if (ret == 0) {
1531 			printf("Timer Expired\n");
1532 			retval = FAILED;
1533 		}
1534 		spin_lock_irq(&ahd->platform_data->spin_lock);
1535 	}
1536 	ahd_schedule_runq(ahd);
1537 	ahd_linux_run_complete_queue(ahd);
1538 	ahd_midlayer_entrypoint_unlock(ahd, &s);
1539 	return (retval);
1540 }
1541 
1542 
1543 static void
1544 ahd_linux_dev_reset_complete(Scsi_Cmnd *cmd)
1545 {
1546 	free(cmd, M_DEVBUF);
1547 }
1548 
1549 /*
1550  * Attempt to send a target reset message to the device that timed out.
1551  */
1552 static int
1553 ahd_linux_dev_reset(Scsi_Cmnd *cmd)
1554 {
1555 	struct	ahd_softc *ahd;
1556 	struct	scsi_cmnd *recovery_cmd;
1557 	struct	ahd_linux_device *dev;
1558 	struct	ahd_initiator_tinfo *tinfo;
1559 	struct	ahd_tmode_tstate *tstate;
1560 	struct	scb *scb;
1561 	struct	hardware_scb *hscb;
1562 	u_long	s;
1563 	struct	timer_list timer;
1564 	int	retval;
1565 
1566 	ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1567 	recovery_cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
1568 	memset(recovery_cmd, 0, sizeof(struct scsi_cmnd));
1569 	recovery_cmd->device = cmd->device;
1570 	recovery_cmd->scsi_done = ahd_linux_dev_reset_complete;
1571 #if AHD_DEBUG
1572 	if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1573 		printf("%s:%d:%d:%d: Device reset called for cmd %p\n",
1574 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
1575 		       cmd->device->lun, cmd);
1576 #endif
1577 	ahd_midlayer_entrypoint_lock(ahd, &s);
1578 
1579 	dev = ahd_linux_get_device(ahd, cmd->device->channel, cmd->device->id,
1580 				   cmd->device->lun, /*alloc*/FALSE);
1581 	if (dev == NULL) {
1582 		ahd_midlayer_entrypoint_unlock(ahd, &s);
1583 		return (FAILED);
1584 	}
1585 	if ((scb = ahd_get_scb(ahd, AHD_NEVER_COL_IDX)) == NULL) {
1586 		ahd_midlayer_entrypoint_unlock(ahd, &s);
1587 		return (FAILED);
1588 	}
1589 	tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
1590 				    cmd->device->id, &tstate);
1591 	recovery_cmd->result = CAM_REQ_INPROG << 16;
1592 	recovery_cmd->host_scribble = (char *)scb;
1593 	scb->io_ctx = recovery_cmd;
1594 	scb->platform_data->dev = dev;
1595 	scb->sg_count = 0;
1596 	ahd_set_residual(scb, 0);
1597 	ahd_set_sense_residual(scb, 0);
1598 	hscb = scb->hscb;
1599 	hscb->control = 0;
1600 	hscb->scsiid = BUILD_SCSIID(ahd, cmd);
1601 	hscb->lun = cmd->device->lun;
1602 	hscb->cdb_len = 0;
1603 	hscb->task_management = SIU_TASKMGMT_LUN_RESET;
1604 	scb->flags |= SCB_DEVICE_RESET|SCB_RECOVERY_SCB|SCB_ACTIVE;
1605 	if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
1606 		scb->flags |= SCB_PACKETIZED;
1607 	} else {
1608 		hscb->control |= MK_MESSAGE;
1609 	}
1610 	dev->openings--;
1611 	dev->active++;
1612 	dev->commands_issued++;
1613 	LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
1614 	ahd_queue_scb(ahd, scb);
1615 
1616 	scb->platform_data->flags |= AHD_SCB_UP_EH_SEM;
1617 	spin_unlock_irq(&ahd->platform_data->spin_lock);
1618 	init_timer(&timer);
1619 	timer.data = (u_long)scb;
1620 	timer.expires = jiffies + (5 * HZ);
1621 	timer.function = ahd_linux_sem_timeout;
1622 	add_timer(&timer);
1623 	printf("Recovery code sleeping\n");
1624 	down(&ahd->platform_data->eh_sem);
1625 	printf("Recovery code awake\n");
1626 	retval = SUCCESS;
1627 	if (del_timer_sync(&timer) == 0) {
1628 		printf("Timer Expired\n");
1629 		retval = FAILED;
1630 	}
1631 	spin_lock_irq(&ahd->platform_data->spin_lock);
1632 	ahd_schedule_runq(ahd);
1633 	ahd_linux_run_complete_queue(ahd);
1634 	ahd_midlayer_entrypoint_unlock(ahd, &s);
1635 	printf("%s: Device reset returning 0x%x\n", ahd_name(ahd), retval);
1636 	return (retval);
1637 }
1638 
1639 /*
1640  * Reset the SCSI bus.
1641  */
1642 static int
1643 ahd_linux_bus_reset(Scsi_Cmnd *cmd)
1644 {
1645 	struct ahd_softc *ahd;
1646 	u_long s;
1647 	int    found;
1648 
1649 	ahd = *(struct ahd_softc **)cmd->device->host->hostdata;
1650 #ifdef AHD_DEBUG
1651 	if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1652 		printf("%s: Bus reset called for cmd %p\n",
1653 		       ahd_name(ahd), cmd);
1654 #endif
1655 	ahd_midlayer_entrypoint_lock(ahd, &s);
1656 	found = ahd_reset_channel(ahd, cmd->device->channel + 'A',
1657 				  /*initiate reset*/TRUE);
1658 	ahd_linux_run_complete_queue(ahd);
1659 	ahd_midlayer_entrypoint_unlock(ahd, &s);
1660 
1661 	if (bootverbose)
1662 		printf("%s: SCSI bus reset delivered. "
1663 		       "%d SCBs aborted.\n", ahd_name(ahd), found);
1664 
1665 	return (SUCCESS);
1666 }
1667 
1668 Scsi_Host_Template aic79xx_driver_template = {
1669 	.module			= THIS_MODULE,
1670 	.name			= "aic79xx",
1671 	.proc_info		= ahd_linux_proc_info,
1672 	.info			= ahd_linux_info,
1673 	.queuecommand		= ahd_linux_queue,
1674 	.eh_abort_handler	= ahd_linux_abort,
1675 	.eh_device_reset_handler = ahd_linux_dev_reset,
1676 	.eh_bus_reset_handler	= ahd_linux_bus_reset,
1677 #if defined(__i386__)
1678 	.bios_param		= ahd_linux_biosparam,
1679 #endif
1680 	.can_queue		= AHD_MAX_QUEUE,
1681 	.this_id		= -1,
1682 	.cmd_per_lun		= 2,
1683 	.use_clustering		= ENABLE_CLUSTERING,
1684 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,7)
1685 	/*
1686 	 * We can only map 16MB per-SG
1687 	 * so create a sector limit of
1688 	 * "16MB" in 2K sectors.
1689 	 */
1690 	.max_sectors		= 8192,
1691 #endif
1692 #if defined CONFIG_HIGHIO || LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1693 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,4,10)
1694 /* Assume RedHat Distribution with its different HIGHIO conventions. */
1695 	.can_dma_32		= 1,
1696 	.single_sg_okay		= 1,
1697 #else
1698 	.highmem_io		= 1,
1699 #endif
1700 #endif
1701 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
1702 	.slave_alloc		= ahd_linux_slave_alloc,
1703 	.slave_configure	= ahd_linux_slave_configure,
1704 	.slave_destroy		= ahd_linux_slave_destroy,
1705 #else
1706 	.detect			= ahd_linux_detect,
1707 	.release		= ahd_linux_release,
1708 	.select_queue_depths	= ahd_linux_select_queue_depth,
1709 	.use_new_eh_code	= 1,
1710 #endif
1711 };
1712 
1713 /**************************** Tasklet Handler *********************************/
1714 
1715 /*
1716  * In 2.4.X and above, this routine is called from a tasklet,
1717  * so we must re-acquire our lock prior to executing this code.
1718  * In all prior kernels, ahd_schedule_runq() calls this routine
1719  * directly and ahd_schedule_runq() is called with our lock held.
1720  */
1721 static void
1722 ahd_runq_tasklet(unsigned long data)
1723 {
1724 	struct ahd_softc* ahd;
1725 	struct ahd_linux_device *dev;
1726 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1727 	u_long flags;
1728 #endif
1729 
1730 	ahd = (struct ahd_softc *)data;
1731 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1732 	ahd_lock(ahd, &flags);
1733 #endif
1734 	while ((dev = ahd_linux_next_device_to_run(ahd)) != NULL) {
1735 
1736 		TAILQ_REMOVE(&ahd->platform_data->device_runq, dev, links);
1737 		dev->flags &= ~AHD_DEV_ON_RUN_LIST;
1738 		ahd_linux_check_device_queue(ahd, dev);
1739 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1740 		/* Yeild to our interrupt handler */
1741 		ahd_unlock(ahd, &flags);
1742 		ahd_lock(ahd, &flags);
1743 #endif
1744 	}
1745 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
1746 	ahd_unlock(ahd, &flags);
1747 #endif
1748 }
1749 
1750 /******************************** Bus DMA *************************************/
1751 int
1752 ahd_dma_tag_create(struct ahd_softc *ahd, bus_dma_tag_t parent,
1753 		   bus_size_t alignment, bus_size_t boundary,
1754 		   bus_addr_t lowaddr, bus_addr_t highaddr,
1755 		   bus_dma_filter_t *filter, void *filterarg,
1756 		   bus_size_t maxsize, int nsegments,
1757 		   bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
1758 {
1759 	bus_dma_tag_t dmat;
1760 
1761 	dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
1762 	if (dmat == NULL)
1763 		return (ENOMEM);
1764 
1765 	/*
1766 	 * Linux is very simplistic about DMA memory.  For now don't
1767 	 * maintain all specification information.  Once Linux supplies
1768 	 * better facilities for doing these operations, or the
1769 	 * needs of this particular driver change, we might need to do
1770 	 * more here.
1771 	 */
1772 	dmat->alignment = alignment;
1773 	dmat->boundary = boundary;
1774 	dmat->maxsize = maxsize;
1775 	*ret_tag = dmat;
1776 	return (0);
1777 }
1778 
1779 void
1780 ahd_dma_tag_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat)
1781 {
1782 	free(dmat, M_DEVBUF);
1783 }
1784 
1785 int
1786 ahd_dmamem_alloc(struct ahd_softc *ahd, bus_dma_tag_t dmat, void** vaddr,
1787 		 int flags, bus_dmamap_t *mapp)
1788 {
1789 	bus_dmamap_t map;
1790 
1791 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1792 	map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
1793 	if (map == NULL)
1794 		return (ENOMEM);
1795 	/*
1796 	 * Although we can dma data above 4GB, our
1797 	 * "consistent" memory is below 4GB for
1798 	 * space efficiency reasons (only need a 4byte
1799 	 * address).  For this reason, we have to reset
1800 	 * our dma mask when doing allocations.
1801 	 */
1802 	if (ahd->dev_softc != NULL)
1803 		ahd_pci_set_dma_mask(ahd->dev_softc, 0xFFFFFFFF);
1804 	*vaddr = pci_alloc_consistent(ahd->dev_softc,
1805 				      dmat->maxsize, &map->bus_addr);
1806 	if (ahd->dev_softc != NULL)
1807 		ahd_pci_set_dma_mask(ahd->dev_softc,
1808 				     ahd->platform_data->hw_dma_mask);
1809 #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */
1810 	/*
1811 	 * At least in 2.2.14, malloc is a slab allocator so all
1812 	 * allocations are aligned.  We assume for these kernel versions
1813 	 * that all allocations will be bellow 4Gig, physically contiguous,
1814 	 * and accessible via DMA by the controller.
1815 	 */
1816 	map = NULL; /* No additional information to store */
1817 	*vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT);
1818 #endif
1819 	if (*vaddr == NULL)
1820 		return (ENOMEM);
1821 	*mapp = map;
1822 	return(0);
1823 }
1824 
1825 void
1826 ahd_dmamem_free(struct ahd_softc *ahd, bus_dma_tag_t dmat,
1827 		void* vaddr, bus_dmamap_t map)
1828 {
1829 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1830 	pci_free_consistent(ahd->dev_softc, dmat->maxsize,
1831 			    vaddr, map->bus_addr);
1832 #else
1833 	free(vaddr, M_DEVBUF);
1834 #endif
1835 }
1836 
1837 int
1838 ahd_dmamap_load(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map,
1839 		void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
1840 		void *cb_arg, int flags)
1841 {
1842 	/*
1843 	 * Assume for now that this will only be used during
1844 	 * initialization and not for per-transaction buffer mapping.
1845 	 */
1846 	bus_dma_segment_t stack_sg;
1847 
1848 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
1849 	stack_sg.ds_addr = map->bus_addr;
1850 #else
1851 #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a))
1852 	stack_sg.ds_addr = VIRT_TO_BUS(buf);
1853 #endif
1854 	stack_sg.ds_len = dmat->maxsize;
1855 	cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
1856 	return (0);
1857 }
1858 
1859 void
1860 ahd_dmamap_destroy(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1861 {
1862 	/*
1863 	 * The map may is NULL in our < 2.3.X implementation.
1864 	 */
1865 	if (map != NULL)
1866 		free(map, M_DEVBUF);
1867 }
1868 
1869 int
1870 ahd_dmamap_unload(struct ahd_softc *ahd, bus_dma_tag_t dmat, bus_dmamap_t map)
1871 {
1872 	/* Nothing to do */
1873 	return (0);
1874 }
1875 
1876 /********************* Platform Dependent Functions ***************************/
1877 /*
1878  * Compare "left hand" softc with "right hand" softc, returning:
1879  * < 0 - lahd has a lower priority than rahd
1880  *   0 - Softcs are equal
1881  * > 0 - lahd has a higher priority than rahd
1882  */
1883 int
1884 ahd_softc_comp(struct ahd_softc *lahd, struct ahd_softc *rahd)
1885 {
1886 	int	value;
1887 
1888 	/*
1889 	 * Under Linux, cards are ordered as follows:
1890 	 *	1) PCI devices that are marked as the boot controller.
1891 	 *	2) PCI devices with BIOS enabled sorted by bus/slot/func.
1892 	 *	3) All remaining PCI devices sorted by bus/slot/func.
1893 	 */
1894 #if 0
1895 	value = (lahd->flags & AHD_BOOT_CHANNEL)
1896 	      - (rahd->flags & AHD_BOOT_CHANNEL);
1897 	if (value != 0)
1898 		/* Controllers set for boot have a *higher* priority */
1899 		return (value);
1900 #endif
1901 
1902 	value = (lahd->flags & AHD_BIOS_ENABLED)
1903 	      - (rahd->flags & AHD_BIOS_ENABLED);
1904 	if (value != 0)
1905 		/* Controllers with BIOS enabled have a *higher* priority */
1906 		return (value);
1907 
1908 	/* Still equal.  Sort by bus/slot/func. */
1909 	if (aic79xx_reverse_scan != 0)
1910 		value = ahd_get_pci_bus(lahd->dev_softc)
1911 		      - ahd_get_pci_bus(rahd->dev_softc);
1912 	else
1913 		value = ahd_get_pci_bus(rahd->dev_softc)
1914 		      - ahd_get_pci_bus(lahd->dev_softc);
1915 	if (value != 0)
1916 		return (value);
1917 	if (aic79xx_reverse_scan != 0)
1918 		value = ahd_get_pci_slot(lahd->dev_softc)
1919 		      - ahd_get_pci_slot(rahd->dev_softc);
1920 	else
1921 		value = ahd_get_pci_slot(rahd->dev_softc)
1922 		      - ahd_get_pci_slot(lahd->dev_softc);
1923 	if (value != 0)
1924 		return (value);
1925 
1926 	value = rahd->channel - lahd->channel;
1927 	return (value);
1928 }
1929 
1930 static void
1931 ahd_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1932 {
1933 
1934 	if ((instance >= 0) && (targ >= 0)
1935 	 && (instance < NUM_ELEMENTS(aic79xx_tag_info))
1936 	 && (targ < AHD_NUM_TARGETS)) {
1937 		aic79xx_tag_info[instance].tag_commands[targ] = value & 0x1FF;
1938 		if (bootverbose)
1939 			printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1940 	}
1941 }
1942 
1943 static void
1944 ahd_linux_setup_rd_strm_info(u_long arg, int instance, int targ, int32_t value)
1945 {
1946 	if ((instance >= 0)
1947 	 && (instance < NUM_ELEMENTS(aic79xx_rd_strm_info))) {
1948 		aic79xx_rd_strm_info[instance] = value & 0xFFFF;
1949 		if (bootverbose)
1950 			printf("rd_strm[%d] = 0x%x\n", instance, value);
1951 	}
1952 }
1953 
1954 static void
1955 ahd_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
1956 {
1957 	if ((instance >= 0)
1958 	 && (instance < NUM_ELEMENTS(aic79xx_dv_settings))) {
1959 		aic79xx_dv_settings[instance] = value;
1960 		if (bootverbose)
1961 			printf("dv[%d] = %d\n", instance, value);
1962 	}
1963 }
1964 
1965 static void
1966 ahd_linux_setup_iocell_info(u_long index, int instance, int targ, int32_t value)
1967 {
1968 
1969 	if ((instance >= 0)
1970 	 && (instance < NUM_ELEMENTS(aic79xx_iocell_info))) {
1971 		uint8_t *iocell_info;
1972 
1973 		iocell_info = (uint8_t*)&aic79xx_iocell_info[instance];
1974 		iocell_info[index] = value & 0xFFFF;
1975 		if (bootverbose)
1976 			printf("iocell[%d:%ld] = %d\n", instance, index, value);
1977 	}
1978 }
1979 
1980 static void
1981 ahd_linux_setup_tag_info_global(char *p)
1982 {
1983 	int tags, i, j;
1984 
1985 	tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1986 	printf("Setting Global Tags= %d\n", tags);
1987 
1988 	for (i = 0; i < NUM_ELEMENTS(aic79xx_tag_info); i++) {
1989 		for (j = 0; j < AHD_NUM_TARGETS; j++) {
1990 			aic79xx_tag_info[i].tag_commands[j] = tags;
1991 		}
1992 	}
1993 }
1994 
1995 /*
1996  * Handle Linux boot parameters. This routine allows for assigning a value
1997  * to a parameter with a ':' between the parameter and the value.
1998  * ie. aic79xx=stpwlev:1,extended
1999  */
2000 static int
2001 aic79xx_setup(char *s)
2002 {
2003 	int	i, n;
2004 	char   *p;
2005 	char   *end;
2006 
2007 	static struct {
2008 		const char *name;
2009 		uint32_t *flag;
2010 	} options[] = {
2011 		{ "extended", &aic79xx_extended },
2012 		{ "no_reset", &aic79xx_no_reset },
2013 		{ "verbose", &aic79xx_verbose },
2014 		{ "allow_memio", &aic79xx_allow_memio},
2015 #ifdef AHD_DEBUG
2016 		{ "debug", &ahd_debug },
2017 #endif
2018 		{ "reverse_scan", &aic79xx_reverse_scan },
2019 		{ "periodic_otag", &aic79xx_periodic_otag },
2020 		{ "pci_parity", &aic79xx_pci_parity },
2021 		{ "seltime", &aic79xx_seltime },
2022 		{ "tag_info", NULL },
2023 		{ "global_tag_depth", NULL},
2024 		{ "rd_strm", NULL },
2025 		{ "dv", NULL },
2026 		{ "slewrate", NULL },
2027 		{ "precomp", NULL },
2028 		{ "amplitude", NULL },
2029 	};
2030 
2031 	end = strchr(s, '\0');
2032 
2033 	/*
2034 	 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
2035 	 * will never be 0 in this case.
2036 	 */
2037 	n = 0;
2038 
2039 	while ((p = strsep(&s, ",.")) != NULL) {
2040 		if (*p == '\0')
2041 			continue;
2042 		for (i = 0; i < NUM_ELEMENTS(options); i++) {
2043 
2044 			n = strlen(options[i].name);
2045 			if (strncmp(options[i].name, p, n) == 0)
2046 				break;
2047 		}
2048 		if (i == NUM_ELEMENTS(options))
2049 			continue;
2050 
2051 		if (strncmp(p, "global_tag_depth", n) == 0) {
2052 			ahd_linux_setup_tag_info_global(p + n);
2053 		} else if (strncmp(p, "tag_info", n) == 0) {
2054 			s = aic_parse_brace_option("tag_info", p + n, end,
2055 			    2, ahd_linux_setup_tag_info, 0);
2056 		} else if (strncmp(p, "rd_strm", n) == 0) {
2057 			s = aic_parse_brace_option("rd_strm", p + n, end,
2058 			    1, ahd_linux_setup_rd_strm_info, 0);
2059 		} else if (strncmp(p, "dv", n) == 0) {
2060 			s = aic_parse_brace_option("dv", p + n, end, 1,
2061 			    ahd_linux_setup_dv, 0);
2062 		} else if (strncmp(p, "slewrate", n) == 0) {
2063 			s = aic_parse_brace_option("slewrate",
2064 			    p + n, end, 1, ahd_linux_setup_iocell_info,
2065 			    AIC79XX_SLEWRATE_INDEX);
2066 		} else if (strncmp(p, "precomp", n) == 0) {
2067 			s = aic_parse_brace_option("precomp",
2068 			    p + n, end, 1, ahd_linux_setup_iocell_info,
2069 			    AIC79XX_PRECOMP_INDEX);
2070 		} else if (strncmp(p, "amplitude", n) == 0) {
2071 			s = aic_parse_brace_option("amplitude",
2072 			    p + n, end, 1, ahd_linux_setup_iocell_info,
2073 			    AIC79XX_AMPLITUDE_INDEX);
2074 		} else if (p[n] == ':') {
2075 			*(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
2076 		} else if (!strncmp(p, "verbose", n)) {
2077 			*(options[i].flag) = 1;
2078 		} else {
2079 			*(options[i].flag) ^= 0xFFFFFFFF;
2080 		}
2081 	}
2082 	return 1;
2083 }
2084 
2085 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0)
2086 __setup("aic79xx=", aic79xx_setup);
2087 #endif
2088 
2089 uint32_t aic79xx_verbose;
2090 
2091 int
2092 ahd_linux_register_host(struct ahd_softc *ahd, Scsi_Host_Template *template)
2093 {
2094 	char	buf[80];
2095 	struct	Scsi_Host *host;
2096 	char	*new_name;
2097 	u_long	s;
2098 	u_long	target;
2099 
2100 	template->name = ahd->description;
2101 	host = scsi_register(template, sizeof(struct ahd_softc *));
2102 	if (host == NULL)
2103 		return (ENOMEM);
2104 
2105 	*((struct ahd_softc **)host->hostdata) = ahd;
2106 	ahd_lock(ahd, &s);
2107 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2108 	scsi_assign_lock(host, &ahd->platform_data->spin_lock);
2109 #elif AHD_SCSI_HAS_HOST_LOCK != 0
2110 	host->lock = &ahd->platform_data->spin_lock;
2111 #endif
2112 	ahd->platform_data->host = host;
2113 	host->can_queue = AHD_MAX_QUEUE;
2114 	host->cmd_per_lun = 2;
2115 	host->sg_tablesize = AHD_NSEG;
2116 	host->this_id = ahd->our_id;
2117 	host->irq = ahd->platform_data->irq;
2118 	host->max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
2119 	host->max_lun = AHD_NUM_LUNS;
2120 	host->max_channel = 0;
2121 	host->sg_tablesize = AHD_NSEG;
2122 	ahd_set_unit(ahd, ahd_linux_next_unit());
2123 	sprintf(buf, "scsi%d", host->host_no);
2124 	new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
2125 	if (new_name != NULL) {
2126 		strcpy(new_name, buf);
2127 		ahd_set_name(ahd, new_name);
2128 	}
2129 	host->unique_id = ahd->unit;
2130 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) && \
2131     LINUX_VERSION_CODE  < KERNEL_VERSION(2,5,0)
2132 	scsi_set_pci_device(host, ahd->dev_softc);
2133 #endif
2134 	ahd_linux_setup_user_rd_strm_settings(ahd);
2135 	ahd_linux_initialize_scsi_bus(ahd);
2136 	ahd_unlock(ahd, &s);
2137 	ahd->platform_data->dv_pid = kernel_thread(ahd_linux_dv_thread, ahd, 0);
2138 	ahd_lock(ahd, &s);
2139 	if (ahd->platform_data->dv_pid < 0) {
2140 		printf("%s: Failed to create DV thread, error= %d\n",
2141 		       ahd_name(ahd), ahd->platform_data->dv_pid);
2142 		return (-ahd->platform_data->dv_pid);
2143 	}
2144 	/*
2145 	 * Initially allocate *all* of our linux target objects
2146 	 * so that the DV thread will scan them all in parallel
2147 	 * just after driver initialization.  Any device that
2148 	 * does not exist will have its target object destroyed
2149 	 * by the selection timeout handler.  In the case of a
2150 	 * device that appears after the initial DV scan, async
2151 	 * negotiation will occur for the first command, and DV
2152 	 * will comence should that first command be successful.
2153 	 */
2154 	for (target = 0; target < host->max_id; target++) {
2155 
2156 		/*
2157 		 * Skip our own ID.  Some Compaq/HP storage devices
2158 		 * have enclosure management devices that respond to
2159 		 * single bit selection (i.e. selecting ourselves).
2160 		 * It is expected that either an external application
2161 		 * or a modified kernel will be used to probe this
2162 		 * ID if it is appropriate.  To accommodate these
2163 		 * installations, ahc_linux_alloc_target() will allocate
2164 		 * for our ID if asked to do so.
2165 		 */
2166 		if (target == ahd->our_id)
2167 			continue;
2168 
2169 		ahd_linux_alloc_target(ahd, 0, target);
2170 	}
2171 	ahd_intr_enable(ahd, TRUE);
2172 	ahd_linux_start_dv(ahd);
2173 	ahd_unlock(ahd, &s);
2174 
2175 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2176 	scsi_add_host(host, &ahd->dev_softc->dev);
2177 #endif
2178 	return (0);
2179 }
2180 
2181 uint64_t
2182 ahd_linux_get_memsize(void)
2183 {
2184 	struct sysinfo si;
2185 
2186 	si_meminfo(&si);
2187 	return ((uint64_t)si.totalram << PAGE_SHIFT);
2188 }
2189 
2190 /*
2191  * Find the smallest available unit number to use
2192  * for a new device.  We don't just use a static
2193  * count to handle the "repeated hot-(un)plug"
2194  * scenario.
2195  */
2196 static int
2197 ahd_linux_next_unit(void)
2198 {
2199 	struct ahd_softc *ahd;
2200 	int unit;
2201 
2202 	unit = 0;
2203 retry:
2204 	TAILQ_FOREACH(ahd, &ahd_tailq, links) {
2205 		if (ahd->unit == unit) {
2206 			unit++;
2207 			goto retry;
2208 		}
2209 	}
2210 	return (unit);
2211 }
2212 
2213 /*
2214  * Place the SCSI bus into a known state by either resetting it,
2215  * or forcing transfer negotiations on the next command to any
2216  * target.
2217  */
2218 static void
2219 ahd_linux_initialize_scsi_bus(struct ahd_softc *ahd)
2220 {
2221 	u_int target_id;
2222 	u_int numtarg;
2223 
2224 	target_id = 0;
2225 	numtarg = 0;
2226 
2227 	if (aic79xx_no_reset != 0)
2228 		ahd->flags &= ~AHD_RESET_BUS_A;
2229 
2230 	if ((ahd->flags & AHD_RESET_BUS_A) != 0)
2231 		ahd_reset_channel(ahd, 'A', /*initiate_reset*/TRUE);
2232 	else
2233 		numtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2234 
2235 	/*
2236 	 * Force negotiation to async for all targets that
2237 	 * will not see an initial bus reset.
2238 	 */
2239 	for (; target_id < numtarg; target_id++) {
2240 		struct ahd_devinfo devinfo;
2241 		struct ahd_initiator_tinfo *tinfo;
2242 		struct ahd_tmode_tstate *tstate;
2243 
2244 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
2245 					    target_id, &tstate);
2246 		ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
2247 				    CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
2248 		ahd_update_neg_request(ahd, &devinfo, tstate,
2249 				       tinfo, AHD_NEG_ALWAYS);
2250 	}
2251 	/* Give the bus some time to recover */
2252 	if ((ahd->flags & AHD_RESET_BUS_A) != 0) {
2253 		ahd_freeze_simq(ahd);
2254 		init_timer(&ahd->platform_data->reset_timer);
2255 		ahd->platform_data->reset_timer.data = (u_long)ahd;
2256 		ahd->platform_data->reset_timer.expires =
2257 		    jiffies + (AIC79XX_RESET_DELAY * HZ)/1000;
2258 		ahd->platform_data->reset_timer.function =
2259 		    (ahd_linux_callback_t *)ahd_release_simq;
2260 		add_timer(&ahd->platform_data->reset_timer);
2261 	}
2262 }
2263 
2264 int
2265 ahd_platform_alloc(struct ahd_softc *ahd, void *platform_arg)
2266 {
2267 	ahd->platform_data =
2268 	    malloc(sizeof(struct ahd_platform_data), M_DEVBUF, M_NOWAIT);
2269 	if (ahd->platform_data == NULL)
2270 		return (ENOMEM);
2271 	memset(ahd->platform_data, 0, sizeof(struct ahd_platform_data));
2272 	TAILQ_INIT(&ahd->platform_data->completeq);
2273 	TAILQ_INIT(&ahd->platform_data->device_runq);
2274 	ahd->platform_data->irq = AHD_LINUX_NOIRQ;
2275 	ahd->platform_data->hw_dma_mask = 0xFFFFFFFF;
2276 	ahd_lockinit(ahd);
2277 	ahd_done_lockinit(ahd);
2278 	init_timer(&ahd->platform_data->completeq_timer);
2279 	ahd->platform_data->completeq_timer.data = (u_long)ahd;
2280 	ahd->platform_data->completeq_timer.function =
2281 	    (ahd_linux_callback_t *)ahd_linux_thread_run_complete_queue;
2282 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
2283 	init_MUTEX_LOCKED(&ahd->platform_data->eh_sem);
2284 	init_MUTEX_LOCKED(&ahd->platform_data->dv_sem);
2285 	init_MUTEX_LOCKED(&ahd->platform_data->dv_cmd_sem);
2286 #else
2287 	ahd->platform_data->eh_sem = MUTEX_LOCKED;
2288 	ahd->platform_data->dv_sem = MUTEX_LOCKED;
2289 	ahd->platform_data->dv_cmd_sem = MUTEX_LOCKED;
2290 #endif
2291 	ahd_setup_runq_tasklet(ahd);
2292 	ahd->seltime = (aic79xx_seltime & 0x3) << 4;
2293 	return (0);
2294 }
2295 
2296 void
2297 ahd_platform_free(struct ahd_softc *ahd)
2298 {
2299 	struct ahd_linux_target *targ;
2300 	struct ahd_linux_device *dev;
2301 	int i, j;
2302 
2303 	if (ahd->platform_data != NULL) {
2304 		del_timer_sync(&ahd->platform_data->completeq_timer);
2305 		ahd_linux_kill_dv_thread(ahd);
2306 		ahd_teardown_runq_tasklet(ahd);
2307 		if (ahd->platform_data->host != NULL) {
2308 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2309 			scsi_remove_host(ahd->platform_data->host);
2310 #endif
2311 			scsi_unregister(ahd->platform_data->host);
2312 		}
2313 
2314 		/* destroy all of the device and target objects */
2315 		for (i = 0; i < AHD_NUM_TARGETS; i++) {
2316 			targ = ahd->platform_data->targets[i];
2317 			if (targ != NULL) {
2318 				/* Keep target around through the loop. */
2319 				targ->refcount++;
2320 				for (j = 0; j < AHD_NUM_LUNS; j++) {
2321 
2322 					if (targ->devices[j] == NULL)
2323 						continue;
2324 					dev = targ->devices[j];
2325 					ahd_linux_free_device(ahd, dev);
2326 				}
2327 				/*
2328 				 * Forcibly free the target now that
2329 				 * all devices are gone.
2330 				 */
2331 				ahd_linux_free_target(ahd, targ);
2332 			}
2333 		}
2334 
2335 		if (ahd->platform_data->irq != AHD_LINUX_NOIRQ)
2336 			free_irq(ahd->platform_data->irq, ahd);
2337 		if (ahd->tags[0] == BUS_SPACE_PIO
2338 		 && ahd->bshs[0].ioport != 0)
2339 			release_region(ahd->bshs[0].ioport, 256);
2340 		if (ahd->tags[1] == BUS_SPACE_PIO
2341 		 && ahd->bshs[1].ioport != 0)
2342 			release_region(ahd->bshs[1].ioport, 256);
2343 		if (ahd->tags[0] == BUS_SPACE_MEMIO
2344 		 && ahd->bshs[0].maddr != NULL) {
2345 			u_long base_addr;
2346 
2347 			base_addr = (u_long)ahd->bshs[0].maddr;
2348 			base_addr &= PAGE_MASK;
2349 			iounmap((void *)base_addr);
2350 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
2351 			release_mem_region(ahd->platform_data->mem_busaddr,
2352 					   0x1000);
2353 #endif
2354 		}
2355 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) && \
2356     LINUX_VERSION_CODE  < KERNEL_VERSION(2,5,0)
2357     		/*
2358 		 * In 2.4 we detach from the scsi midlayer before the PCI
2359 		 * layer invokes our remove callback.  No per-instance
2360 		 * detach is provided, so we must reach inside the PCI
2361 		 * subsystem's internals and detach our driver manually.
2362 		 */
2363 		if (ahd->dev_softc != NULL)
2364 			ahd->dev_softc->driver = NULL;
2365 #endif
2366 		free(ahd->platform_data, M_DEVBUF);
2367 	}
2368 }
2369 
2370 void
2371 ahd_platform_init(struct ahd_softc *ahd)
2372 {
2373 	/*
2374 	 * Lookup and commit any modified IO Cell options.
2375 	 */
2376 	if (ahd->unit < NUM_ELEMENTS(aic79xx_iocell_info)) {
2377 		struct ahd_linux_iocell_opts *iocell_opts;
2378 
2379 		iocell_opts = &aic79xx_iocell_info[ahd->unit];
2380 		if (iocell_opts->precomp != AIC79XX_DEFAULT_PRECOMP)
2381 			AHD_SET_PRECOMP(ahd, iocell_opts->precomp);
2382 		if (iocell_opts->slewrate != AIC79XX_DEFAULT_SLEWRATE)
2383 			AHD_SET_SLEWRATE(ahd, iocell_opts->slewrate);
2384 		if (iocell_opts->amplitude != AIC79XX_DEFAULT_AMPLITUDE)
2385 			AHD_SET_AMPLITUDE(ahd, iocell_opts->amplitude);
2386 	}
2387 
2388 }
2389 
2390 void
2391 ahd_platform_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
2392 {
2393 	ahd_platform_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2394 				SCB_GET_CHANNEL(ahd, scb),
2395 				SCB_GET_LUN(scb), SCB_LIST_NULL,
2396 				ROLE_UNKNOWN, CAM_REQUEUE_REQ);
2397 }
2398 
2399 void
2400 ahd_platform_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
2401 		      ahd_queue_alg alg)
2402 {
2403 	struct ahd_linux_device *dev;
2404 	int was_queuing;
2405 	int now_queuing;
2406 
2407 	dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
2408 				   devinfo->target,
2409 				   devinfo->lun, /*alloc*/FALSE);
2410 	if (dev == NULL)
2411 		return;
2412 	was_queuing = dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED);
2413 	switch (alg) {
2414 	default:
2415 	case AHD_QUEUE_NONE:
2416 		now_queuing = 0;
2417 		break;
2418 	case AHD_QUEUE_BASIC:
2419 		now_queuing = AHD_DEV_Q_BASIC;
2420 		break;
2421 	case AHD_QUEUE_TAGGED:
2422 		now_queuing = AHD_DEV_Q_TAGGED;
2423 		break;
2424 	}
2425 	if ((dev->flags & AHD_DEV_FREEZE_TIL_EMPTY) == 0
2426 	 && (was_queuing != now_queuing)
2427 	 && (dev->active != 0)) {
2428 		dev->flags |= AHD_DEV_FREEZE_TIL_EMPTY;
2429 		dev->qfrozen++;
2430 	}
2431 
2432 	dev->flags &= ~(AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED|AHD_DEV_PERIODIC_OTAG);
2433 	if (now_queuing) {
2434 		u_int usertags;
2435 
2436 		usertags = ahd_linux_user_tagdepth(ahd, devinfo);
2437 		if (!was_queuing) {
2438 			/*
2439 			 * Start out agressively and allow our
2440 			 * dynamic queue depth algorithm to take
2441 			 * care of the rest.
2442 			 */
2443 			dev->maxtags = usertags;
2444 			dev->openings = dev->maxtags - dev->active;
2445 		}
2446 		if (dev->maxtags == 0) {
2447 			/*
2448 			 * Queueing is disabled by the user.
2449 			 */
2450 			dev->openings = 1;
2451 		} else if (alg == AHD_QUEUE_TAGGED) {
2452 			dev->flags |= AHD_DEV_Q_TAGGED;
2453 			if (aic79xx_periodic_otag != 0)
2454 				dev->flags |= AHD_DEV_PERIODIC_OTAG;
2455 		} else
2456 			dev->flags |= AHD_DEV_Q_BASIC;
2457 	} else {
2458 		/* We can only have one opening. */
2459 		dev->maxtags = 0;
2460 		dev->openings =  1 - dev->active;
2461 	}
2462 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
2463 	if (dev->scsi_device != NULL) {
2464 		switch ((dev->flags & (AHD_DEV_Q_BASIC|AHD_DEV_Q_TAGGED))) {
2465 		case AHD_DEV_Q_BASIC:
2466 			scsi_adjust_queue_depth(dev->scsi_device,
2467 						MSG_SIMPLE_TASK,
2468 						dev->openings + dev->active);
2469 			break;
2470 		case AHD_DEV_Q_TAGGED:
2471 			scsi_adjust_queue_depth(dev->scsi_device,
2472 						MSG_ORDERED_TASK,
2473 						dev->openings + dev->active);
2474 			break;
2475 		default:
2476 			/*
2477 			 * We allow the OS to queue 2 untagged transactions to
2478 			 * us at any time even though we can only execute them
2479 			 * serially on the controller/device.  This should
2480 			 * remove some latency.
2481 			 */
2482 			scsi_adjust_queue_depth(dev->scsi_device,
2483 						/*NON-TAGGED*/0,
2484 						/*queue depth*/2);
2485 			break;
2486 		}
2487 	}
2488 #endif
2489 }
2490 
2491 int
2492 ahd_platform_abort_scbs(struct ahd_softc *ahd, int target, char channel,
2493 			int lun, u_int tag, role_t role, uint32_t status)
2494 {
2495 	int targ;
2496 	int maxtarg;
2497 	int maxlun;
2498 	int clun;
2499 	int count;
2500 
2501 	if (tag != SCB_LIST_NULL)
2502 		return (0);
2503 
2504 	targ = 0;
2505 	if (target != CAM_TARGET_WILDCARD) {
2506 		targ = target;
2507 		maxtarg = targ + 1;
2508 	} else {
2509 		maxtarg = (ahd->features & AHD_WIDE) ? 16 : 8;
2510 	}
2511 	clun = 0;
2512 	if (lun != CAM_LUN_WILDCARD) {
2513 		clun = lun;
2514 		maxlun = clun + 1;
2515 	} else {
2516 		maxlun = AHD_NUM_LUNS;
2517 	}
2518 
2519 	count = 0;
2520 	for (; targ < maxtarg; targ++) {
2521 
2522 		for (; clun < maxlun; clun++) {
2523 			struct ahd_linux_device *dev;
2524 			struct ahd_busyq *busyq;
2525 			struct ahd_cmd *acmd;
2526 
2527 			dev = ahd_linux_get_device(ahd, /*chan*/0, targ,
2528 						   clun, /*alloc*/FALSE);
2529 			if (dev == NULL)
2530 				continue;
2531 
2532 			busyq = &dev->busyq;
2533 			while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
2534 				Scsi_Cmnd *cmd;
2535 
2536 				cmd = &acmd_scsi_cmd(acmd);
2537 				TAILQ_REMOVE(busyq, acmd,
2538 					     acmd_links.tqe);
2539 				count++;
2540 				cmd->result = status << 16;
2541 				ahd_linux_queue_cmd_complete(ahd, cmd);
2542 			}
2543 		}
2544 	}
2545 
2546 	return (count);
2547 }
2548 
2549 static void
2550 ahd_linux_thread_run_complete_queue(struct ahd_softc *ahd)
2551 {
2552 	u_long flags;
2553 
2554 	ahd_lock(ahd, &flags);
2555 	del_timer(&ahd->platform_data->completeq_timer);
2556 	ahd->platform_data->flags &= ~AHD_RUN_CMPLT_Q_TIMER;
2557 	ahd_linux_run_complete_queue(ahd);
2558 	ahd_unlock(ahd, &flags);
2559 }
2560 
2561 static void
2562 ahd_linux_start_dv(struct ahd_softc *ahd)
2563 {
2564 
2565 	/*
2566 	 * Freeze the simq and signal ahd_linux_queue to not let any
2567 	 * more commands through
2568 	 */
2569 	if ((ahd->platform_data->flags & AHD_DV_ACTIVE) == 0) {
2570 #ifdef AHD_DEBUG
2571 		if (ahd_debug & AHD_SHOW_DV)
2572 			printf("%s: Starting DV\n", ahd_name(ahd));
2573 #endif
2574 
2575 		ahd->platform_data->flags |= AHD_DV_ACTIVE;
2576 		ahd_freeze_simq(ahd);
2577 
2578 		/* Wake up the DV kthread */
2579 		up(&ahd->platform_data->dv_sem);
2580 	}
2581 }
2582 
2583 static int
2584 ahd_linux_dv_thread(void *data)
2585 {
2586 	struct	ahd_softc *ahd;
2587 	int	target;
2588 	u_long	s;
2589 
2590 	ahd = (struct ahd_softc *)data;
2591 
2592 #ifdef AHD_DEBUG
2593 	if (ahd_debug & AHD_SHOW_DV)
2594 		printf("In DV Thread\n");
2595 #endif
2596 
2597 	/*
2598 	 * Complete thread creation.
2599 	 */
2600 	lock_kernel();
2601 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,60)
2602 	/*
2603 	 * Don't care about any signals.
2604 	 */
2605 	siginitsetinv(&current->blocked, 0);
2606 
2607 	daemonize();
2608 	sprintf(current->comm, "ahd_dv_%d", ahd->unit);
2609 #else
2610 	daemonize("ahd_dv_%d", ahd->unit);
2611 #endif
2612 	unlock_kernel();
2613 
2614 	while (1) {
2615 		/*
2616 		 * Use down_interruptible() rather than down() to
2617 		 * avoid inclusion in the load average.
2618 		 */
2619 		down_interruptible(&ahd->platform_data->dv_sem);
2620 
2621 		/* Check to see if we've been signaled to exit */
2622 		ahd_lock(ahd, &s);
2623 		if ((ahd->platform_data->flags & AHD_DV_SHUTDOWN) != 0) {
2624 			ahd_unlock(ahd, &s);
2625 			break;
2626 		}
2627 		ahd_unlock(ahd, &s);
2628 
2629 #ifdef AHD_DEBUG
2630 		if (ahd_debug & AHD_SHOW_DV)
2631 			printf("%s: Beginning Domain Validation\n",
2632 			       ahd_name(ahd));
2633 #endif
2634 
2635 		/*
2636 		 * Wait for any pending commands to drain before proceeding.
2637 		 */
2638 		ahd_lock(ahd, &s);
2639 		while (LIST_FIRST(&ahd->pending_scbs) != NULL) {
2640 			ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_EMPTY;
2641 			ahd_unlock(ahd, &s);
2642 			down_interruptible(&ahd->platform_data->dv_sem);
2643 			ahd_lock(ahd, &s);
2644 		}
2645 
2646 		/*
2647 		 * Wait for the SIMQ to be released so that DV is the
2648 		 * only reason the queue is frozen.
2649 		 */
2650 		while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2651 			ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2652 			ahd_unlock(ahd, &s);
2653 			down_interruptible(&ahd->platform_data->dv_sem);
2654 			ahd_lock(ahd, &s);
2655 		}
2656 		ahd_unlock(ahd, &s);
2657 
2658 		for (target = 0; target < AHD_NUM_TARGETS; target++)
2659 			ahd_linux_dv_target(ahd, target);
2660 
2661 		ahd_lock(ahd, &s);
2662 		ahd->platform_data->flags &= ~AHD_DV_ACTIVE;
2663 		ahd_unlock(ahd, &s);
2664 
2665 		/*
2666 		 * Release the SIMQ so that normal commands are
2667 		 * allowed to continue on the bus.
2668 		 */
2669 		ahd_release_simq(ahd);
2670 	}
2671 	up(&ahd->platform_data->eh_sem);
2672 	return (0);
2673 }
2674 
2675 static void
2676 ahd_linux_kill_dv_thread(struct ahd_softc *ahd)
2677 {
2678 	u_long s;
2679 
2680 	ahd_lock(ahd, &s);
2681 	if (ahd->platform_data->dv_pid != 0) {
2682 		ahd->platform_data->flags |= AHD_DV_SHUTDOWN;
2683 		ahd_unlock(ahd, &s);
2684 		up(&ahd->platform_data->dv_sem);
2685 
2686 		/*
2687 		 * Use the eh_sem as an indicator that the
2688 		 * dv thread is exiting.  Note that the dv
2689 		 * thread must still return after performing
2690 		 * the up on our semaphore before it has
2691 		 * completely exited this module.  Unfortunately,
2692 		 * there seems to be no easy way to wait for the
2693 		 * exit of a thread for which you are not the
2694 		 * parent (dv threads are parented by init).
2695 		 * Cross your fingers...
2696 		 */
2697 		down(&ahd->platform_data->eh_sem);
2698 
2699 		/*
2700 		 * Mark the dv thread as already dead.  This
2701 		 * avoids attempting to kill it a second time.
2702 		 * This is necessary because we must kill the
2703 		 * DV thread before calling ahd_free() in the
2704 		 * module shutdown case to avoid bogus locking
2705 		 * in the SCSI mid-layer, but we ahd_free() is
2706 		 * called without killing the DV thread in the
2707 		 * instance detach case, so ahd_platform_free()
2708 		 * calls us again to verify that the DV thread
2709 		 * is dead.
2710 		 */
2711 		ahd->platform_data->dv_pid = 0;
2712 	} else {
2713 		ahd_unlock(ahd, &s);
2714 	}
2715 }
2716 
2717 #define AHD_LINUX_DV_INQ_SHORT_LEN	36
2718 #define AHD_LINUX_DV_INQ_LEN		256
2719 #define AHD_LINUX_DV_TIMEOUT		(HZ / 4)
2720 
2721 #define AHD_SET_DV_STATE(ahd, targ, newstate) \
2722 	ahd_set_dv_state(ahd, targ, newstate, __LINE__)
2723 
2724 static __inline void
2725 ahd_set_dv_state(struct ahd_softc *ahd, struct ahd_linux_target *targ,
2726 		 ahd_dv_state newstate, u_int line)
2727 {
2728 	ahd_dv_state oldstate;
2729 
2730 	oldstate = targ->dv_state;
2731 #ifdef AHD_DEBUG
2732 	if (ahd_debug & AHD_SHOW_DV)
2733 		printf("%s:%d: Going from state %d to state %d\n",
2734 		       ahd_name(ahd), line, oldstate, newstate);
2735 #endif
2736 
2737 	if (oldstate == newstate)
2738 		targ->dv_state_retry++;
2739 	else
2740 		targ->dv_state_retry = 0;
2741 	targ->dv_state = newstate;
2742 }
2743 
2744 static void
2745 ahd_linux_dv_target(struct ahd_softc *ahd, u_int target_offset)
2746 {
2747 	struct	 ahd_devinfo devinfo;
2748 	struct	 ahd_linux_target *targ;
2749 	struct	 scsi_cmnd *cmd;
2750 	struct	 scsi_device *scsi_dev;
2751 	struct	 scsi_sense_data *sense;
2752 	uint8_t *buffer;
2753 	u_long	 s;
2754 	u_int	 timeout;
2755 	int	 echo_size;
2756 
2757 	sense = NULL;
2758 	buffer = NULL;
2759 	echo_size = 0;
2760 	ahd_lock(ahd, &s);
2761 	targ = ahd->platform_data->targets[target_offset];
2762 	if (targ == NULL || (targ->flags & AHD_DV_REQUIRED) == 0) {
2763 		ahd_unlock(ahd, &s);
2764 		return;
2765 	}
2766 	ahd_compile_devinfo(&devinfo, ahd->our_id, targ->target, /*lun*/0,
2767 			    targ->channel + 'A', ROLE_INITIATOR);
2768 #ifdef AHD_DEBUG
2769 	if (ahd_debug & AHD_SHOW_DV) {
2770 		ahd_print_devinfo(ahd, &devinfo);
2771 		printf("Performing DV\n");
2772 	}
2773 #endif
2774 
2775 	ahd_unlock(ahd, &s);
2776 
2777 	cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
2778 	scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
2779 	scsi_dev->host = ahd->platform_data->host;
2780 	scsi_dev->id = devinfo.target;
2781 	scsi_dev->lun = devinfo.lun;
2782 	scsi_dev->channel = devinfo.channel - 'A';
2783 	ahd->platform_data->dv_scsi_dev = scsi_dev;
2784 
2785 	AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_SHORT_ASYNC);
2786 
2787 	while (targ->dv_state != AHD_DV_STATE_EXIT) {
2788 		timeout = AHD_LINUX_DV_TIMEOUT;
2789 		switch (targ->dv_state) {
2790 		case AHD_DV_STATE_INQ_SHORT_ASYNC:
2791 		case AHD_DV_STATE_INQ_ASYNC:
2792 		case AHD_DV_STATE_INQ_ASYNC_VERIFY:
2793 			/*
2794 			 * Set things to async narrow to reduce the
2795 			 * chance that the INQ will fail.
2796 			 */
2797 			ahd_lock(ahd, &s);
2798 			ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
2799 					 AHD_TRANS_GOAL, /*paused*/FALSE);
2800 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
2801 				      AHD_TRANS_GOAL, /*paused*/FALSE);
2802 			ahd_unlock(ahd, &s);
2803 			timeout = 10 * HZ;
2804 			targ->flags &= ~AHD_INQ_VALID;
2805 			/* FALLTHROUGH */
2806 		case AHD_DV_STATE_INQ_VERIFY:
2807 		{
2808 			u_int inq_len;
2809 
2810 			if (targ->dv_state == AHD_DV_STATE_INQ_SHORT_ASYNC)
2811 				inq_len = AHD_LINUX_DV_INQ_SHORT_LEN;
2812 			else
2813 				inq_len = targ->inq_data->additional_length + 5;
2814 			ahd_linux_dv_inq(ahd, cmd, &devinfo, targ, inq_len);
2815 			break;
2816 		}
2817 		case AHD_DV_STATE_TUR:
2818 		case AHD_DV_STATE_BUSY:
2819 			timeout = 5 * HZ;
2820 			ahd_linux_dv_tur(ahd, cmd, &devinfo);
2821 			break;
2822 		case AHD_DV_STATE_REBD:
2823 			ahd_linux_dv_rebd(ahd, cmd, &devinfo, targ);
2824 			break;
2825 		case AHD_DV_STATE_WEB:
2826 			ahd_linux_dv_web(ahd, cmd, &devinfo, targ);
2827 			break;
2828 
2829 		case AHD_DV_STATE_REB:
2830 			ahd_linux_dv_reb(ahd, cmd, &devinfo, targ);
2831 			break;
2832 
2833 		case AHD_DV_STATE_SU:
2834 			ahd_linux_dv_su(ahd, cmd, &devinfo, targ);
2835 			timeout = 50 * HZ;
2836 			break;
2837 
2838 		default:
2839 			ahd_print_devinfo(ahd, &devinfo);
2840 			printf("Unknown DV state %d\n", targ->dv_state);
2841 			goto out;
2842 		}
2843 
2844 		/* Queue the command and wait for it to complete */
2845 		/* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
2846 		init_timer(&cmd->eh_timeout);
2847 #ifdef AHD_DEBUG
2848 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2849 			/*
2850 			 * All of the printfs during negotiation
2851 			 * really slow down the negotiation.
2852 			 * Add a bit of time just to be safe.
2853 			 */
2854 			timeout += HZ;
2855 #endif
2856 		scsi_add_timer(cmd, timeout, ahd_linux_dv_timeout);
2857 		/*
2858 		 * In 2.5.X, it is assumed that all calls from the
2859 		 * "midlayer" (which we are emulating) will have the
2860 		 * ahd host lock held.  For other kernels, the
2861 		 * io_request_lock must be held.
2862 		 */
2863 #if AHD_SCSI_HAS_HOST_LOCK != 0
2864 		ahd_lock(ahd, &s);
2865 #else
2866 		spin_lock_irqsave(&io_request_lock, s);
2867 #endif
2868 		ahd_linux_queue(cmd, ahd_linux_dv_complete);
2869 #if AHD_SCSI_HAS_HOST_LOCK != 0
2870 		ahd_unlock(ahd, &s);
2871 #else
2872 		spin_unlock_irqrestore(&io_request_lock, s);
2873 #endif
2874 		down_interruptible(&ahd->platform_data->dv_cmd_sem);
2875 		/*
2876 		 * Wait for the SIMQ to be released so that DV is the
2877 		 * only reason the queue is frozen.
2878 		 */
2879 		ahd_lock(ahd, &s);
2880 		while (AHD_DV_SIMQ_FROZEN(ahd) == 0) {
2881 			ahd->platform_data->flags |= AHD_DV_WAIT_SIMQ_RELEASE;
2882 			ahd_unlock(ahd, &s);
2883 			down_interruptible(&ahd->platform_data->dv_sem);
2884 			ahd_lock(ahd, &s);
2885 		}
2886 		ahd_unlock(ahd, &s);
2887 
2888 		ahd_linux_dv_transition(ahd, cmd, &devinfo, targ);
2889 	}
2890 
2891 out:
2892 	if ((targ->flags & AHD_INQ_VALID) != 0
2893 	 && ahd_linux_get_device(ahd, devinfo.channel - 'A',
2894 				 devinfo.target, devinfo.lun,
2895 				 /*alloc*/FALSE) == NULL) {
2896 		/*
2897 		 * The DV state machine failed to configure this device.
2898 		 * This is normal if DV is disabled.  Since we have inquiry
2899 		 * data, filter it and use the "optimistic" negotiation
2900 		 * parameters found in the inquiry string.
2901 		 */
2902 		ahd_linux_filter_inquiry(ahd, &devinfo);
2903 		if ((targ->flags & (AHD_BASIC_DV|AHD_ENHANCED_DV)) != 0) {
2904 			ahd_print_devinfo(ahd, &devinfo);
2905 			printf("DV failed to configure device.  "
2906 			       "Please file a bug report against "
2907 			       "this driver.\n");
2908 		}
2909 	}
2910 
2911 	if (cmd != NULL)
2912 		free(cmd, M_DEVBUF);
2913 
2914 	if (ahd->platform_data->dv_scsi_dev != NULL) {
2915 		free(ahd->platform_data->dv_scsi_dev, M_DEVBUF);
2916 		ahd->platform_data->dv_scsi_dev = NULL;
2917 	}
2918 
2919 	ahd_lock(ahd, &s);
2920 	if (targ->dv_buffer != NULL) {
2921 		free(targ->dv_buffer, M_DEVBUF);
2922 		targ->dv_buffer = NULL;
2923 	}
2924 	if (targ->dv_buffer1 != NULL) {
2925 		free(targ->dv_buffer1, M_DEVBUF);
2926 		targ->dv_buffer1 = NULL;
2927 	}
2928 	targ->flags &= ~AHD_DV_REQUIRED;
2929 	if (targ->refcount == 0)
2930 		ahd_linux_free_target(ahd, targ);
2931 	ahd_unlock(ahd, &s);
2932 }
2933 
2934 static __inline int
2935 ahd_linux_dv_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
2936 {
2937 	u_long s;
2938 	int retval;
2939 
2940 	ahd_lock(ahd, &s);
2941 	retval = ahd_linux_fallback(ahd, devinfo);
2942 	ahd_unlock(ahd, &s);
2943 
2944 	return (retval);
2945 }
2946 
2947 static void
2948 ahd_linux_dv_transition(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
2949 			struct ahd_devinfo *devinfo,
2950 			struct ahd_linux_target *targ)
2951 {
2952 	u_int32_t status;
2953 
2954 	status = aic_error_action(cmd, targ->inq_data,
2955 				  ahd_cmd_get_transaction_status(cmd),
2956 				  ahd_cmd_get_scsi_status(cmd));
2957 
2958 
2959 #ifdef AHD_DEBUG
2960 	if (ahd_debug & AHD_SHOW_DV) {
2961 		ahd_print_devinfo(ahd, devinfo);
2962 		printf("Entering ahd_linux_dv_transition, state= %d, "
2963 		       "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
2964 		       status, cmd->result);
2965 	}
2966 #endif
2967 
2968 	switch (targ->dv_state) {
2969 	case AHD_DV_STATE_INQ_SHORT_ASYNC:
2970 	case AHD_DV_STATE_INQ_ASYNC:
2971 		switch (status & SS_MASK) {
2972 		case SS_NOP:
2973 		{
2974 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
2975 			break;
2976 		}
2977 		case SS_INQ_REFRESH:
2978 			AHD_SET_DV_STATE(ahd, targ,
2979 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
2980 			break;
2981 		case SS_TUR:
2982 		case SS_RETRY:
2983 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
2984 			if (ahd_cmd_get_transaction_status(cmd)
2985 			 == CAM_REQUEUE_REQ)
2986 				targ->dv_state_retry--;
2987 			if ((status & SS_ERRMASK) == EBUSY)
2988 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
2989 			if (targ->dv_state_retry < 10)
2990 				break;
2991 			/* FALLTHROUGH */
2992 		default:
2993 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
2994 #ifdef AHD_DEBUG
2995 			if (ahd_debug & AHD_SHOW_DV) {
2996 				ahd_print_devinfo(ahd, devinfo);
2997 				printf("Failed DV inquiry, skipping\n");
2998 			}
2999 #endif
3000 			break;
3001 		}
3002 		break;
3003 	case AHD_DV_STATE_INQ_ASYNC_VERIFY:
3004 		switch (status & SS_MASK) {
3005 		case SS_NOP:
3006 		{
3007 			u_int xportflags;
3008 			u_int spi3data;
3009 
3010 			if (memcmp(targ->inq_data, targ->dv_buffer,
3011 				   AHD_LINUX_DV_INQ_LEN) != 0) {
3012 				/*
3013 				 * Inquiry data must have changed.
3014 				 * Try from the top again.
3015 				 */
3016 				AHD_SET_DV_STATE(ahd, targ,
3017 						 AHD_DV_STATE_INQ_SHORT_ASYNC);
3018 				break;
3019 			}
3020 
3021 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state+1);
3022 			targ->flags |= AHD_INQ_VALID;
3023 			if (ahd_linux_user_dv_setting(ahd) == 0)
3024 				break;
3025 
3026 			xportflags = targ->inq_data->flags;
3027 			if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
3028 				break;
3029 
3030 			spi3data = targ->inq_data->spi3data;
3031 			switch (spi3data & SID_SPI_CLOCK_DT_ST) {
3032 			default:
3033 			case SID_SPI_CLOCK_ST:
3034 				/* Assume only basic DV is supported. */
3035 				targ->flags |= AHD_BASIC_DV;
3036 				break;
3037 			case SID_SPI_CLOCK_DT:
3038 			case SID_SPI_CLOCK_DT_ST:
3039 				targ->flags |= AHD_ENHANCED_DV;
3040 				break;
3041 			}
3042 			break;
3043 		}
3044 		case SS_INQ_REFRESH:
3045 			AHD_SET_DV_STATE(ahd, targ,
3046 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3047 			break;
3048 		case SS_TUR:
3049 		case SS_RETRY:
3050 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3051 			if (ahd_cmd_get_transaction_status(cmd)
3052 			 == CAM_REQUEUE_REQ)
3053 				targ->dv_state_retry--;
3054 
3055 			if ((status & SS_ERRMASK) == EBUSY)
3056 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3057 			if (targ->dv_state_retry < 10)
3058 				break;
3059 			/* FALLTHROUGH */
3060 		default:
3061 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3062 #ifdef AHD_DEBUG
3063 			if (ahd_debug & AHD_SHOW_DV) {
3064 				ahd_print_devinfo(ahd, devinfo);
3065 				printf("Failed DV inquiry, skipping\n");
3066 			}
3067 #endif
3068 			break;
3069 		}
3070 		break;
3071 	case AHD_DV_STATE_INQ_VERIFY:
3072 		switch (status & SS_MASK) {
3073 		case SS_NOP:
3074 		{
3075 
3076 			if (memcmp(targ->inq_data, targ->dv_buffer,
3077 				   AHD_LINUX_DV_INQ_LEN) == 0) {
3078 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3079 				break;
3080 			}
3081 
3082 #ifdef AHD_DEBUG
3083 			if (ahd_debug & AHD_SHOW_DV) {
3084 				int i;
3085 
3086 				ahd_print_devinfo(ahd, devinfo);
3087 				printf("Inquiry buffer mismatch:");
3088 				for (i = 0; i < AHD_LINUX_DV_INQ_LEN; i++) {
3089 					if ((i & 0xF) == 0)
3090 						printf("\n        ");
3091 					printf("0x%x:0x0%x ",
3092 					       ((uint8_t *)targ->inq_data)[i],
3093 					       targ->dv_buffer[i]);
3094 				}
3095 				printf("\n");
3096 			}
3097 #endif
3098 
3099 			if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3100 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3101 				break;
3102 			}
3103 			/*
3104 			 * Do not count "falling back"
3105 			 * against our retries.
3106 			 */
3107 			targ->dv_state_retry = 0;
3108 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3109 			break;
3110 		}
3111 		case SS_INQ_REFRESH:
3112 			AHD_SET_DV_STATE(ahd, targ,
3113 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3114 			break;
3115 		case SS_TUR:
3116 		case SS_RETRY:
3117 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3118 			if (ahd_cmd_get_transaction_status(cmd)
3119 			 == CAM_REQUEUE_REQ) {
3120 				targ->dv_state_retry--;
3121 			} else if ((status & SSQ_FALLBACK) != 0) {
3122 				if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3123 					AHD_SET_DV_STATE(ahd, targ,
3124 							 AHD_DV_STATE_EXIT);
3125 					break;
3126 				}
3127 				/*
3128 				 * Do not count "falling back"
3129 				 * against our retries.
3130 				 */
3131 				targ->dv_state_retry = 0;
3132 			} else if ((status & SS_ERRMASK) == EBUSY)
3133 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3134 			if (targ->dv_state_retry < 10)
3135 				break;
3136 			/* FALLTHROUGH */
3137 		default:
3138 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3139 #ifdef AHD_DEBUG
3140 			if (ahd_debug & AHD_SHOW_DV) {
3141 				ahd_print_devinfo(ahd, devinfo);
3142 				printf("Failed DV inquiry, skipping\n");
3143 			}
3144 #endif
3145 			break;
3146 		}
3147 		break;
3148 
3149 	case AHD_DV_STATE_TUR:
3150 		switch (status & SS_MASK) {
3151 		case SS_NOP:
3152 			if ((targ->flags & AHD_BASIC_DV) != 0) {
3153 				ahd_linux_filter_inquiry(ahd, devinfo);
3154 				AHD_SET_DV_STATE(ahd, targ,
3155 						 AHD_DV_STATE_INQ_VERIFY);
3156 			} else if ((targ->flags & AHD_ENHANCED_DV) != 0) {
3157 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REBD);
3158 			} else {
3159 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3160 			}
3161 			break;
3162 		case SS_RETRY:
3163 		case SS_TUR:
3164 			if ((status & SS_ERRMASK) == EBUSY) {
3165 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_BUSY);
3166 				break;
3167 			}
3168 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3169 			if (ahd_cmd_get_transaction_status(cmd)
3170 			 == CAM_REQUEUE_REQ) {
3171 				targ->dv_state_retry--;
3172 			} else if ((status & SSQ_FALLBACK) != 0) {
3173 				if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3174 					AHD_SET_DV_STATE(ahd, targ,
3175 							 AHD_DV_STATE_EXIT);
3176 					break;
3177 				}
3178 				/*
3179 				 * Do not count "falling back"
3180 				 * against our retries.
3181 				 */
3182 				targ->dv_state_retry = 0;
3183 			}
3184 			if (targ->dv_state_retry >= 10) {
3185 #ifdef AHD_DEBUG
3186 				if (ahd_debug & AHD_SHOW_DV) {
3187 					ahd_print_devinfo(ahd, devinfo);
3188 					printf("DV TUR reties exhausted\n");
3189 				}
3190 #endif
3191 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3192 				break;
3193 			}
3194 			if (status & SSQ_DELAY)
3195 				scsi_sleep(1 * HZ);
3196 
3197 			break;
3198 		case SS_START:
3199 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_SU);
3200 			break;
3201 		case SS_INQ_REFRESH:
3202 			AHD_SET_DV_STATE(ahd, targ,
3203 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3204 			break;
3205 		default:
3206 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3207 			break;
3208 		}
3209 		break;
3210 
3211 	case AHD_DV_STATE_REBD:
3212 		switch (status & SS_MASK) {
3213 		case SS_NOP:
3214 		{
3215 			uint32_t echo_size;
3216 
3217 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3218 			echo_size = scsi_3btoul(&targ->dv_buffer[1]);
3219 			echo_size &= 0x1FFF;
3220 #ifdef AHD_DEBUG
3221 			if (ahd_debug & AHD_SHOW_DV) {
3222 				ahd_print_devinfo(ahd, devinfo);
3223 				printf("Echo buffer size= %d\n", echo_size);
3224 			}
3225 #endif
3226 			if (echo_size == 0) {
3227 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3228 				break;
3229 			}
3230 
3231 			/* Generate the buffer pattern */
3232 			targ->dv_echo_size = echo_size;
3233 			ahd_linux_generate_dv_pattern(targ);
3234 			/*
3235 			 * Setup initial negotiation values.
3236 			 */
3237 			ahd_linux_filter_inquiry(ahd, devinfo);
3238 			break;
3239 		}
3240 		case SS_INQ_REFRESH:
3241 			AHD_SET_DV_STATE(ahd, targ,
3242 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3243 			break;
3244 		case SS_RETRY:
3245 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3246 			if (ahd_cmd_get_transaction_status(cmd)
3247 			 == CAM_REQUEUE_REQ)
3248 				targ->dv_state_retry--;
3249 			if (targ->dv_state_retry <= 10)
3250 				break;
3251 #ifdef AHD_DEBUG
3252 			if (ahd_debug & AHD_SHOW_DV) {
3253 				ahd_print_devinfo(ahd, devinfo);
3254 				printf("DV REBD reties exhausted\n");
3255 			}
3256 #endif
3257 			/* FALLTHROUGH */
3258 		case SS_FATAL:
3259 		default:
3260 			/*
3261 			 * Setup initial negotiation values
3262 			 * and try level 1 DV.
3263 			 */
3264 			ahd_linux_filter_inquiry(ahd, devinfo);
3265 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_INQ_VERIFY);
3266 			targ->dv_echo_size = 0;
3267 			break;
3268 		}
3269 		break;
3270 
3271 	case AHD_DV_STATE_WEB:
3272 		switch (status & SS_MASK) {
3273 		case SS_NOP:
3274 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_REB);
3275 			break;
3276 		case SS_INQ_REFRESH:
3277 			AHD_SET_DV_STATE(ahd, targ,
3278 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3279 			break;
3280 		case SS_RETRY:
3281 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3282 			if (ahd_cmd_get_transaction_status(cmd)
3283 			 == CAM_REQUEUE_REQ) {
3284 				targ->dv_state_retry--;
3285 			} else if ((status & SSQ_FALLBACK) != 0) {
3286 				if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3287 					AHD_SET_DV_STATE(ahd, targ,
3288 							 AHD_DV_STATE_EXIT);
3289 					break;
3290 				}
3291 				/*
3292 				 * Do not count "falling back"
3293 				 * against our retries.
3294 				 */
3295 				targ->dv_state_retry = 0;
3296 			}
3297 			if (targ->dv_state_retry <= 10)
3298 				break;
3299 			/* FALLTHROUGH */
3300 #ifdef AHD_DEBUG
3301 			if (ahd_debug & AHD_SHOW_DV) {
3302 				ahd_print_devinfo(ahd, devinfo);
3303 				printf("DV WEB reties exhausted\n");
3304 			}
3305 #endif
3306 		default:
3307 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3308 			break;
3309 		}
3310 		break;
3311 
3312 	case AHD_DV_STATE_REB:
3313 		switch (status & SS_MASK) {
3314 		case SS_NOP:
3315 			if (memcmp(targ->dv_buffer, targ->dv_buffer1,
3316 				   targ->dv_echo_size) != 0) {
3317 				if (ahd_linux_dv_fallback(ahd, devinfo) != 0)
3318 					AHD_SET_DV_STATE(ahd, targ,
3319 							 AHD_DV_STATE_EXIT);
3320 				else
3321 					AHD_SET_DV_STATE(ahd, targ,
3322 							 AHD_DV_STATE_WEB);
3323 				break;
3324 			}
3325 
3326 			if (targ->dv_buffer != NULL) {
3327 				free(targ->dv_buffer, M_DEVBUF);
3328 				targ->dv_buffer = NULL;
3329 			}
3330 			if (targ->dv_buffer1 != NULL) {
3331 				free(targ->dv_buffer1, M_DEVBUF);
3332 				targ->dv_buffer1 = NULL;
3333 			}
3334 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3335 			break;
3336 		case SS_INQ_REFRESH:
3337 			AHD_SET_DV_STATE(ahd, targ,
3338 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3339 			break;
3340 		case SS_RETRY:
3341 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3342 			if (ahd_cmd_get_transaction_status(cmd)
3343 			 == CAM_REQUEUE_REQ) {
3344 				targ->dv_state_retry--;
3345 			} else if ((status & SSQ_FALLBACK) != 0) {
3346 				if (ahd_linux_dv_fallback(ahd, devinfo) != 0) {
3347 					AHD_SET_DV_STATE(ahd, targ,
3348 							 AHD_DV_STATE_EXIT);
3349 					break;
3350 				}
3351 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_WEB);
3352 			}
3353 			if (targ->dv_state_retry <= 10) {
3354 				if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
3355 					scsi_sleep(ahd->our_id*HZ/10);
3356 				break;
3357 			}
3358 #ifdef AHD_DEBUG
3359 			if (ahd_debug & AHD_SHOW_DV) {
3360 				ahd_print_devinfo(ahd, devinfo);
3361 				printf("DV REB reties exhausted\n");
3362 			}
3363 #endif
3364 			/* FALLTHROUGH */
3365 		default:
3366 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3367 			break;
3368 		}
3369 		break;
3370 
3371 	case AHD_DV_STATE_SU:
3372 		switch (status & SS_MASK) {
3373 		case SS_NOP:
3374 		case SS_INQ_REFRESH:
3375 			AHD_SET_DV_STATE(ahd, targ,
3376 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3377 			break;
3378 		default:
3379 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3380 			break;
3381 		}
3382 		break;
3383 
3384 	case AHD_DV_STATE_BUSY:
3385 		switch (status & SS_MASK) {
3386 		case SS_NOP:
3387 		case SS_INQ_REFRESH:
3388 			AHD_SET_DV_STATE(ahd, targ,
3389 					 AHD_DV_STATE_INQ_SHORT_ASYNC);
3390 			break;
3391 		case SS_TUR:
3392 		case SS_RETRY:
3393 			AHD_SET_DV_STATE(ahd, targ, targ->dv_state);
3394 			if (ahd_cmd_get_transaction_status(cmd)
3395 			 == CAM_REQUEUE_REQ) {
3396 				targ->dv_state_retry--;
3397 			} else if (targ->dv_state_retry < 60) {
3398 				if ((status & SSQ_DELAY) != 0)
3399 					scsi_sleep(1 * HZ);
3400 			} else {
3401 #ifdef AHD_DEBUG
3402 				if (ahd_debug & AHD_SHOW_DV) {
3403 					ahd_print_devinfo(ahd, devinfo);
3404 					printf("DV BUSY reties exhausted\n");
3405 				}
3406 #endif
3407 				AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3408 			}
3409 			break;
3410 		default:
3411 			AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3412 			break;
3413 		}
3414 		break;
3415 
3416 	default:
3417 		printf("%s: Invalid DV completion state %d\n", ahd_name(ahd),
3418 		       targ->dv_state);
3419 		AHD_SET_DV_STATE(ahd, targ, AHD_DV_STATE_EXIT);
3420 		break;
3421 	}
3422 }
3423 
3424 static void
3425 ahd_linux_dv_fill_cmd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3426 		      struct ahd_devinfo *devinfo)
3427 {
3428 	memset(cmd, 0, sizeof(struct scsi_cmnd));
3429 	cmd->device = ahd->platform_data->dv_scsi_dev;
3430 	cmd->scsi_done = ahd_linux_dv_complete;
3431 }
3432 
3433 /*
3434  * Synthesize an inquiry command.  On the return trip, it'll be
3435  * sniffed and the device transfer settings set for us.
3436  */
3437 static void
3438 ahd_linux_dv_inq(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3439 		 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ,
3440 		 u_int request_length)
3441 {
3442 
3443 #ifdef AHD_DEBUG
3444 	if (ahd_debug & AHD_SHOW_DV) {
3445 		ahd_print_devinfo(ahd, devinfo);
3446 		printf("Sending INQ\n");
3447 	}
3448 #endif
3449 	if (targ->inq_data == NULL)
3450 		targ->inq_data = malloc(AHD_LINUX_DV_INQ_LEN,
3451 					M_DEVBUF, M_WAITOK);
3452 	if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC) {
3453 		if (targ->dv_buffer != NULL)
3454 			free(targ->dv_buffer, M_DEVBUF);
3455 		targ->dv_buffer = malloc(AHD_LINUX_DV_INQ_LEN,
3456 					 M_DEVBUF, M_WAITOK);
3457 	}
3458 
3459 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3460 	cmd->sc_data_direction = SCSI_DATA_READ;
3461 	cmd->cmd_len = 6;
3462 	cmd->cmnd[0] = INQUIRY;
3463 	cmd->cmnd[4] = request_length;
3464 	cmd->request_bufflen = request_length;
3465 	if (targ->dv_state > AHD_DV_STATE_INQ_ASYNC)
3466 		cmd->request_buffer = targ->dv_buffer;
3467 	else
3468 		cmd->request_buffer = targ->inq_data;
3469 	memset(cmd->request_buffer, 0, AHD_LINUX_DV_INQ_LEN);
3470 }
3471 
3472 static void
3473 ahd_linux_dv_tur(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3474 		 struct ahd_devinfo *devinfo)
3475 {
3476 
3477 #ifdef AHD_DEBUG
3478 	if (ahd_debug & AHD_SHOW_DV) {
3479 		ahd_print_devinfo(ahd, devinfo);
3480 		printf("Sending TUR\n");
3481 	}
3482 #endif
3483 	/* Do a TUR to clear out any non-fatal transitional state */
3484 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3485 	cmd->sc_data_direction = SCSI_DATA_NONE;
3486 	cmd->cmd_len = 6;
3487 	cmd->cmnd[0] = TEST_UNIT_READY;
3488 }
3489 
3490 #define AHD_REBD_LEN 4
3491 
3492 static void
3493 ahd_linux_dv_rebd(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3494 		 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3495 {
3496 
3497 #ifdef AHD_DEBUG
3498 	if (ahd_debug & AHD_SHOW_DV) {
3499 		ahd_print_devinfo(ahd, devinfo);
3500 		printf("Sending REBD\n");
3501 	}
3502 #endif
3503 	if (targ->dv_buffer != NULL)
3504 		free(targ->dv_buffer, M_DEVBUF);
3505 	targ->dv_buffer = malloc(AHD_REBD_LEN, M_DEVBUF, M_WAITOK);
3506 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3507 	cmd->sc_data_direction = SCSI_DATA_READ;
3508 	cmd->cmd_len = 10;
3509 	cmd->cmnd[0] = READ_BUFFER;
3510 	cmd->cmnd[1] = 0x0b;
3511 	scsi_ulto3b(AHD_REBD_LEN, &cmd->cmnd[6]);
3512 	cmd->request_bufflen = AHD_REBD_LEN;
3513 	cmd->underflow = cmd->request_bufflen;
3514 	cmd->request_buffer = targ->dv_buffer;
3515 }
3516 
3517 static void
3518 ahd_linux_dv_web(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3519 		 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3520 {
3521 
3522 #ifdef AHD_DEBUG
3523 	if (ahd_debug & AHD_SHOW_DV) {
3524 		ahd_print_devinfo(ahd, devinfo);
3525 		printf("Sending WEB\n");
3526 	}
3527 #endif
3528 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3529 	cmd->sc_data_direction = SCSI_DATA_WRITE;
3530 	cmd->cmd_len = 10;
3531 	cmd->cmnd[0] = WRITE_BUFFER;
3532 	cmd->cmnd[1] = 0x0a;
3533 	scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3534 	cmd->request_bufflen = targ->dv_echo_size;
3535 	cmd->underflow = cmd->request_bufflen;
3536 	cmd->request_buffer = targ->dv_buffer;
3537 }
3538 
3539 static void
3540 ahd_linux_dv_reb(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3541 		 struct ahd_devinfo *devinfo, struct ahd_linux_target *targ)
3542 {
3543 
3544 #ifdef AHD_DEBUG
3545 	if (ahd_debug & AHD_SHOW_DV) {
3546 		ahd_print_devinfo(ahd, devinfo);
3547 		printf("Sending REB\n");
3548 	}
3549 #endif
3550 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3551 	cmd->sc_data_direction = SCSI_DATA_READ;
3552 	cmd->cmd_len = 10;
3553 	cmd->cmnd[0] = READ_BUFFER;
3554 	cmd->cmnd[1] = 0x0a;
3555 	scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
3556 	cmd->request_bufflen = targ->dv_echo_size;
3557 	cmd->underflow = cmd->request_bufflen;
3558 	cmd->request_buffer = targ->dv_buffer1;
3559 }
3560 
3561 static void
3562 ahd_linux_dv_su(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
3563 		struct ahd_devinfo *devinfo,
3564 		struct ahd_linux_target *targ)
3565 {
3566 	u_int le;
3567 
3568 	le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
3569 
3570 #ifdef AHD_DEBUG
3571 	if (ahd_debug & AHD_SHOW_DV) {
3572 		ahd_print_devinfo(ahd, devinfo);
3573 		printf("Sending SU\n");
3574 	}
3575 #endif
3576 	ahd_linux_dv_fill_cmd(ahd, cmd, devinfo);
3577 	cmd->sc_data_direction = SCSI_DATA_NONE;
3578 	cmd->cmd_len = 6;
3579 	cmd->cmnd[0] = START_STOP_UNIT;
3580 	cmd->cmnd[4] = le | SSS_START;
3581 }
3582 
3583 static int
3584 ahd_linux_fallback(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3585 {
3586 	struct	ahd_linux_target *targ;
3587 	struct	ahd_initiator_tinfo *tinfo;
3588 	struct	ahd_transinfo *goal;
3589 	struct	ahd_tmode_tstate *tstate;
3590 	u_int	width;
3591 	u_int	period;
3592 	u_int	offset;
3593 	u_int	ppr_options;
3594 	u_int	cur_speed;
3595 	u_int	wide_speed;
3596 	u_int	narrow_speed;
3597 	u_int	fallback_speed;
3598 
3599 #ifdef AHD_DEBUG
3600 	if (ahd_debug & AHD_SHOW_DV) {
3601 		ahd_print_devinfo(ahd, devinfo);
3602 		printf("Trying to fallback\n");
3603 	}
3604 #endif
3605 	targ = ahd->platform_data->targets[devinfo->target_offset];
3606 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
3607 				    devinfo->our_scsiid,
3608 				    devinfo->target, &tstate);
3609 	goal = &tinfo->goal;
3610 	width = goal->width;
3611 	period = goal->period;
3612 	offset = goal->offset;
3613 	ppr_options = goal->ppr_options;
3614 	if (offset == 0)
3615 		period = AHD_ASYNC_XFER_PERIOD;
3616 	if (targ->dv_next_narrow_period == 0)
3617 		targ->dv_next_narrow_period = MAX(period, AHD_SYNCRATE_ULTRA2);
3618 	if (targ->dv_next_wide_period == 0)
3619 		targ->dv_next_wide_period = period;
3620 	if (targ->dv_max_width == 0)
3621 		targ->dv_max_width = width;
3622 	if (targ->dv_max_ppr_options == 0)
3623 		targ->dv_max_ppr_options = ppr_options;
3624 	if (targ->dv_last_ppr_options == 0)
3625 		targ->dv_last_ppr_options = ppr_options;
3626 
3627 	cur_speed = aic_calc_speed(width, period, offset, AHD_SYNCRATE_MIN);
3628 	wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
3629 					  targ->dv_next_wide_period,
3630 					  MAX_OFFSET, AHD_SYNCRATE_MIN);
3631 	narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
3632 					    targ->dv_next_narrow_period,
3633 					    MAX_OFFSET, AHD_SYNCRATE_MIN);
3634 	fallback_speed = aic_calc_speed(width, period+1, offset,
3635 					      AHD_SYNCRATE_MIN);
3636 #ifdef AHD_DEBUG
3637 	if (ahd_debug & AHD_SHOW_DV) {
3638 		printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
3639 		       "fallback_speed= %d\n", cur_speed, wide_speed,
3640 		       narrow_speed, fallback_speed);
3641 	}
3642 #endif
3643 
3644 	if (cur_speed > 160000) {
3645 		/*
3646 		 * Paced/DT/IU_REQ only transfer speeds.  All we
3647 		 * can do is fallback in terms of syncrate.
3648 		 */
3649 		period++;
3650 	} else if (cur_speed > 80000) {
3651 		if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3652 			/*
3653 			 * Try without IU_REQ as it may be confusing
3654 			 * an expander.
3655 			 */
3656 			ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3657 		} else {
3658 			/*
3659 			 * Paced/DT only transfer speeds.  All we
3660 			 * can do is fallback in terms of syncrate.
3661 			 */
3662 			period++;
3663 			ppr_options = targ->dv_max_ppr_options;
3664 		}
3665 	} else if (cur_speed > 3300) {
3666 
3667 		/*
3668 		 * In this range we the following
3669 		 * options ordered from highest to
3670 		 * lowest desireability:
3671 		 *
3672 		 * o Wide/DT
3673 		 * o Wide/non-DT
3674 		 * o Narrow at a potentally higher sync rate.
3675 		 *
3676 		 * All modes are tested with and without IU_REQ
3677 		 * set since using IUs may confuse an expander.
3678 		 */
3679 		if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3680 
3681 			ppr_options &= ~MSG_EXT_PPR_IU_REQ;
3682 		} else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3683 			/*
3684 			 * Try going non-DT.
3685 			 */
3686 			ppr_options = targ->dv_max_ppr_options;
3687 			ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3688 		} else if (targ->dv_last_ppr_options != 0) {
3689 			/*
3690 			 * Try without QAS or any other PPR options.
3691 			 * We may need a non-PPR message to work with
3692 			 * an expander.  We look at the "last PPR options"
3693 			 * so we will perform this fallback even if the
3694 			 * target responded to our PPR negotiation with
3695 			 * no option bits set.
3696 			 */
3697 			ppr_options = 0;
3698 		} else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
3699 			/*
3700 			 * If the next narrow speed is greater than
3701 			 * the next wide speed, fallback to narrow.
3702 			 * Otherwise fallback to the next DT/Wide setting.
3703 			 * The narrow async speed will always be smaller
3704 			 * than the wide async speed, so handle this case
3705 			 * specifically.
3706 			 */
3707 			ppr_options = targ->dv_max_ppr_options;
3708 			if (narrow_speed > fallback_speed
3709 			 || period >= AHD_ASYNC_XFER_PERIOD) {
3710 				targ->dv_next_wide_period = period+1;
3711 				width = MSG_EXT_WDTR_BUS_8_BIT;
3712 				period = targ->dv_next_narrow_period;
3713 			} else {
3714 				period++;
3715 			}
3716 		} else if ((ahd->features & AHD_WIDE) != 0
3717 			&& targ->dv_max_width != 0
3718 			&& wide_speed >= fallback_speed
3719 			&& (targ->dv_next_wide_period <= AHD_ASYNC_XFER_PERIOD
3720 			 || period >= AHD_ASYNC_XFER_PERIOD)) {
3721 
3722 			/*
3723 			 * We are narrow.  Try falling back
3724 			 * to the next wide speed with
3725 			 * all supported ppr options set.
3726 			 */
3727 			targ->dv_next_narrow_period = period+1;
3728 			width = MSG_EXT_WDTR_BUS_16_BIT;
3729 			period = targ->dv_next_wide_period;
3730 			ppr_options = targ->dv_max_ppr_options;
3731 		} else {
3732 			/* Only narrow fallback is allowed. */
3733 			period++;
3734 			ppr_options = targ->dv_max_ppr_options;
3735 		}
3736 	} else {
3737 		return (-1);
3738 	}
3739 	offset = MAX_OFFSET;
3740 	ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_PACED);
3741 	ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, FALSE);
3742 	if (period == 0) {
3743 		period = 0;
3744 		offset = 0;
3745 		ppr_options = 0;
3746 		if (width == MSG_EXT_WDTR_BUS_8_BIT)
3747 			targ->dv_next_narrow_period = AHD_ASYNC_XFER_PERIOD;
3748 		else
3749 			targ->dv_next_wide_period = AHD_ASYNC_XFER_PERIOD;
3750 	}
3751 	ahd_set_syncrate(ahd, devinfo, period, offset,
3752 			 ppr_options, AHD_TRANS_GOAL, FALSE);
3753 	targ->dv_last_ppr_options = ppr_options;
3754 	return (0);
3755 }
3756 
3757 static void
3758 ahd_linux_dv_timeout(struct scsi_cmnd *cmd)
3759 {
3760 	struct	ahd_softc *ahd;
3761 	struct	scb *scb;
3762 	u_long	flags;
3763 
3764 	ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3765 	ahd_lock(ahd, &flags);
3766 
3767 #ifdef AHD_DEBUG
3768 	if (ahd_debug & AHD_SHOW_DV) {
3769 		printf("%s: Timeout while doing DV command %x.\n",
3770 		       ahd_name(ahd), cmd->cmnd[0]);
3771 		ahd_dump_card_state(ahd);
3772 	}
3773 #endif
3774 
3775 	/*
3776 	 * Guard against "done race".  No action is
3777 	 * required if we just completed.
3778 	 */
3779 	if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
3780 		ahd_unlock(ahd, &flags);
3781 		return;
3782 	}
3783 
3784 	/*
3785 	 * Command has not completed.  Mark this
3786 	 * SCB as having failing status prior to
3787 	 * resetting the bus, so we get the correct
3788 	 * error code.
3789 	 */
3790 	if ((scb->flags & SCB_SENSE) != 0)
3791 		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
3792 	else
3793 		ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
3794 	ahd_reset_channel(ahd, cmd->device->channel + 'A', /*initiate*/TRUE);
3795 
3796 	/*
3797 	 * Add a minimal bus settle delay for devices that are slow to
3798 	 * respond after bus resets.
3799 	 */
3800 	ahd_freeze_simq(ahd);
3801 	init_timer(&ahd->platform_data->reset_timer);
3802 	ahd->platform_data->reset_timer.data = (u_long)ahd;
3803 	ahd->platform_data->reset_timer.expires = jiffies + HZ / 2;
3804 	ahd->platform_data->reset_timer.function =
3805 	    (ahd_linux_callback_t *)ahd_release_simq;
3806 	add_timer(&ahd->platform_data->reset_timer);
3807 	if (ahd_linux_next_device_to_run(ahd) != NULL)
3808 		ahd_schedule_runq(ahd);
3809 	ahd_linux_run_complete_queue(ahd);
3810 	ahd_unlock(ahd, &flags);
3811 }
3812 
3813 static void
3814 ahd_linux_dv_complete(struct scsi_cmnd *cmd)
3815 {
3816 	struct ahd_softc *ahd;
3817 
3818 	ahd = *((struct ahd_softc **)cmd->device->host->hostdata);
3819 
3820 	/* Delete the DV timer before it goes off! */
3821 	scsi_delete_timer(cmd);
3822 
3823 #ifdef AHD_DEBUG
3824 	if (ahd_debug & AHD_SHOW_DV)
3825 		printf("%s:%c:%d: Command completed, status= 0x%x\n",
3826 		       ahd_name(ahd), cmd->device->channel, cmd->device->id,
3827 		       cmd->result);
3828 #endif
3829 
3830 	/* Wake up the state machine */
3831 	up(&ahd->platform_data->dv_cmd_sem);
3832 }
3833 
3834 static void
3835 ahd_linux_generate_dv_pattern(struct ahd_linux_target *targ)
3836 {
3837 	uint16_t b;
3838 	u_int	 i;
3839 	u_int	 j;
3840 
3841 	if (targ->dv_buffer != NULL)
3842 		free(targ->dv_buffer, M_DEVBUF);
3843 	targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3844 	if (targ->dv_buffer1 != NULL)
3845 		free(targ->dv_buffer1, M_DEVBUF);
3846 	targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
3847 
3848 	i = 0;
3849 
3850 	b = 0x0001;
3851 	for (j = 0 ; i < targ->dv_echo_size; j++) {
3852 		if (j < 32) {
3853 			/*
3854 			 * 32bytes of sequential numbers.
3855 			 */
3856 			targ->dv_buffer[i++] = j & 0xff;
3857 		} else if (j < 48) {
3858 			/*
3859 			 * 32bytes of repeating 0x0000, 0xffff.
3860 			 */
3861 			targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
3862 		} else if (j < 64) {
3863 			/*
3864 			 * 32bytes of repeating 0x5555, 0xaaaa.
3865 			 */
3866 			targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
3867 		} else {
3868 			/*
3869 			 * Remaining buffer is filled with a repeating
3870 			 * patter of:
3871 			 *
3872 			 *	 0xffff
3873 			 *	~0x0001 << shifted once in each loop.
3874 			 */
3875 			if (j & 0x02) {
3876 				if (j & 0x01) {
3877 					targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
3878 					b <<= 1;
3879 					if (b == 0x0000)
3880 						b = 0x0001;
3881 				} else {
3882 					targ->dv_buffer[i++] = (~b & 0xff);
3883 				}
3884 			} else {
3885 				targ->dv_buffer[i++] = 0xff;
3886 			}
3887 		}
3888 	}
3889 }
3890 
3891 static u_int
3892 ahd_linux_user_tagdepth(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3893 {
3894 	static int warned_user;
3895 	u_int tags;
3896 
3897 	tags = 0;
3898 	if ((ahd->user_discenable & devinfo->target_mask) != 0) {
3899 		if (ahd->unit >= NUM_ELEMENTS(aic79xx_tag_info)) {
3900 
3901 			if (warned_user == 0) {
3902 				printf(KERN_WARNING
3903 "aic79xx: WARNING: Insufficient tag_info instances\n"
3904 "aic79xx: for installed controllers.  Using defaults\n"
3905 "aic79xx: Please update the aic79xx_tag_info array in\n"
3906 "aic79xx: the aic79xx_osm.c source file.\n");
3907 				warned_user++;
3908 			}
3909 			tags = AHD_MAX_QUEUE;
3910 		} else {
3911 			adapter_tag_info_t *tag_info;
3912 
3913 			tag_info = &aic79xx_tag_info[ahd->unit];
3914 			tags = tag_info->tag_commands[devinfo->target_offset];
3915 			if (tags > AHD_MAX_QUEUE)
3916 				tags = AHD_MAX_QUEUE;
3917 		}
3918 	}
3919 	return (tags);
3920 }
3921 
3922 static u_int
3923 ahd_linux_user_dv_setting(struct ahd_softc *ahd)
3924 {
3925 	static int warned_user;
3926 	int dv;
3927 
3928 	if (ahd->unit >= NUM_ELEMENTS(aic79xx_dv_settings)) {
3929 
3930 		if (warned_user == 0) {
3931 			printf(KERN_WARNING
3932 "aic79xx: WARNING: Insufficient dv settings instances\n"
3933 "aic79xx: for installed controllers. Using defaults\n"
3934 "aic79xx: Please update the aic79xx_dv_settings array in"
3935 "aic79xx: the aic79xx_osm.c source file.\n");
3936 			warned_user++;
3937 		}
3938 		dv = -1;
3939 	} else {
3940 
3941 		dv = aic79xx_dv_settings[ahd->unit];
3942 	}
3943 
3944 	if (dv < 0) {
3945 		/*
3946 		 * Apply the default.
3947 		 */
3948 		dv = 1;
3949 		if (ahd->seep_config != 0)
3950 			dv = (ahd->seep_config->bios_control & CFENABLEDV);
3951 	}
3952 	return (dv);
3953 }
3954 
3955 static void
3956 ahd_linux_setup_user_rd_strm_settings(struct ahd_softc *ahd)
3957 {
3958 	static	int warned_user;
3959 	u_int	rd_strm_mask;
3960 	u_int	target_id;
3961 
3962 	/*
3963 	 * If we have specific read streaming info for this controller,
3964 	 * apply it.  Otherwise use the defaults.
3965 	 */
3966 	 if (ahd->unit >= NUM_ELEMENTS(aic79xx_rd_strm_info)) {
3967 
3968 		if (warned_user == 0) {
3969 
3970 			printf(KERN_WARNING
3971 "aic79xx: WARNING: Insufficient rd_strm instances\n"
3972 "aic79xx: for installed controllers. Using defaults\n"
3973 "aic79xx: Please update the aic79xx_rd_strm_info array\n"
3974 "aic79xx: in the aic79xx_osm.c source file.\n");
3975 			warned_user++;
3976 		}
3977 		rd_strm_mask = AIC79XX_CONFIGED_RD_STRM;
3978 	} else {
3979 
3980 		rd_strm_mask = aic79xx_rd_strm_info[ahd->unit];
3981 	}
3982 	for (target_id = 0; target_id < 16; target_id++) {
3983 		struct ahd_devinfo devinfo;
3984 		struct ahd_initiator_tinfo *tinfo;
3985 		struct ahd_tmode_tstate *tstate;
3986 
3987 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
3988 					    target_id, &tstate);
3989 		ahd_compile_devinfo(&devinfo, ahd->our_id, target_id,
3990 				    CAM_LUN_WILDCARD, 'A', ROLE_INITIATOR);
3991 		tinfo->user.ppr_options &= ~MSG_EXT_PPR_RD_STRM;
3992 		if ((rd_strm_mask & devinfo.target_mask) != 0)
3993 			tinfo->user.ppr_options |= MSG_EXT_PPR_RD_STRM;
3994 	}
3995 }
3996 
3997 /*
3998  * Determines the queue depth for a given device.
3999  */
4000 static void
4001 ahd_linux_device_queue_depth(struct ahd_softc *ahd,
4002 			     struct ahd_linux_device *dev)
4003 {
4004 	struct	ahd_devinfo devinfo;
4005 	u_int	tags;
4006 
4007 	ahd_compile_devinfo(&devinfo,
4008 			    ahd->our_id,
4009 			    dev->target->target, dev->lun,
4010 			    dev->target->channel == 0 ? 'A' : 'B',
4011 			    ROLE_INITIATOR);
4012 	tags = ahd_linux_user_tagdepth(ahd, &devinfo);
4013 	if (tags != 0
4014 	 && dev->scsi_device != NULL
4015 	 && dev->scsi_device->tagged_supported != 0) {
4016 
4017 		ahd_set_tags(ahd, &devinfo, AHD_QUEUE_TAGGED);
4018 		ahd_print_devinfo(ahd, &devinfo);
4019 		printf("Tagged Queuing enabled.  Depth %d\n", tags);
4020 	} else {
4021 		ahd_set_tags(ahd, &devinfo, AHD_QUEUE_NONE);
4022 	}
4023 }
4024 
4025 static void
4026 ahd_linux_run_device_queue(struct ahd_softc *ahd, struct ahd_linux_device *dev)
4027 {
4028 	struct	 ahd_cmd *acmd;
4029 	struct	 scsi_cmnd *cmd;
4030 	struct	 scb *scb;
4031 	struct	 hardware_scb *hscb;
4032 	struct	 ahd_initiator_tinfo *tinfo;
4033 	struct	 ahd_tmode_tstate *tstate;
4034 	u_int	 col_idx;
4035 	uint16_t mask;
4036 
4037 	if ((dev->flags & AHD_DEV_ON_RUN_LIST) != 0)
4038 		panic("running device on run list");
4039 
4040 	while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
4041 	    && dev->openings > 0 && dev->qfrozen == 0) {
4042 
4043 		/*
4044 		 * Schedule us to run later.  The only reason we are not
4045 		 * running is because the whole controller Q is frozen.
4046 		 */
4047 		if (ahd->platform_data->qfrozen != 0
4048 		 && AHD_DV_SIMQ_FROZEN(ahd) == 0) {
4049 
4050 			TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
4051 					  dev, links);
4052 			dev->flags |= AHD_DEV_ON_RUN_LIST;
4053 			return;
4054 		}
4055 
4056 		cmd = &acmd_scsi_cmd(acmd);
4057 
4058 		/*
4059 		 * Get an scb to use.
4060 		 */
4061 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
4062 					    cmd->device->id, &tstate);
4063 		if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) == 0
4064 		 || (tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
4065 			col_idx = AHD_NEVER_COL_IDX;
4066 		} else {
4067 			col_idx = AHD_BUILD_COL_IDX(cmd->device->id,
4068 						    cmd->device->lun);
4069 		}
4070 		if ((scb = ahd_get_scb(ahd, col_idx)) == NULL) {
4071 			TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq,
4072 					 dev, links);
4073 			dev->flags |= AHD_DEV_ON_RUN_LIST;
4074 			ahd->flags |= AHD_RESOURCE_SHORTAGE;
4075 			return;
4076 		}
4077 		TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
4078 		scb->io_ctx = cmd;
4079 		scb->platform_data->dev = dev;
4080 		hscb = scb->hscb;
4081 		cmd->host_scribble = (char *)scb;
4082 
4083 		/*
4084 		 * Fill out basics of the HSCB.
4085 		 */
4086 		hscb->control = 0;
4087 		hscb->scsiid = BUILD_SCSIID(ahd, cmd);
4088 		hscb->lun = cmd->device->lun;
4089 		scb->hscb->task_management = 0;
4090 		mask = SCB_GET_TARGET_MASK(ahd, scb);
4091 
4092 		if ((ahd->user_discenable & mask) != 0)
4093 			hscb->control |= DISCENB;
4094 
4095 	 	if (AHD_DV_CMD(cmd) != 0)
4096 			scb->flags |= SCB_SILENT;
4097 
4098 		if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ) != 0)
4099 			scb->flags |= SCB_PACKETIZED;
4100 
4101 		if ((tstate->auto_negotiate & mask) != 0) {
4102 			scb->flags |= SCB_AUTO_NEGOTIATE;
4103 			scb->hscb->control |= MK_MESSAGE;
4104 		}
4105 
4106 		if ((dev->flags & (AHD_DEV_Q_TAGGED|AHD_DEV_Q_BASIC)) != 0) {
4107 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4108 			int	msg_bytes;
4109 			uint8_t tag_msgs[2];
4110 
4111 			msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
4112 			if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
4113 				hscb->control |= tag_msgs[0];
4114 				if (tag_msgs[0] == MSG_ORDERED_TASK)
4115 					dev->commands_since_idle_or_otag = 0;
4116 			} else
4117 #endif
4118 			if (dev->commands_since_idle_or_otag == AHD_OTAG_THRESH
4119 			 && (dev->flags & AHD_DEV_Q_TAGGED) != 0) {
4120 				hscb->control |= MSG_ORDERED_TASK;
4121 				dev->commands_since_idle_or_otag = 0;
4122 			} else {
4123 				hscb->control |= MSG_SIMPLE_TASK;
4124 			}
4125 		}
4126 
4127 		hscb->cdb_len = cmd->cmd_len;
4128 		memcpy(hscb->shared_data.idata.cdb, cmd->cmnd, hscb->cdb_len);
4129 
4130 		scb->sg_count = 0;
4131 		ahd_set_residual(scb, 0);
4132 		ahd_set_sense_residual(scb, 0);
4133 		if (cmd->use_sg != 0) {
4134 			void	*sg;
4135 			struct	 scatterlist *cur_seg;
4136 			u_int	 nseg;
4137 			int	 dir;
4138 
4139 			cur_seg = (struct scatterlist *)cmd->request_buffer;
4140 			dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
4141 			nseg = pci_map_sg(ahd->dev_softc, cur_seg,
4142 					  cmd->use_sg, dir);
4143 			scb->platform_data->xfer_len = 0;
4144 			for (sg = scb->sg_list; nseg > 0; nseg--, cur_seg++) {
4145 				bus_addr_t addr;
4146 				bus_size_t len;
4147 
4148 				addr = sg_dma_address(cur_seg);
4149 				len = sg_dma_len(cur_seg);
4150 				scb->platform_data->xfer_len += len;
4151 				sg = ahd_sg_setup(ahd, scb, sg, addr, len,
4152 						  /*last*/nseg == 1);
4153 			}
4154 		} else if (cmd->request_bufflen != 0) {
4155 			void *sg;
4156 			bus_addr_t addr;
4157 			int dir;
4158 
4159 			sg = scb->sg_list;
4160 			dir = scsi_to_pci_dma_dir(cmd->sc_data_direction);
4161 			addr = pci_map_single(ahd->dev_softc,
4162 					      cmd->request_buffer,
4163 					      cmd->request_bufflen, dir);
4164 			scb->platform_data->xfer_len = cmd->request_bufflen;
4165 			scb->platform_data->buf_busaddr = addr;
4166 			sg = ahd_sg_setup(ahd, scb, sg, addr,
4167 					  cmd->request_bufflen, /*last*/TRUE);
4168 		}
4169 
4170 		LIST_INSERT_HEAD(&ahd->pending_scbs, scb, pending_links);
4171 		dev->openings--;
4172 		dev->active++;
4173 		dev->commands_issued++;
4174 
4175 		/* Update the error counting bucket and dump if needed */
4176 		if (dev->target->cmds_since_error) {
4177 			dev->target->cmds_since_error++;
4178 			if (dev->target->cmds_since_error >
4179 			    AHD_LINUX_ERR_THRESH)
4180 				dev->target->cmds_since_error = 0;
4181 		}
4182 
4183 		if ((dev->flags & AHD_DEV_PERIODIC_OTAG) != 0)
4184 			dev->commands_since_idle_or_otag++;
4185 		scb->flags |= SCB_ACTIVE;
4186 		ahd_queue_scb(ahd, scb);
4187 	}
4188 }
4189 
4190 /*
4191  * SCSI controller interrupt handler.
4192  */
4193 irqreturn_t
4194 ahd_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
4195 {
4196 	struct	ahd_softc *ahd;
4197 	u_long	flags;
4198 	int	ours;
4199 
4200 	ahd = (struct ahd_softc *) dev_id;
4201 	ahd_lock(ahd, &flags);
4202 	ours = ahd_intr(ahd);
4203 	if (ahd_linux_next_device_to_run(ahd) != NULL)
4204 		ahd_schedule_runq(ahd);
4205 	ahd_linux_run_complete_queue(ahd);
4206 	ahd_unlock(ahd, &flags);
4207 	return IRQ_RETVAL(ours);
4208 }
4209 
4210 void
4211 ahd_platform_flushwork(struct ahd_softc *ahd)
4212 {
4213 
4214 	while (ahd_linux_run_complete_queue(ahd) != NULL)
4215 		;
4216 }
4217 
4218 static struct ahd_linux_target*
4219 ahd_linux_alloc_target(struct ahd_softc *ahd, u_int channel, u_int target)
4220 {
4221 	struct ahd_linux_target *targ;
4222 
4223 	targ = malloc(sizeof(*targ), M_DEVBUF, M_NOWAIT);
4224 	if (targ == NULL)
4225 		return (NULL);
4226 	memset(targ, 0, sizeof(*targ));
4227 	targ->channel = channel;
4228 	targ->target = target;
4229 	targ->ahd = ahd;
4230 	targ->flags = AHD_DV_REQUIRED;
4231 	ahd->platform_data->targets[target] = targ;
4232 	return (targ);
4233 }
4234 
4235 static void
4236 ahd_linux_free_target(struct ahd_softc *ahd, struct ahd_linux_target *targ)
4237 {
4238 	struct ahd_devinfo devinfo;
4239 	struct ahd_initiator_tinfo *tinfo;
4240 	struct ahd_tmode_tstate *tstate;
4241 	u_int our_id;
4242 	u_int target_offset;
4243 	char channel;
4244 
4245 	/*
4246 	 * Force a negotiation to async/narrow on any
4247 	 * future command to this device unless a bus
4248 	 * reset occurs between now and that command.
4249 	 */
4250 	channel = 'A' + targ->channel;
4251 	our_id = ahd->our_id;
4252 	target_offset = targ->target;
4253 	tinfo = ahd_fetch_transinfo(ahd, channel, our_id,
4254 				    targ->target, &tstate);
4255 	ahd_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
4256 			    channel, ROLE_INITIATOR);
4257 	ahd_set_syncrate(ahd, &devinfo, 0, 0, 0,
4258 			 AHD_TRANS_GOAL, /*paused*/FALSE);
4259 	ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
4260 		      AHD_TRANS_GOAL, /*paused*/FALSE);
4261 	ahd_update_neg_request(ahd, &devinfo, tstate, tinfo, AHD_NEG_ALWAYS);
4262  	ahd->platform_data->targets[target_offset] = NULL;
4263 	if (targ->inq_data != NULL)
4264 		free(targ->inq_data, M_DEVBUF);
4265 	if (targ->dv_buffer != NULL)
4266 		free(targ->dv_buffer, M_DEVBUF);
4267 	if (targ->dv_buffer1 != NULL)
4268 		free(targ->dv_buffer1, M_DEVBUF);
4269 	free(targ, M_DEVBUF);
4270 }
4271 
4272 static struct ahd_linux_device*
4273 ahd_linux_alloc_device(struct ahd_softc *ahd,
4274 		 struct ahd_linux_target *targ, u_int lun)
4275 {
4276 	struct ahd_linux_device *dev;
4277 
4278 	dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
4279 	if (dev == NULL)
4280 		return (NULL);
4281 	memset(dev, 0, sizeof(*dev));
4282 	init_timer(&dev->timer);
4283 	TAILQ_INIT(&dev->busyq);
4284 	dev->flags = AHD_DEV_UNCONFIGURED;
4285 	dev->lun = lun;
4286 	dev->target = targ;
4287 
4288 	/*
4289 	 * We start out life using untagged
4290 	 * transactions of which we allow one.
4291 	 */
4292 	dev->openings = 1;
4293 
4294 	/*
4295 	 * Set maxtags to 0.  This will be changed if we
4296 	 * later determine that we are dealing with
4297 	 * a tagged queuing capable device.
4298 	 */
4299 	dev->maxtags = 0;
4300 
4301 	targ->refcount++;
4302 	targ->devices[lun] = dev;
4303 	return (dev);
4304 }
4305 
4306 static void
4307 ahd_linux_free_device(struct ahd_softc *ahd, struct ahd_linux_device *dev)
4308 {
4309 	struct ahd_linux_target *targ;
4310 
4311 	del_timer(&dev->timer);
4312 	targ = dev->target;
4313 	targ->devices[dev->lun] = NULL;
4314 	free(dev, M_DEVBUF);
4315 	targ->refcount--;
4316 	if (targ->refcount == 0
4317 	 && (targ->flags & AHD_DV_REQUIRED) == 0)
4318 		ahd_linux_free_target(ahd, targ);
4319 }
4320 
4321 void
4322 ahd_send_async(struct ahd_softc *ahd, char channel,
4323 	       u_int target, u_int lun, ac_code code, void *arg)
4324 {
4325 	switch (code) {
4326 	case AC_TRANSFER_NEG:
4327 	{
4328 		char	buf[80];
4329 		struct	ahd_linux_target *targ;
4330 		struct	info_str info;
4331 		struct	ahd_initiator_tinfo *tinfo;
4332 		struct	ahd_tmode_tstate *tstate;
4333 
4334 		info.buffer = buf;
4335 		info.length = sizeof(buf);
4336 		info.offset = 0;
4337 		info.pos = 0;
4338 		tinfo = ahd_fetch_transinfo(ahd, channel, ahd->our_id,
4339 					    target, &tstate);
4340 
4341 		/*
4342 		 * Don't bother reporting results while
4343 		 * negotiations are still pending.
4344 		 */
4345 		if (tinfo->curr.period != tinfo->goal.period
4346 		 || tinfo->curr.width != tinfo->goal.width
4347 		 || tinfo->curr.offset != tinfo->goal.offset
4348 		 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
4349 			if (bootverbose == 0)
4350 				break;
4351 
4352 		/*
4353 		 * Don't bother reporting results that
4354 		 * are identical to those last reported.
4355 		 */
4356 		targ = ahd->platform_data->targets[target];
4357 		if (targ == NULL)
4358 			break;
4359 		if (tinfo->curr.period == targ->last_tinfo.period
4360 		 && tinfo->curr.width == targ->last_tinfo.width
4361 		 && tinfo->curr.offset == targ->last_tinfo.offset
4362 		 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
4363 			if (bootverbose == 0)
4364 				break;
4365 
4366 		targ->last_tinfo.period = tinfo->curr.period;
4367 		targ->last_tinfo.width = tinfo->curr.width;
4368 		targ->last_tinfo.offset = tinfo->curr.offset;
4369 		targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
4370 
4371 		printf("(%s:%c:", ahd_name(ahd), channel);
4372 		if (target == CAM_TARGET_WILDCARD)
4373 			printf("*): ");
4374 		else
4375 			printf("%d): ", target);
4376 		ahd_format_transinfo(&info, &tinfo->curr);
4377 		if (info.pos < info.length)
4378 			*info.buffer = '\0';
4379 		else
4380 			buf[info.length - 1] = '\0';
4381 		printf("%s", buf);
4382 		break;
4383 	}
4384         case AC_SENT_BDR:
4385 	{
4386 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
4387 		WARN_ON(lun != CAM_LUN_WILDCARD);
4388 		scsi_report_device_reset(ahd->platform_data->host,
4389 					 channel - 'A', target);
4390 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4391 		Scsi_Device *scsi_dev;
4392 
4393 		/*
4394 		 * Find the SCSI device associated with this
4395 		 * request and indicate that a UA is expected.
4396 		 */
4397 		for (scsi_dev = ahd->platform_data->host->host_queue;
4398 		     scsi_dev != NULL; scsi_dev = scsi_dev->next) {
4399 			if (channel - 'A' == scsi_dev->channel
4400 			 && target == scsi_dev->id
4401 			 && (lun == CAM_LUN_WILDCARD
4402 			  || lun == scsi_dev->lun)) {
4403 				scsi_dev->was_reset = 1;
4404 				scsi_dev->expecting_cc_ua = 1;
4405 			}
4406 		}
4407 #endif
4408 		break;
4409 	}
4410         case AC_BUS_RESET:
4411 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0)
4412 		if (ahd->platform_data->host != NULL) {
4413 			scsi_report_bus_reset(ahd->platform_data->host,
4414 					      channel - 'A');
4415 		}
4416 #endif
4417                 break;
4418         default:
4419                 panic("ahd_send_async: Unexpected async event");
4420         }
4421 }
4422 
4423 /*
4424  * Calls the higher level scsi done function and frees the scb.
4425  */
4426 void
4427 ahd_done(struct ahd_softc *ahd, struct scb *scb)
4428 {
4429 	Scsi_Cmnd *cmd;
4430 	struct	  ahd_linux_device *dev;
4431 
4432 	if ((scb->flags & SCB_ACTIVE) == 0) {
4433 		printf("SCB %d done'd twice\n", SCB_GET_TAG(scb));
4434 		ahd_dump_card_state(ahd);
4435 		panic("Stopping for safety");
4436 	}
4437 	LIST_REMOVE(scb, pending_links);
4438 	cmd = scb->io_ctx;
4439 	dev = scb->platform_data->dev;
4440 	dev->active--;
4441 	dev->openings++;
4442 	if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
4443 		cmd->result &= ~(CAM_DEV_QFRZN << 16);
4444 		dev->qfrozen--;
4445 	}
4446 	ahd_linux_unmap_scb(ahd, scb);
4447 
4448 	/*
4449 	 * Guard against stale sense data.
4450 	 * The Linux mid-layer assumes that sense
4451 	 * was retrieved anytime the first byte of
4452 	 * the sense buffer looks "sane".
4453 	 */
4454 	cmd->sense_buffer[0] = 0;
4455 	if (ahd_get_transaction_status(scb) == CAM_REQ_INPROG) {
4456 		uint32_t amount_xferred;
4457 
4458 		amount_xferred =
4459 		    ahd_get_transfer_length(scb) - ahd_get_residual(scb);
4460 		if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
4461 #ifdef AHD_DEBUG
4462 			if ((ahd_debug & AHD_SHOW_MISC) != 0) {
4463 				ahd_print_path(ahd, scb);
4464 				printf("Set CAM_UNCOR_PARITY\n");
4465 			}
4466 #endif
4467 			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
4468 		} else if (amount_xferred < scb->io_ctx->underflow) {
4469 			u_int i;
4470 
4471 			ahd_print_path(ahd, scb);
4472 			printf("CDB:");
4473 			for (i = 0; i < scb->io_ctx->cmd_len; i++)
4474 				printf(" 0x%x", scb->io_ctx->cmnd[i]);
4475 			printf("\n");
4476 			ahd_print_path(ahd, scb);
4477 			printf("Saw underflow (%ld of %ld bytes). "
4478 			       "Treated as error\n",
4479 				ahd_get_residual(scb),
4480 				ahd_get_transfer_length(scb));
4481 			ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
4482 		} else {
4483 			ahd_set_transaction_status(scb, CAM_REQ_CMP);
4484 		}
4485 	} else if (ahd_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
4486 		ahd_linux_handle_scsi_status(ahd, dev, scb);
4487 	} else if (ahd_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
4488 		dev->flags |= AHD_DEV_UNCONFIGURED;
4489 		if (AHD_DV_CMD(cmd) == FALSE)
4490 			dev->target->flags &= ~AHD_DV_REQUIRED;
4491 	}
4492 	/*
4493 	 * Start DV for devices that require it assuming the first command
4494 	 * sent does not result in a selection timeout.
4495 	 */
4496 	if (ahd_get_transaction_status(scb) != CAM_SEL_TIMEOUT
4497 	 && (dev->target->flags & AHD_DV_REQUIRED) != 0)
4498 		ahd_linux_start_dv(ahd);
4499 
4500 	if (dev->openings == 1
4501 	 && ahd_get_transaction_status(scb) == CAM_REQ_CMP
4502 	 && ahd_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
4503 		dev->tag_success_count++;
4504 	/*
4505 	 * Some devices deal with temporary internal resource
4506 	 * shortages by returning queue full.  When the queue
4507 	 * full occurrs, we throttle back.  Slowly try to get
4508 	 * back to our previous queue depth.
4509 	 */
4510 	if ((dev->openings + dev->active) < dev->maxtags
4511 	 && dev->tag_success_count > AHD_TAG_SUCCESS_INTERVAL) {
4512 		dev->tag_success_count = 0;
4513 		dev->openings++;
4514 	}
4515 
4516 	if (dev->active == 0)
4517 		dev->commands_since_idle_or_otag = 0;
4518 
4519 	if (TAILQ_EMPTY(&dev->busyq)) {
4520 		if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
4521 		 && dev->active == 0
4522 		 && (dev->flags & AHD_DEV_TIMER_ACTIVE) == 0)
4523 			ahd_linux_free_device(ahd, dev);
4524 	} else if ((dev->flags & AHD_DEV_ON_RUN_LIST) == 0) {
4525 		TAILQ_INSERT_TAIL(&ahd->platform_data->device_runq, dev, links);
4526 		dev->flags |= AHD_DEV_ON_RUN_LIST;
4527 	}
4528 
4529 	if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
4530 		printf("Recovery SCB completes\n");
4531 		if (ahd_get_transaction_status(scb) == CAM_BDR_SENT
4532 		 || ahd_get_transaction_status(scb) == CAM_REQ_ABORTED)
4533 			ahd_set_transaction_status(scb, CAM_CMD_TIMEOUT);
4534 		if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
4535 			scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
4536 			up(&ahd->platform_data->eh_sem);
4537 		}
4538 	}
4539 
4540 	ahd_free_scb(ahd, scb);
4541 	ahd_linux_queue_cmd_complete(ahd, cmd);
4542 
4543 	if ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_EMPTY) != 0
4544 	 && LIST_FIRST(&ahd->pending_scbs) == NULL) {
4545 		ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_EMPTY;
4546 		up(&ahd->platform_data->dv_sem);
4547 	}
4548 }
4549 
4550 static void
4551 ahd_linux_handle_scsi_status(struct ahd_softc *ahd,
4552 			     struct ahd_linux_device *dev, struct scb *scb)
4553 {
4554 	struct	ahd_devinfo devinfo;
4555 
4556 	ahd_compile_devinfo(&devinfo,
4557 			    ahd->our_id,
4558 			    dev->target->target, dev->lun,
4559 			    dev->target->channel == 0 ? 'A' : 'B',
4560 			    ROLE_INITIATOR);
4561 
4562 	/*
4563 	 * We don't currently trust the mid-layer to
4564 	 * properly deal with queue full or busy.  So,
4565 	 * when one occurs, we tell the mid-layer to
4566 	 * unconditionally requeue the command to us
4567 	 * so that we can retry it ourselves.  We also
4568 	 * implement our own throttling mechanism so
4569 	 * we don't clobber the device with too many
4570 	 * commands.
4571 	 */
4572 	switch (ahd_get_scsi_status(scb)) {
4573 	default:
4574 		break;
4575 	case SCSI_STATUS_CHECK_COND:
4576 	case SCSI_STATUS_CMD_TERMINATED:
4577 	{
4578 		Scsi_Cmnd *cmd;
4579 
4580 		/*
4581 		 * Copy sense information to the OS's cmd
4582 		 * structure if it is available.
4583 		 */
4584 		cmd = scb->io_ctx;
4585 		if ((scb->flags & (SCB_SENSE|SCB_PKT_SENSE)) != 0) {
4586 			struct scsi_status_iu_header *siu;
4587 			u_int sense_size;
4588 			u_int sense_offset;
4589 
4590 			if (scb->flags & SCB_SENSE) {
4591 				sense_size = MIN(sizeof(struct scsi_sense_data)
4592 					       - ahd_get_sense_residual(scb),
4593 						 sizeof(cmd->sense_buffer));
4594 				sense_offset = 0;
4595 			} else {
4596 				/*
4597 				 * Copy only the sense data into the provided
4598 				 * buffer.
4599 				 */
4600 				siu = (struct scsi_status_iu_header *)
4601 				    scb->sense_data;
4602 				sense_size = MIN(scsi_4btoul(siu->sense_length),
4603 						sizeof(cmd->sense_buffer));
4604 				sense_offset = SIU_SENSE_OFFSET(siu);
4605 			}
4606 
4607 			memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
4608 			memcpy(cmd->sense_buffer,
4609 			       ahd_get_sense_buf(ahd, scb)
4610 			       + sense_offset, sense_size);
4611 			cmd->result |= (DRIVER_SENSE << 24);
4612 
4613 #ifdef AHD_DEBUG
4614 			if (ahd_debug & AHD_SHOW_SENSE) {
4615 				int i;
4616 
4617 				printf("Copied %d bytes of sense data at %d:",
4618 				       sense_size, sense_offset);
4619 				for (i = 0; i < sense_size; i++) {
4620 					if ((i & 0xF) == 0)
4621 						printf("\n");
4622 					printf("0x%x ", cmd->sense_buffer[i]);
4623 				}
4624 				printf("\n");
4625 			}
4626 #endif
4627 		}
4628 		break;
4629 	}
4630 	case SCSI_STATUS_QUEUE_FULL:
4631 	{
4632 		/*
4633 		 * By the time the core driver has returned this
4634 		 * command, all other commands that were queued
4635 		 * to us but not the device have been returned.
4636 		 * This ensures that dev->active is equal to
4637 		 * the number of commands actually queued to
4638 		 * the device.
4639 		 */
4640 		dev->tag_success_count = 0;
4641 		if (dev->active != 0) {
4642 			/*
4643 			 * Drop our opening count to the number
4644 			 * of commands currently outstanding.
4645 			 */
4646 			dev->openings = 0;
4647 #ifdef AHD_DEBUG
4648 			if ((ahd_debug & AHD_SHOW_QFULL) != 0) {
4649 				ahd_print_path(ahd, scb);
4650 				printf("Dropping tag count to %d\n",
4651 				       dev->active);
4652 			}
4653 #endif
4654 			if (dev->active == dev->tags_on_last_queuefull) {
4655 
4656 				dev->last_queuefull_same_count++;
4657 				/*
4658 				 * If we repeatedly see a queue full
4659 				 * at the same queue depth, this
4660 				 * device has a fixed number of tag
4661 				 * slots.  Lock in this tag depth
4662 				 * so we stop seeing queue fulls from
4663 				 * this device.
4664 				 */
4665 				if (dev->last_queuefull_same_count
4666 				 == AHD_LOCK_TAGS_COUNT) {
4667 					dev->maxtags = dev->active;
4668 					ahd_print_path(ahd, scb);
4669 					printf("Locking max tag count at %d\n",
4670 					       dev->active);
4671 				}
4672 			} else {
4673 				dev->tags_on_last_queuefull = dev->active;
4674 				dev->last_queuefull_same_count = 0;
4675 			}
4676 			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
4677 			ahd_set_scsi_status(scb, SCSI_STATUS_OK);
4678 			ahd_platform_set_tags(ahd, &devinfo,
4679 				     (dev->flags & AHD_DEV_Q_BASIC)
4680 				   ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4681 			break;
4682 		}
4683 		/*
4684 		 * Drop down to a single opening, and treat this
4685 		 * as if the target returned BUSY SCSI status.
4686 		 */
4687 		dev->openings = 1;
4688 		ahd_platform_set_tags(ahd, &devinfo,
4689 			     (dev->flags & AHD_DEV_Q_BASIC)
4690 			   ? AHD_QUEUE_BASIC : AHD_QUEUE_TAGGED);
4691 		ahd_set_scsi_status(scb, SCSI_STATUS_BUSY);
4692 		/* FALLTHROUGH */
4693 	}
4694 	case SCSI_STATUS_BUSY:
4695 		/*
4696 		 * Set a short timer to defer sending commands for
4697 		 * a bit since Linux will not delay in this case.
4698 		 */
4699 		if ((dev->flags & AHD_DEV_TIMER_ACTIVE) != 0) {
4700 			printf("%s:%c:%d: Device Timer still active during "
4701 			       "busy processing\n", ahd_name(ahd),
4702 				dev->target->channel, dev->target->target);
4703 			break;
4704 		}
4705 		dev->flags |= AHD_DEV_TIMER_ACTIVE;
4706 		dev->qfrozen++;
4707 		init_timer(&dev->timer);
4708 		dev->timer.data = (u_long)dev;
4709 		dev->timer.expires = jiffies + (HZ/2);
4710 		dev->timer.function = ahd_linux_dev_timed_unfreeze;
4711 		add_timer(&dev->timer);
4712 		break;
4713 	}
4714 }
4715 
4716 static void
4717 ahd_linux_queue_cmd_complete(struct ahd_softc *ahd, Scsi_Cmnd *cmd)
4718 {
4719 	/*
4720 	 * Typically, the complete queue has very few entries
4721 	 * queued to it before the queue is emptied by
4722 	 * ahd_linux_run_complete_queue, so sorting the entries
4723 	 * by generation number should be inexpensive.
4724 	 * We perform the sort so that commands that complete
4725 	 * with an error are retuned in the order origionally
4726 	 * queued to the controller so that any subsequent retries
4727 	 * are performed in order.  The underlying ahd routines do
4728 	 * not guarantee the order that aborted commands will be
4729 	 * returned to us.
4730 	 */
4731 	struct ahd_completeq *completeq;
4732 	struct ahd_cmd *list_cmd;
4733 	struct ahd_cmd *acmd;
4734 
4735 	/*
4736 	 * Map CAM error codes into Linux Error codes.  We
4737 	 * avoid the conversion so that the DV code has the
4738 	 * full error information available when making
4739 	 * state change decisions.
4740 	 */
4741 	if (AHD_DV_CMD(cmd) == FALSE) {
4742 		uint32_t status;
4743 		u_int new_status;
4744 
4745 		status = ahd_cmd_get_transaction_status(cmd);
4746 		if (status != CAM_REQ_CMP) {
4747 			struct ahd_linux_device *dev;
4748 			struct ahd_devinfo devinfo;
4749 			cam_status cam_status;
4750 			uint32_t action;
4751 			u_int scsi_status;
4752 
4753 			dev = ahd_linux_get_device(ahd, cmd->device->channel,
4754 						   cmd->device->id,
4755 						   cmd->device->lun,
4756 						   /*alloc*/FALSE);
4757 
4758 			if (dev == NULL)
4759 				goto no_fallback;
4760 
4761 			ahd_compile_devinfo(&devinfo,
4762 					    ahd->our_id,
4763 					    dev->target->target, dev->lun,
4764 					    dev->target->channel == 0 ? 'A':'B',
4765 					    ROLE_INITIATOR);
4766 
4767 			scsi_status = ahd_cmd_get_scsi_status(cmd);
4768 			cam_status = ahd_cmd_get_transaction_status(cmd);
4769 			action = aic_error_action(cmd, dev->target->inq_data,
4770 						  cam_status, scsi_status);
4771 			if ((action & SSQ_FALLBACK) != 0) {
4772 
4773 				/* Update stats */
4774 				dev->target->errors_detected++;
4775 				if (dev->target->cmds_since_error == 0)
4776 					dev->target->cmds_since_error++;
4777 				else {
4778 					dev->target->cmds_since_error = 0;
4779 					ahd_linux_fallback(ahd, &devinfo);
4780 				}
4781 			}
4782 		}
4783 no_fallback:
4784 		switch (status) {
4785 		case CAM_REQ_INPROG:
4786 		case CAM_REQ_CMP:
4787 		case CAM_SCSI_STATUS_ERROR:
4788 			new_status = DID_OK;
4789 			break;
4790 		case CAM_REQ_ABORTED:
4791 			new_status = DID_ABORT;
4792 			break;
4793 		case CAM_BUSY:
4794 			new_status = DID_BUS_BUSY;
4795 			break;
4796 		case CAM_REQ_INVALID:
4797 		case CAM_PATH_INVALID:
4798 			new_status = DID_BAD_TARGET;
4799 			break;
4800 		case CAM_SEL_TIMEOUT:
4801 			new_status = DID_NO_CONNECT;
4802 			break;
4803 		case CAM_SCSI_BUS_RESET:
4804 		case CAM_BDR_SENT:
4805 			new_status = DID_RESET;
4806 			break;
4807 		case CAM_UNCOR_PARITY:
4808 			new_status = DID_PARITY;
4809 			break;
4810 		case CAM_CMD_TIMEOUT:
4811 			new_status = DID_TIME_OUT;
4812 			break;
4813 		case CAM_UA_ABORT:
4814 		case CAM_REQ_CMP_ERR:
4815 		case CAM_AUTOSENSE_FAIL:
4816 		case CAM_NO_HBA:
4817 		case CAM_DATA_RUN_ERR:
4818 		case CAM_UNEXP_BUSFREE:
4819 		case CAM_SEQUENCE_FAIL:
4820 		case CAM_CCB_LEN_ERR:
4821 		case CAM_PROVIDE_FAIL:
4822 		case CAM_REQ_TERMIO:
4823 		case CAM_UNREC_HBA_ERROR:
4824 		case CAM_REQ_TOO_BIG:
4825 			new_status = DID_ERROR;
4826 			break;
4827 		case CAM_REQUEUE_REQ:
4828 			/*
4829 			 * If we want the request requeued, make sure there
4830 			 * are sufficent retries.  In the old scsi error code,
4831 			 * we used to be able to specify a result code that
4832 			 * bypassed the retry count.  Now we must use this
4833 			 * hack.  We also "fake" a check condition with
4834 			 * a sense code of ABORTED COMMAND.  This seems to
4835 			 * evoke a retry even if this command is being sent
4836 			 * via the eh thread.  Ick!  Ick!  Ick!
4837 			 */
4838 			if (cmd->retries > 0)
4839 				cmd->retries--;
4840 			new_status = DID_OK;
4841 			ahd_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
4842 			cmd->result |= (DRIVER_SENSE << 24);
4843 			memset(cmd->sense_buffer, 0,
4844 			       sizeof(cmd->sense_buffer));
4845 			cmd->sense_buffer[0] = SSD_ERRCODE_VALID
4846 					     | SSD_CURRENT_ERROR;
4847 			cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
4848 			break;
4849 		default:
4850 			/* We should never get here */
4851 			new_status = DID_ERROR;
4852 			break;
4853 		}
4854 
4855 		ahd_cmd_set_transaction_status(cmd, new_status);
4856 	}
4857 
4858 	completeq = &ahd->platform_data->completeq;
4859 	list_cmd = TAILQ_FIRST(completeq);
4860 	acmd = (struct ahd_cmd *)cmd;
4861 	while (list_cmd != NULL
4862 	    && acmd_scsi_cmd(list_cmd).serial_number
4863 	     < acmd_scsi_cmd(acmd).serial_number)
4864 		list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
4865 	if (list_cmd != NULL)
4866 		TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
4867 	else
4868 		TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
4869 }
4870 
4871 static void
4872 ahd_linux_filter_inquiry(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4873 {
4874 	struct	scsi_inquiry_data *sid;
4875 	struct	ahd_initiator_tinfo *tinfo;
4876 	struct	ahd_transinfo *user;
4877 	struct	ahd_transinfo *goal;
4878 	struct	ahd_transinfo *curr;
4879 	struct	ahd_tmode_tstate *tstate;
4880 	struct	ahd_linux_device *dev;
4881 	u_int	width;
4882 	u_int	period;
4883 	u_int	offset;
4884 	u_int	ppr_options;
4885 	u_int	trans_version;
4886 	u_int	prot_version;
4887 
4888 	/*
4889 	 * Determine if this lun actually exists.  If so,
4890 	 * hold on to its corresponding device structure.
4891 	 * If not, make sure we release the device and
4892 	 * don't bother processing the rest of this inquiry
4893 	 * command.
4894 	 */
4895 	dev = ahd_linux_get_device(ahd, devinfo->channel - 'A',
4896 				   devinfo->target, devinfo->lun,
4897 				   /*alloc*/TRUE);
4898 
4899 	sid = (struct scsi_inquiry_data *)dev->target->inq_data;
4900 	if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
4901 
4902 		dev->flags &= ~AHD_DEV_UNCONFIGURED;
4903 	} else {
4904 		dev->flags |= AHD_DEV_UNCONFIGURED;
4905 		return;
4906 	}
4907 
4908 	/*
4909 	 * Update our notion of this device's transfer
4910 	 * negotiation capabilities.
4911 	 */
4912 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
4913 				    devinfo->our_scsiid,
4914 				    devinfo->target, &tstate);
4915 	user = &tinfo->user;
4916 	goal = &tinfo->goal;
4917 	curr = &tinfo->curr;
4918 	width = user->width;
4919 	period = user->period;
4920 	offset = user->offset;
4921 	ppr_options = user->ppr_options;
4922 	trans_version = user->transport_version;
4923 	prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
4924 
4925 	/*
4926 	 * Only attempt SPI3/4 once we've verified that
4927 	 * the device claims to support SPI3/4 features.
4928 	 */
4929 	if (prot_version < SCSI_REV_2)
4930 		trans_version = SID_ANSI_REV(sid);
4931 	else
4932 		trans_version = SCSI_REV_2;
4933 
4934 	if ((sid->flags & SID_WBus16) == 0)
4935 		width = MSG_EXT_WDTR_BUS_8_BIT;
4936 	if ((sid->flags & SID_Sync) == 0) {
4937 		period = 0;
4938 		offset = 0;
4939 		ppr_options = 0;
4940 	}
4941 	if ((sid->spi3data & SID_SPI_QAS) == 0)
4942 		ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
4943 	if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
4944 		ppr_options &= MSG_EXT_PPR_QAS_REQ;
4945 	if ((sid->spi3data & SID_SPI_IUS) == 0)
4946 		ppr_options &= (MSG_EXT_PPR_DT_REQ
4947 			      | MSG_EXT_PPR_QAS_REQ);
4948 
4949 	if (prot_version > SCSI_REV_2
4950 	 && ppr_options != 0)
4951 		trans_version = user->transport_version;
4952 
4953 	ahd_validate_width(ahd, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
4954 	ahd_find_syncrate(ahd, &period, &ppr_options, AHD_SYNCRATE_MAX);
4955 	ahd_validate_offset(ahd, /*tinfo limit*/NULL, period,
4956 			    &offset, width, ROLE_UNKNOWN);
4957 	if (offset == 0 || period == 0) {
4958 		period = 0;
4959 		offset = 0;
4960 		ppr_options = 0;
4961 	}
4962 	/* Apply our filtered user settings. */
4963 	curr->transport_version = trans_version;
4964 	curr->protocol_version = prot_version;
4965 	ahd_set_width(ahd, devinfo, width, AHD_TRANS_GOAL, /*paused*/FALSE);
4966 	ahd_set_syncrate(ahd, devinfo, period, offset, ppr_options,
4967 			 AHD_TRANS_GOAL, /*paused*/FALSE);
4968 }
4969 
4970 void
4971 ahd_freeze_simq(struct ahd_softc *ahd)
4972 {
4973 	ahd->platform_data->qfrozen++;
4974 	if (ahd->platform_data->qfrozen == 1) {
4975 		scsi_block_requests(ahd->platform_data->host);
4976 		ahd_platform_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
4977 					CAM_LUN_WILDCARD, SCB_LIST_NULL,
4978 					ROLE_INITIATOR, CAM_REQUEUE_REQ);
4979 	}
4980 }
4981 
4982 void
4983 ahd_release_simq(struct ahd_softc *ahd)
4984 {
4985 	u_long s;
4986 	int    unblock_reqs;
4987 
4988 	unblock_reqs = 0;
4989 	ahd_lock(ahd, &s);
4990 	if (ahd->platform_data->qfrozen > 0)
4991 		ahd->platform_data->qfrozen--;
4992 	if (ahd->platform_data->qfrozen == 0) {
4993 		unblock_reqs = 1;
4994 	}
4995 	if (AHD_DV_SIMQ_FROZEN(ahd)
4996 	 && ((ahd->platform_data->flags & AHD_DV_WAIT_SIMQ_RELEASE) != 0)) {
4997 		ahd->platform_data->flags &= ~AHD_DV_WAIT_SIMQ_RELEASE;
4998 		up(&ahd->platform_data->dv_sem);
4999 	}
5000 	ahd_schedule_runq(ahd);
5001 	ahd_unlock(ahd, &s);
5002 	/*
5003 	 * There is still a race here.  The mid-layer
5004 	 * should keep its own freeze count and use
5005 	 * a bottom half handler to run the queues
5006 	 * so we can unblock with our own lock held.
5007 	 */
5008 	if (unblock_reqs)
5009 		scsi_unblock_requests(ahd->platform_data->host);
5010 }
5011 
5012 static void
5013 ahd_linux_sem_timeout(u_long arg)
5014 {
5015 	struct	scb *scb;
5016 	struct	ahd_softc *ahd;
5017 	u_long	s;
5018 
5019 	scb = (struct scb *)arg;
5020 	ahd = scb->ahd_softc;
5021 	ahd_lock(ahd, &s);
5022 	if ((scb->platform_data->flags & AHD_SCB_UP_EH_SEM) != 0) {
5023 		scb->platform_data->flags &= ~AHD_SCB_UP_EH_SEM;
5024 		up(&ahd->platform_data->eh_sem);
5025 	}
5026 	ahd_unlock(ahd, &s);
5027 }
5028 
5029 static void
5030 ahd_linux_dev_timed_unfreeze(u_long arg)
5031 {
5032 	struct ahd_linux_device *dev;
5033 	struct ahd_softc *ahd;
5034 	u_long s;
5035 
5036 	dev = (struct ahd_linux_device *)arg;
5037 	ahd = dev->target->ahd;
5038 	ahd_lock(ahd, &s);
5039 	dev->flags &= ~AHD_DEV_TIMER_ACTIVE;
5040 	if (dev->qfrozen > 0)
5041 		dev->qfrozen--;
5042 	if (dev->qfrozen == 0
5043 	 && (dev->flags & AHD_DEV_ON_RUN_LIST) == 0)
5044 		ahd_linux_run_device_queue(ahd, dev);
5045 	if ((dev->flags & AHD_DEV_UNCONFIGURED) != 0
5046 	 && dev->active == 0)
5047 		ahd_linux_free_device(ahd, dev);
5048 	ahd_unlock(ahd, &s);
5049 }
5050 
5051 void
5052 ahd_platform_dump_card_state(struct ahd_softc *ahd)
5053 {
5054 	struct ahd_linux_device *dev;
5055 	int target;
5056 	int maxtarget;
5057 	int lun;
5058 	int i;
5059 
5060 	maxtarget = (ahd->features & AHD_WIDE) ? 15 : 7;
5061 	for (target = 0; target <=maxtarget; target++) {
5062 
5063 		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
5064 			struct ahd_cmd *acmd;
5065 
5066 			dev = ahd_linux_get_device(ahd, 0, target,
5067 						   lun, /*alloc*/FALSE);
5068 			if (dev == NULL)
5069 				continue;
5070 
5071 			printf("DevQ(%d:%d:%d): ", 0, target, lun);
5072 			i = 0;
5073 			TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) {
5074 				if (i++ > AHD_SCB_MAX)
5075 					break;
5076 			}
5077 			printf("%d waiting\n", i);
5078 		}
5079 	}
5080 }
5081 
5082 static int __init
5083 ahd_linux_init(void)
5084 {
5085 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
5086        return (ahd_linux_detect(&aic79xx_driver_template) ? 0 : -ENODEV);
5087 #else
5088 	scsi_register_module(MODULE_SCSI_HA, &aic79xx_driver_template);
5089 	if (aic79xx_driver_template.present == 0) {
5090 		scsi_unregister_module(MODULE_SCSI_HA,
5091 				       &aic79xx_driver_template);
5092 		return (-ENODEV);
5093 	}
5094 
5095 	return (0);
5096 #endif
5097 }
5098 
5099 static void __exit
5100 ahd_linux_exit(void)
5101 {
5102 	struct ahd_softc *ahd;
5103 	u_long l;
5104 
5105 	/*
5106 	 * Shutdown DV threads before going into the SCSI mid-layer.
5107 	 * This avoids situations where the mid-layer locks the entire
5108 	 * kernel so that waiting for our DV threads to exit leads
5109 	 * to deadlock.
5110 	 */
5111 	ahd_list_lock(&l);
5112 	TAILQ_FOREACH(ahd, &ahd_tailq, links) {
5113 
5114 		ahd_linux_kill_dv_thread(ahd);
5115 	}
5116 	ahd_list_unlock(&l);
5117 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
5118 	/*
5119 	 * In 2.4 we have to unregister from the PCI core _after_
5120 	 * unregistering from the scsi midlayer to avoid dangling
5121 	 * references.
5122 	 */
5123 	scsi_unregister_module(MODULE_SCSI_HA, &aic79xx_driver_template);
5124 #endif
5125 	ahd_linux_pci_exit();
5126 }
5127 
5128 module_init(ahd_linux_init);
5129 module_exit(ahd_linux_exit);
5130