1 /*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43 #ifdef __linux__
44 #include "aic79xx_osm.h"
45 #include "aic79xx_inline.h"
46 #include "aicasm/aicasm_insformat.h"
47 #else
48 #include <dev/aic7xxx/aic79xx_osm.h>
49 #include <dev/aic7xxx/aic79xx_inline.h>
50 #include <dev/aic7xxx/aicasm/aicasm_insformat.h>
51 #endif
52
53
54 /***************************** Lookup Tables **********************************/
55 static const char *const ahd_chip_names[] =
56 {
57 "NONE",
58 "aic7901",
59 "aic7902",
60 "aic7901A"
61 };
62 static const u_int num_chip_names = ARRAY_SIZE(ahd_chip_names);
63
64 /*
65 * Hardware error codes.
66 */
67 struct ahd_hard_error_entry {
68 uint8_t errno;
69 const char *errmesg;
70 };
71
72 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
73 { DSCTMOUT, "Discard Timer has timed out" },
74 { ILLOPCODE, "Illegal Opcode in sequencer program" },
75 { SQPARERR, "Sequencer Parity Error" },
76 { DPARERR, "Data-path Parity Error" },
77 { MPARERR, "Scratch or SCB Memory Parity Error" },
78 { CIOPARERR, "CIOBUS Parity Error" },
79 };
80 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
81
82 static const struct ahd_phase_table_entry ahd_phase_table[] =
83 {
84 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
85 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
86 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
87 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
88 { P_COMMAND, MSG_NOOP, "in Command phase" },
89 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
90 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
91 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
92 { P_BUSFREE, MSG_NOOP, "while idle" },
93 { 0, MSG_NOOP, "in unknown phase" }
94 };
95
96 /*
97 * In most cases we only wish to itterate over real phases, so
98 * exclude the last element from the count.
99 */
100 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
101
102 /* Our Sequencer Program */
103 #include "aic79xx_seq.h"
104
105 /**************************** Function Declarations ***************************/
106 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
107 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
108 u_int lqistat1);
109 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
110 u_int busfreetime);
111 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
112 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
113 static void ahd_force_renegotiation(struct ahd_softc *ahd,
114 struct ahd_devinfo *devinfo);
115
116 static struct ahd_tmode_tstate*
117 ahd_alloc_tstate(struct ahd_softc *ahd,
118 u_int scsi_id, char channel);
119 #ifdef AHD_TARGET_MODE
120 static void ahd_free_tstate(struct ahd_softc *ahd,
121 u_int scsi_id, char channel, int force);
122 #endif
123 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
124 struct ahd_initiator_tinfo *,
125 u_int *period,
126 u_int *ppr_options,
127 role_t role);
128 static void ahd_update_neg_table(struct ahd_softc *ahd,
129 struct ahd_devinfo *devinfo,
130 struct ahd_transinfo *tinfo);
131 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
132 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_scb_devinfo(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 struct scb *scb);
137 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 struct scb *scb);
140 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo);
142 static void ahd_construct_sdtr(struct ahd_softc *ahd,
143 struct ahd_devinfo *devinfo,
144 u_int period, u_int offset);
145 static void ahd_construct_wdtr(struct ahd_softc *ahd,
146 struct ahd_devinfo *devinfo,
147 u_int bus_width);
148 static void ahd_construct_ppr(struct ahd_softc *ahd,
149 struct ahd_devinfo *devinfo,
150 u_int period, u_int offset,
151 u_int bus_width, u_int ppr_options);
152 static void ahd_clear_msg_state(struct ahd_softc *ahd);
153 static void ahd_handle_message_phase(struct ahd_softc *ahd);
154 typedef enum {
155 AHDMSG_1B,
156 AHDMSG_2B,
157 AHDMSG_EXT
158 } ahd_msgtype;
159 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
160 u_int msgval, int full);
161 static int ahd_parse_msg(struct ahd_softc *ahd,
162 struct ahd_devinfo *devinfo);
163 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
164 struct ahd_devinfo *devinfo);
165 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo);
167 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
168 static void ahd_handle_devreset(struct ahd_softc *ahd,
169 struct ahd_devinfo *devinfo,
170 u_int lun, cam_status status,
171 char *message, int verbose_level);
172 #ifdef AHD_TARGET_MODE
173 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
174 struct ahd_devinfo *devinfo,
175 struct scb *scb);
176 #endif
177
178 static u_int ahd_sglist_size(struct ahd_softc *ahd);
179 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
180 static bus_dmamap_callback_t
181 ahd_dmamap_cb;
182 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
183 static int ahd_init_scbdata(struct ahd_softc *ahd);
184 static void ahd_fini_scbdata(struct ahd_softc *ahd);
185 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
186 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
187 static void ahd_add_col_list(struct ahd_softc *ahd,
188 struct scb *scb, u_int col_idx);
189 static void ahd_rem_col_list(struct ahd_softc *ahd,
190 struct scb *scb);
191 static void ahd_chip_init(struct ahd_softc *ahd);
192 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
193 struct scb *prev_scb,
194 struct scb *scb);
195 static int ahd_qinfifo_count(struct ahd_softc *ahd);
196 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
197 char channel, int lun, u_int tag,
198 role_t role, uint32_t status,
199 ahd_search_action action,
200 u_int *list_head, u_int *list_tail,
201 u_int tid);
202 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
203 u_int tid_prev, u_int tid_cur,
204 u_int tid_next);
205 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
206 u_int scbid);
207 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
208 u_int prev, u_int next, u_int tid);
209 static void ahd_reset_current_bus(struct ahd_softc *ahd);
210 static ahd_callback_t ahd_stat_timer;
211 #ifdef AHD_DUMP_SEQ
212 static void ahd_dumpseq(struct ahd_softc *ahd);
213 #endif
214 static void ahd_loadseq(struct ahd_softc *ahd);
215 static int ahd_check_patch(struct ahd_softc *ahd,
216 const struct patch **start_patch,
217 u_int start_instr, u_int *skip_addr);
218 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
219 u_int address);
220 static void ahd_download_instr(struct ahd_softc *ahd,
221 u_int instrptr, uint8_t *dconsts);
222 static int ahd_probe_stack_size(struct ahd_softc *ahd);
223 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
224 struct scb *scb);
225 static void ahd_run_data_fifo(struct ahd_softc *ahd,
226 struct scb *scb);
227
228 #ifdef AHD_TARGET_MODE
229 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
230 struct ahd_tmode_lstate *lstate,
231 u_int initiator_id,
232 u_int event_type,
233 u_int event_arg);
234 static void ahd_update_scsiid(struct ahd_softc *ahd,
235 u_int targid_mask);
236 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
237 struct target_cmd *cmd);
238 #endif
239
240 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
241 char channel, int lun, u_int tag,
242 role_t role, uint32_t status);
243 static void ahd_alloc_scbs(struct ahd_softc *ahd);
244 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
245 u_int scbid);
246 static void ahd_calc_residual(struct ahd_softc *ahd,
247 struct scb *scb);
248 static void ahd_clear_critical_section(struct ahd_softc *ahd);
249 static void ahd_clear_intstat(struct ahd_softc *ahd);
250 static void ahd_enable_coalescing(struct ahd_softc *ahd,
251 int enable);
252 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
253 static void ahd_freeze_devq(struct ahd_softc *ahd,
254 struct scb *scb);
255 static void ahd_handle_scb_status(struct ahd_softc *ahd,
256 struct scb *scb);
257 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
258 static void ahd_shutdown(void *arg);
259 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
260 u_int timer,
261 u_int maxcmds,
262 u_int mincmds);
263 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
264 static int ahd_wait_seeprom(struct ahd_softc *ahd);
265 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
266 int target, char channel, int lun,
267 u_int tag, role_t role);
268
269 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
270
271 /*************************** Interrupt Services *******************************/
272 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
273 #ifdef AHD_TARGET_MODE
274 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
275 #endif
276 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
277 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
278 static void ahd_handle_scsiint(struct ahd_softc *ahd,
279 u_int intstat);
280
281 /************************ Sequencer Execution Control *************************/
282 void
ahd_set_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)283 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
284 {
285 if (ahd->src_mode == src && ahd->dst_mode == dst)
286 return;
287 #ifdef AHD_DEBUG
288 if (ahd->src_mode == AHD_MODE_UNKNOWN
289 || ahd->dst_mode == AHD_MODE_UNKNOWN)
290 panic("Setting mode prior to saving it.\n");
291 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
292 printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
293 ahd_build_mode_state(ahd, src, dst));
294 #endif
295 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
296 ahd->src_mode = src;
297 ahd->dst_mode = dst;
298 }
299
300 static void
ahd_update_modes(struct ahd_softc * ahd)301 ahd_update_modes(struct ahd_softc *ahd)
302 {
303 ahd_mode_state mode_ptr;
304 ahd_mode src;
305 ahd_mode dst;
306
307 mode_ptr = ahd_inb(ahd, MODE_PTR);
308 #ifdef AHD_DEBUG
309 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
310 printk("Reading mode 0x%x\n", mode_ptr);
311 #endif
312 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
313 ahd_known_modes(ahd, src, dst);
314 }
315
316 static void
ahd_assert_modes(struct ahd_softc * ahd,ahd_mode srcmode,ahd_mode dstmode,const char * file,int line)317 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
318 ahd_mode dstmode, const char *file, int line)
319 {
320 #ifdef AHD_DEBUG
321 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
322 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
323 panic("%s:%s:%d: Mode assertion failed.\n",
324 ahd_name(ahd), file, line);
325 }
326 #endif
327 }
328
329 #define AHD_ASSERT_MODES(ahd, source, dest) \
330 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
331
332 ahd_mode_state
ahd_save_modes(struct ahd_softc * ahd)333 ahd_save_modes(struct ahd_softc *ahd)
334 {
335 if (ahd->src_mode == AHD_MODE_UNKNOWN
336 || ahd->dst_mode == AHD_MODE_UNKNOWN)
337 ahd_update_modes(ahd);
338
339 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
340 }
341
342 void
ahd_restore_modes(struct ahd_softc * ahd,ahd_mode_state state)343 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
344 {
345 ahd_mode src;
346 ahd_mode dst;
347
348 ahd_extract_mode_state(ahd, state, &src, &dst);
349 ahd_set_modes(ahd, src, dst);
350 }
351
352 /*
353 * Determine whether the sequencer has halted code execution.
354 * Returns non-zero status if the sequencer is stopped.
355 */
356 int
ahd_is_paused(struct ahd_softc * ahd)357 ahd_is_paused(struct ahd_softc *ahd)
358 {
359 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
360 }
361
362 /*
363 * Request that the sequencer stop and wait, indefinitely, for it
364 * to stop. The sequencer will only acknowledge that it is paused
365 * once it has reached an instruction boundary and PAUSEDIS is
366 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
367 * for critical sections.
368 */
369 void
ahd_pause(struct ahd_softc * ahd)370 ahd_pause(struct ahd_softc *ahd)
371 {
372 ahd_outb(ahd, HCNTRL, ahd->pause);
373
374 /*
375 * Since the sequencer can disable pausing in a critical section, we
376 * must loop until it actually stops.
377 */
378 while (ahd_is_paused(ahd) == 0)
379 ;
380 }
381
382 /*
383 * Allow the sequencer to continue program execution.
384 * We check here to ensure that no additional interrupt
385 * sources that would cause the sequencer to halt have been
386 * asserted. If, for example, a SCSI bus reset is detected
387 * while we are fielding a different, pausing, interrupt type,
388 * we don't want to release the sequencer before going back
389 * into our interrupt handler and dealing with this new
390 * condition.
391 */
392 void
ahd_unpause(struct ahd_softc * ahd)393 ahd_unpause(struct ahd_softc *ahd)
394 {
395 /*
396 * Automatically restore our modes to those saved
397 * prior to the first change of the mode.
398 */
399 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
400 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
401 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
402 ahd_reset_cmds_pending(ahd);
403 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
404 }
405
406 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
407 ahd_outb(ahd, HCNTRL, ahd->unpause);
408
409 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
410 }
411
412 /*********************** Scatter Gather List Handling *************************/
413 void *
ahd_sg_setup(struct ahd_softc * ahd,struct scb * scb,void * sgptr,dma_addr_t addr,bus_size_t len,int last)414 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
415 void *sgptr, dma_addr_t addr, bus_size_t len, int last)
416 {
417 scb->sg_count++;
418 if (sizeof(dma_addr_t) > 4
419 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
420 struct ahd_dma64_seg *sg;
421
422 sg = (struct ahd_dma64_seg *)sgptr;
423 sg->addr = ahd_htole64(addr);
424 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
425 return (sg + 1);
426 } else {
427 struct ahd_dma_seg *sg;
428
429 sg = (struct ahd_dma_seg *)sgptr;
430 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
431 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
432 | (last ? AHD_DMA_LAST_SEG : 0));
433 return (sg + 1);
434 }
435 }
436
437 static void
ahd_setup_scb_common(struct ahd_softc * ahd,struct scb * scb)438 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
439 {
440 /* XXX Handle target mode SCBs. */
441 scb->crc_retry_count = 0;
442 if ((scb->flags & SCB_PACKETIZED) != 0) {
443 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
444 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
445 } else {
446 if (ahd_get_transfer_length(scb) & 0x01)
447 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
448 else
449 scb->hscb->task_attribute = 0;
450 }
451
452 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
453 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
454 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
455 ahd_htole32(scb->sense_busaddr);
456 }
457
458 static void
ahd_setup_data_scb(struct ahd_softc * ahd,struct scb * scb)459 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
460 {
461 /*
462 * Copy the first SG into the "current" data ponter area.
463 */
464 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
465 struct ahd_dma64_seg *sg;
466
467 sg = (struct ahd_dma64_seg *)scb->sg_list;
468 scb->hscb->dataptr = sg->addr;
469 scb->hscb->datacnt = sg->len;
470 } else {
471 struct ahd_dma_seg *sg;
472 uint32_t *dataptr_words;
473
474 sg = (struct ahd_dma_seg *)scb->sg_list;
475 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
476 dataptr_words[0] = sg->addr;
477 dataptr_words[1] = 0;
478 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
479 uint64_t high_addr;
480
481 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
482 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
483 }
484 scb->hscb->datacnt = sg->len;
485 }
486 /*
487 * Note where to find the SG entries in bus space.
488 * We also set the full residual flag which the
489 * sequencer will clear as soon as a data transfer
490 * occurs.
491 */
492 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
493 }
494
495 static void
ahd_setup_noxfer_scb(struct ahd_softc * ahd,struct scb * scb)496 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
497 {
498 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
499 scb->hscb->dataptr = 0;
500 scb->hscb->datacnt = 0;
501 }
502
503 /************************** Memory mapping routines ***************************/
504 static void *
ahd_sg_bus_to_virt(struct ahd_softc * ahd,struct scb * scb,uint32_t sg_busaddr)505 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
506 {
507 dma_addr_t sg_offset;
508
509 /* sg_list_phys points to entry 1, not 0 */
510 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
511 return ((uint8_t *)scb->sg_list + sg_offset);
512 }
513
514 static uint32_t
ahd_sg_virt_to_bus(struct ahd_softc * ahd,struct scb * scb,void * sg)515 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
516 {
517 dma_addr_t sg_offset;
518
519 /* sg_list_phys points to entry 1, not 0 */
520 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
521 - ahd_sg_size(ahd);
522
523 return (scb->sg_list_busaddr + sg_offset);
524 }
525
526 static void
ahd_sync_scb(struct ahd_softc * ahd,struct scb * scb,int op)527 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
528 {
529 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
530 scb->hscb_map->dmamap,
531 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
532 /*len*/sizeof(*scb->hscb), op);
533 }
534
535 void
ahd_sync_sglist(struct ahd_softc * ahd,struct scb * scb,int op)536 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
537 {
538 if (scb->sg_count == 0)
539 return;
540
541 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
542 scb->sg_map->dmamap,
543 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
544 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
545 }
546
547 static void
ahd_sync_sense(struct ahd_softc * ahd,struct scb * scb,int op)548 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
549 {
550 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
551 scb->sense_map->dmamap,
552 /*offset*/scb->sense_busaddr,
553 /*len*/AHD_SENSE_BUFSIZE, op);
554 }
555
556 #ifdef AHD_TARGET_MODE
557 static uint32_t
ahd_targetcmd_offset(struct ahd_softc * ahd,u_int index)558 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
559 {
560 return (((uint8_t *)&ahd->targetcmds[index])
561 - (uint8_t *)ahd->qoutfifo);
562 }
563 #endif
564
565 /*********************** Miscellaneous Support Functions ***********************/
566 /*
567 * Return pointers to the transfer negotiation information
568 * for the specified our_id/remote_id pair.
569 */
570 struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc * ahd,char channel,u_int our_id,u_int remote_id,struct ahd_tmode_tstate ** tstate)571 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
572 u_int remote_id, struct ahd_tmode_tstate **tstate)
573 {
574 /*
575 * Transfer data structures are stored from the perspective
576 * of the target role. Since the parameters for a connection
577 * in the initiator role to a given target are the same as
578 * when the roles are reversed, we pretend we are the target.
579 */
580 if (channel == 'B')
581 our_id += 8;
582 *tstate = ahd->enabled_targets[our_id];
583 return (&(*tstate)->transinfo[remote_id]);
584 }
585
586 uint16_t
ahd_inw(struct ahd_softc * ahd,u_int port)587 ahd_inw(struct ahd_softc *ahd, u_int port)
588 {
589 /*
590 * Read high byte first as some registers increment
591 * or have other side effects when the low byte is
592 * read.
593 */
594 uint16_t r = ahd_inb(ahd, port+1) << 8;
595 return r | ahd_inb(ahd, port);
596 }
597
598 void
ahd_outw(struct ahd_softc * ahd,u_int port,u_int value)599 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
600 {
601 /*
602 * Write low byte first to accommodate registers
603 * such as PRGMCNT where the order maters.
604 */
605 ahd_outb(ahd, port, value & 0xFF);
606 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
607 }
608
609 uint32_t
ahd_inl(struct ahd_softc * ahd,u_int port)610 ahd_inl(struct ahd_softc *ahd, u_int port)
611 {
612 return ((ahd_inb(ahd, port))
613 | (ahd_inb(ahd, port+1) << 8)
614 | (ahd_inb(ahd, port+2) << 16)
615 | (ahd_inb(ahd, port+3) << 24));
616 }
617
618 void
ahd_outl(struct ahd_softc * ahd,u_int port,uint32_t value)619 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
620 {
621 ahd_outb(ahd, port, (value) & 0xFF);
622 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
623 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
624 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
625 }
626
627 uint64_t
ahd_inq(struct ahd_softc * ahd,u_int port)628 ahd_inq(struct ahd_softc *ahd, u_int port)
629 {
630 return ((ahd_inb(ahd, port))
631 | (ahd_inb(ahd, port+1) << 8)
632 | (ahd_inb(ahd, port+2) << 16)
633 | (ahd_inb(ahd, port+3) << 24)
634 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
635 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
636 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
637 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
638 }
639
640 void
ahd_outq(struct ahd_softc * ahd,u_int port,uint64_t value)641 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
642 {
643 ahd_outb(ahd, port, value & 0xFF);
644 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
645 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
646 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
647 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
648 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
649 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
650 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
651 }
652
653 u_int
ahd_get_scbptr(struct ahd_softc * ahd)654 ahd_get_scbptr(struct ahd_softc *ahd)
655 {
656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
659 }
660
661 void
ahd_set_scbptr(struct ahd_softc * ahd,u_int scbptr)662 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
663 {
664 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
665 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
666 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
667 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
668 }
669
670 #if 0 /* unused */
671 static u_int
672 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
673 {
674 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
675 }
676 #endif
677
678 static void
ahd_set_hnscb_qoff(struct ahd_softc * ahd,u_int value)679 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
680 {
681 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
682 }
683
684 #if 0 /* unused */
685 static u_int
686 ahd_get_hescb_qoff(struct ahd_softc *ahd)
687 {
688 return (ahd_inb(ahd, HESCB_QOFF));
689 }
690 #endif
691
692 static void
ahd_set_hescb_qoff(struct ahd_softc * ahd,u_int value)693 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
694 {
695 ahd_outb(ahd, HESCB_QOFF, value);
696 }
697
698 static u_int
ahd_get_snscb_qoff(struct ahd_softc * ahd)699 ahd_get_snscb_qoff(struct ahd_softc *ahd)
700 {
701 u_int oldvalue;
702
703 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
704 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
705 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
706 return (oldvalue);
707 }
708
709 static void
ahd_set_snscb_qoff(struct ahd_softc * ahd,u_int value)710 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
711 {
712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 ahd_outw(ahd, SNSCB_QOFF, value);
714 }
715
716 #if 0 /* unused */
717 static u_int
718 ahd_get_sescb_qoff(struct ahd_softc *ahd)
719 {
720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 return (ahd_inb(ahd, SESCB_QOFF));
722 }
723 #endif
724
725 static void
ahd_set_sescb_qoff(struct ahd_softc * ahd,u_int value)726 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
727 {
728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 ahd_outb(ahd, SESCB_QOFF, value);
730 }
731
732 #if 0 /* unused */
733 static u_int
734 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
735 {
736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
738 }
739 #endif
740
741 static void
ahd_set_sdscb_qoff(struct ahd_softc * ahd,u_int value)742 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
743 {
744 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
745 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
746 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
747 }
748
749 u_int
ahd_inb_scbram(struct ahd_softc * ahd,u_int offset)750 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
751 {
752 u_int value;
753
754 /*
755 * Workaround PCI-X Rev A. hardware bug.
756 * After a host read of SCB memory, the chip
757 * may become confused into thinking prefetch
758 * was required. This starts the discard timer
759 * running and can cause an unexpected discard
760 * timer interrupt. The work around is to read
761 * a normal register prior to the exhaustion of
762 * the discard timer. The mode pointer register
763 * has no side effects and so serves well for
764 * this purpose.
765 *
766 * Razor #528
767 */
768 value = ahd_inb(ahd, offset);
769 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
770 ahd_inb(ahd, MODE_PTR);
771 return (value);
772 }
773
774 u_int
ahd_inw_scbram(struct ahd_softc * ahd,u_int offset)775 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
776 {
777 return (ahd_inb_scbram(ahd, offset)
778 | (ahd_inb_scbram(ahd, offset+1) << 8));
779 }
780
781 static uint32_t
ahd_inl_scbram(struct ahd_softc * ahd,u_int offset)782 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
783 {
784 return (ahd_inw_scbram(ahd, offset)
785 | (ahd_inw_scbram(ahd, offset+2) << 16));
786 }
787
788 static uint64_t
ahd_inq_scbram(struct ahd_softc * ahd,u_int offset)789 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
790 {
791 return (ahd_inl_scbram(ahd, offset)
792 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
793 }
794
795 struct scb *
ahd_lookup_scb(struct ahd_softc * ahd,u_int tag)796 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
797 {
798 struct scb* scb;
799
800 if (tag >= AHD_SCB_MAX)
801 return (NULL);
802 scb = ahd->scb_data.scbindex[tag];
803 if (scb != NULL)
804 ahd_sync_scb(ahd, scb,
805 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
806 return (scb);
807 }
808
809 static void
ahd_swap_with_next_hscb(struct ahd_softc * ahd,struct scb * scb)810 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
811 {
812 struct hardware_scb *q_hscb;
813 struct map_node *q_hscb_map;
814 uint32_t saved_hscb_busaddr;
815
816 /*
817 * Our queuing method is a bit tricky. The card
818 * knows in advance which HSCB (by address) to download,
819 * and we can't disappoint it. To achieve this, the next
820 * HSCB to download is saved off in ahd->next_queued_hscb.
821 * When we are called to queue "an arbitrary scb",
822 * we copy the contents of the incoming HSCB to the one
823 * the sequencer knows about, swap HSCB pointers and
824 * finally assign the SCB to the tag indexed location
825 * in the scb_array. This makes sure that we can still
826 * locate the correct SCB by SCB_TAG.
827 */
828 q_hscb = ahd->next_queued_hscb;
829 q_hscb_map = ahd->next_queued_hscb_map;
830 saved_hscb_busaddr = q_hscb->hscb_busaddr;
831 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
832 q_hscb->hscb_busaddr = saved_hscb_busaddr;
833 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
834
835 /* Now swap HSCB pointers. */
836 ahd->next_queued_hscb = scb->hscb;
837 ahd->next_queued_hscb_map = scb->hscb_map;
838 scb->hscb = q_hscb;
839 scb->hscb_map = q_hscb_map;
840
841 /* Now define the mapping from tag to SCB in the scbindex */
842 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
843 }
844
845 /*
846 * Tell the sequencer about a new transaction to execute.
847 */
848 void
ahd_queue_scb(struct ahd_softc * ahd,struct scb * scb)849 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
850 {
851 ahd_swap_with_next_hscb(ahd, scb);
852
853 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
854 panic("Attempt to queue invalid SCB tag %x\n",
855 SCB_GET_TAG(scb));
856
857 /*
858 * Keep a history of SCBs we've downloaded in the qinfifo.
859 */
860 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
861 ahd->qinfifonext++;
862
863 if (scb->sg_count != 0)
864 ahd_setup_data_scb(ahd, scb);
865 else
866 ahd_setup_noxfer_scb(ahd, scb);
867 ahd_setup_scb_common(ahd, scb);
868
869 /*
870 * Make sure our data is consistent from the
871 * perspective of the adapter.
872 */
873 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
874
875 #ifdef AHD_DEBUG
876 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
877 uint64_t host_dataptr;
878
879 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
880 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
881 ahd_name(ahd),
882 SCB_GET_TAG(scb), scb->hscb->scsiid,
883 ahd_le32toh(scb->hscb->hscb_busaddr),
884 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
885 (u_int)(host_dataptr & 0xFFFFFFFF),
886 ahd_le32toh(scb->hscb->datacnt));
887 }
888 #endif
889 /* Tell the adapter about the newly queued SCB */
890 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
891 }
892
893 /************************** Interrupt Processing ******************************/
894 static void
ahd_sync_qoutfifo(struct ahd_softc * ahd,int op)895 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
896 {
897 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
898 /*offset*/0,
899 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
900 }
901
902 static void
ahd_sync_tqinfifo(struct ahd_softc * ahd,int op)903 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
904 {
905 #ifdef AHD_TARGET_MODE
906 if ((ahd->flags & AHD_TARGETROLE) != 0) {
907 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
908 ahd->shared_data_map.dmamap,
909 ahd_targetcmd_offset(ahd, 0),
910 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
911 op);
912 }
913 #endif
914 }
915
916 /*
917 * See if the firmware has posted any completed commands
918 * into our in-core command complete fifos.
919 */
920 #define AHD_RUN_QOUTFIFO 0x1
921 #define AHD_RUN_TQINFIFO 0x2
922 static u_int
ahd_check_cmdcmpltqueues(struct ahd_softc * ahd)923 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
924 {
925 u_int retval;
926
927 retval = 0;
928 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
929 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
930 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
931 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
932 == ahd->qoutfifonext_valid_tag)
933 retval |= AHD_RUN_QOUTFIFO;
934 #ifdef AHD_TARGET_MODE
935 if ((ahd->flags & AHD_TARGETROLE) != 0
936 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
937 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
938 ahd->shared_data_map.dmamap,
939 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
940 /*len*/sizeof(struct target_cmd),
941 BUS_DMASYNC_POSTREAD);
942 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
943 retval |= AHD_RUN_TQINFIFO;
944 }
945 #endif
946 return (retval);
947 }
948
949 /*
950 * Catch an interrupt from the adapter
951 */
952 int
ahd_intr(struct ahd_softc * ahd)953 ahd_intr(struct ahd_softc *ahd)
954 {
955 u_int intstat;
956
957 if ((ahd->pause & INTEN) == 0) {
958 /*
959 * Our interrupt is not enabled on the chip
960 * and may be disabled for re-entrancy reasons,
961 * so just return. This is likely just a shared
962 * interrupt.
963 */
964 return (0);
965 }
966
967 /*
968 * Instead of directly reading the interrupt status register,
969 * infer the cause of the interrupt by checking our in-core
970 * completion queues. This avoids a costly PCI bus read in
971 * most cases.
972 */
973 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
974 && (ahd_check_cmdcmpltqueues(ahd) != 0))
975 intstat = CMDCMPLT;
976 else
977 intstat = ahd_inb(ahd, INTSTAT);
978
979 if ((intstat & INT_PEND) == 0)
980 return (0);
981
982 if (intstat & CMDCMPLT) {
983 ahd_outb(ahd, CLRINT, CLRCMDINT);
984
985 /*
986 * Ensure that the chip sees that we've cleared
987 * this interrupt before we walk the output fifo.
988 * Otherwise, we may, due to posted bus writes,
989 * clear the interrupt after we finish the scan,
990 * and after the sequencer has added new entries
991 * and asserted the interrupt again.
992 */
993 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
994 if (ahd_is_paused(ahd)) {
995 /*
996 * Potentially lost SEQINT.
997 * If SEQINTCODE is non-zero,
998 * simulate the SEQINT.
999 */
1000 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
1001 intstat |= SEQINT;
1002 }
1003 } else {
1004 ahd_flush_device_writes(ahd);
1005 }
1006 ahd_run_qoutfifo(ahd);
1007 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1008 ahd->cmdcmplt_total++;
1009 #ifdef AHD_TARGET_MODE
1010 if ((ahd->flags & AHD_TARGETROLE) != 0)
1011 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1012 #endif
1013 }
1014
1015 /*
1016 * Handle statuses that may invalidate our cached
1017 * copy of INTSTAT separately.
1018 */
1019 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1020 /* Hot eject. Do nothing */
1021 } else if (intstat & HWERRINT) {
1022 ahd_handle_hwerrint(ahd);
1023 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1024 ahd->bus_intr(ahd);
1025 } else {
1026
1027 if ((intstat & SEQINT) != 0)
1028 ahd_handle_seqint(ahd, intstat);
1029
1030 if ((intstat & SCSIINT) != 0)
1031 ahd_handle_scsiint(ahd, intstat);
1032 }
1033 return (1);
1034 }
1035
1036 /******************************** Private Inlines *****************************/
1037 static inline void
ahd_assert_atn(struct ahd_softc * ahd)1038 ahd_assert_atn(struct ahd_softc *ahd)
1039 {
1040 ahd_outb(ahd, SCSISIGO, ATNO);
1041 }
1042
1043 /*
1044 * Determine if the current connection has a packetized
1045 * agreement. This does not necessarily mean that we
1046 * are currently in a packetized transfer. We could
1047 * just as easily be sending or receiving a message.
1048 */
1049 static int
ahd_currently_packetized(struct ahd_softc * ahd)1050 ahd_currently_packetized(struct ahd_softc *ahd)
1051 {
1052 ahd_mode_state saved_modes;
1053 int packetized;
1054
1055 saved_modes = ahd_save_modes(ahd);
1056 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1057 /*
1058 * The packetized bit refers to the last
1059 * connection, not the current one. Check
1060 * for non-zero LQISTATE instead.
1061 */
1062 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1063 packetized = ahd_inb(ahd, LQISTATE) != 0;
1064 } else {
1065 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1066 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1067 }
1068 ahd_restore_modes(ahd, saved_modes);
1069 return (packetized);
1070 }
1071
1072 static inline int
ahd_set_active_fifo(struct ahd_softc * ahd)1073 ahd_set_active_fifo(struct ahd_softc *ahd)
1074 {
1075 u_int active_fifo;
1076
1077 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1078 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1079 switch (active_fifo) {
1080 case 0:
1081 case 1:
1082 ahd_set_modes(ahd, active_fifo, active_fifo);
1083 return (1);
1084 default:
1085 return (0);
1086 }
1087 }
1088
1089 static inline void
ahd_unbusy_tcl(struct ahd_softc * ahd,u_int tcl)1090 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1091 {
1092 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1093 }
1094
1095 /*
1096 * Determine whether the sequencer reported a residual
1097 * for this SCB/transaction.
1098 */
1099 static inline void
ahd_update_residual(struct ahd_softc * ahd,struct scb * scb)1100 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1101 {
1102 uint32_t sgptr;
1103
1104 sgptr = ahd_le32toh(scb->hscb->sgptr);
1105 if ((sgptr & SG_STATUS_VALID) != 0)
1106 ahd_calc_residual(ahd, scb);
1107 }
1108
1109 static inline void
ahd_complete_scb(struct ahd_softc * ahd,struct scb * scb)1110 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1111 {
1112 uint32_t sgptr;
1113
1114 sgptr = ahd_le32toh(scb->hscb->sgptr);
1115 if ((sgptr & SG_STATUS_VALID) != 0)
1116 ahd_handle_scb_status(ahd, scb);
1117 else
1118 ahd_done(ahd, scb);
1119 }
1120
1121
1122 /************************* Sequencer Execution Control ************************/
1123 /*
1124 * Restart the sequencer program from address zero
1125 */
1126 static void
ahd_restart(struct ahd_softc * ahd)1127 ahd_restart(struct ahd_softc *ahd)
1128 {
1129
1130 ahd_pause(ahd);
1131
1132 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1133
1134 /* No more pending messages */
1135 ahd_clear_msg_state(ahd);
1136 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1137 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
1138 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1139 ahd_outb(ahd, SEQINTCTL, 0);
1140 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1141 ahd_outb(ahd, SEQ_FLAGS, 0);
1142 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1143 ahd_outb(ahd, SAVED_LUN, 0xFF);
1144
1145 /*
1146 * Ensure that the sequencer's idea of TQINPOS
1147 * matches our own. The sequencer increments TQINPOS
1148 * only after it sees a DMA complete and a reset could
1149 * occur before the increment leaving the kernel to believe
1150 * the command arrived but the sequencer to not.
1151 */
1152 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1153
1154 /* Always allow reselection */
1155 ahd_outb(ahd, SCSISEQ1,
1156 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1157 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1158
1159 /*
1160 * Clear any pending sequencer interrupt. It is no
1161 * longer relevant since we're resetting the Program
1162 * Counter.
1163 */
1164 ahd_outb(ahd, CLRINT, CLRSEQINT);
1165
1166 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1167 ahd_unpause(ahd);
1168 }
1169
1170 static void
ahd_clear_fifo(struct ahd_softc * ahd,u_int fifo)1171 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1172 {
1173 ahd_mode_state saved_modes;
1174
1175 #ifdef AHD_DEBUG
1176 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1177 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1178 #endif
1179 saved_modes = ahd_save_modes(ahd);
1180 ahd_set_modes(ahd, fifo, fifo);
1181 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1182 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1183 ahd_outb(ahd, CCSGCTL, CCSGRESET);
1184 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1185 ahd_outb(ahd, SG_STATE, 0);
1186 ahd_restore_modes(ahd, saved_modes);
1187 }
1188
1189 /************************* Input/Output Queues ********************************/
1190 /*
1191 * Flush and completed commands that are sitting in the command
1192 * complete queues down on the chip but have yet to be dma'ed back up.
1193 */
1194 static void
ahd_flush_qoutfifo(struct ahd_softc * ahd)1195 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1196 {
1197 struct scb *scb;
1198 ahd_mode_state saved_modes;
1199 u_int saved_scbptr;
1200 u_int ccscbctl;
1201 u_int scbid;
1202 u_int next_scbid;
1203
1204 saved_modes = ahd_save_modes(ahd);
1205
1206 /*
1207 * Flush the good status FIFO for completed packetized commands.
1208 */
1209 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1210 saved_scbptr = ahd_get_scbptr(ahd);
1211 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1212 u_int fifo_mode;
1213 u_int i;
1214
1215 scbid = ahd_inw(ahd, GSFIFO);
1216 scb = ahd_lookup_scb(ahd, scbid);
1217 if (scb == NULL) {
1218 printk("%s: Warning - GSFIFO SCB %d invalid\n",
1219 ahd_name(ahd), scbid);
1220 continue;
1221 }
1222 /*
1223 * Determine if this transaction is still active in
1224 * any FIFO. If it is, we must flush that FIFO to
1225 * the host before completing the command.
1226 */
1227 fifo_mode = 0;
1228 rescan_fifos:
1229 for (i = 0; i < 2; i++) {
1230 /* Toggle to the other mode. */
1231 fifo_mode ^= 1;
1232 ahd_set_modes(ahd, fifo_mode, fifo_mode);
1233
1234 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1235 continue;
1236
1237 ahd_run_data_fifo(ahd, scb);
1238
1239 /*
1240 * Running this FIFO may cause a CFG4DATA for
1241 * this same transaction to assert in the other
1242 * FIFO or a new snapshot SAVEPTRS interrupt
1243 * in this FIFO. Even running a FIFO may not
1244 * clear the transaction if we are still waiting
1245 * for data to drain to the host. We must loop
1246 * until the transaction is not active in either
1247 * FIFO just to be sure. Reset our loop counter
1248 * so we will visit both FIFOs again before
1249 * declaring this transaction finished. We
1250 * also delay a bit so that status has a chance
1251 * to change before we look at this FIFO again.
1252 */
1253 ahd_delay(200);
1254 goto rescan_fifos;
1255 }
1256 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1257 ahd_set_scbptr(ahd, scbid);
1258 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1259 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1260 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1261 & SG_LIST_NULL) != 0)) {
1262 u_int comp_head;
1263
1264 /*
1265 * The transfer completed with a residual.
1266 * Place this SCB on the complete DMA list
1267 * so that we update our in-core copy of the
1268 * SCB before completing the command.
1269 */
1270 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1271 ahd_outb(ahd, SCB_SGPTR,
1272 ahd_inb_scbram(ahd, SCB_SGPTR)
1273 | SG_STATUS_VALID);
1274 ahd_outw(ahd, SCB_TAG, scbid);
1275 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1276 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1277 if (SCBID_IS_NULL(comp_head)) {
1278 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1279 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1280 } else {
1281 u_int tail;
1282
1283 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1284 ahd_set_scbptr(ahd, tail);
1285 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1286 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1287 ahd_set_scbptr(ahd, scbid);
1288 }
1289 } else
1290 ahd_complete_scb(ahd, scb);
1291 }
1292 ahd_set_scbptr(ahd, saved_scbptr);
1293
1294 /*
1295 * Setup for command channel portion of flush.
1296 */
1297 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1298
1299 /*
1300 * Wait for any inprogress DMA to complete and clear DMA state
1301 * if this if for an SCB in the qinfifo.
1302 */
1303 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1304
1305 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1306 if ((ccscbctl & ARRDONE) != 0)
1307 break;
1308 } else if ((ccscbctl & CCSCBDONE) != 0)
1309 break;
1310 ahd_delay(200);
1311 }
1312 /*
1313 * We leave the sequencer to cleanup in the case of DMA's to
1314 * update the qoutfifo. In all other cases (DMA's to the
1315 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1316 * we disable the DMA engine so that the sequencer will not
1317 * attempt to handle the DMA completion.
1318 */
1319 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1320 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1321
1322 /*
1323 * Complete any SCBs that just finished
1324 * being DMA'ed into the qoutfifo.
1325 */
1326 ahd_run_qoutfifo(ahd);
1327
1328 saved_scbptr = ahd_get_scbptr(ahd);
1329 /*
1330 * Manually update/complete any completed SCBs that are waiting to be
1331 * DMA'ed back up to the host.
1332 */
1333 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1334 while (!SCBID_IS_NULL(scbid)) {
1335 uint8_t *hscb_ptr;
1336 u_int i;
1337
1338 ahd_set_scbptr(ahd, scbid);
1339 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1340 scb = ahd_lookup_scb(ahd, scbid);
1341 if (scb == NULL) {
1342 printk("%s: Warning - DMA-up and complete "
1343 "SCB %d invalid\n", ahd_name(ahd), scbid);
1344 continue;
1345 }
1346 hscb_ptr = (uint8_t *)scb->hscb;
1347 for (i = 0; i < sizeof(struct hardware_scb); i++)
1348 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1349
1350 ahd_complete_scb(ahd, scb);
1351 scbid = next_scbid;
1352 }
1353 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1354 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1355
1356 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1357 while (!SCBID_IS_NULL(scbid)) {
1358
1359 ahd_set_scbptr(ahd, scbid);
1360 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1361 scb = ahd_lookup_scb(ahd, scbid);
1362 if (scb == NULL) {
1363 printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1364 ahd_name(ahd), scbid);
1365 continue;
1366 }
1367
1368 ahd_complete_scb(ahd, scb);
1369 scbid = next_scbid;
1370 }
1371 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1372
1373 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1374 while (!SCBID_IS_NULL(scbid)) {
1375
1376 ahd_set_scbptr(ahd, scbid);
1377 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1378 scb = ahd_lookup_scb(ahd, scbid);
1379 if (scb == NULL) {
1380 printk("%s: Warning - Complete SCB %d invalid\n",
1381 ahd_name(ahd), scbid);
1382 continue;
1383 }
1384
1385 ahd_complete_scb(ahd, scb);
1386 scbid = next_scbid;
1387 }
1388 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1389
1390 /*
1391 * Restore state.
1392 */
1393 ahd_set_scbptr(ahd, saved_scbptr);
1394 ahd_restore_modes(ahd, saved_modes);
1395 ahd->flags |= AHD_UPDATE_PEND_CMDS;
1396 }
1397
1398 /*
1399 * Determine if an SCB for a packetized transaction
1400 * is active in a FIFO.
1401 */
1402 static int
ahd_scb_active_in_fifo(struct ahd_softc * ahd,struct scb * scb)1403 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1404 {
1405
1406 /*
1407 * The FIFO is only active for our transaction if
1408 * the SCBPTR matches the SCB's ID and the firmware
1409 * has installed a handler for the FIFO or we have
1410 * a pending SAVEPTRS or CFG4DATA interrupt.
1411 */
1412 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1413 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1414 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1415 return (0);
1416
1417 return (1);
1418 }
1419
1420 /*
1421 * Run a data fifo to completion for a transaction we know
1422 * has completed across the SCSI bus (good status has been
1423 * received). We are already set to the correct FIFO mode
1424 * on entry to this routine.
1425 *
1426 * This function attempts to operate exactly as the firmware
1427 * would when running this FIFO. Care must be taken to update
1428 * this routine any time the firmware's FIFO algorithm is
1429 * changed.
1430 */
1431 static void
ahd_run_data_fifo(struct ahd_softc * ahd,struct scb * scb)1432 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1433 {
1434 u_int seqintsrc;
1435
1436 seqintsrc = ahd_inb(ahd, SEQINTSRC);
1437 if ((seqintsrc & CFG4DATA) != 0) {
1438 uint32_t datacnt;
1439 uint32_t sgptr;
1440
1441 /*
1442 * Clear full residual flag.
1443 */
1444 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1445 ahd_outb(ahd, SCB_SGPTR, sgptr);
1446
1447 /*
1448 * Load datacnt and address.
1449 */
1450 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1451 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1452 sgptr |= LAST_SEG;
1453 ahd_outb(ahd, SG_STATE, 0);
1454 } else
1455 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1456 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1457 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1458 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1459 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1460
1461 /*
1462 * Initialize Residual Fields.
1463 */
1464 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1465 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1466
1467 /*
1468 * Mark the SCB as having a FIFO in use.
1469 */
1470 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1471 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1472
1473 /*
1474 * Install a "fake" handler for this FIFO.
1475 */
1476 ahd_outw(ahd, LONGJMP_ADDR, 0);
1477
1478 /*
1479 * Notify the hardware that we have satisfied
1480 * this sequencer interrupt.
1481 */
1482 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1483 } else if ((seqintsrc & SAVEPTRS) != 0) {
1484 uint32_t sgptr;
1485 uint32_t resid;
1486
1487 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1488 /*
1489 * Snapshot Save Pointers. All that
1490 * is necessary to clear the snapshot
1491 * is a CLRCHN.
1492 */
1493 goto clrchn;
1494 }
1495
1496 /*
1497 * Disable S/G fetch so the DMA engine
1498 * is available to future users.
1499 */
1500 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1501 ahd_outb(ahd, CCSGCTL, 0);
1502 ahd_outb(ahd, SG_STATE, 0);
1503
1504 /*
1505 * Flush the data FIFO. Strickly only
1506 * necessary for Rev A parts.
1507 */
1508 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1509
1510 /*
1511 * Calculate residual.
1512 */
1513 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1514 resid = ahd_inl(ahd, SHCNT);
1515 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1516 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1518 /*
1519 * Must back up to the correct S/G element.
1520 * Typically this just means resetting our
1521 * low byte to the offset in the SG_CACHE,
1522 * but if we wrapped, we have to correct
1523 * the other bytes of the sgptr too.
1524 */
1525 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1526 && (sgptr & 0x80) == 0)
1527 sgptr -= 0x100;
1528 sgptr &= ~0xFF;
1529 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1530 & SG_ADDR_MASK;
1531 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1532 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1533 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1534 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1535 sgptr | SG_LIST_NULL);
1536 }
1537 /*
1538 * Save Pointers.
1539 */
1540 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1541 ahd_outl(ahd, SCB_DATACNT, resid);
1542 ahd_outl(ahd, SCB_SGPTR, sgptr);
1543 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1544 ahd_outb(ahd, SEQIMODE,
1545 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1546 /*
1547 * If the data is to the SCSI bus, we are
1548 * done, otherwise wait for FIFOEMP.
1549 */
1550 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1551 goto clrchn;
1552 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1553 uint32_t sgptr;
1554 uint64_t data_addr;
1555 uint32_t data_len;
1556 u_int dfcntrl;
1557
1558 /*
1559 * Disable S/G fetch so the DMA engine
1560 * is available to future users. We won't
1561 * be using the DMA engine to load segments.
1562 */
1563 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1564 ahd_outb(ahd, CCSGCTL, 0);
1565 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1566 }
1567
1568 /*
1569 * Wait for the DMA engine to notice that the
1570 * host transfer is enabled and that there is
1571 * space in the S/G FIFO for new segments before
1572 * loading more segments.
1573 */
1574 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1575 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1576
1577 /*
1578 * Determine the offset of the next S/G
1579 * element to load.
1580 */
1581 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1582 sgptr &= SG_PTR_MASK;
1583 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1584 struct ahd_dma64_seg *sg;
1585
1586 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1587 data_addr = sg->addr;
1588 data_len = sg->len;
1589 sgptr += sizeof(*sg);
1590 } else {
1591 struct ahd_dma_seg *sg;
1592
1593 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1594 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1595 data_addr <<= 8;
1596 data_addr |= sg->addr;
1597 data_len = sg->len;
1598 sgptr += sizeof(*sg);
1599 }
1600
1601 /*
1602 * Update residual information.
1603 */
1604 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1605 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1606
1607 /*
1608 * Load the S/G.
1609 */
1610 if (data_len & AHD_DMA_LAST_SEG) {
1611 sgptr |= LAST_SEG;
1612 ahd_outb(ahd, SG_STATE, 0);
1613 }
1614 ahd_outq(ahd, HADDR, data_addr);
1615 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1616 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1617
1618 /*
1619 * Advertise the segment to the hardware.
1620 */
1621 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1622 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1623 /*
1624 * Use SCSIENWRDIS so that SCSIEN
1625 * is never modified by this
1626 * operation.
1627 */
1628 dfcntrl |= SCSIENWRDIS;
1629 }
1630 ahd_outb(ahd, DFCNTRL, dfcntrl);
1631 }
1632 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1633
1634 /*
1635 * Transfer completed to the end of SG list
1636 * and has flushed to the host.
1637 */
1638 ahd_outb(ahd, SCB_SGPTR,
1639 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1640 goto clrchn;
1641 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1642 clrchn:
1643 /*
1644 * Clear any handler for this FIFO, decrement
1645 * the FIFO use count for the SCB, and release
1646 * the FIFO.
1647 */
1648 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1649 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1650 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1651 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1652 }
1653 }
1654
1655 /*
1656 * Look for entries in the QoutFIFO that have completed.
1657 * The valid_tag completion field indicates the validity
1658 * of the entry - the valid value toggles each time through
1659 * the queue. We use the sg_status field in the completion
1660 * entry to avoid referencing the hscb if the completion
1661 * occurred with no errors and no residual. sg_status is
1662 * a copy of the first byte (little endian) of the sgptr
1663 * hscb field.
1664 */
1665 static void
ahd_run_qoutfifo(struct ahd_softc * ahd)1666 ahd_run_qoutfifo(struct ahd_softc *ahd)
1667 {
1668 struct ahd_completion *completion;
1669 struct scb *scb;
1670 u_int scb_index;
1671
1672 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1673 panic("ahd_run_qoutfifo recursion");
1674 ahd->flags |= AHD_RUNNING_QOUTFIFO;
1675 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1676 for (;;) {
1677 completion = &ahd->qoutfifo[ahd->qoutfifonext];
1678
1679 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1680 break;
1681
1682 scb_index = ahd_le16toh(completion->tag);
1683 scb = ahd_lookup_scb(ahd, scb_index);
1684 if (scb == NULL) {
1685 printk("%s: WARNING no command for scb %d "
1686 "(cmdcmplt)\nQOUTPOS = %d\n",
1687 ahd_name(ahd), scb_index,
1688 ahd->qoutfifonext);
1689 ahd_dump_card_state(ahd);
1690 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1691 ahd_handle_scb_status(ahd, scb);
1692 } else {
1693 ahd_done(ahd, scb);
1694 }
1695
1696 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1697 if (ahd->qoutfifonext == 0)
1698 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1699 }
1700 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1701 }
1702
1703 /************************* Interrupt Handling *********************************/
1704 static void
ahd_handle_hwerrint(struct ahd_softc * ahd)1705 ahd_handle_hwerrint(struct ahd_softc *ahd)
1706 {
1707 /*
1708 * Some catastrophic hardware error has occurred.
1709 * Print it for the user and disable the controller.
1710 */
1711 int i;
1712 int error;
1713
1714 error = ahd_inb(ahd, ERROR);
1715 for (i = 0; i < num_errors; i++) {
1716 if ((error & ahd_hard_errors[i].errno) != 0)
1717 printk("%s: hwerrint, %s\n",
1718 ahd_name(ahd), ahd_hard_errors[i].errmesg);
1719 }
1720
1721 ahd_dump_card_state(ahd);
1722 panic("BRKADRINT");
1723
1724 /* Tell everyone that this HBA is no longer available */
1725 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1726 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1727 CAM_NO_HBA);
1728
1729 /* Tell the system that this controller has gone away. */
1730 ahd_free(ahd);
1731 }
1732
1733 #ifdef AHD_DEBUG
1734 static void
ahd_dump_sglist(struct scb * scb)1735 ahd_dump_sglist(struct scb *scb)
1736 {
1737 int i;
1738
1739 if (scb->sg_count > 0) {
1740 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1741 struct ahd_dma64_seg *sg_list;
1742
1743 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1744 for (i = 0; i < scb->sg_count; i++) {
1745 uint64_t addr;
1746 uint32_t len;
1747
1748 addr = ahd_le64toh(sg_list[i].addr);
1749 len = ahd_le32toh(sg_list[i].len);
1750 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1751 i,
1752 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1753 (uint32_t)(addr & 0xFFFFFFFF),
1754 sg_list[i].len & AHD_SG_LEN_MASK,
1755 (sg_list[i].len & AHD_DMA_LAST_SEG)
1756 ? " Last" : "");
1757 }
1758 } else {
1759 struct ahd_dma_seg *sg_list;
1760
1761 sg_list = (struct ahd_dma_seg*)scb->sg_list;
1762 for (i = 0; i < scb->sg_count; i++) {
1763 uint32_t len;
1764
1765 len = ahd_le32toh(sg_list[i].len);
1766 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1767 i,
1768 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1769 ahd_le32toh(sg_list[i].addr),
1770 len & AHD_SG_LEN_MASK,
1771 len & AHD_DMA_LAST_SEG ? " Last" : "");
1772 }
1773 }
1774 }
1775 }
1776 #endif /* AHD_DEBUG */
1777
1778 static void
ahd_handle_seqint(struct ahd_softc * ahd,u_int intstat)1779 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1780 {
1781 u_int seqintcode;
1782
1783 /*
1784 * Save the sequencer interrupt code and clear the SEQINT
1785 * bit. We will unpause the sequencer, if appropriate,
1786 * after servicing the request.
1787 */
1788 seqintcode = ahd_inb(ahd, SEQINTCODE);
1789 ahd_outb(ahd, CLRINT, CLRSEQINT);
1790 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1791 /*
1792 * Unpause the sequencer and let it clear
1793 * SEQINT by writing NO_SEQINT to it. This
1794 * will cause the sequencer to be paused again,
1795 * which is the expected state of this routine.
1796 */
1797 ahd_unpause(ahd);
1798 while (!ahd_is_paused(ahd))
1799 ;
1800 ahd_outb(ahd, CLRINT, CLRSEQINT);
1801 }
1802 ahd_update_modes(ahd);
1803 #ifdef AHD_DEBUG
1804 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1805 printk("%s: Handle Seqint Called for code %d\n",
1806 ahd_name(ahd), seqintcode);
1807 #endif
1808 switch (seqintcode) {
1809 case ENTERING_NONPACK:
1810 {
1811 struct scb *scb;
1812 u_int scbid;
1813
1814 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1815 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1816 scbid = ahd_get_scbptr(ahd);
1817 scb = ahd_lookup_scb(ahd, scbid);
1818 if (scb == NULL) {
1819 /*
1820 * Somehow need to know if this
1821 * is from a selection or reselection.
1822 * From that, we can determine target
1823 * ID so we at least have an I_T nexus.
1824 */
1825 } else {
1826 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1827 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1828 ahd_outb(ahd, SEQ_FLAGS, 0x0);
1829 }
1830 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1831 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1832 /*
1833 * Phase change after read stream with
1834 * CRC error with P0 asserted on last
1835 * packet.
1836 */
1837 #ifdef AHD_DEBUG
1838 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1839 printk("%s: Assuming LQIPHASE_NLQ with "
1840 "P0 assertion\n", ahd_name(ahd));
1841 #endif
1842 }
1843 #ifdef AHD_DEBUG
1844 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845 printk("%s: Entering NONPACK\n", ahd_name(ahd));
1846 #endif
1847 break;
1848 }
1849 case INVALID_SEQINT:
1850 printk("%s: Invalid Sequencer interrupt occurred, "
1851 "resetting channel.\n",
1852 ahd_name(ahd));
1853 #ifdef AHD_DEBUG
1854 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1855 ahd_dump_card_state(ahd);
1856 #endif
1857 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1858 break;
1859 case STATUS_OVERRUN:
1860 {
1861 struct scb *scb;
1862 u_int scbid;
1863
1864 scbid = ahd_get_scbptr(ahd);
1865 scb = ahd_lookup_scb(ahd, scbid);
1866 if (scb != NULL)
1867 ahd_print_path(ahd, scb);
1868 else
1869 printk("%s: ", ahd_name(ahd));
1870 printk("SCB %d Packetized Status Overrun", scbid);
1871 ahd_dump_card_state(ahd);
1872 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1873 break;
1874 }
1875 case CFG4ISTAT_INTR:
1876 {
1877 struct scb *scb;
1878 u_int scbid;
1879
1880 scbid = ahd_get_scbptr(ahd);
1881 scb = ahd_lookup_scb(ahd, scbid);
1882 if (scb == NULL) {
1883 ahd_dump_card_state(ahd);
1884 printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1885 panic("For safety");
1886 }
1887 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1888 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1889 ahd_outb(ahd, HCNT + 2, 0);
1890 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1891 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1892 break;
1893 }
1894 case ILLEGAL_PHASE:
1895 {
1896 u_int bus_phase;
1897
1898 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1899 printk("%s: ILLEGAL_PHASE 0x%x\n",
1900 ahd_name(ahd), bus_phase);
1901
1902 switch (bus_phase) {
1903 case P_DATAOUT:
1904 case P_DATAIN:
1905 case P_DATAOUT_DT:
1906 case P_DATAIN_DT:
1907 case P_MESGOUT:
1908 case P_STATUS:
1909 case P_MESGIN:
1910 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1911 printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1912 break;
1913 case P_COMMAND:
1914 {
1915 struct ahd_devinfo devinfo;
1916 struct scb *scb;
1917 struct ahd_initiator_tinfo *targ_info;
1918 struct ahd_tmode_tstate *tstate;
1919 struct ahd_transinfo *tinfo;
1920 u_int scbid;
1921
1922 /*
1923 * If a target takes us into the command phase
1924 * assume that it has been externally reset and
1925 * has thus lost our previous packetized negotiation
1926 * agreement. Since we have not sent an identify
1927 * message and may not have fully qualified the
1928 * connection, we change our command to TUR, assert
1929 * ATN and ABORT the task when we go to message in
1930 * phase. The OSM will see the REQUEUE_REQUEST
1931 * status and retry the command.
1932 */
1933 scbid = ahd_get_scbptr(ahd);
1934 scb = ahd_lookup_scb(ahd, scbid);
1935 if (scb == NULL) {
1936 printk("Invalid phase with no valid SCB. "
1937 "Resetting bus.\n");
1938 ahd_reset_channel(ahd, 'A',
1939 /*Initiate Reset*/TRUE);
1940 break;
1941 }
1942 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1943 SCB_GET_TARGET(ahd, scb),
1944 SCB_GET_LUN(scb),
1945 SCB_GET_CHANNEL(ahd, scb),
1946 ROLE_INITIATOR);
1947 targ_info = ahd_fetch_transinfo(ahd,
1948 devinfo.channel,
1949 devinfo.our_scsiid,
1950 devinfo.target,
1951 &tstate);
1952 tinfo = &targ_info->curr;
1953 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1954 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1955 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1956 /*offset*/0, /*ppr_options*/0,
1957 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1958 /* Hand-craft TUR command */
1959 ahd_outb(ahd, SCB_CDB_STORE, 0);
1960 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1961 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1962 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1963 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1964 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1965 ahd_outb(ahd, SCB_CDB_LEN, 6);
1966 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1967 scb->hscb->control |= MK_MESSAGE;
1968 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1969 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1970 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1971 /*
1972 * The lun is 0, regardless of the SCB's lun
1973 * as we have not sent an identify message.
1974 */
1975 ahd_outb(ahd, SAVED_LUN, 0);
1976 ahd_outb(ahd, SEQ_FLAGS, 0);
1977 ahd_assert_atn(ahd);
1978 scb->flags &= ~SCB_PACKETIZED;
1979 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1980 ahd_freeze_devq(ahd, scb);
1981 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1982 ahd_freeze_scb(scb);
1983
1984 /* Notify XPT */
1985 ahd_send_async(ahd, devinfo.channel, devinfo.target,
1986 CAM_LUN_WILDCARD, AC_SENT_BDR);
1987
1988 /*
1989 * Allow the sequencer to continue with
1990 * non-pack processing.
1991 */
1992 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1993 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1994 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1995 ahd_outb(ahd, CLRLQOINT1, 0);
1996 }
1997 #ifdef AHD_DEBUG
1998 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1999 ahd_print_path(ahd, scb);
2000 printk("Unexpected command phase from "
2001 "packetized target\n");
2002 }
2003 #endif
2004 break;
2005 }
2006 }
2007 break;
2008 }
2009 case CFG4OVERRUN:
2010 {
2011 struct scb *scb;
2012 u_int scb_index;
2013
2014 #ifdef AHD_DEBUG
2015 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2016 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2017 ahd_inb(ahd, MODE_PTR));
2018 }
2019 #endif
2020 scb_index = ahd_get_scbptr(ahd);
2021 scb = ahd_lookup_scb(ahd, scb_index);
2022 if (scb == NULL) {
2023 /*
2024 * Attempt to transfer to an SCB that is
2025 * not outstanding.
2026 */
2027 ahd_assert_atn(ahd);
2028 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2029 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2030 ahd->msgout_len = 1;
2031 ahd->msgout_index = 0;
2032 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2033 /*
2034 * Clear status received flag to prevent any
2035 * attempt to complete this bogus SCB.
2036 */
2037 ahd_outb(ahd, SCB_CONTROL,
2038 ahd_inb_scbram(ahd, SCB_CONTROL)
2039 & ~STATUS_RCVD);
2040 }
2041 break;
2042 }
2043 case DUMP_CARD_STATE:
2044 {
2045 ahd_dump_card_state(ahd);
2046 break;
2047 }
2048 case PDATA_REINIT:
2049 {
2050 #ifdef AHD_DEBUG
2051 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2052 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2053 "SG_CACHE_SHADOW = 0x%x\n",
2054 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2055 ahd_inb(ahd, SG_CACHE_SHADOW));
2056 }
2057 #endif
2058 ahd_reinitialize_dataptrs(ahd);
2059 break;
2060 }
2061 case HOST_MSG_LOOP:
2062 {
2063 struct ahd_devinfo devinfo;
2064
2065 /*
2066 * The sequencer has encountered a message phase
2067 * that requires host assistance for completion.
2068 * While handling the message phase(s), we will be
2069 * notified by the sequencer after each byte is
2070 * transferred so we can track bus phase changes.
2071 *
2072 * If this is the first time we've seen a HOST_MSG_LOOP
2073 * interrupt, initialize the state of the host message
2074 * loop.
2075 */
2076 ahd_fetch_devinfo(ahd, &devinfo);
2077 if (ahd->msg_type == MSG_TYPE_NONE) {
2078 struct scb *scb;
2079 u_int scb_index;
2080 u_int bus_phase;
2081
2082 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2083 if (bus_phase != P_MESGIN
2084 && bus_phase != P_MESGOUT) {
2085 printk("ahd_intr: HOST_MSG_LOOP bad "
2086 "phase 0x%x\n", bus_phase);
2087 /*
2088 * Probably transitioned to bus free before
2089 * we got here. Just punt the message.
2090 */
2091 ahd_dump_card_state(ahd);
2092 ahd_clear_intstat(ahd);
2093 ahd_restart(ahd);
2094 return;
2095 }
2096
2097 scb_index = ahd_get_scbptr(ahd);
2098 scb = ahd_lookup_scb(ahd, scb_index);
2099 if (devinfo.role == ROLE_INITIATOR) {
2100 if (bus_phase == P_MESGOUT)
2101 ahd_setup_initiator_msgout(ahd,
2102 &devinfo,
2103 scb);
2104 else {
2105 ahd->msg_type =
2106 MSG_TYPE_INITIATOR_MSGIN;
2107 ahd->msgin_index = 0;
2108 }
2109 }
2110 #ifdef AHD_TARGET_MODE
2111 else {
2112 if (bus_phase == P_MESGOUT) {
2113 ahd->msg_type =
2114 MSG_TYPE_TARGET_MSGOUT;
2115 ahd->msgin_index = 0;
2116 }
2117 else
2118 ahd_setup_target_msgin(ahd,
2119 &devinfo,
2120 scb);
2121 }
2122 #endif
2123 }
2124
2125 ahd_handle_message_phase(ahd);
2126 break;
2127 }
2128 case NO_MATCH:
2129 {
2130 /* Ensure we don't leave the selection hardware on */
2131 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2132 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2133
2134 printk("%s:%c:%d: no active SCB for reconnecting "
2135 "target - issuing BUS DEVICE RESET\n",
2136 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2137 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2138 "REG0 == 0x%x ACCUM = 0x%x\n",
2139 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2140 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2141 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2142 "SINDEX == 0x%x\n",
2143 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2144 ahd_find_busy_tcl(ahd,
2145 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2146 ahd_inb(ahd, SAVED_LUN))),
2147 ahd_inw(ahd, SINDEX));
2148 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2149 "SCB_CONTROL == 0x%x\n",
2150 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2151 ahd_inb_scbram(ahd, SCB_LUN),
2152 ahd_inb_scbram(ahd, SCB_CONTROL));
2153 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2154 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2155 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2156 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2157 ahd_dump_card_state(ahd);
2158 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2159 ahd->msgout_len = 1;
2160 ahd->msgout_index = 0;
2161 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2162 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2163 ahd_assert_atn(ahd);
2164 break;
2165 }
2166 case PROTO_VIOLATION:
2167 {
2168 ahd_handle_proto_violation(ahd);
2169 break;
2170 }
2171 case IGN_WIDE_RES:
2172 {
2173 struct ahd_devinfo devinfo;
2174
2175 ahd_fetch_devinfo(ahd, &devinfo);
2176 ahd_handle_ign_wide_residue(ahd, &devinfo);
2177 break;
2178 }
2179 case BAD_PHASE:
2180 {
2181 u_int lastphase;
2182
2183 lastphase = ahd_inb(ahd, LASTPHASE);
2184 printk("%s:%c:%d: unknown scsi bus phase %x, "
2185 "lastphase = 0x%x. Attempting to continue\n",
2186 ahd_name(ahd), 'A',
2187 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2188 lastphase, ahd_inb(ahd, SCSISIGI));
2189 break;
2190 }
2191 case MISSED_BUSFREE:
2192 {
2193 u_int lastphase;
2194
2195 lastphase = ahd_inb(ahd, LASTPHASE);
2196 printk("%s:%c:%d: Missed busfree. "
2197 "Lastphase = 0x%x, Curphase = 0x%x\n",
2198 ahd_name(ahd), 'A',
2199 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2200 lastphase, ahd_inb(ahd, SCSISIGI));
2201 ahd_restart(ahd);
2202 return;
2203 }
2204 case DATA_OVERRUN:
2205 {
2206 /*
2207 * When the sequencer detects an overrun, it
2208 * places the controller in "BITBUCKET" mode
2209 * and allows the target to complete its transfer.
2210 * Unfortunately, none of the counters get updated
2211 * when the controller is in this mode, so we have
2212 * no way of knowing how large the overrun was.
2213 */
2214 struct scb *scb;
2215 u_int scbindex;
2216 #ifdef AHD_DEBUG
2217 u_int lastphase;
2218 #endif
2219
2220 scbindex = ahd_get_scbptr(ahd);
2221 scb = ahd_lookup_scb(ahd, scbindex);
2222 #ifdef AHD_DEBUG
2223 lastphase = ahd_inb(ahd, LASTPHASE);
2224 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2225 ahd_print_path(ahd, scb);
2226 printk("data overrun detected %s. Tag == 0x%x.\n",
2227 ahd_lookup_phase_entry(lastphase)->phasemsg,
2228 SCB_GET_TAG(scb));
2229 ahd_print_path(ahd, scb);
2230 printk("%s seen Data Phase. Length = %ld. "
2231 "NumSGs = %d.\n",
2232 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2233 ? "Have" : "Haven't",
2234 ahd_get_transfer_length(scb), scb->sg_count);
2235 ahd_dump_sglist(scb);
2236 }
2237 #endif
2238
2239 /*
2240 * Set this and it will take effect when the
2241 * target does a command complete.
2242 */
2243 ahd_freeze_devq(ahd, scb);
2244 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2245 ahd_freeze_scb(scb);
2246 break;
2247 }
2248 case MKMSG_FAILED:
2249 {
2250 struct ahd_devinfo devinfo;
2251 struct scb *scb;
2252 u_int scbid;
2253
2254 ahd_fetch_devinfo(ahd, &devinfo);
2255 printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2256 ahd_name(ahd), devinfo.channel, devinfo.target,
2257 devinfo.lun);
2258 scbid = ahd_get_scbptr(ahd);
2259 scb = ahd_lookup_scb(ahd, scbid);
2260 if (scb != NULL
2261 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2262 /*
2263 * Ensure that we didn't put a second instance of this
2264 * SCB into the QINFIFO.
2265 */
2266 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2267 SCB_GET_CHANNEL(ahd, scb),
2268 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2269 ROLE_INITIATOR, /*status*/0,
2270 SEARCH_REMOVE);
2271 ahd_outb(ahd, SCB_CONTROL,
2272 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2273 break;
2274 }
2275 case TASKMGMT_FUNC_COMPLETE:
2276 {
2277 u_int scbid;
2278 struct scb *scb;
2279
2280 scbid = ahd_get_scbptr(ahd);
2281 scb = ahd_lookup_scb(ahd, scbid);
2282 if (scb != NULL) {
2283 u_int lun;
2284 u_int tag;
2285 cam_status error;
2286
2287 ahd_print_path(ahd, scb);
2288 printk("Task Management Func 0x%x Complete\n",
2289 scb->hscb->task_management);
2290 lun = CAM_LUN_WILDCARD;
2291 tag = SCB_LIST_NULL;
2292
2293 switch (scb->hscb->task_management) {
2294 case SIU_TASKMGMT_ABORT_TASK:
2295 tag = SCB_GET_TAG(scb);
2296 case SIU_TASKMGMT_ABORT_TASK_SET:
2297 case SIU_TASKMGMT_CLEAR_TASK_SET:
2298 lun = scb->hscb->lun;
2299 error = CAM_REQ_ABORTED;
2300 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2301 'A', lun, tag, ROLE_INITIATOR,
2302 error);
2303 break;
2304 case SIU_TASKMGMT_LUN_RESET:
2305 lun = scb->hscb->lun;
2306 case SIU_TASKMGMT_TARGET_RESET:
2307 {
2308 struct ahd_devinfo devinfo;
2309
2310 ahd_scb_devinfo(ahd, &devinfo, scb);
2311 error = CAM_BDR_SENT;
2312 ahd_handle_devreset(ahd, &devinfo, lun,
2313 CAM_BDR_SENT,
2314 lun != CAM_LUN_WILDCARD
2315 ? "Lun Reset"
2316 : "Target Reset",
2317 /*verbose_level*/0);
2318 break;
2319 }
2320 default:
2321 panic("Unexpected TaskMgmt Func\n");
2322 break;
2323 }
2324 }
2325 break;
2326 }
2327 case TASKMGMT_CMD_CMPLT_OKAY:
2328 {
2329 u_int scbid;
2330 struct scb *scb;
2331
2332 /*
2333 * An ABORT TASK TMF failed to be delivered before
2334 * the targeted command completed normally.
2335 */
2336 scbid = ahd_get_scbptr(ahd);
2337 scb = ahd_lookup_scb(ahd, scbid);
2338 if (scb != NULL) {
2339 /*
2340 * Remove the second instance of this SCB from
2341 * the QINFIFO if it is still there.
2342 */
2343 ahd_print_path(ahd, scb);
2344 printk("SCB completes before TMF\n");
2345 /*
2346 * Handle losing the race. Wait until any
2347 * current selection completes. We will then
2348 * set the TMF back to zero in this SCB so that
2349 * the sequencer doesn't bother to issue another
2350 * sequencer interrupt for its completion.
2351 */
2352 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2353 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2354 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2355 ;
2356 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2357 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2358 SCB_GET_CHANNEL(ahd, scb),
2359 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2360 ROLE_INITIATOR, /*status*/0,
2361 SEARCH_REMOVE);
2362 }
2363 break;
2364 }
2365 case TRACEPOINT0:
2366 case TRACEPOINT1:
2367 case TRACEPOINT2:
2368 case TRACEPOINT3:
2369 printk("%s: Tracepoint %d\n", ahd_name(ahd),
2370 seqintcode - TRACEPOINT0);
2371 break;
2372 case NO_SEQINT:
2373 break;
2374 case SAW_HWERR:
2375 ahd_handle_hwerrint(ahd);
2376 break;
2377 default:
2378 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2379 seqintcode);
2380 break;
2381 }
2382 /*
2383 * The sequencer is paused immediately on
2384 * a SEQINT, so we should restart it when
2385 * we're done.
2386 */
2387 ahd_unpause(ahd);
2388 }
2389
2390 static void
ahd_handle_scsiint(struct ahd_softc * ahd,u_int intstat)2391 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2392 {
2393 struct scb *scb;
2394 u_int status0;
2395 u_int status3;
2396 u_int status;
2397 u_int lqistat1;
2398 u_int lqostat0;
2399 u_int scbid;
2400 u_int busfreetime;
2401
2402 ahd_update_modes(ahd);
2403 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2404
2405 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2406 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2407 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2408 lqistat1 = ahd_inb(ahd, LQISTAT1);
2409 lqostat0 = ahd_inb(ahd, LQOSTAT0);
2410 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2411
2412 /*
2413 * Ignore external resets after a bus reset.
2414 */
2415 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2416 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2417 return;
2418 }
2419
2420 /*
2421 * Clear bus reset flag
2422 */
2423 ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2424
2425 if ((status0 & (SELDI|SELDO)) != 0) {
2426 u_int simode0;
2427
2428 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2429 simode0 = ahd_inb(ahd, SIMODE0);
2430 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2431 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2432 }
2433 scbid = ahd_get_scbptr(ahd);
2434 scb = ahd_lookup_scb(ahd, scbid);
2435 if (scb != NULL
2436 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2437 scb = NULL;
2438
2439 if ((status0 & IOERR) != 0) {
2440 u_int now_lvd;
2441
2442 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2443 printk("%s: Transceiver State Has Changed to %s mode\n",
2444 ahd_name(ahd), now_lvd ? "LVD" : "SE");
2445 ahd_outb(ahd, CLRSINT0, CLRIOERR);
2446 /*
2447 * A change in I/O mode is equivalent to a bus reset.
2448 */
2449 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2450 ahd_pause(ahd);
2451 ahd_setup_iocell_workaround(ahd);
2452 ahd_unpause(ahd);
2453 } else if ((status0 & OVERRUN) != 0) {
2454
2455 printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2456 ahd_name(ahd));
2457 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2458 } else if ((status & SCSIRSTI) != 0) {
2459
2460 printk("%s: Someone reset channel A\n", ahd_name(ahd));
2461 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2462 } else if ((status & SCSIPERR) != 0) {
2463
2464 /* Make sure the sequencer is in a safe location. */
2465 ahd_clear_critical_section(ahd);
2466
2467 ahd_handle_transmission_error(ahd);
2468 } else if (lqostat0 != 0) {
2469
2470 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2471 ahd_outb(ahd, CLRLQOINT0, lqostat0);
2472 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2473 ahd_outb(ahd, CLRLQOINT1, 0);
2474 } else if ((status & SELTO) != 0) {
2475 /* Stop the selection */
2476 ahd_outb(ahd, SCSISEQ0, 0);
2477
2478 /* Make sure the sequencer is in a safe location. */
2479 ahd_clear_critical_section(ahd);
2480
2481 /* No more pending messages */
2482 ahd_clear_msg_state(ahd);
2483
2484 /* Clear interrupt state */
2485 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2486
2487 /*
2488 * Although the driver does not care about the
2489 * 'Selection in Progress' status bit, the busy
2490 * LED does. SELINGO is only cleared by a successful
2491 * selection, so we must manually clear it to insure
2492 * the LED turns off just incase no future successful
2493 * selections occur (e.g. no devices on the bus).
2494 */
2495 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2496
2497 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2498 scb = ahd_lookup_scb(ahd, scbid);
2499 if (scb == NULL) {
2500 printk("%s: ahd_intr - referenced scb not "
2501 "valid during SELTO scb(0x%x)\n",
2502 ahd_name(ahd), scbid);
2503 ahd_dump_card_state(ahd);
2504 } else {
2505 struct ahd_devinfo devinfo;
2506 #ifdef AHD_DEBUG
2507 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2508 ahd_print_path(ahd, scb);
2509 printk("Saw Selection Timeout for SCB 0x%x\n",
2510 scbid);
2511 }
2512 #endif
2513 ahd_scb_devinfo(ahd, &devinfo, scb);
2514 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2515 ahd_freeze_devq(ahd, scb);
2516
2517 /*
2518 * Cancel any pending transactions on the device
2519 * now that it seems to be missing. This will
2520 * also revert us to async/narrow transfers until
2521 * we can renegotiate with the device.
2522 */
2523 ahd_handle_devreset(ahd, &devinfo,
2524 CAM_LUN_WILDCARD,
2525 CAM_SEL_TIMEOUT,
2526 "Selection Timeout",
2527 /*verbose_level*/1);
2528 }
2529 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2530 ahd_iocell_first_selection(ahd);
2531 ahd_unpause(ahd);
2532 } else if ((status0 & (SELDI|SELDO)) != 0) {
2533
2534 ahd_iocell_first_selection(ahd);
2535 ahd_unpause(ahd);
2536 } else if (status3 != 0) {
2537 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2538 ahd_name(ahd), status3);
2539 ahd_outb(ahd, CLRSINT3, status3);
2540 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2541
2542 /* Make sure the sequencer is in a safe location. */
2543 ahd_clear_critical_section(ahd);
2544
2545 ahd_handle_lqiphase_error(ahd, lqistat1);
2546 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2547 /*
2548 * This status can be delayed during some
2549 * streaming operations. The SCSIPHASE
2550 * handler has already dealt with this case
2551 * so just clear the error.
2552 */
2553 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2554 } else if ((status & BUSFREE) != 0
2555 || (lqistat1 & LQOBUSFREE) != 0) {
2556 u_int lqostat1;
2557 int restart;
2558 int clear_fifo;
2559 int packetized;
2560 u_int mode;
2561
2562 /*
2563 * Clear our selection hardware as soon as possible.
2564 * We may have an entry in the waiting Q for this target,
2565 * that is affected by this busfree and we don't want to
2566 * go about selecting the target while we handle the event.
2567 */
2568 ahd_outb(ahd, SCSISEQ0, 0);
2569
2570 /* Make sure the sequencer is in a safe location. */
2571 ahd_clear_critical_section(ahd);
2572
2573 /*
2574 * Determine what we were up to at the time of
2575 * the busfree.
2576 */
2577 mode = AHD_MODE_SCSI;
2578 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2579 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2580 switch (busfreetime) {
2581 case BUSFREE_DFF0:
2582 case BUSFREE_DFF1:
2583 {
2584 mode = busfreetime == BUSFREE_DFF0
2585 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2586 ahd_set_modes(ahd, mode, mode);
2587 scbid = ahd_get_scbptr(ahd);
2588 scb = ahd_lookup_scb(ahd, scbid);
2589 if (scb == NULL) {
2590 printk("%s: Invalid SCB %d in DFF%d "
2591 "during unexpected busfree\n",
2592 ahd_name(ahd), scbid, mode);
2593 packetized = 0;
2594 } else
2595 packetized = (scb->flags & SCB_PACKETIZED) != 0;
2596 clear_fifo = 1;
2597 break;
2598 }
2599 case BUSFREE_LQO:
2600 clear_fifo = 0;
2601 packetized = 1;
2602 break;
2603 default:
2604 clear_fifo = 0;
2605 packetized = (lqostat1 & LQOBUSFREE) != 0;
2606 if (!packetized
2607 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2608 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2609 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2610 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2611 /*
2612 * Assume packetized if we are not
2613 * on the bus in a non-packetized
2614 * capacity and any pending selection
2615 * was a packetized selection.
2616 */
2617 packetized = 1;
2618 break;
2619 }
2620
2621 #ifdef AHD_DEBUG
2622 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2623 printk("Saw Busfree. Busfreetime = 0x%x.\n",
2624 busfreetime);
2625 #endif
2626 /*
2627 * Busfrees that occur in non-packetized phases are
2628 * handled by the nonpkt_busfree handler.
2629 */
2630 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2631 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2632 } else {
2633 packetized = 0;
2634 restart = ahd_handle_nonpkt_busfree(ahd);
2635 }
2636 /*
2637 * Clear the busfree interrupt status. The setting of
2638 * the interrupt is a pulse, so in a perfect world, we
2639 * would not need to muck with the ENBUSFREE logic. This
2640 * would ensure that if the bus moves on to another
2641 * connection, busfree protection is still in force. If
2642 * BUSFREEREV is broken, however, we must manually clear
2643 * the ENBUSFREE if the busfree occurred during a non-pack
2644 * connection so that we don't get false positives during
2645 * future, packetized, connections.
2646 */
2647 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2648 if (packetized == 0
2649 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2650 ahd_outb(ahd, SIMODE1,
2651 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2652
2653 if (clear_fifo)
2654 ahd_clear_fifo(ahd, mode);
2655
2656 ahd_clear_msg_state(ahd);
2657 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2658 if (restart) {
2659 ahd_restart(ahd);
2660 } else {
2661 ahd_unpause(ahd);
2662 }
2663 } else {
2664 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2665 ahd_name(ahd), status);
2666 ahd_dump_card_state(ahd);
2667 ahd_clear_intstat(ahd);
2668 ahd_unpause(ahd);
2669 }
2670 }
2671
2672 static void
ahd_handle_transmission_error(struct ahd_softc * ahd)2673 ahd_handle_transmission_error(struct ahd_softc *ahd)
2674 {
2675 struct scb *scb;
2676 u_int scbid;
2677 u_int lqistat1;
2678 u_int lqistat2;
2679 u_int msg_out;
2680 u_int curphase;
2681 u_int lastphase;
2682 u_int perrdiag;
2683 u_int cur_col;
2684 int silent;
2685
2686 scb = NULL;
2687 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2688 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2689 lqistat2 = ahd_inb(ahd, LQISTAT2);
2690 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2691 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2692 u_int lqistate;
2693
2694 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2695 lqistate = ahd_inb(ahd, LQISTATE);
2696 if ((lqistate >= 0x1E && lqistate <= 0x24)
2697 || (lqistate == 0x29)) {
2698 #ifdef AHD_DEBUG
2699 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2700 printk("%s: NLQCRC found via LQISTATE\n",
2701 ahd_name(ahd));
2702 }
2703 #endif
2704 lqistat1 |= LQICRCI_NLQ;
2705 }
2706 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2707 }
2708
2709 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2710 lastphase = ahd_inb(ahd, LASTPHASE);
2711 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2712 perrdiag = ahd_inb(ahd, PERRDIAG);
2713 msg_out = MSG_INITIATOR_DET_ERR;
2714 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2715
2716 /*
2717 * Try to find the SCB associated with this error.
2718 */
2719 silent = FALSE;
2720 if (lqistat1 == 0
2721 || (lqistat1 & LQICRCI_NLQ) != 0) {
2722 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2723 ahd_set_active_fifo(ahd);
2724 scbid = ahd_get_scbptr(ahd);
2725 scb = ahd_lookup_scb(ahd, scbid);
2726 if (scb != NULL && SCB_IS_SILENT(scb))
2727 silent = TRUE;
2728 }
2729
2730 cur_col = 0;
2731 if (silent == FALSE) {
2732 printk("%s: Transmission error detected\n", ahd_name(ahd));
2733 ahd_lqistat1_print(lqistat1, &cur_col, 50);
2734 ahd_lastphase_print(lastphase, &cur_col, 50);
2735 ahd_scsisigi_print(curphase, &cur_col, 50);
2736 ahd_perrdiag_print(perrdiag, &cur_col, 50);
2737 printk("\n");
2738 ahd_dump_card_state(ahd);
2739 }
2740
2741 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2742 if (silent == FALSE) {
2743 printk("%s: Gross protocol error during incoming "
2744 "packet. lqistat1 == 0x%x. Resetting bus.\n",
2745 ahd_name(ahd), lqistat1);
2746 }
2747 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2748 return;
2749 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2750 /*
2751 * A CRC error has been detected on an incoming LQ.
2752 * The bus is currently hung on the last ACK.
2753 * Hit LQIRETRY to release the last ack, and
2754 * wait for the sequencer to determine that ATNO
2755 * is asserted while in message out to take us
2756 * to our host message loop. No NONPACKREQ or
2757 * LQIPHASE type errors will occur in this
2758 * scenario. After this first LQIRETRY, the LQI
2759 * manager will be in ISELO where it will
2760 * happily sit until another packet phase begins.
2761 * Unexpected bus free detection is enabled
2762 * through any phases that occur after we release
2763 * this last ack until the LQI manager sees a
2764 * packet phase. This implies we may have to
2765 * ignore a perfectly valid "unexected busfree"
2766 * after our "initiator detected error" message is
2767 * sent. A busfree is the expected response after
2768 * we tell the target that it's L_Q was corrupted.
2769 * (SPI4R09 10.7.3.3.3)
2770 */
2771 ahd_outb(ahd, LQCTL2, LQIRETRY);
2772 printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2773 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2774 /*
2775 * We detected a CRC error in a NON-LQ packet.
2776 * The hardware has varying behavior in this situation
2777 * depending on whether this packet was part of a
2778 * stream or not.
2779 *
2780 * PKT by PKT mode:
2781 * The hardware has already acked the complete packet.
2782 * If the target honors our outstanding ATN condition,
2783 * we should be (or soon will be) in MSGOUT phase.
2784 * This will trigger the LQIPHASE_LQ status bit as the
2785 * hardware was expecting another LQ. Unexpected
2786 * busfree detection is enabled. Once LQIPHASE_LQ is
2787 * true (first entry into host message loop is much
2788 * the same), we must clear LQIPHASE_LQ and hit
2789 * LQIRETRY so the hardware is ready to handle
2790 * a future LQ. NONPACKREQ will not be asserted again
2791 * once we hit LQIRETRY until another packet is
2792 * processed. The target may either go busfree
2793 * or start another packet in response to our message.
2794 *
2795 * Read Streaming P0 asserted:
2796 * If we raise ATN and the target completes the entire
2797 * stream (P0 asserted during the last packet), the
2798 * hardware will ack all data and return to the ISTART
2799 * state. When the target reponds to our ATN condition,
2800 * LQIPHASE_LQ will be asserted. We should respond to
2801 * this with an LQIRETRY to prepare for any future
2802 * packets. NONPACKREQ will not be asserted again
2803 * once we hit LQIRETRY until another packet is
2804 * processed. The target may either go busfree or
2805 * start another packet in response to our message.
2806 * Busfree detection is enabled.
2807 *
2808 * Read Streaming P0 not asserted:
2809 * If we raise ATN and the target transitions to
2810 * MSGOUT in or after a packet where P0 is not
2811 * asserted, the hardware will assert LQIPHASE_NLQ.
2812 * We should respond to the LQIPHASE_NLQ with an
2813 * LQIRETRY. Should the target stay in a non-pkt
2814 * phase after we send our message, the hardware
2815 * will assert LQIPHASE_LQ. Recovery is then just as
2816 * listed above for the read streaming with P0 asserted.
2817 * Busfree detection is enabled.
2818 */
2819 if (silent == FALSE)
2820 printk("LQICRC_NLQ\n");
2821 if (scb == NULL) {
2822 printk("%s: No SCB valid for LQICRC_NLQ. "
2823 "Resetting bus\n", ahd_name(ahd));
2824 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2825 return;
2826 }
2827 } else if ((lqistat1 & LQIBADLQI) != 0) {
2828 printk("Need to handle BADLQI!\n");
2829 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2830 return;
2831 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2832 if ((curphase & ~P_DATAIN_DT) != 0) {
2833 /* Ack the byte. So we can continue. */
2834 if (silent == FALSE)
2835 printk("Acking %s to clear perror\n",
2836 ahd_lookup_phase_entry(curphase)->phasemsg);
2837 ahd_inb(ahd, SCSIDAT);
2838 }
2839
2840 if (curphase == P_MESGIN)
2841 msg_out = MSG_PARITY_ERROR;
2842 }
2843
2844 /*
2845 * We've set the hardware to assert ATN if we
2846 * get a parity error on "in" phases, so all we
2847 * need to do is stuff the message buffer with
2848 * the appropriate message. "In" phases have set
2849 * mesg_out to something other than MSG_NOP.
2850 */
2851 ahd->send_msg_perror = msg_out;
2852 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2853 scb->flags |= SCB_TRANSMISSION_ERROR;
2854 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2855 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2856 ahd_unpause(ahd);
2857 }
2858
2859 static void
ahd_handle_lqiphase_error(struct ahd_softc * ahd,u_int lqistat1)2860 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2861 {
2862 /*
2863 * Clear the sources of the interrupts.
2864 */
2865 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2866 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2867
2868 /*
2869 * If the "illegal" phase changes were in response
2870 * to our ATN to flag a CRC error, AND we ended up
2871 * on packet boundaries, clear the error, restart the
2872 * LQI manager as appropriate, and go on our merry
2873 * way toward sending the message. Otherwise, reset
2874 * the bus to clear the error.
2875 */
2876 ahd_set_active_fifo(ahd);
2877 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2878 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2879 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2880 printk("LQIRETRY for LQIPHASE_LQ\n");
2881 ahd_outb(ahd, LQCTL2, LQIRETRY);
2882 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2883 printk("LQIRETRY for LQIPHASE_NLQ\n");
2884 ahd_outb(ahd, LQCTL2, LQIRETRY);
2885 } else
2886 panic("ahd_handle_lqiphase_error: No phase errors\n");
2887 ahd_dump_card_state(ahd);
2888 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2889 ahd_unpause(ahd);
2890 } else {
2891 printk("Reseting Channel for LQI Phase error\n");
2892 ahd_dump_card_state(ahd);
2893 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2894 }
2895 }
2896
2897 /*
2898 * Packetized unexpected or expected busfree.
2899 * Entered in mode based on busfreetime.
2900 */
2901 static int
ahd_handle_pkt_busfree(struct ahd_softc * ahd,u_int busfreetime)2902 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2903 {
2904 u_int lqostat1;
2905
2906 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2907 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2908 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2909 if ((lqostat1 & LQOBUSFREE) != 0) {
2910 struct scb *scb;
2911 u_int scbid;
2912 u_int saved_scbptr;
2913 u_int waiting_h;
2914 u_int waiting_t;
2915 u_int next;
2916
2917 /*
2918 * The LQO manager detected an unexpected busfree
2919 * either:
2920 *
2921 * 1) During an outgoing LQ.
2922 * 2) After an outgoing LQ but before the first
2923 * REQ of the command packet.
2924 * 3) During an outgoing command packet.
2925 *
2926 * In all cases, CURRSCB is pointing to the
2927 * SCB that encountered the failure. Clean
2928 * up the queue, clear SELDO and LQOBUSFREE,
2929 * and allow the sequencer to restart the select
2930 * out at its lesure.
2931 */
2932 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2933 scbid = ahd_inw(ahd, CURRSCB);
2934 scb = ahd_lookup_scb(ahd, scbid);
2935 if (scb == NULL)
2936 panic("SCB not valid during LQOBUSFREE");
2937 /*
2938 * Clear the status.
2939 */
2940 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2941 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2942 ahd_outb(ahd, CLRLQOINT1, 0);
2943 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2944 ahd_flush_device_writes(ahd);
2945 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2946
2947 /*
2948 * Return the LQO manager to its idle loop. It will
2949 * not do this automatically if the busfree occurs
2950 * after the first REQ of either the LQ or command
2951 * packet or between the LQ and command packet.
2952 */
2953 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2954
2955 /*
2956 * Update the waiting for selection queue so
2957 * we restart on the correct SCB.
2958 */
2959 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2960 saved_scbptr = ahd_get_scbptr(ahd);
2961 if (waiting_h != scbid) {
2962
2963 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2964 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2965 if (waiting_t == waiting_h) {
2966 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2967 next = SCB_LIST_NULL;
2968 } else {
2969 ahd_set_scbptr(ahd, waiting_h);
2970 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2971 }
2972 ahd_set_scbptr(ahd, scbid);
2973 ahd_outw(ahd, SCB_NEXT2, next);
2974 }
2975 ahd_set_scbptr(ahd, saved_scbptr);
2976 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2977 if (SCB_IS_SILENT(scb) == FALSE) {
2978 ahd_print_path(ahd, scb);
2979 printk("Probable outgoing LQ CRC error. "
2980 "Retrying command\n");
2981 }
2982 scb->crc_retry_count++;
2983 } else {
2984 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2985 ahd_freeze_scb(scb);
2986 ahd_freeze_devq(ahd, scb);
2987 }
2988 /* Return unpausing the sequencer. */
2989 return (0);
2990 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2991 /*
2992 * Ignore what are really parity errors that
2993 * occur on the last REQ of a free running
2994 * clock prior to going busfree. Some drives
2995 * do not properly active negate just before
2996 * going busfree resulting in a parity glitch.
2997 */
2998 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2999 #ifdef AHD_DEBUG
3000 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
3001 printk("%s: Parity on last REQ detected "
3002 "during busfree phase.\n",
3003 ahd_name(ahd));
3004 #endif
3005 /* Return unpausing the sequencer. */
3006 return (0);
3007 }
3008 if (ahd->src_mode != AHD_MODE_SCSI) {
3009 u_int scbid;
3010 struct scb *scb;
3011
3012 scbid = ahd_get_scbptr(ahd);
3013 scb = ahd_lookup_scb(ahd, scbid);
3014 ahd_print_path(ahd, scb);
3015 printk("Unexpected PKT busfree condition\n");
3016 ahd_dump_card_state(ahd);
3017 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3018 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3019 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3020
3021 /* Return restarting the sequencer. */
3022 return (1);
3023 }
3024 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3025 ahd_dump_card_state(ahd);
3026 /* Restart the sequencer. */
3027 return (1);
3028 }
3029
3030 /*
3031 * Non-packetized unexpected or expected busfree.
3032 */
3033 static int
ahd_handle_nonpkt_busfree(struct ahd_softc * ahd)3034 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3035 {
3036 struct ahd_devinfo devinfo;
3037 struct scb *scb;
3038 u_int lastphase;
3039 u_int saved_scsiid;
3040 u_int saved_lun;
3041 u_int target;
3042 u_int initiator_role_id;
3043 u_int scbid;
3044 u_int ppr_busfree;
3045 int printerror;
3046
3047 /*
3048 * Look at what phase we were last in. If its message out,
3049 * chances are pretty good that the busfree was in response
3050 * to one of our abort requests.
3051 */
3052 lastphase = ahd_inb(ahd, LASTPHASE);
3053 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3054 saved_lun = ahd_inb(ahd, SAVED_LUN);
3055 target = SCSIID_TARGET(ahd, saved_scsiid);
3056 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3057 ahd_compile_devinfo(&devinfo, initiator_role_id,
3058 target, saved_lun, 'A', ROLE_INITIATOR);
3059 printerror = 1;
3060
3061 scbid = ahd_get_scbptr(ahd);
3062 scb = ahd_lookup_scb(ahd, scbid);
3063 if (scb != NULL
3064 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3065 scb = NULL;
3066
3067 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3068 if (lastphase == P_MESGOUT) {
3069 u_int tag;
3070
3071 tag = SCB_LIST_NULL;
3072 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3073 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3074 int found;
3075 int sent_msg;
3076
3077 if (scb == NULL) {
3078 ahd_print_devinfo(ahd, &devinfo);
3079 printk("Abort for unidentified "
3080 "connection completed.\n");
3081 /* restart the sequencer. */
3082 return (1);
3083 }
3084 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3085 ahd_print_path(ahd, scb);
3086 printk("SCB %d - Abort%s Completed.\n",
3087 SCB_GET_TAG(scb),
3088 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3089
3090 if (sent_msg == MSG_ABORT_TAG)
3091 tag = SCB_GET_TAG(scb);
3092
3093 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3094 /*
3095 * This abort is in response to an
3096 * unexpected switch to command phase
3097 * for a packetized connection. Since
3098 * the identify message was never sent,
3099 * "saved lun" is 0. We really want to
3100 * abort only the SCB that encountered
3101 * this error, which could have a different
3102 * lun. The SCB will be retried so the OS
3103 * will see the UA after renegotiating to
3104 * packetized.
3105 */
3106 tag = SCB_GET_TAG(scb);
3107 saved_lun = scb->hscb->lun;
3108 }
3109 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3110 tag, ROLE_INITIATOR,
3111 CAM_REQ_ABORTED);
3112 printk("found == 0x%x\n", found);
3113 printerror = 0;
3114 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3115 MSG_BUS_DEV_RESET, TRUE)) {
3116 #ifdef __FreeBSD__
3117 /*
3118 * Don't mark the user's request for this BDR
3119 * as completing with CAM_BDR_SENT. CAM3
3120 * specifies CAM_REQ_CMP.
3121 */
3122 if (scb != NULL
3123 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
3124 && ahd_match_scb(ahd, scb, target, 'A',
3125 CAM_LUN_WILDCARD, SCB_LIST_NULL,
3126 ROLE_INITIATOR))
3127 ahd_set_transaction_status(scb, CAM_REQ_CMP);
3128 #endif
3129 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3130 CAM_BDR_SENT, "Bus Device Reset",
3131 /*verbose_level*/0);
3132 printerror = 0;
3133 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3134 && ppr_busfree == 0) {
3135 struct ahd_initiator_tinfo *tinfo;
3136 struct ahd_tmode_tstate *tstate;
3137
3138 /*
3139 * PPR Rejected.
3140 *
3141 * If the previous negotiation was packetized,
3142 * this could be because the device has been
3143 * reset without our knowledge. Force our
3144 * current negotiation to async and retry the
3145 * negotiation. Otherwise retry the command
3146 * with non-ppr negotiation.
3147 */
3148 #ifdef AHD_DEBUG
3149 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3150 printk("PPR negotiation rejected busfree.\n");
3151 #endif
3152 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3153 devinfo.our_scsiid,
3154 devinfo.target, &tstate);
3155 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3156 ahd_set_width(ahd, &devinfo,
3157 MSG_EXT_WDTR_BUS_8_BIT,
3158 AHD_TRANS_CUR,
3159 /*paused*/TRUE);
3160 ahd_set_syncrate(ahd, &devinfo,
3161 /*period*/0, /*offset*/0,
3162 /*ppr_options*/0,
3163 AHD_TRANS_CUR,
3164 /*paused*/TRUE);
3165 /*
3166 * The expect PPR busfree handler below
3167 * will effect the retry and necessary
3168 * abort.
3169 */
3170 } else {
3171 tinfo->curr.transport_version = 2;
3172 tinfo->goal.transport_version = 2;
3173 tinfo->goal.ppr_options = 0;
3174 if (scb != NULL) {
3175 /*
3176 * Remove any SCBs in the waiting
3177 * for selection queue that may
3178 * also be for this target so that
3179 * command ordering is preserved.
3180 */
3181 ahd_freeze_devq(ahd, scb);
3182 ahd_qinfifo_requeue_tail(ahd, scb);
3183 }
3184 printerror = 0;
3185 }
3186 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3187 && ppr_busfree == 0) {
3188 /*
3189 * Negotiation Rejected. Go-narrow and
3190 * retry command.
3191 */
3192 #ifdef AHD_DEBUG
3193 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3194 printk("WDTR negotiation rejected busfree.\n");
3195 #endif
3196 ahd_set_width(ahd, &devinfo,
3197 MSG_EXT_WDTR_BUS_8_BIT,
3198 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3199 /*paused*/TRUE);
3200 if (scb != NULL) {
3201 /*
3202 * Remove any SCBs in the waiting for
3203 * selection queue that may also be for
3204 * this target so that command ordering
3205 * is preserved.
3206 */
3207 ahd_freeze_devq(ahd, scb);
3208 ahd_qinfifo_requeue_tail(ahd, scb);
3209 }
3210 printerror = 0;
3211 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3212 && ppr_busfree == 0) {
3213 /*
3214 * Negotiation Rejected. Go-async and
3215 * retry command.
3216 */
3217 #ifdef AHD_DEBUG
3218 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3219 printk("SDTR negotiation rejected busfree.\n");
3220 #endif
3221 ahd_set_syncrate(ahd, &devinfo,
3222 /*period*/0, /*offset*/0,
3223 /*ppr_options*/0,
3224 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3225 /*paused*/TRUE);
3226 if (scb != NULL) {
3227 /*
3228 * Remove any SCBs in the waiting for
3229 * selection queue that may also be for
3230 * this target so that command ordering
3231 * is preserved.
3232 */
3233 ahd_freeze_devq(ahd, scb);
3234 ahd_qinfifo_requeue_tail(ahd, scb);
3235 }
3236 printerror = 0;
3237 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3238 && ahd_sent_msg(ahd, AHDMSG_1B,
3239 MSG_INITIATOR_DET_ERR, TRUE)) {
3240
3241 #ifdef AHD_DEBUG
3242 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3243 printk("Expected IDE Busfree\n");
3244 #endif
3245 printerror = 0;
3246 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3247 && ahd_sent_msg(ahd, AHDMSG_1B,
3248 MSG_MESSAGE_REJECT, TRUE)) {
3249
3250 #ifdef AHD_DEBUG
3251 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3252 printk("Expected QAS Reject Busfree\n");
3253 #endif
3254 printerror = 0;
3255 }
3256 }
3257
3258 /*
3259 * The busfree required flag is honored at the end of
3260 * the message phases. We check it last in case we
3261 * had to send some other message that caused a busfree.
3262 */
3263 if (scb != NULL && printerror != 0
3264 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3265 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3266
3267 ahd_freeze_devq(ahd, scb);
3268 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3269 ahd_freeze_scb(scb);
3270 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3271 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3272 SCB_GET_CHANNEL(ahd, scb),
3273 SCB_GET_LUN(scb), SCB_LIST_NULL,
3274 ROLE_INITIATOR, CAM_REQ_ABORTED);
3275 } else {
3276 #ifdef AHD_DEBUG
3277 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3278 printk("PPR Negotiation Busfree.\n");
3279 #endif
3280 ahd_done(ahd, scb);
3281 }
3282 printerror = 0;
3283 }
3284 if (printerror != 0) {
3285 int aborted;
3286
3287 aborted = 0;
3288 if (scb != NULL) {
3289 u_int tag;
3290
3291 if ((scb->hscb->control & TAG_ENB) != 0)
3292 tag = SCB_GET_TAG(scb);
3293 else
3294 tag = SCB_LIST_NULL;
3295 ahd_print_path(ahd, scb);
3296 aborted = ahd_abort_scbs(ahd, target, 'A',
3297 SCB_GET_LUN(scb), tag,
3298 ROLE_INITIATOR,
3299 CAM_UNEXP_BUSFREE);
3300 } else {
3301 /*
3302 * We had not fully identified this connection,
3303 * so we cannot abort anything.
3304 */
3305 printk("%s: ", ahd_name(ahd));
3306 }
3307 printk("Unexpected busfree %s, %d SCBs aborted, "
3308 "PRGMCNT == 0x%x\n",
3309 ahd_lookup_phase_entry(lastphase)->phasemsg,
3310 aborted,
3311 ahd_inw(ahd, PRGMCNT));
3312 ahd_dump_card_state(ahd);
3313 if (lastphase != P_BUSFREE)
3314 ahd_force_renegotiation(ahd, &devinfo);
3315 }
3316 /* Always restart the sequencer. */
3317 return (1);
3318 }
3319
3320 static void
ahd_handle_proto_violation(struct ahd_softc * ahd)3321 ahd_handle_proto_violation(struct ahd_softc *ahd)
3322 {
3323 struct ahd_devinfo devinfo;
3324 struct scb *scb;
3325 u_int scbid;
3326 u_int seq_flags;
3327 u_int curphase;
3328 u_int lastphase;
3329 int found;
3330
3331 ahd_fetch_devinfo(ahd, &devinfo);
3332 scbid = ahd_get_scbptr(ahd);
3333 scb = ahd_lookup_scb(ahd, scbid);
3334 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3335 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3336 lastphase = ahd_inb(ahd, LASTPHASE);
3337 if ((seq_flags & NOT_IDENTIFIED) != 0) {
3338
3339 /*
3340 * The reconnecting target either did not send an
3341 * identify message, or did, but we didn't find an SCB
3342 * to match.
3343 */
3344 ahd_print_devinfo(ahd, &devinfo);
3345 printk("Target did not send an IDENTIFY message. "
3346 "LASTPHASE = 0x%x.\n", lastphase);
3347 scb = NULL;
3348 } else if (scb == NULL) {
3349 /*
3350 * We don't seem to have an SCB active for this
3351 * transaction. Print an error and reset the bus.
3352 */
3353 ahd_print_devinfo(ahd, &devinfo);
3354 printk("No SCB found during protocol violation\n");
3355 goto proto_violation_reset;
3356 } else {
3357 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3358 if ((seq_flags & NO_CDB_SENT) != 0) {
3359 ahd_print_path(ahd, scb);
3360 printk("No or incomplete CDB sent to device.\n");
3361 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3362 & STATUS_RCVD) == 0) {
3363 /*
3364 * The target never bothered to provide status to
3365 * us prior to completing the command. Since we don't
3366 * know the disposition of this command, we must attempt
3367 * to abort it. Assert ATN and prepare to send an abort
3368 * message.
3369 */
3370 ahd_print_path(ahd, scb);
3371 printk("Completed command without status.\n");
3372 } else {
3373 ahd_print_path(ahd, scb);
3374 printk("Unknown protocol violation.\n");
3375 ahd_dump_card_state(ahd);
3376 }
3377 }
3378 if ((lastphase & ~P_DATAIN_DT) == 0
3379 || lastphase == P_COMMAND) {
3380 proto_violation_reset:
3381 /*
3382 * Target either went directly to data
3383 * phase or didn't respond to our ATN.
3384 * The only safe thing to do is to blow
3385 * it away with a bus reset.
3386 */
3387 found = ahd_reset_channel(ahd, 'A', TRUE);
3388 printk("%s: Issued Channel %c Bus Reset. "
3389 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3390 } else {
3391 /*
3392 * Leave the selection hardware off in case
3393 * this abort attempt will affect yet to
3394 * be sent commands.
3395 */
3396 ahd_outb(ahd, SCSISEQ0,
3397 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3398 ahd_assert_atn(ahd);
3399 ahd_outb(ahd, MSG_OUT, HOST_MSG);
3400 if (scb == NULL) {
3401 ahd_print_devinfo(ahd, &devinfo);
3402 ahd->msgout_buf[0] = MSG_ABORT_TASK;
3403 ahd->msgout_len = 1;
3404 ahd->msgout_index = 0;
3405 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3406 } else {
3407 ahd_print_path(ahd, scb);
3408 scb->flags |= SCB_ABORT;
3409 }
3410 printk("Protocol violation %s. Attempting to abort.\n",
3411 ahd_lookup_phase_entry(curphase)->phasemsg);
3412 }
3413 }
3414
3415 /*
3416 * Force renegotiation to occur the next time we initiate
3417 * a command to the current device.
3418 */
3419 static void
ahd_force_renegotiation(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3420 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3421 {
3422 struct ahd_initiator_tinfo *targ_info;
3423 struct ahd_tmode_tstate *tstate;
3424
3425 #ifdef AHD_DEBUG
3426 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3427 ahd_print_devinfo(ahd, devinfo);
3428 printk("Forcing renegotiation\n");
3429 }
3430 #endif
3431 targ_info = ahd_fetch_transinfo(ahd,
3432 devinfo->channel,
3433 devinfo->our_scsiid,
3434 devinfo->target,
3435 &tstate);
3436 ahd_update_neg_request(ahd, devinfo, tstate,
3437 targ_info, AHD_NEG_IF_NON_ASYNC);
3438 }
3439
3440 #define AHD_MAX_STEPS 2000
3441 static void
ahd_clear_critical_section(struct ahd_softc * ahd)3442 ahd_clear_critical_section(struct ahd_softc *ahd)
3443 {
3444 ahd_mode_state saved_modes;
3445 int stepping;
3446 int steps;
3447 int first_instr;
3448 u_int simode0;
3449 u_int simode1;
3450 u_int simode3;
3451 u_int lqimode0;
3452 u_int lqimode1;
3453 u_int lqomode0;
3454 u_int lqomode1;
3455
3456 if (ahd->num_critical_sections == 0)
3457 return;
3458
3459 stepping = FALSE;
3460 steps = 0;
3461 first_instr = 0;
3462 simode0 = 0;
3463 simode1 = 0;
3464 simode3 = 0;
3465 lqimode0 = 0;
3466 lqimode1 = 0;
3467 lqomode0 = 0;
3468 lqomode1 = 0;
3469 saved_modes = ahd_save_modes(ahd);
3470 for (;;) {
3471 struct cs *cs;
3472 u_int seqaddr;
3473 u_int i;
3474
3475 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3476 seqaddr = ahd_inw(ahd, CURADDR);
3477
3478 cs = ahd->critical_sections;
3479 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3480
3481 if (cs->begin < seqaddr && cs->end >= seqaddr)
3482 break;
3483 }
3484
3485 if (i == ahd->num_critical_sections)
3486 break;
3487
3488 if (steps > AHD_MAX_STEPS) {
3489 printk("%s: Infinite loop in critical section\n"
3490 "%s: First Instruction 0x%x now 0x%x\n",
3491 ahd_name(ahd), ahd_name(ahd), first_instr,
3492 seqaddr);
3493 ahd_dump_card_state(ahd);
3494 panic("critical section loop");
3495 }
3496
3497 steps++;
3498 #ifdef AHD_DEBUG
3499 if ((ahd_debug & AHD_SHOW_MISC) != 0)
3500 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3501 seqaddr);
3502 #endif
3503 if (stepping == FALSE) {
3504
3505 first_instr = seqaddr;
3506 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3507 simode0 = ahd_inb(ahd, SIMODE0);
3508 simode3 = ahd_inb(ahd, SIMODE3);
3509 lqimode0 = ahd_inb(ahd, LQIMODE0);
3510 lqimode1 = ahd_inb(ahd, LQIMODE1);
3511 lqomode0 = ahd_inb(ahd, LQOMODE0);
3512 lqomode1 = ahd_inb(ahd, LQOMODE1);
3513 ahd_outb(ahd, SIMODE0, 0);
3514 ahd_outb(ahd, SIMODE3, 0);
3515 ahd_outb(ahd, LQIMODE0, 0);
3516 ahd_outb(ahd, LQIMODE1, 0);
3517 ahd_outb(ahd, LQOMODE0, 0);
3518 ahd_outb(ahd, LQOMODE1, 0);
3519 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3520 simode1 = ahd_inb(ahd, SIMODE1);
3521 /*
3522 * We don't clear ENBUSFREE. Unfortunately
3523 * we cannot re-enable busfree detection within
3524 * the current connection, so we must leave it
3525 * on while single stepping.
3526 */
3527 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3528 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3529 stepping = TRUE;
3530 }
3531 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3532 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3533 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3534 ahd_outb(ahd, HCNTRL, ahd->unpause);
3535 while (!ahd_is_paused(ahd))
3536 ahd_delay(200);
3537 ahd_update_modes(ahd);
3538 }
3539 if (stepping) {
3540 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3541 ahd_outb(ahd, SIMODE0, simode0);
3542 ahd_outb(ahd, SIMODE3, simode3);
3543 ahd_outb(ahd, LQIMODE0, lqimode0);
3544 ahd_outb(ahd, LQIMODE1, lqimode1);
3545 ahd_outb(ahd, LQOMODE0, lqomode0);
3546 ahd_outb(ahd, LQOMODE1, lqomode1);
3547 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3548 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3549 ahd_outb(ahd, SIMODE1, simode1);
3550 /*
3551 * SCSIINT seems to glitch occasionally when
3552 * the interrupt masks are restored. Clear SCSIINT
3553 * one more time so that only persistent errors
3554 * are seen as a real interrupt.
3555 */
3556 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3557 }
3558 ahd_restore_modes(ahd, saved_modes);
3559 }
3560
3561 /*
3562 * Clear any pending interrupt status.
3563 */
3564 static void
ahd_clear_intstat(struct ahd_softc * ahd)3565 ahd_clear_intstat(struct ahd_softc *ahd)
3566 {
3567 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3568 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3569 /* Clear any interrupt conditions this may have caused */
3570 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3571 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3572 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3573 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3574 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3575 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3576 |CLRLQOATNPKT|CLRLQOTCRC);
3577 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3578 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3579 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3580 ahd_outb(ahd, CLRLQOINT0, 0);
3581 ahd_outb(ahd, CLRLQOINT1, 0);
3582 }
3583 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3584 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3585 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3586 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3587 |CLRIOERR|CLROVERRUN);
3588 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3589 }
3590
3591 /**************************** Debugging Routines ******************************/
3592 #ifdef AHD_DEBUG
3593 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3594 #endif
3595
3596 #if 0
3597 void
3598 ahd_print_scb(struct scb *scb)
3599 {
3600 struct hardware_scb *hscb;
3601 int i;
3602
3603 hscb = scb->hscb;
3604 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3605 (void *)scb,
3606 hscb->control,
3607 hscb->scsiid,
3608 hscb->lun,
3609 hscb->cdb_len);
3610 printk("Shared Data: ");
3611 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3612 printk("%#02x", hscb->shared_data.idata.cdb[i]);
3613 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3614 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3615 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3616 ahd_le32toh(hscb->datacnt),
3617 ahd_le32toh(hscb->sgptr),
3618 SCB_GET_TAG(scb));
3619 ahd_dump_sglist(scb);
3620 }
3621 #endif /* 0 */
3622
3623 /************************* Transfer Negotiation *******************************/
3624 /*
3625 * Allocate per target mode instance (ID we respond to as a target)
3626 * transfer negotiation data structures.
3627 */
3628 static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel)3629 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3630 {
3631 struct ahd_tmode_tstate *master_tstate;
3632 struct ahd_tmode_tstate *tstate;
3633 int i;
3634
3635 master_tstate = ahd->enabled_targets[ahd->our_id];
3636 if (ahd->enabled_targets[scsi_id] != NULL
3637 && ahd->enabled_targets[scsi_id] != master_tstate)
3638 panic("%s: ahd_alloc_tstate - Target already allocated",
3639 ahd_name(ahd));
3640 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3641 if (tstate == NULL)
3642 return (NULL);
3643
3644 /*
3645 * If we have allocated a master tstate, copy user settings from
3646 * the master tstate (taken from SRAM or the EEPROM) for this
3647 * channel, but reset our current and goal settings to async/narrow
3648 * until an initiator talks to us.
3649 */
3650 if (master_tstate != NULL) {
3651 memcpy(tstate, master_tstate, sizeof(*tstate));
3652 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3653 for (i = 0; i < 16; i++) {
3654 memset(&tstate->transinfo[i].curr, 0,
3655 sizeof(tstate->transinfo[i].curr));
3656 memset(&tstate->transinfo[i].goal, 0,
3657 sizeof(tstate->transinfo[i].goal));
3658 }
3659 } else
3660 memset(tstate, 0, sizeof(*tstate));
3661 ahd->enabled_targets[scsi_id] = tstate;
3662 return (tstate);
3663 }
3664
3665 #ifdef AHD_TARGET_MODE
3666 /*
3667 * Free per target mode instance (ID we respond to as a target)
3668 * transfer negotiation data structures.
3669 */
3670 static void
ahd_free_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel,int force)3671 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3672 {
3673 struct ahd_tmode_tstate *tstate;
3674
3675 /*
3676 * Don't clean up our "master" tstate.
3677 * It has our default user settings.
3678 */
3679 if (scsi_id == ahd->our_id
3680 && force == FALSE)
3681 return;
3682
3683 tstate = ahd->enabled_targets[scsi_id];
3684 if (tstate != NULL)
3685 kfree(tstate);
3686 ahd->enabled_targets[scsi_id] = NULL;
3687 }
3688 #endif
3689
3690 /*
3691 * Called when we have an active connection to a target on the bus,
3692 * this function finds the nearest period to the input period limited
3693 * by the capabilities of the bus connectivity of and sync settings for
3694 * the target.
3695 */
3696 static void
ahd_devlimited_syncrate(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * period,u_int * ppr_options,role_t role)3697 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3698 struct ahd_initiator_tinfo *tinfo,
3699 u_int *period, u_int *ppr_options, role_t role)
3700 {
3701 struct ahd_transinfo *transinfo;
3702 u_int maxsync;
3703
3704 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3705 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3706 maxsync = AHD_SYNCRATE_PACED;
3707 } else {
3708 maxsync = AHD_SYNCRATE_ULTRA;
3709 /* Can't do DT related options on an SE bus */
3710 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3711 }
3712 /*
3713 * Never allow a value higher than our current goal
3714 * period otherwise we may allow a target initiated
3715 * negotiation to go above the limit as set by the
3716 * user. In the case of an initiator initiated
3717 * sync negotiation, we limit based on the user
3718 * setting. This allows the system to still accept
3719 * incoming negotiations even if target initiated
3720 * negotiation is not performed.
3721 */
3722 if (role == ROLE_TARGET)
3723 transinfo = &tinfo->user;
3724 else
3725 transinfo = &tinfo->goal;
3726 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3727 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3728 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3729 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3730 }
3731 if (transinfo->period == 0) {
3732 *period = 0;
3733 *ppr_options = 0;
3734 } else {
3735 *period = max(*period, (u_int)transinfo->period);
3736 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3737 }
3738 }
3739
3740 /*
3741 * Look up the valid period to SCSIRATE conversion in our table.
3742 * Return the period and offset that should be sent to the target
3743 * if this was the beginning of an SDTR.
3744 */
3745 void
ahd_find_syncrate(struct ahd_softc * ahd,u_int * period,u_int * ppr_options,u_int maxsync)3746 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3747 u_int *ppr_options, u_int maxsync)
3748 {
3749 if (*period < maxsync)
3750 *period = maxsync;
3751
3752 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3753 && *period > AHD_SYNCRATE_MIN_DT)
3754 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3755
3756 if (*period > AHD_SYNCRATE_MIN)
3757 *period = 0;
3758
3759 /* Honor PPR option conformance rules. */
3760 if (*period > AHD_SYNCRATE_PACED)
3761 *ppr_options &= ~MSG_EXT_PPR_RTI;
3762
3763 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3764 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3765
3766 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3767 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3768
3769 /* Skip all PACED only entries if IU is not available */
3770 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3771 && *period < AHD_SYNCRATE_DT)
3772 *period = AHD_SYNCRATE_DT;
3773
3774 /* Skip all DT only entries if DT is not available */
3775 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3776 && *period < AHD_SYNCRATE_ULTRA2)
3777 *period = AHD_SYNCRATE_ULTRA2;
3778 }
3779
3780 /*
3781 * Truncate the given synchronous offset to a value the
3782 * current adapter type and syncrate are capable of.
3783 */
3784 static void
ahd_validate_offset(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int period,u_int * offset,int wide,role_t role)3785 ahd_validate_offset(struct ahd_softc *ahd,
3786 struct ahd_initiator_tinfo *tinfo,
3787 u_int period, u_int *offset, int wide,
3788 role_t role)
3789 {
3790 u_int maxoffset;
3791
3792 /* Limit offset to what we can do */
3793 if (period == 0)
3794 maxoffset = 0;
3795 else if (period <= AHD_SYNCRATE_PACED) {
3796 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3797 maxoffset = MAX_OFFSET_PACED_BUG;
3798 else
3799 maxoffset = MAX_OFFSET_PACED;
3800 } else
3801 maxoffset = MAX_OFFSET_NON_PACED;
3802 *offset = min(*offset, maxoffset);
3803 if (tinfo != NULL) {
3804 if (role == ROLE_TARGET)
3805 *offset = min(*offset, (u_int)tinfo->user.offset);
3806 else
3807 *offset = min(*offset, (u_int)tinfo->goal.offset);
3808 }
3809 }
3810
3811 /*
3812 * Truncate the given transfer width parameter to a value the
3813 * current adapter type is capable of.
3814 */
3815 static void
ahd_validate_width(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * bus_width,role_t role)3816 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3817 u_int *bus_width, role_t role)
3818 {
3819 switch (*bus_width) {
3820 default:
3821 if (ahd->features & AHD_WIDE) {
3822 /* Respond Wide */
3823 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3824 break;
3825 }
3826 /* FALLTHROUGH */
3827 case MSG_EXT_WDTR_BUS_8_BIT:
3828 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3829 break;
3830 }
3831 if (tinfo != NULL) {
3832 if (role == ROLE_TARGET)
3833 *bus_width = min((u_int)tinfo->user.width, *bus_width);
3834 else
3835 *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3836 }
3837 }
3838
3839 /*
3840 * Update the bitmask of targets for which the controller should
3841 * negotiate with at the next convenient opportunity. This currently
3842 * means the next time we send the initial identify messages for
3843 * a new transaction.
3844 */
3845 int
ahd_update_neg_request(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_tmode_tstate * tstate,struct ahd_initiator_tinfo * tinfo,ahd_neg_type neg_type)3846 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3847 struct ahd_tmode_tstate *tstate,
3848 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3849 {
3850 u_int auto_negotiate_orig;
3851
3852 auto_negotiate_orig = tstate->auto_negotiate;
3853 if (neg_type == AHD_NEG_ALWAYS) {
3854 /*
3855 * Force our "current" settings to be
3856 * unknown so that unless a bus reset
3857 * occurs the need to renegotiate is
3858 * recorded persistently.
3859 */
3860 if ((ahd->features & AHD_WIDE) != 0)
3861 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3862 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3863 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3864 }
3865 if (tinfo->curr.period != tinfo->goal.period
3866 || tinfo->curr.width != tinfo->goal.width
3867 || tinfo->curr.offset != tinfo->goal.offset
3868 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3869 || (neg_type == AHD_NEG_IF_NON_ASYNC
3870 && (tinfo->goal.offset != 0
3871 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3872 || tinfo->goal.ppr_options != 0)))
3873 tstate->auto_negotiate |= devinfo->target_mask;
3874 else
3875 tstate->auto_negotiate &= ~devinfo->target_mask;
3876
3877 return (auto_negotiate_orig != tstate->auto_negotiate);
3878 }
3879
3880 /*
3881 * Update the user/goal/curr tables of synchronous negotiation
3882 * parameters as well as, in the case of a current or active update,
3883 * any data structures on the host controller. In the case of an
3884 * active update, the specified target is currently talking to us on
3885 * the bus, so the transfer parameter update must take effect
3886 * immediately.
3887 */
3888 void
ahd_set_syncrate(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int ppr_options,u_int type,int paused)3889 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3890 u_int period, u_int offset, u_int ppr_options,
3891 u_int type, int paused)
3892 {
3893 struct ahd_initiator_tinfo *tinfo;
3894 struct ahd_tmode_tstate *tstate;
3895 u_int old_period;
3896 u_int old_offset;
3897 u_int old_ppr;
3898 int active;
3899 int update_needed;
3900
3901 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3902 update_needed = 0;
3903
3904 if (period == 0 || offset == 0) {
3905 period = 0;
3906 offset = 0;
3907 }
3908
3909 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3910 devinfo->target, &tstate);
3911
3912 if ((type & AHD_TRANS_USER) != 0) {
3913 tinfo->user.period = period;
3914 tinfo->user.offset = offset;
3915 tinfo->user.ppr_options = ppr_options;
3916 }
3917
3918 if ((type & AHD_TRANS_GOAL) != 0) {
3919 tinfo->goal.period = period;
3920 tinfo->goal.offset = offset;
3921 tinfo->goal.ppr_options = ppr_options;
3922 }
3923
3924 old_period = tinfo->curr.period;
3925 old_offset = tinfo->curr.offset;
3926 old_ppr = tinfo->curr.ppr_options;
3927
3928 if ((type & AHD_TRANS_CUR) != 0
3929 && (old_period != period
3930 || old_offset != offset
3931 || old_ppr != ppr_options)) {
3932
3933 update_needed++;
3934
3935 tinfo->curr.period = period;
3936 tinfo->curr.offset = offset;
3937 tinfo->curr.ppr_options = ppr_options;
3938
3939 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3940 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3941 if (bootverbose) {
3942 if (offset != 0) {
3943 int options;
3944
3945 printk("%s: target %d synchronous with "
3946 "period = 0x%x, offset = 0x%x",
3947 ahd_name(ahd), devinfo->target,
3948 period, offset);
3949 options = 0;
3950 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3951 printk("(RDSTRM");
3952 options++;
3953 }
3954 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3955 printk("%s", options ? "|DT" : "(DT");
3956 options++;
3957 }
3958 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3959 printk("%s", options ? "|IU" : "(IU");
3960 options++;
3961 }
3962 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3963 printk("%s", options ? "|RTI" : "(RTI");
3964 options++;
3965 }
3966 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3967 printk("%s", options ? "|QAS" : "(QAS");
3968 options++;
3969 }
3970 if (options != 0)
3971 printk(")\n");
3972 else
3973 printk("\n");
3974 } else {
3975 printk("%s: target %d using "
3976 "asynchronous transfers%s\n",
3977 ahd_name(ahd), devinfo->target,
3978 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3979 ? "(QAS)" : "");
3980 }
3981 }
3982 }
3983 /*
3984 * Always refresh the neg-table to handle the case of the
3985 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3986 * We will always renegotiate in that case if this is a
3987 * packetized request. Also manage the busfree expected flag
3988 * from this common routine so that we catch changes due to
3989 * WDTR or SDTR messages.
3990 */
3991 if ((type & AHD_TRANS_CUR) != 0) {
3992 if (!paused)
3993 ahd_pause(ahd);
3994 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3995 if (!paused)
3996 ahd_unpause(ahd);
3997 if (ahd->msg_type != MSG_TYPE_NONE) {
3998 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3999 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
4000 #ifdef AHD_DEBUG
4001 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4002 ahd_print_devinfo(ahd, devinfo);
4003 printk("Expecting IU Change busfree\n");
4004 }
4005 #endif
4006 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4007 | MSG_FLAG_IU_REQ_CHANGED;
4008 }
4009 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
4010 #ifdef AHD_DEBUG
4011 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4012 printk("PPR with IU_REQ outstanding\n");
4013 #endif
4014 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
4015 }
4016 }
4017 }
4018
4019 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4020 tinfo, AHD_NEG_TO_GOAL);
4021
4022 if (update_needed && active)
4023 ahd_update_pending_scbs(ahd);
4024 }
4025
4026 /*
4027 * Update the user/goal/curr tables of wide negotiation
4028 * parameters as well as, in the case of a current or active update,
4029 * any data structures on the host controller. In the case of an
4030 * active update, the specified target is currently talking to us on
4031 * the bus, so the transfer parameter update must take effect
4032 * immediately.
4033 */
4034 void
ahd_set_width(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int width,u_int type,int paused)4035 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4036 u_int width, u_int type, int paused)
4037 {
4038 struct ahd_initiator_tinfo *tinfo;
4039 struct ahd_tmode_tstate *tstate;
4040 u_int oldwidth;
4041 int active;
4042 int update_needed;
4043
4044 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4045 update_needed = 0;
4046 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4047 devinfo->target, &tstate);
4048
4049 if ((type & AHD_TRANS_USER) != 0)
4050 tinfo->user.width = width;
4051
4052 if ((type & AHD_TRANS_GOAL) != 0)
4053 tinfo->goal.width = width;
4054
4055 oldwidth = tinfo->curr.width;
4056 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4057
4058 update_needed++;
4059
4060 tinfo->curr.width = width;
4061 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4062 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4063 if (bootverbose) {
4064 printk("%s: target %d using %dbit transfers\n",
4065 ahd_name(ahd), devinfo->target,
4066 8 * (0x01 << width));
4067 }
4068 }
4069
4070 if ((type & AHD_TRANS_CUR) != 0) {
4071 if (!paused)
4072 ahd_pause(ahd);
4073 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4074 if (!paused)
4075 ahd_unpause(ahd);
4076 }
4077
4078 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4079 tinfo, AHD_NEG_TO_GOAL);
4080 if (update_needed && active)
4081 ahd_update_pending_scbs(ahd);
4082
4083 }
4084
4085 /*
4086 * Update the current state of tagged queuing for a given target.
4087 */
4088 static void
ahd_set_tags(struct ahd_softc * ahd,struct scsi_cmnd * cmd,struct ahd_devinfo * devinfo,ahd_queue_alg alg)4089 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4090 struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4091 {
4092 struct scsi_device *sdev = cmd->device;
4093
4094 ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4095 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4096 devinfo->lun, AC_TRANSFER_NEG);
4097 }
4098
4099 static void
ahd_update_neg_table(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_transinfo * tinfo)4100 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4101 struct ahd_transinfo *tinfo)
4102 {
4103 ahd_mode_state saved_modes;
4104 u_int period;
4105 u_int ppr_opts;
4106 u_int con_opts;
4107 u_int offset;
4108 u_int saved_negoaddr;
4109 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4110
4111 saved_modes = ahd_save_modes(ahd);
4112 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4113
4114 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4115 ahd_outb(ahd, NEGOADDR, devinfo->target);
4116 period = tinfo->period;
4117 offset = tinfo->offset;
4118 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4119 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4120 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4121 con_opts = 0;
4122 if (period == 0)
4123 period = AHD_SYNCRATE_ASYNC;
4124 if (period == AHD_SYNCRATE_160) {
4125
4126 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4127 /*
4128 * When the SPI4 spec was finalized, PACE transfers
4129 * was not made a configurable option in the PPR
4130 * message. Instead it is assumed to be enabled for
4131 * any syncrate faster than 80MHz. Nevertheless,
4132 * Harpoon2A4 allows this to be configurable.
4133 *
4134 * Harpoon2A4 also assumes at most 2 data bytes per
4135 * negotiated REQ/ACK offset. Paced transfers take
4136 * 4, so we must adjust our offset.
4137 */
4138 ppr_opts |= PPROPT_PACE;
4139 offset *= 2;
4140
4141 /*
4142 * Harpoon2A assumed that there would be a
4143 * fallback rate between 160MHz and 80MHz,
4144 * so 7 is used as the period factor rather
4145 * than 8 for 160MHz.
4146 */
4147 period = AHD_SYNCRATE_REVA_160;
4148 }
4149 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4150 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4151 ~AHD_PRECOMP_MASK;
4152 } else {
4153 /*
4154 * Precomp should be disabled for non-paced transfers.
4155 */
4156 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4157
4158 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4159 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4160 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4161 /*
4162 * Slow down our CRC interval to be
4163 * compatible with non-packetized
4164 * U160 devices that can't handle a
4165 * CRC at full speed.
4166 */
4167 con_opts |= ENSLOWCRC;
4168 }
4169
4170 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4171 /*
4172 * On H2A4, revert to a slower slewrate
4173 * on non-paced transfers.
4174 */
4175 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4176 ~AHD_SLEWRATE_MASK;
4177 }
4178 }
4179
4180 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4181 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4182 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4183 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4184
4185 ahd_outb(ahd, NEGPERIOD, period);
4186 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4187 ahd_outb(ahd, NEGOFFSET, offset);
4188
4189 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4190 con_opts |= WIDEXFER;
4191
4192 /*
4193 * Slow down our CRC interval to be
4194 * compatible with packetized U320 devices
4195 * that can't handle a CRC at full speed
4196 */
4197 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4198 con_opts |= ENSLOWCRC;
4199 }
4200
4201 /*
4202 * During packetized transfers, the target will
4203 * give us the opportunity to send command packets
4204 * without us asserting attention.
4205 */
4206 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4207 con_opts |= ENAUTOATNO;
4208 ahd_outb(ahd, NEGCONOPTS, con_opts);
4209 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4210 ahd_restore_modes(ahd, saved_modes);
4211 }
4212
4213 /*
4214 * When the transfer settings for a connection change, setup for
4215 * negotiation in pending SCBs to effect the change as quickly as
4216 * possible. We also cancel any negotiations that are scheduled
4217 * for inflight SCBs that have not been started yet.
4218 */
4219 static void
ahd_update_pending_scbs(struct ahd_softc * ahd)4220 ahd_update_pending_scbs(struct ahd_softc *ahd)
4221 {
4222 struct scb *pending_scb;
4223 int pending_scb_count;
4224 int paused;
4225 u_int saved_scbptr;
4226 ahd_mode_state saved_modes;
4227
4228 /*
4229 * Traverse the pending SCB list and ensure that all of the
4230 * SCBs there have the proper settings. We can only safely
4231 * clear the negotiation required flag (setting requires the
4232 * execution queue to be modified) and this is only possible
4233 * if we are not already attempting to select out for this
4234 * SCB. For this reason, all callers only call this routine
4235 * if we are changing the negotiation settings for the currently
4236 * active transaction on the bus.
4237 */
4238 pending_scb_count = 0;
4239 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4240 struct ahd_devinfo devinfo;
4241 struct ahd_initiator_tinfo *tinfo;
4242 struct ahd_tmode_tstate *tstate;
4243
4244 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4245 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4246 devinfo.our_scsiid,
4247 devinfo.target, &tstate);
4248 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4249 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4250 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4251 pending_scb->hscb->control &= ~MK_MESSAGE;
4252 }
4253 ahd_sync_scb(ahd, pending_scb,
4254 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4255 pending_scb_count++;
4256 }
4257
4258 if (pending_scb_count == 0)
4259 return;
4260
4261 if (ahd_is_paused(ahd)) {
4262 paused = 1;
4263 } else {
4264 paused = 0;
4265 ahd_pause(ahd);
4266 }
4267
4268 /*
4269 * Force the sequencer to reinitialize the selection for
4270 * the command at the head of the execution queue if it
4271 * has already been setup. The negotiation changes may
4272 * effect whether we select-out with ATN. It is only
4273 * safe to clear ENSELO when the bus is not free and no
4274 * selection is in progres or completed.
4275 */
4276 saved_modes = ahd_save_modes(ahd);
4277 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4278 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4279 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4280 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4281 saved_scbptr = ahd_get_scbptr(ahd);
4282 /* Ensure that the hscbs down on the card match the new information */
4283 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4284 u_int scb_tag;
4285 u_int control;
4286
4287 scb_tag = SCB_GET_TAG(pending_scb);
4288 ahd_set_scbptr(ahd, scb_tag);
4289 control = ahd_inb_scbram(ahd, SCB_CONTROL);
4290 control &= ~MK_MESSAGE;
4291 control |= pending_scb->hscb->control & MK_MESSAGE;
4292 ahd_outb(ahd, SCB_CONTROL, control);
4293 }
4294 ahd_set_scbptr(ahd, saved_scbptr);
4295 ahd_restore_modes(ahd, saved_modes);
4296
4297 if (paused == 0)
4298 ahd_unpause(ahd);
4299 }
4300
4301 /**************************** Pathing Information *****************************/
4302 static void
ahd_fetch_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4303 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4304 {
4305 ahd_mode_state saved_modes;
4306 u_int saved_scsiid;
4307 role_t role;
4308 int our_id;
4309
4310 saved_modes = ahd_save_modes(ahd);
4311 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4312
4313 if (ahd_inb(ahd, SSTAT0) & TARGET)
4314 role = ROLE_TARGET;
4315 else
4316 role = ROLE_INITIATOR;
4317
4318 if (role == ROLE_TARGET
4319 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4320 /* We were selected, so pull our id from TARGIDIN */
4321 our_id = ahd_inb(ahd, TARGIDIN) & OID;
4322 } else if (role == ROLE_TARGET)
4323 our_id = ahd_inb(ahd, TOWNID);
4324 else
4325 our_id = ahd_inb(ahd, IOWNID);
4326
4327 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4328 ahd_compile_devinfo(devinfo,
4329 our_id,
4330 SCSIID_TARGET(ahd, saved_scsiid),
4331 ahd_inb(ahd, SAVED_LUN),
4332 SCSIID_CHANNEL(ahd, saved_scsiid),
4333 role);
4334 ahd_restore_modes(ahd, saved_modes);
4335 }
4336
4337 void
ahd_print_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4338 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4339 {
4340 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4341 devinfo->target, devinfo->lun);
4342 }
4343
4344 static const struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)4345 ahd_lookup_phase_entry(int phase)
4346 {
4347 const struct ahd_phase_table_entry *entry;
4348 const struct ahd_phase_table_entry *last_entry;
4349
4350 /*
4351 * num_phases doesn't include the default entry which
4352 * will be returned if the phase doesn't match.
4353 */
4354 last_entry = &ahd_phase_table[num_phases];
4355 for (entry = ahd_phase_table; entry < last_entry; entry++) {
4356 if (phase == entry->phase)
4357 break;
4358 }
4359 return (entry);
4360 }
4361
4362 void
ahd_compile_devinfo(struct ahd_devinfo * devinfo,u_int our_id,u_int target,u_int lun,char channel,role_t role)4363 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4364 u_int lun, char channel, role_t role)
4365 {
4366 devinfo->our_scsiid = our_id;
4367 devinfo->target = target;
4368 devinfo->lun = lun;
4369 devinfo->target_offset = target;
4370 devinfo->channel = channel;
4371 devinfo->role = role;
4372 if (channel == 'B')
4373 devinfo->target_offset += 8;
4374 devinfo->target_mask = (0x01 << devinfo->target_offset);
4375 }
4376
4377 static void
ahd_scb_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4378 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4379 struct scb *scb)
4380 {
4381 role_t role;
4382 int our_id;
4383
4384 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4385 role = ROLE_INITIATOR;
4386 if ((scb->hscb->control & TARGET_SCB) != 0)
4387 role = ROLE_TARGET;
4388 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4389 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4390 }
4391
4392
4393 /************************ Message Phase Processing ****************************/
4394 /*
4395 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4396 * or enters the initial message out phase, we are interrupted. Fill our
4397 * outgoing message buffer with the appropriate message and beging handing
4398 * the message phase(s) manually.
4399 */
4400 static void
ahd_setup_initiator_msgout(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4401 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4402 struct scb *scb)
4403 {
4404 /*
4405 * To facilitate adding multiple messages together,
4406 * each routine should increment the index and len
4407 * variables instead of setting them explicitly.
4408 */
4409 ahd->msgout_index = 0;
4410 ahd->msgout_len = 0;
4411
4412 if (ahd_currently_packetized(ahd))
4413 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4414
4415 if (ahd->send_msg_perror
4416 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4417 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4418 ahd->msgout_len++;
4419 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4420 #ifdef AHD_DEBUG
4421 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4422 printk("Setting up for Parity Error delivery\n");
4423 #endif
4424 return;
4425 } else if (scb == NULL) {
4426 printk("%s: WARNING. No pending message for "
4427 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4428 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4429 ahd->msgout_len++;
4430 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4431 return;
4432 }
4433
4434 if ((scb->flags & SCB_DEVICE_RESET) == 0
4435 && (scb->flags & SCB_PACKETIZED) == 0
4436 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4437 u_int identify_msg;
4438
4439 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4440 if ((scb->hscb->control & DISCENB) != 0)
4441 identify_msg |= MSG_IDENTIFY_DISCFLAG;
4442 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4443 ahd->msgout_len++;
4444
4445 if ((scb->hscb->control & TAG_ENB) != 0) {
4446 ahd->msgout_buf[ahd->msgout_index++] =
4447 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4448 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4449 ahd->msgout_len += 2;
4450 }
4451 }
4452
4453 if (scb->flags & SCB_DEVICE_RESET) {
4454 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4455 ahd->msgout_len++;
4456 ahd_print_path(ahd, scb);
4457 printk("Bus Device Reset Message Sent\n");
4458 /*
4459 * Clear our selection hardware in advance of
4460 * the busfree. We may have an entry in the waiting
4461 * Q for this target, and we don't want to go about
4462 * selecting while we handle the busfree and blow it
4463 * away.
4464 */
4465 ahd_outb(ahd, SCSISEQ0, 0);
4466 } else if ((scb->flags & SCB_ABORT) != 0) {
4467
4468 if ((scb->hscb->control & TAG_ENB) != 0) {
4469 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4470 } else {
4471 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4472 }
4473 ahd->msgout_len++;
4474 ahd_print_path(ahd, scb);
4475 printk("Abort%s Message Sent\n",
4476 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4477 /*
4478 * Clear our selection hardware in advance of
4479 * the busfree. We may have an entry in the waiting
4480 * Q for this target, and we don't want to go about
4481 * selecting while we handle the busfree and blow it
4482 * away.
4483 */
4484 ahd_outb(ahd, SCSISEQ0, 0);
4485 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4486 ahd_build_transfer_msg(ahd, devinfo);
4487 /*
4488 * Clear our selection hardware in advance of potential
4489 * PPR IU status change busfree. We may have an entry in
4490 * the waiting Q for this target, and we don't want to go
4491 * about selecting while we handle the busfree and blow
4492 * it away.
4493 */
4494 ahd_outb(ahd, SCSISEQ0, 0);
4495 } else {
4496 printk("ahd_intr: AWAITING_MSG for an SCB that "
4497 "does not have a waiting message\n");
4498 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4499 devinfo->target_mask);
4500 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4501 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4502 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4503 scb->flags);
4504 }
4505
4506 /*
4507 * Clear the MK_MESSAGE flag from the SCB so we aren't
4508 * asked to send this message again.
4509 */
4510 ahd_outb(ahd, SCB_CONTROL,
4511 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4512 scb->hscb->control &= ~MK_MESSAGE;
4513 ahd->msgout_index = 0;
4514 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4515 }
4516
4517 /*
4518 * Build an appropriate transfer negotiation message for the
4519 * currently active target.
4520 */
4521 static void
ahd_build_transfer_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4522 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4523 {
4524 /*
4525 * We need to initiate transfer negotiations.
4526 * If our current and goal settings are identical,
4527 * we want to renegotiate due to a check condition.
4528 */
4529 struct ahd_initiator_tinfo *tinfo;
4530 struct ahd_tmode_tstate *tstate;
4531 int dowide;
4532 int dosync;
4533 int doppr;
4534 u_int period;
4535 u_int ppr_options;
4536 u_int offset;
4537
4538 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4539 devinfo->target, &tstate);
4540 /*
4541 * Filter our period based on the current connection.
4542 * If we can't perform DT transfers on this segment (not in LVD
4543 * mode for instance), then our decision to issue a PPR message
4544 * may change.
4545 */
4546 period = tinfo->goal.period;
4547 offset = tinfo->goal.offset;
4548 ppr_options = tinfo->goal.ppr_options;
4549 /* Target initiated PPR is not allowed in the SCSI spec */
4550 if (devinfo->role == ROLE_TARGET)
4551 ppr_options = 0;
4552 ahd_devlimited_syncrate(ahd, tinfo, &period,
4553 &ppr_options, devinfo->role);
4554 dowide = tinfo->curr.width != tinfo->goal.width;
4555 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4556 /*
4557 * Only use PPR if we have options that need it, even if the device
4558 * claims to support it. There might be an expander in the way
4559 * that doesn't.
4560 */
4561 doppr = ppr_options != 0;
4562
4563 if (!dowide && !dosync && !doppr) {
4564 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4565 dosync = tinfo->goal.offset != 0;
4566 }
4567
4568 if (!dowide && !dosync && !doppr) {
4569 /*
4570 * Force async with a WDTR message if we have a wide bus,
4571 * or just issue an SDTR with a 0 offset.
4572 */
4573 if ((ahd->features & AHD_WIDE) != 0)
4574 dowide = 1;
4575 else
4576 dosync = 1;
4577
4578 if (bootverbose) {
4579 ahd_print_devinfo(ahd, devinfo);
4580 printk("Ensuring async\n");
4581 }
4582 }
4583 /* Target initiated PPR is not allowed in the SCSI spec */
4584 if (devinfo->role == ROLE_TARGET)
4585 doppr = 0;
4586
4587 /*
4588 * Both the PPR message and SDTR message require the
4589 * goal syncrate to be limited to what the target device
4590 * is capable of handling (based on whether an LVD->SE
4591 * expander is on the bus), so combine these two cases.
4592 * Regardless, guarantee that if we are using WDTR and SDTR
4593 * messages that WDTR comes first.
4594 */
4595 if (doppr || (dosync && !dowide)) {
4596
4597 offset = tinfo->goal.offset;
4598 ahd_validate_offset(ahd, tinfo, period, &offset,
4599 doppr ? tinfo->goal.width
4600 : tinfo->curr.width,
4601 devinfo->role);
4602 if (doppr) {
4603 ahd_construct_ppr(ahd, devinfo, period, offset,
4604 tinfo->goal.width, ppr_options);
4605 } else {
4606 ahd_construct_sdtr(ahd, devinfo, period, offset);
4607 }
4608 } else {
4609 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4610 }
4611 }
4612
4613 /*
4614 * Build a synchronous negotiation message in our message
4615 * buffer based on the input parameters.
4616 */
4617 static void
ahd_construct_sdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset)4618 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4619 u_int period, u_int offset)
4620 {
4621 if (offset == 0)
4622 period = AHD_ASYNC_XFER_PERIOD;
4623 ahd->msgout_index += spi_populate_sync_msg(
4624 ahd->msgout_buf + ahd->msgout_index, period, offset);
4625 ahd->msgout_len += 5;
4626 if (bootverbose) {
4627 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4628 ahd_name(ahd), devinfo->channel, devinfo->target,
4629 devinfo->lun, period, offset);
4630 }
4631 }
4632
4633 /*
4634 * Build a wide negotiateion message in our message
4635 * buffer based on the input parameters.
4636 */
4637 static void
ahd_construct_wdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int bus_width)4638 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4639 u_int bus_width)
4640 {
4641 ahd->msgout_index += spi_populate_width_msg(
4642 ahd->msgout_buf + ahd->msgout_index, bus_width);
4643 ahd->msgout_len += 4;
4644 if (bootverbose) {
4645 printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4646 ahd_name(ahd), devinfo->channel, devinfo->target,
4647 devinfo->lun, bus_width);
4648 }
4649 }
4650
4651 /*
4652 * Build a parallel protocol request message in our message
4653 * buffer based on the input parameters.
4654 */
4655 static void
ahd_construct_ppr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int bus_width,u_int ppr_options)4656 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4657 u_int period, u_int offset, u_int bus_width,
4658 u_int ppr_options)
4659 {
4660 /*
4661 * Always request precompensation from
4662 * the other target if we are running
4663 * at paced syncrates.
4664 */
4665 if (period <= AHD_SYNCRATE_PACED)
4666 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4667 if (offset == 0)
4668 period = AHD_ASYNC_XFER_PERIOD;
4669 ahd->msgout_index += spi_populate_ppr_msg(
4670 ahd->msgout_buf + ahd->msgout_index, period, offset,
4671 bus_width, ppr_options);
4672 ahd->msgout_len += 8;
4673 if (bootverbose) {
4674 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4675 "offset %x, ppr_options %x\n", ahd_name(ahd),
4676 devinfo->channel, devinfo->target, devinfo->lun,
4677 bus_width, period, offset, ppr_options);
4678 }
4679 }
4680
4681 /*
4682 * Clear any active message state.
4683 */
4684 static void
ahd_clear_msg_state(struct ahd_softc * ahd)4685 ahd_clear_msg_state(struct ahd_softc *ahd)
4686 {
4687 ahd_mode_state saved_modes;
4688
4689 saved_modes = ahd_save_modes(ahd);
4690 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4691 ahd->send_msg_perror = 0;
4692 ahd->msg_flags = MSG_FLAG_NONE;
4693 ahd->msgout_len = 0;
4694 ahd->msgin_index = 0;
4695 ahd->msg_type = MSG_TYPE_NONE;
4696 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4697 /*
4698 * The target didn't care to respond to our
4699 * message request, so clear ATN.
4700 */
4701 ahd_outb(ahd, CLRSINT1, CLRATNO);
4702 }
4703 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4704 ahd_outb(ahd, SEQ_FLAGS2,
4705 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4706 ahd_restore_modes(ahd, saved_modes);
4707 }
4708
4709 /*
4710 * Manual message loop handler.
4711 */
4712 static void
ahd_handle_message_phase(struct ahd_softc * ahd)4713 ahd_handle_message_phase(struct ahd_softc *ahd)
4714 {
4715 struct ahd_devinfo devinfo;
4716 u_int bus_phase;
4717 int end_session;
4718
4719 ahd_fetch_devinfo(ahd, &devinfo);
4720 end_session = FALSE;
4721 bus_phase = ahd_inb(ahd, LASTPHASE);
4722
4723 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4724 printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4725 ahd_outb(ahd, LQCTL2, LQIRETRY);
4726 }
4727 reswitch:
4728 switch (ahd->msg_type) {
4729 case MSG_TYPE_INITIATOR_MSGOUT:
4730 {
4731 int lastbyte;
4732 int phasemis;
4733 int msgdone;
4734
4735 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4736 panic("HOST_MSG_LOOP interrupt with no active message");
4737
4738 #ifdef AHD_DEBUG
4739 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4740 ahd_print_devinfo(ahd, &devinfo);
4741 printk("INITIATOR_MSG_OUT");
4742 }
4743 #endif
4744 phasemis = bus_phase != P_MESGOUT;
4745 if (phasemis) {
4746 #ifdef AHD_DEBUG
4747 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4748 printk(" PHASEMIS %s\n",
4749 ahd_lookup_phase_entry(bus_phase)
4750 ->phasemsg);
4751 }
4752 #endif
4753 if (bus_phase == P_MESGIN) {
4754 /*
4755 * Change gears and see if
4756 * this messages is of interest to
4757 * us or should be passed back to
4758 * the sequencer.
4759 */
4760 ahd_outb(ahd, CLRSINT1, CLRATNO);
4761 ahd->send_msg_perror = 0;
4762 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4763 ahd->msgin_index = 0;
4764 goto reswitch;
4765 }
4766 end_session = TRUE;
4767 break;
4768 }
4769
4770 if (ahd->send_msg_perror) {
4771 ahd_outb(ahd, CLRSINT1, CLRATNO);
4772 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4773 #ifdef AHD_DEBUG
4774 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4775 printk(" byte 0x%x\n", ahd->send_msg_perror);
4776 #endif
4777 /*
4778 * If we are notifying the target of a CRC error
4779 * during packetized operations, the target is
4780 * within its rights to acknowledge our message
4781 * with a busfree.
4782 */
4783 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4784 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4785 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4786
4787 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4788 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4789 break;
4790 }
4791
4792 msgdone = ahd->msgout_index == ahd->msgout_len;
4793 if (msgdone) {
4794 /*
4795 * The target has requested a retry.
4796 * Re-assert ATN, reset our message index to
4797 * 0, and try again.
4798 */
4799 ahd->msgout_index = 0;
4800 ahd_assert_atn(ahd);
4801 }
4802
4803 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4804 if (lastbyte) {
4805 /* Last byte is signified by dropping ATN */
4806 ahd_outb(ahd, CLRSINT1, CLRATNO);
4807 }
4808
4809 /*
4810 * Clear our interrupt status and present
4811 * the next byte on the bus.
4812 */
4813 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4814 #ifdef AHD_DEBUG
4815 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4816 printk(" byte 0x%x\n",
4817 ahd->msgout_buf[ahd->msgout_index]);
4818 #endif
4819 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4820 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4821 break;
4822 }
4823 case MSG_TYPE_INITIATOR_MSGIN:
4824 {
4825 int phasemis;
4826 int message_done;
4827
4828 #ifdef AHD_DEBUG
4829 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4830 ahd_print_devinfo(ahd, &devinfo);
4831 printk("INITIATOR_MSG_IN");
4832 }
4833 #endif
4834 phasemis = bus_phase != P_MESGIN;
4835 if (phasemis) {
4836 #ifdef AHD_DEBUG
4837 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4838 printk(" PHASEMIS %s\n",
4839 ahd_lookup_phase_entry(bus_phase)
4840 ->phasemsg);
4841 }
4842 #endif
4843 ahd->msgin_index = 0;
4844 if (bus_phase == P_MESGOUT
4845 && (ahd->send_msg_perror != 0
4846 || (ahd->msgout_len != 0
4847 && ahd->msgout_index == 0))) {
4848 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4849 goto reswitch;
4850 }
4851 end_session = TRUE;
4852 break;
4853 }
4854
4855 /* Pull the byte in without acking it */
4856 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4857 #ifdef AHD_DEBUG
4858 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4859 printk(" byte 0x%x\n",
4860 ahd->msgin_buf[ahd->msgin_index]);
4861 #endif
4862
4863 message_done = ahd_parse_msg(ahd, &devinfo);
4864
4865 if (message_done) {
4866 /*
4867 * Clear our incoming message buffer in case there
4868 * is another message following this one.
4869 */
4870 ahd->msgin_index = 0;
4871
4872 /*
4873 * If this message illicited a response,
4874 * assert ATN so the target takes us to the
4875 * message out phase.
4876 */
4877 if (ahd->msgout_len != 0) {
4878 #ifdef AHD_DEBUG
4879 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4880 ahd_print_devinfo(ahd, &devinfo);
4881 printk("Asserting ATN for response\n");
4882 }
4883 #endif
4884 ahd_assert_atn(ahd);
4885 }
4886 } else
4887 ahd->msgin_index++;
4888
4889 if (message_done == MSGLOOP_TERMINATED) {
4890 end_session = TRUE;
4891 } else {
4892 /* Ack the byte */
4893 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4894 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4895 }
4896 break;
4897 }
4898 case MSG_TYPE_TARGET_MSGIN:
4899 {
4900 int msgdone;
4901 int msgout_request;
4902
4903 /*
4904 * By default, the message loop will continue.
4905 */
4906 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4907
4908 if (ahd->msgout_len == 0)
4909 panic("Target MSGIN with no active message");
4910
4911 /*
4912 * If we interrupted a mesgout session, the initiator
4913 * will not know this until our first REQ. So, we
4914 * only honor mesgout requests after we've sent our
4915 * first byte.
4916 */
4917 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4918 && ahd->msgout_index > 0)
4919 msgout_request = TRUE;
4920 else
4921 msgout_request = FALSE;
4922
4923 if (msgout_request) {
4924
4925 /*
4926 * Change gears and see if
4927 * this messages is of interest to
4928 * us or should be passed back to
4929 * the sequencer.
4930 */
4931 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4932 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4933 ahd->msgin_index = 0;
4934 /* Dummy read to REQ for first byte */
4935 ahd_inb(ahd, SCSIDAT);
4936 ahd_outb(ahd, SXFRCTL0,
4937 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4938 break;
4939 }
4940
4941 msgdone = ahd->msgout_index == ahd->msgout_len;
4942 if (msgdone) {
4943 ahd_outb(ahd, SXFRCTL0,
4944 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4945 end_session = TRUE;
4946 break;
4947 }
4948
4949 /*
4950 * Present the next byte on the bus.
4951 */
4952 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4953 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4954 break;
4955 }
4956 case MSG_TYPE_TARGET_MSGOUT:
4957 {
4958 int lastbyte;
4959 int msgdone;
4960
4961 /*
4962 * By default, the message loop will continue.
4963 */
4964 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4965
4966 /*
4967 * The initiator signals that this is
4968 * the last byte by dropping ATN.
4969 */
4970 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4971
4972 /*
4973 * Read the latched byte, but turn off SPIOEN first
4974 * so that we don't inadvertently cause a REQ for the
4975 * next byte.
4976 */
4977 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4978 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4979 msgdone = ahd_parse_msg(ahd, &devinfo);
4980 if (msgdone == MSGLOOP_TERMINATED) {
4981 /*
4982 * The message is *really* done in that it caused
4983 * us to go to bus free. The sequencer has already
4984 * been reset at this point, so pull the ejection
4985 * handle.
4986 */
4987 return;
4988 }
4989
4990 ahd->msgin_index++;
4991
4992 /*
4993 * XXX Read spec about initiator dropping ATN too soon
4994 * and use msgdone to detect it.
4995 */
4996 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4997 ahd->msgin_index = 0;
4998
4999 /*
5000 * If this message illicited a response, transition
5001 * to the Message in phase and send it.
5002 */
5003 if (ahd->msgout_len != 0) {
5004 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
5005 ahd_outb(ahd, SXFRCTL0,
5006 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5007 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5008 ahd->msgin_index = 0;
5009 break;
5010 }
5011 }
5012
5013 if (lastbyte)
5014 end_session = TRUE;
5015 else {
5016 /* Ask for the next byte. */
5017 ahd_outb(ahd, SXFRCTL0,
5018 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5019 }
5020
5021 break;
5022 }
5023 default:
5024 panic("Unknown REQINIT message type");
5025 }
5026
5027 if (end_session) {
5028 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5029 printk("%s: Returning to Idle Loop\n",
5030 ahd_name(ahd));
5031 ahd_clear_msg_state(ahd);
5032
5033 /*
5034 * Perform the equivalent of a clear_target_state.
5035 */
5036 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5037 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5038 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5039 } else {
5040 ahd_clear_msg_state(ahd);
5041 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5042 }
5043 }
5044 }
5045
5046 /*
5047 * See if we sent a particular extended message to the target.
5048 * If "full" is true, return true only if the target saw the full
5049 * message. If "full" is false, return true if the target saw at
5050 * least the first byte of the message.
5051 */
5052 static int
ahd_sent_msg(struct ahd_softc * ahd,ahd_msgtype type,u_int msgval,int full)5053 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5054 {
5055 int found;
5056 u_int index;
5057
5058 found = FALSE;
5059 index = 0;
5060
5061 while (index < ahd->msgout_len) {
5062 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5063 u_int end_index;
5064
5065 end_index = index + 1 + ahd->msgout_buf[index + 1];
5066 if (ahd->msgout_buf[index+2] == msgval
5067 && type == AHDMSG_EXT) {
5068
5069 if (full) {
5070 if (ahd->msgout_index > end_index)
5071 found = TRUE;
5072 } else if (ahd->msgout_index > index)
5073 found = TRUE;
5074 }
5075 index = end_index;
5076 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5077 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5078
5079 /* Skip tag type and tag id or residue param*/
5080 index += 2;
5081 } else {
5082 /* Single byte message */
5083 if (type == AHDMSG_1B
5084 && ahd->msgout_index > index
5085 && (ahd->msgout_buf[index] == msgval
5086 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5087 && msgval == MSG_IDENTIFYFLAG)))
5088 found = TRUE;
5089 index++;
5090 }
5091
5092 if (found)
5093 break;
5094 }
5095 return (found);
5096 }
5097
5098 /*
5099 * Wait for a complete incoming message, parse it, and respond accordingly.
5100 */
5101 static int
ahd_parse_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5102 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5103 {
5104 struct ahd_initiator_tinfo *tinfo;
5105 struct ahd_tmode_tstate *tstate;
5106 int reject;
5107 int done;
5108 int response;
5109
5110 done = MSGLOOP_IN_PROG;
5111 response = FALSE;
5112 reject = FALSE;
5113 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5114 devinfo->target, &tstate);
5115
5116 /*
5117 * Parse as much of the message as is available,
5118 * rejecting it if we don't support it. When
5119 * the entire message is available and has been
5120 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5121 * that we have parsed an entire message.
5122 *
5123 * In the case of extended messages, we accept the length
5124 * byte outright and perform more checking once we know the
5125 * extended message type.
5126 */
5127 switch (ahd->msgin_buf[0]) {
5128 case MSG_DISCONNECT:
5129 case MSG_SAVEDATAPOINTER:
5130 case MSG_CMDCOMPLETE:
5131 case MSG_RESTOREPOINTERS:
5132 case MSG_IGN_WIDE_RESIDUE:
5133 /*
5134 * End our message loop as these are messages
5135 * the sequencer handles on its own.
5136 */
5137 done = MSGLOOP_TERMINATED;
5138 break;
5139 case MSG_MESSAGE_REJECT:
5140 response = ahd_handle_msg_reject(ahd, devinfo);
5141 /* FALLTHROUGH */
5142 case MSG_NOOP:
5143 done = MSGLOOP_MSGCOMPLETE;
5144 break;
5145 case MSG_EXTENDED:
5146 {
5147 /* Wait for enough of the message to begin validation */
5148 if (ahd->msgin_index < 2)
5149 break;
5150 switch (ahd->msgin_buf[2]) {
5151 case MSG_EXT_SDTR:
5152 {
5153 u_int period;
5154 u_int ppr_options;
5155 u_int offset;
5156 u_int saved_offset;
5157
5158 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5159 reject = TRUE;
5160 break;
5161 }
5162
5163 /*
5164 * Wait until we have both args before validating
5165 * and acting on this message.
5166 *
5167 * Add one to MSG_EXT_SDTR_LEN to account for
5168 * the extended message preamble.
5169 */
5170 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5171 break;
5172
5173 period = ahd->msgin_buf[3];
5174 ppr_options = 0;
5175 saved_offset = offset = ahd->msgin_buf[4];
5176 ahd_devlimited_syncrate(ahd, tinfo, &period,
5177 &ppr_options, devinfo->role);
5178 ahd_validate_offset(ahd, tinfo, period, &offset,
5179 tinfo->curr.width, devinfo->role);
5180 if (bootverbose) {
5181 printk("(%s:%c:%d:%d): Received "
5182 "SDTR period %x, offset %x\n\t"
5183 "Filtered to period %x, offset %x\n",
5184 ahd_name(ahd), devinfo->channel,
5185 devinfo->target, devinfo->lun,
5186 ahd->msgin_buf[3], saved_offset,
5187 period, offset);
5188 }
5189 ahd_set_syncrate(ahd, devinfo, period,
5190 offset, ppr_options,
5191 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5192 /*paused*/TRUE);
5193
5194 /*
5195 * See if we initiated Sync Negotiation
5196 * and didn't have to fall down to async
5197 * transfers.
5198 */
5199 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5200 /* We started it */
5201 if (saved_offset != offset) {
5202 /* Went too low - force async */
5203 reject = TRUE;
5204 }
5205 } else {
5206 /*
5207 * Send our own SDTR in reply
5208 */
5209 if (bootverbose
5210 && devinfo->role == ROLE_INITIATOR) {
5211 printk("(%s:%c:%d:%d): Target "
5212 "Initiated SDTR\n",
5213 ahd_name(ahd), devinfo->channel,
5214 devinfo->target, devinfo->lun);
5215 }
5216 ahd->msgout_index = 0;
5217 ahd->msgout_len = 0;
5218 ahd_construct_sdtr(ahd, devinfo,
5219 period, offset);
5220 ahd->msgout_index = 0;
5221 response = TRUE;
5222 }
5223 done = MSGLOOP_MSGCOMPLETE;
5224 break;
5225 }
5226 case MSG_EXT_WDTR:
5227 {
5228 u_int bus_width;
5229 u_int saved_width;
5230 u_int sending_reply;
5231
5232 sending_reply = FALSE;
5233 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5234 reject = TRUE;
5235 break;
5236 }
5237
5238 /*
5239 * Wait until we have our arg before validating
5240 * and acting on this message.
5241 *
5242 * Add one to MSG_EXT_WDTR_LEN to account for
5243 * the extended message preamble.
5244 */
5245 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5246 break;
5247
5248 bus_width = ahd->msgin_buf[3];
5249 saved_width = bus_width;
5250 ahd_validate_width(ahd, tinfo, &bus_width,
5251 devinfo->role);
5252 if (bootverbose) {
5253 printk("(%s:%c:%d:%d): Received WDTR "
5254 "%x filtered to %x\n",
5255 ahd_name(ahd), devinfo->channel,
5256 devinfo->target, devinfo->lun,
5257 saved_width, bus_width);
5258 }
5259
5260 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5261 /*
5262 * Don't send a WDTR back to the
5263 * target, since we asked first.
5264 * If the width went higher than our
5265 * request, reject it.
5266 */
5267 if (saved_width > bus_width) {
5268 reject = TRUE;
5269 printk("(%s:%c:%d:%d): requested %dBit "
5270 "transfers. Rejecting...\n",
5271 ahd_name(ahd), devinfo->channel,
5272 devinfo->target, devinfo->lun,
5273 8 * (0x01 << bus_width));
5274 bus_width = 0;
5275 }
5276 } else {
5277 /*
5278 * Send our own WDTR in reply
5279 */
5280 if (bootverbose
5281 && devinfo->role == ROLE_INITIATOR) {
5282 printk("(%s:%c:%d:%d): Target "
5283 "Initiated WDTR\n",
5284 ahd_name(ahd), devinfo->channel,
5285 devinfo->target, devinfo->lun);
5286 }
5287 ahd->msgout_index = 0;
5288 ahd->msgout_len = 0;
5289 ahd_construct_wdtr(ahd, devinfo, bus_width);
5290 ahd->msgout_index = 0;
5291 response = TRUE;
5292 sending_reply = TRUE;
5293 }
5294 /*
5295 * After a wide message, we are async, but
5296 * some devices don't seem to honor this portion
5297 * of the spec. Force a renegotiation of the
5298 * sync component of our transfer agreement even
5299 * if our goal is async. By updating our width
5300 * after forcing the negotiation, we avoid
5301 * renegotiating for width.
5302 */
5303 ahd_update_neg_request(ahd, devinfo, tstate,
5304 tinfo, AHD_NEG_ALWAYS);
5305 ahd_set_width(ahd, devinfo, bus_width,
5306 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5307 /*paused*/TRUE);
5308 if (sending_reply == FALSE && reject == FALSE) {
5309
5310 /*
5311 * We will always have an SDTR to send.
5312 */
5313 ahd->msgout_index = 0;
5314 ahd->msgout_len = 0;
5315 ahd_build_transfer_msg(ahd, devinfo);
5316 ahd->msgout_index = 0;
5317 response = TRUE;
5318 }
5319 done = MSGLOOP_MSGCOMPLETE;
5320 break;
5321 }
5322 case MSG_EXT_PPR:
5323 {
5324 u_int period;
5325 u_int offset;
5326 u_int bus_width;
5327 u_int ppr_options;
5328 u_int saved_width;
5329 u_int saved_offset;
5330 u_int saved_ppr_options;
5331
5332 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5333 reject = TRUE;
5334 break;
5335 }
5336
5337 /*
5338 * Wait until we have all args before validating
5339 * and acting on this message.
5340 *
5341 * Add one to MSG_EXT_PPR_LEN to account for
5342 * the extended message preamble.
5343 */
5344 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5345 break;
5346
5347 period = ahd->msgin_buf[3];
5348 offset = ahd->msgin_buf[5];
5349 bus_width = ahd->msgin_buf[6];
5350 saved_width = bus_width;
5351 ppr_options = ahd->msgin_buf[7];
5352 /*
5353 * According to the spec, a DT only
5354 * period factor with no DT option
5355 * set implies async.
5356 */
5357 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5358 && period <= 9)
5359 offset = 0;
5360 saved_ppr_options = ppr_options;
5361 saved_offset = offset;
5362
5363 /*
5364 * Transfer options are only available if we
5365 * are negotiating wide.
5366 */
5367 if (bus_width == 0)
5368 ppr_options &= MSG_EXT_PPR_QAS_REQ;
5369
5370 ahd_validate_width(ahd, tinfo, &bus_width,
5371 devinfo->role);
5372 ahd_devlimited_syncrate(ahd, tinfo, &period,
5373 &ppr_options, devinfo->role);
5374 ahd_validate_offset(ahd, tinfo, period, &offset,
5375 bus_width, devinfo->role);
5376
5377 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5378 /*
5379 * If we are unable to do any of the
5380 * requested options (we went too low),
5381 * then we'll have to reject the message.
5382 */
5383 if (saved_width > bus_width
5384 || saved_offset != offset
5385 || saved_ppr_options != ppr_options) {
5386 reject = TRUE;
5387 period = 0;
5388 offset = 0;
5389 bus_width = 0;
5390 ppr_options = 0;
5391 }
5392 } else {
5393 if (devinfo->role != ROLE_TARGET)
5394 printk("(%s:%c:%d:%d): Target "
5395 "Initiated PPR\n",
5396 ahd_name(ahd), devinfo->channel,
5397 devinfo->target, devinfo->lun);
5398 else
5399 printk("(%s:%c:%d:%d): Initiator "
5400 "Initiated PPR\n",
5401 ahd_name(ahd), devinfo->channel,
5402 devinfo->target, devinfo->lun);
5403 ahd->msgout_index = 0;
5404 ahd->msgout_len = 0;
5405 ahd_construct_ppr(ahd, devinfo, period, offset,
5406 bus_width, ppr_options);
5407 ahd->msgout_index = 0;
5408 response = TRUE;
5409 }
5410 if (bootverbose) {
5411 printk("(%s:%c:%d:%d): Received PPR width %x, "
5412 "period %x, offset %x,options %x\n"
5413 "\tFiltered to width %x, period %x, "
5414 "offset %x, options %x\n",
5415 ahd_name(ahd), devinfo->channel,
5416 devinfo->target, devinfo->lun,
5417 saved_width, ahd->msgin_buf[3],
5418 saved_offset, saved_ppr_options,
5419 bus_width, period, offset, ppr_options);
5420 }
5421 ahd_set_width(ahd, devinfo, bus_width,
5422 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5423 /*paused*/TRUE);
5424 ahd_set_syncrate(ahd, devinfo, period,
5425 offset, ppr_options,
5426 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5427 /*paused*/TRUE);
5428
5429 done = MSGLOOP_MSGCOMPLETE;
5430 break;
5431 }
5432 default:
5433 /* Unknown extended message. Reject it. */
5434 reject = TRUE;
5435 break;
5436 }
5437 break;
5438 }
5439 #ifdef AHD_TARGET_MODE
5440 case MSG_BUS_DEV_RESET:
5441 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5442 CAM_BDR_SENT,
5443 "Bus Device Reset Received",
5444 /*verbose_level*/0);
5445 ahd_restart(ahd);
5446 done = MSGLOOP_TERMINATED;
5447 break;
5448 case MSG_ABORT_TAG:
5449 case MSG_ABORT:
5450 case MSG_CLEAR_QUEUE:
5451 {
5452 int tag;
5453
5454 /* Target mode messages */
5455 if (devinfo->role != ROLE_TARGET) {
5456 reject = TRUE;
5457 break;
5458 }
5459 tag = SCB_LIST_NULL;
5460 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5461 tag = ahd_inb(ahd, INITIATOR_TAG);
5462 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5463 devinfo->lun, tag, ROLE_TARGET,
5464 CAM_REQ_ABORTED);
5465
5466 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5467 if (tstate != NULL) {
5468 struct ahd_tmode_lstate* lstate;
5469
5470 lstate = tstate->enabled_luns[devinfo->lun];
5471 if (lstate != NULL) {
5472 ahd_queue_lstate_event(ahd, lstate,
5473 devinfo->our_scsiid,
5474 ahd->msgin_buf[0],
5475 /*arg*/tag);
5476 ahd_send_lstate_events(ahd, lstate);
5477 }
5478 }
5479 ahd_restart(ahd);
5480 done = MSGLOOP_TERMINATED;
5481 break;
5482 }
5483 #endif
5484 case MSG_QAS_REQUEST:
5485 #ifdef AHD_DEBUG
5486 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5487 printk("%s: QAS request. SCSISIGI == 0x%x\n",
5488 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5489 #endif
5490 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5491 /* FALLTHROUGH */
5492 case MSG_TERM_IO_PROC:
5493 default:
5494 reject = TRUE;
5495 break;
5496 }
5497
5498 if (reject) {
5499 /*
5500 * Setup to reject the message.
5501 */
5502 ahd->msgout_index = 0;
5503 ahd->msgout_len = 1;
5504 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5505 done = MSGLOOP_MSGCOMPLETE;
5506 response = TRUE;
5507 }
5508
5509 if (done != MSGLOOP_IN_PROG && !response)
5510 /* Clear the outgoing message buffer */
5511 ahd->msgout_len = 0;
5512
5513 return (done);
5514 }
5515
5516 /*
5517 * Process a message reject message.
5518 */
5519 static int
ahd_handle_msg_reject(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5520 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5521 {
5522 /*
5523 * What we care about here is if we had an
5524 * outstanding SDTR or WDTR message for this
5525 * target. If we did, this is a signal that
5526 * the target is refusing negotiation.
5527 */
5528 struct scb *scb;
5529 struct ahd_initiator_tinfo *tinfo;
5530 struct ahd_tmode_tstate *tstate;
5531 u_int scb_index;
5532 u_int last_msg;
5533 int response = 0;
5534
5535 scb_index = ahd_get_scbptr(ahd);
5536 scb = ahd_lookup_scb(ahd, scb_index);
5537 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5538 devinfo->our_scsiid,
5539 devinfo->target, &tstate);
5540 /* Might be necessary */
5541 last_msg = ahd_inb(ahd, LAST_MSG);
5542
5543 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5544 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5545 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5546 /*
5547 * Target may not like our SPI-4 PPR Options.
5548 * Attempt to negotiate 80MHz which will turn
5549 * off these options.
5550 */
5551 if (bootverbose) {
5552 printk("(%s:%c:%d:%d): PPR Rejected. "
5553 "Trying simple U160 PPR\n",
5554 ahd_name(ahd), devinfo->channel,
5555 devinfo->target, devinfo->lun);
5556 }
5557 tinfo->goal.period = AHD_SYNCRATE_DT;
5558 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5559 | MSG_EXT_PPR_QAS_REQ
5560 | MSG_EXT_PPR_DT_REQ;
5561 } else {
5562 /*
5563 * Target does not support the PPR message.
5564 * Attempt to negotiate SPI-2 style.
5565 */
5566 if (bootverbose) {
5567 printk("(%s:%c:%d:%d): PPR Rejected. "
5568 "Trying WDTR/SDTR\n",
5569 ahd_name(ahd), devinfo->channel,
5570 devinfo->target, devinfo->lun);
5571 }
5572 tinfo->goal.ppr_options = 0;
5573 tinfo->curr.transport_version = 2;
5574 tinfo->goal.transport_version = 2;
5575 }
5576 ahd->msgout_index = 0;
5577 ahd->msgout_len = 0;
5578 ahd_build_transfer_msg(ahd, devinfo);
5579 ahd->msgout_index = 0;
5580 response = 1;
5581 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5582
5583 /* note 8bit xfers */
5584 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5585 "8bit transfers\n", ahd_name(ahd),
5586 devinfo->channel, devinfo->target, devinfo->lun);
5587 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5588 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5589 /*paused*/TRUE);
5590 /*
5591 * No need to clear the sync rate. If the target
5592 * did not accept the command, our syncrate is
5593 * unaffected. If the target started the negotiation,
5594 * but rejected our response, we already cleared the
5595 * sync rate before sending our WDTR.
5596 */
5597 if (tinfo->goal.offset != tinfo->curr.offset) {
5598
5599 /* Start the sync negotiation */
5600 ahd->msgout_index = 0;
5601 ahd->msgout_len = 0;
5602 ahd_build_transfer_msg(ahd, devinfo);
5603 ahd->msgout_index = 0;
5604 response = 1;
5605 }
5606 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5607 /* note asynch xfers and clear flag */
5608 ahd_set_syncrate(ahd, devinfo, /*period*/0,
5609 /*offset*/0, /*ppr_options*/0,
5610 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5611 /*paused*/TRUE);
5612 printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5613 "Using asynchronous transfers\n",
5614 ahd_name(ahd), devinfo->channel,
5615 devinfo->target, devinfo->lun);
5616 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5617 int tag_type;
5618 int mask;
5619
5620 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5621
5622 if (tag_type == MSG_SIMPLE_TASK) {
5623 printk("(%s:%c:%d:%d): refuses tagged commands. "
5624 "Performing non-tagged I/O\n", ahd_name(ahd),
5625 devinfo->channel, devinfo->target, devinfo->lun);
5626 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5627 mask = ~0x23;
5628 } else {
5629 printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5630 "Performing simple queue tagged I/O only\n",
5631 ahd_name(ahd), devinfo->channel, devinfo->target,
5632 devinfo->lun, tag_type == MSG_ORDERED_TASK
5633 ? "ordered" : "head of queue");
5634 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5635 mask = ~0x03;
5636 }
5637
5638 /*
5639 * Resend the identify for this CCB as the target
5640 * may believe that the selection is invalid otherwise.
5641 */
5642 ahd_outb(ahd, SCB_CONTROL,
5643 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5644 scb->hscb->control &= mask;
5645 ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5646 /*type*/MSG_SIMPLE_TASK);
5647 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5648 ahd_assert_atn(ahd);
5649 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5650 SCB_GET_TAG(scb));
5651
5652 /*
5653 * Requeue all tagged commands for this target
5654 * currently in our possession so they can be
5655 * converted to untagged commands.
5656 */
5657 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5658 SCB_GET_CHANNEL(ahd, scb),
5659 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5660 ROLE_INITIATOR, CAM_REQUEUE_REQ,
5661 SEARCH_COMPLETE);
5662 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5663 /*
5664 * Most likely the device believes that we had
5665 * previously negotiated packetized.
5666 */
5667 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5668 | MSG_FLAG_IU_REQ_CHANGED;
5669
5670 ahd_force_renegotiation(ahd, devinfo);
5671 ahd->msgout_index = 0;
5672 ahd->msgout_len = 0;
5673 ahd_build_transfer_msg(ahd, devinfo);
5674 ahd->msgout_index = 0;
5675 response = 1;
5676 } else {
5677 /*
5678 * Otherwise, we ignore it.
5679 */
5680 printk("%s:%c:%d: Message reject for %x -- ignored\n",
5681 ahd_name(ahd), devinfo->channel, devinfo->target,
5682 last_msg);
5683 }
5684 return (response);
5685 }
5686
5687 /*
5688 * Process an ingnore wide residue message.
5689 */
5690 static void
ahd_handle_ign_wide_residue(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5691 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5692 {
5693 u_int scb_index;
5694 struct scb *scb;
5695
5696 scb_index = ahd_get_scbptr(ahd);
5697 scb = ahd_lookup_scb(ahd, scb_index);
5698 /*
5699 * XXX Actually check data direction in the sequencer?
5700 * Perhaps add datadir to some spare bits in the hscb?
5701 */
5702 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5703 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5704 /*
5705 * Ignore the message if we haven't
5706 * seen an appropriate data phase yet.
5707 */
5708 } else {
5709 /*
5710 * If the residual occurred on the last
5711 * transfer and the transfer request was
5712 * expected to end on an odd count, do
5713 * nothing. Otherwise, subtract a byte
5714 * and update the residual count accordingly.
5715 */
5716 uint32_t sgptr;
5717
5718 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5719 if ((sgptr & SG_LIST_NULL) != 0
5720 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5721 & SCB_XFERLEN_ODD) != 0) {
5722 /*
5723 * If the residual occurred on the last
5724 * transfer and the transfer request was
5725 * expected to end on an odd count, do
5726 * nothing.
5727 */
5728 } else {
5729 uint32_t data_cnt;
5730 uint64_t data_addr;
5731 uint32_t sglen;
5732
5733 /* Pull in the rest of the sgptr */
5734 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5735 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5736 if ((sgptr & SG_LIST_NULL) != 0) {
5737 /*
5738 * The residual data count is not updated
5739 * for the command run to completion case.
5740 * Explicitly zero the count.
5741 */
5742 data_cnt &= ~AHD_SG_LEN_MASK;
5743 }
5744 data_addr = ahd_inq(ahd, SHADDR);
5745 data_cnt += 1;
5746 data_addr -= 1;
5747 sgptr &= SG_PTR_MASK;
5748 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5749 struct ahd_dma64_seg *sg;
5750
5751 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5752
5753 /*
5754 * The residual sg ptr points to the next S/G
5755 * to load so we must go back one.
5756 */
5757 sg--;
5758 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5759 if (sg != scb->sg_list
5760 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5761
5762 sg--;
5763 sglen = ahd_le32toh(sg->len);
5764 /*
5765 * Preserve High Address and SG_LIST
5766 * bits while setting the count to 1.
5767 */
5768 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5769 data_addr = ahd_le64toh(sg->addr)
5770 + (sglen & AHD_SG_LEN_MASK)
5771 - 1;
5772
5773 /*
5774 * Increment sg so it points to the
5775 * "next" sg.
5776 */
5777 sg++;
5778 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5779 sg);
5780 }
5781 } else {
5782 struct ahd_dma_seg *sg;
5783
5784 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5785
5786 /*
5787 * The residual sg ptr points to the next S/G
5788 * to load so we must go back one.
5789 */
5790 sg--;
5791 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5792 if (sg != scb->sg_list
5793 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5794
5795 sg--;
5796 sglen = ahd_le32toh(sg->len);
5797 /*
5798 * Preserve High Address and SG_LIST
5799 * bits while setting the count to 1.
5800 */
5801 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5802 data_addr = ahd_le32toh(sg->addr)
5803 + (sglen & AHD_SG_LEN_MASK)
5804 - 1;
5805
5806 /*
5807 * Increment sg so it points to the
5808 * "next" sg.
5809 */
5810 sg++;
5811 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5812 sg);
5813 }
5814 }
5815 /*
5816 * Toggle the "oddness" of the transfer length
5817 * to handle this mid-transfer ignore wide
5818 * residue. This ensures that the oddness is
5819 * correct for subsequent data transfers.
5820 */
5821 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5822 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5823 ^ SCB_XFERLEN_ODD);
5824
5825 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5826 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5827 /*
5828 * The FIFO's pointers will be updated if/when the
5829 * sequencer re-enters a data phase.
5830 */
5831 }
5832 }
5833 }
5834
5835
5836 /*
5837 * Reinitialize the data pointers for the active transfer
5838 * based on its current residual.
5839 */
5840 static void
ahd_reinitialize_dataptrs(struct ahd_softc * ahd)5841 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5842 {
5843 struct scb *scb;
5844 ahd_mode_state saved_modes;
5845 u_int scb_index;
5846 u_int wait;
5847 uint32_t sgptr;
5848 uint32_t resid;
5849 uint64_t dataptr;
5850
5851 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5852 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5853
5854 scb_index = ahd_get_scbptr(ahd);
5855 scb = ahd_lookup_scb(ahd, scb_index);
5856
5857 /*
5858 * Release and reacquire the FIFO so we
5859 * have a clean slate.
5860 */
5861 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5862 wait = 1000;
5863 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5864 ahd_delay(100);
5865 if (wait == 0) {
5866 ahd_print_path(ahd, scb);
5867 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5868 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5869 }
5870 saved_modes = ahd_save_modes(ahd);
5871 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5872 ahd_outb(ahd, DFFSTAT,
5873 ahd_inb(ahd, DFFSTAT)
5874 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5875
5876 /*
5877 * Determine initial values for data_addr and data_cnt
5878 * for resuming the data phase.
5879 */
5880 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5881 sgptr &= SG_PTR_MASK;
5882
5883 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5884 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5885 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5886
5887 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5888 struct ahd_dma64_seg *sg;
5889
5890 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5891
5892 /* The residual sg_ptr always points to the next sg */
5893 sg--;
5894
5895 dataptr = ahd_le64toh(sg->addr)
5896 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5897 - resid;
5898 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5899 } else {
5900 struct ahd_dma_seg *sg;
5901
5902 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5903
5904 /* The residual sg_ptr always points to the next sg */
5905 sg--;
5906
5907 dataptr = ahd_le32toh(sg->addr)
5908 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5909 - resid;
5910 ahd_outb(ahd, HADDR + 4,
5911 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5912 }
5913 ahd_outl(ahd, HADDR, dataptr);
5914 ahd_outb(ahd, HCNT + 2, resid >> 16);
5915 ahd_outb(ahd, HCNT + 1, resid >> 8);
5916 ahd_outb(ahd, HCNT, resid);
5917 }
5918
5919 /*
5920 * Handle the effects of issuing a bus device reset message.
5921 */
5922 static void
ahd_handle_devreset(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int lun,cam_status status,char * message,int verbose_level)5923 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5924 u_int lun, cam_status status, char *message,
5925 int verbose_level)
5926 {
5927 #ifdef AHD_TARGET_MODE
5928 struct ahd_tmode_tstate* tstate;
5929 #endif
5930 int found;
5931
5932 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5933 lun, SCB_LIST_NULL, devinfo->role,
5934 status);
5935
5936 #ifdef AHD_TARGET_MODE
5937 /*
5938 * Send an immediate notify ccb to all target mord peripheral
5939 * drivers affected by this action.
5940 */
5941 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5942 if (tstate != NULL) {
5943 u_int cur_lun;
5944 u_int max_lun;
5945
5946 if (lun != CAM_LUN_WILDCARD) {
5947 cur_lun = 0;
5948 max_lun = AHD_NUM_LUNS - 1;
5949 } else {
5950 cur_lun = lun;
5951 max_lun = lun;
5952 }
5953 for (;cur_lun <= max_lun; cur_lun++) {
5954 struct ahd_tmode_lstate* lstate;
5955
5956 lstate = tstate->enabled_luns[cur_lun];
5957 if (lstate == NULL)
5958 continue;
5959
5960 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5961 MSG_BUS_DEV_RESET, /*arg*/0);
5962 ahd_send_lstate_events(ahd, lstate);
5963 }
5964 }
5965 #endif
5966
5967 /*
5968 * Go back to async/narrow transfers and renegotiate.
5969 */
5970 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5971 AHD_TRANS_CUR, /*paused*/TRUE);
5972 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5973 /*ppr_options*/0, AHD_TRANS_CUR,
5974 /*paused*/TRUE);
5975
5976 if (status != CAM_SEL_TIMEOUT)
5977 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5978 CAM_LUN_WILDCARD, AC_SENT_BDR);
5979
5980 if (message != NULL && bootverbose)
5981 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5982 message, devinfo->channel, devinfo->target, found);
5983 }
5984
5985 #ifdef AHD_TARGET_MODE
5986 static void
ahd_setup_target_msgin(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)5987 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5988 struct scb *scb)
5989 {
5990
5991 /*
5992 * To facilitate adding multiple messages together,
5993 * each routine should increment the index and len
5994 * variables instead of setting them explicitly.
5995 */
5996 ahd->msgout_index = 0;
5997 ahd->msgout_len = 0;
5998
5999 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
6000 ahd_build_transfer_msg(ahd, devinfo);
6001 else
6002 panic("ahd_intr: AWAITING target message with no message");
6003
6004 ahd->msgout_index = 0;
6005 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
6006 }
6007 #endif
6008 /**************************** Initialization **********************************/
6009 static u_int
ahd_sglist_size(struct ahd_softc * ahd)6010 ahd_sglist_size(struct ahd_softc *ahd)
6011 {
6012 bus_size_t list_size;
6013
6014 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
6015 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6016 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
6017 return (list_size);
6018 }
6019
6020 /*
6021 * Calculate the optimum S/G List allocation size. S/G elements used
6022 * for a given transaction must be physically contiguous. Assume the
6023 * OS will allocate full pages to us, so it doesn't make sense to request
6024 * less than a page.
6025 */
6026 static u_int
ahd_sglist_allocsize(struct ahd_softc * ahd)6027 ahd_sglist_allocsize(struct ahd_softc *ahd)
6028 {
6029 bus_size_t sg_list_increment;
6030 bus_size_t sg_list_size;
6031 bus_size_t max_list_size;
6032 bus_size_t best_list_size;
6033
6034 /* Start out with the minimum required for AHD_NSEG. */
6035 sg_list_increment = ahd_sglist_size(ahd);
6036 sg_list_size = sg_list_increment;
6037
6038 /* Get us as close as possible to a page in size. */
6039 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6040 sg_list_size += sg_list_increment;
6041
6042 /*
6043 * Try to reduce the amount of wastage by allocating
6044 * multiple pages.
6045 */
6046 best_list_size = sg_list_size;
6047 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6048 if (max_list_size < 4 * PAGE_SIZE)
6049 max_list_size = 4 * PAGE_SIZE;
6050 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6051 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6052 while ((sg_list_size + sg_list_increment) <= max_list_size
6053 && (sg_list_size % PAGE_SIZE) != 0) {
6054 bus_size_t new_mod;
6055 bus_size_t best_mod;
6056
6057 sg_list_size += sg_list_increment;
6058 new_mod = sg_list_size % PAGE_SIZE;
6059 best_mod = best_list_size % PAGE_SIZE;
6060 if (new_mod > best_mod || new_mod == 0) {
6061 best_list_size = sg_list_size;
6062 }
6063 }
6064 return (best_list_size);
6065 }
6066
6067 /*
6068 * Allocate a controller structure for a new device
6069 * and perform initial initializion.
6070 */
6071 struct ahd_softc *
ahd_alloc(void * platform_arg,char * name)6072 ahd_alloc(void *platform_arg, char *name)
6073 {
6074 struct ahd_softc *ahd;
6075
6076 #ifndef __FreeBSD__
6077 ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6078 if (!ahd) {
6079 printk("aic7xxx: cannot malloc softc!\n");
6080 kfree(name);
6081 return NULL;
6082 }
6083 #else
6084 ahd = device_get_softc((device_t)platform_arg);
6085 #endif
6086 memset(ahd, 0, sizeof(*ahd));
6087 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6088 if (ahd->seep_config == NULL) {
6089 #ifndef __FreeBSD__
6090 kfree(ahd);
6091 #endif
6092 kfree(name);
6093 return (NULL);
6094 }
6095 LIST_INIT(&ahd->pending_scbs);
6096 /* We don't know our unit number until the OSM sets it */
6097 ahd->name = name;
6098 ahd->unit = -1;
6099 ahd->description = NULL;
6100 ahd->bus_description = NULL;
6101 ahd->channel = 'A';
6102 ahd->chip = AHD_NONE;
6103 ahd->features = AHD_FENONE;
6104 ahd->bugs = AHD_BUGNONE;
6105 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6106 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6107 ahd_timer_init(&ahd->reset_timer);
6108 ahd_timer_init(&ahd->stat_timer);
6109 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6110 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6111 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6112 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6113 ahd->int_coalescing_stop_threshold =
6114 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6115
6116 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6117 ahd_free(ahd);
6118 ahd = NULL;
6119 }
6120 #ifdef AHD_DEBUG
6121 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6122 printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6123 ahd_name(ahd), (u_int)sizeof(struct scb),
6124 (u_int)sizeof(struct hardware_scb));
6125 }
6126 #endif
6127 return (ahd);
6128 }
6129
6130 int
ahd_softc_init(struct ahd_softc * ahd)6131 ahd_softc_init(struct ahd_softc *ahd)
6132 {
6133
6134 ahd->unpause = 0;
6135 ahd->pause = PAUSE;
6136 return (0);
6137 }
6138
6139 void
ahd_set_unit(struct ahd_softc * ahd,int unit)6140 ahd_set_unit(struct ahd_softc *ahd, int unit)
6141 {
6142 ahd->unit = unit;
6143 }
6144
6145 void
ahd_set_name(struct ahd_softc * ahd,char * name)6146 ahd_set_name(struct ahd_softc *ahd, char *name)
6147 {
6148 if (ahd->name != NULL)
6149 kfree(ahd->name);
6150 ahd->name = name;
6151 }
6152
6153 void
ahd_free(struct ahd_softc * ahd)6154 ahd_free(struct ahd_softc *ahd)
6155 {
6156 int i;
6157
6158 switch (ahd->init_level) {
6159 default:
6160 case 5:
6161 ahd_shutdown(ahd);
6162 /* FALLTHROUGH */
6163 case 4:
6164 ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6165 ahd->shared_data_map.dmamap);
6166 /* FALLTHROUGH */
6167 case 3:
6168 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6169 ahd->shared_data_map.dmamap);
6170 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6171 ahd->shared_data_map.dmamap);
6172 /* FALLTHROUGH */
6173 case 2:
6174 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6175 case 1:
6176 #ifndef __linux__
6177 ahd_dma_tag_destroy(ahd, ahd->buffer_dmat);
6178 #endif
6179 break;
6180 case 0:
6181 break;
6182 }
6183
6184 #ifndef __linux__
6185 ahd_dma_tag_destroy(ahd, ahd->parent_dmat);
6186 #endif
6187 ahd_platform_free(ahd);
6188 ahd_fini_scbdata(ahd);
6189 for (i = 0; i < AHD_NUM_TARGETS; i++) {
6190 struct ahd_tmode_tstate *tstate;
6191
6192 tstate = ahd->enabled_targets[i];
6193 if (tstate != NULL) {
6194 #ifdef AHD_TARGET_MODE
6195 int j;
6196
6197 for (j = 0; j < AHD_NUM_LUNS; j++) {
6198 struct ahd_tmode_lstate *lstate;
6199
6200 lstate = tstate->enabled_luns[j];
6201 if (lstate != NULL) {
6202 xpt_free_path(lstate->path);
6203 kfree(lstate);
6204 }
6205 }
6206 #endif
6207 kfree(tstate);
6208 }
6209 }
6210 #ifdef AHD_TARGET_MODE
6211 if (ahd->black_hole != NULL) {
6212 xpt_free_path(ahd->black_hole->path);
6213 kfree(ahd->black_hole);
6214 }
6215 #endif
6216 if (ahd->name != NULL)
6217 kfree(ahd->name);
6218 if (ahd->seep_config != NULL)
6219 kfree(ahd->seep_config);
6220 if (ahd->saved_stack != NULL)
6221 kfree(ahd->saved_stack);
6222 #ifndef __FreeBSD__
6223 kfree(ahd);
6224 #endif
6225 return;
6226 }
6227
6228 static void
ahd_shutdown(void * arg)6229 ahd_shutdown(void *arg)
6230 {
6231 struct ahd_softc *ahd;
6232
6233 ahd = (struct ahd_softc *)arg;
6234
6235 /*
6236 * Stop periodic timer callbacks.
6237 */
6238 ahd_timer_stop(&ahd->reset_timer);
6239 ahd_timer_stop(&ahd->stat_timer);
6240
6241 /* This will reset most registers to 0, but not all */
6242 ahd_reset(ahd, /*reinit*/FALSE);
6243 }
6244
6245 /*
6246 * Reset the controller and record some information about it
6247 * that is only available just after a reset. If "reinit" is
6248 * non-zero, this reset occurred after initial configuration
6249 * and the caller requests that the chip be fully reinitialized
6250 * to a runable state. Chip interrupts are *not* enabled after
6251 * a reinitialization. The caller must enable interrupts via
6252 * ahd_intr_enable().
6253 */
6254 int
ahd_reset(struct ahd_softc * ahd,int reinit)6255 ahd_reset(struct ahd_softc *ahd, int reinit)
6256 {
6257 u_int sxfrctl1;
6258 int wait;
6259 uint32_t cmd;
6260
6261 /*
6262 * Preserve the value of the SXFRCTL1 register for all channels.
6263 * It contains settings that affect termination and we don't want
6264 * to disturb the integrity of the bus.
6265 */
6266 ahd_pause(ahd);
6267 ahd_update_modes(ahd);
6268 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6269 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6270
6271 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6272 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6273 uint32_t mod_cmd;
6274
6275 /*
6276 * A4 Razor #632
6277 * During the assertion of CHIPRST, the chip
6278 * does not disable its parity logic prior to
6279 * the start of the reset. This may cause a
6280 * parity error to be detected and thus a
6281 * spurious SERR or PERR assertion. Disble
6282 * PERR and SERR responses during the CHIPRST.
6283 */
6284 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6285 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6286 mod_cmd, /*bytes*/2);
6287 }
6288 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6289
6290 /*
6291 * Ensure that the reset has finished. We delay 1000us
6292 * prior to reading the register to make sure the chip
6293 * has sufficiently completed its reset to handle register
6294 * accesses.
6295 */
6296 wait = 1000;
6297 do {
6298 ahd_delay(1000);
6299 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6300
6301 if (wait == 0) {
6302 printk("%s: WARNING - Failed chip reset! "
6303 "Trying to initialize anyway.\n", ahd_name(ahd));
6304 }
6305 ahd_outb(ahd, HCNTRL, ahd->pause);
6306
6307 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6308 /*
6309 * Clear any latched PCI error status and restore
6310 * previous SERR and PERR response enables.
6311 */
6312 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6313 0xFF, /*bytes*/1);
6314 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6315 cmd, /*bytes*/2);
6316 }
6317
6318 /*
6319 * Mode should be SCSI after a chip reset, but lets
6320 * set it just to be safe. We touch the MODE_PTR
6321 * register directly so as to bypass the lazy update
6322 * code in ahd_set_modes().
6323 */
6324 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6325 ahd_outb(ahd, MODE_PTR,
6326 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6327
6328 /*
6329 * Restore SXFRCTL1.
6330 *
6331 * We must always initialize STPWEN to 1 before we
6332 * restore the saved values. STPWEN is initialized
6333 * to a tri-state condition which can only be cleared
6334 * by turning it on.
6335 */
6336 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6337 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6338
6339 /* Determine chip configuration */
6340 ahd->features &= ~AHD_WIDE;
6341 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6342 ahd->features |= AHD_WIDE;
6343
6344 /*
6345 * If a recovery action has forced a chip reset,
6346 * re-initialize the chip to our liking.
6347 */
6348 if (reinit != 0)
6349 ahd_chip_init(ahd);
6350
6351 return (0);
6352 }
6353
6354 /*
6355 * Determine the number of SCBs available on the controller
6356 */
6357 static int
ahd_probe_scbs(struct ahd_softc * ahd)6358 ahd_probe_scbs(struct ahd_softc *ahd) {
6359 int i;
6360
6361 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6362 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6363 for (i = 0; i < AHD_SCB_MAX; i++) {
6364 int j;
6365
6366 ahd_set_scbptr(ahd, i);
6367 ahd_outw(ahd, SCB_BASE, i);
6368 for (j = 2; j < 64; j++)
6369 ahd_outb(ahd, SCB_BASE+j, 0);
6370 /* Start out life as unallocated (needing an abort) */
6371 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6372 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6373 break;
6374 ahd_set_scbptr(ahd, 0);
6375 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6376 break;
6377 }
6378 return (i);
6379 }
6380
6381 static void
ahd_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)6382 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6383 {
6384 dma_addr_t *baddr;
6385
6386 baddr = (dma_addr_t *)arg;
6387 *baddr = segs->ds_addr;
6388 }
6389
6390 static void
ahd_initialize_hscbs(struct ahd_softc * ahd)6391 ahd_initialize_hscbs(struct ahd_softc *ahd)
6392 {
6393 int i;
6394
6395 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6396 ahd_set_scbptr(ahd, i);
6397
6398 /* Clear the control byte. */
6399 ahd_outb(ahd, SCB_CONTROL, 0);
6400
6401 /* Set the next pointer */
6402 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6403 }
6404 }
6405
6406 static int
ahd_init_scbdata(struct ahd_softc * ahd)6407 ahd_init_scbdata(struct ahd_softc *ahd)
6408 {
6409 struct scb_data *scb_data;
6410 int i;
6411
6412 scb_data = &ahd->scb_data;
6413 TAILQ_INIT(&scb_data->free_scbs);
6414 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6415 LIST_INIT(&scb_data->free_scb_lists[i]);
6416 LIST_INIT(&scb_data->any_dev_free_scb_list);
6417 SLIST_INIT(&scb_data->hscb_maps);
6418 SLIST_INIT(&scb_data->sg_maps);
6419 SLIST_INIT(&scb_data->sense_maps);
6420
6421 /* Determine the number of hardware SCBs and initialize them */
6422 scb_data->maxhscbs = ahd_probe_scbs(ahd);
6423 if (scb_data->maxhscbs == 0) {
6424 printk("%s: No SCB space found\n", ahd_name(ahd));
6425 return (ENXIO);
6426 }
6427
6428 ahd_initialize_hscbs(ahd);
6429
6430 /*
6431 * Create our DMA tags. These tags define the kinds of device
6432 * accessible memory allocations and memory mappings we will
6433 * need to perform during normal operation.
6434 *
6435 * Unless we need to further restrict the allocation, we rely
6436 * on the restrictions of the parent dmat, hence the common
6437 * use of MAXADDR and MAXSIZE.
6438 */
6439
6440 /* DMA tag for our hardware scb structures */
6441 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6442 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6443 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6444 /*highaddr*/BUS_SPACE_MAXADDR,
6445 /*filter*/NULL, /*filterarg*/NULL,
6446 PAGE_SIZE, /*nsegments*/1,
6447 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6448 /*flags*/0, &scb_data->hscb_dmat) != 0) {
6449 goto error_exit;
6450 }
6451
6452 scb_data->init_level++;
6453
6454 /* DMA tag for our S/G structures. */
6455 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6456 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6457 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6458 /*highaddr*/BUS_SPACE_MAXADDR,
6459 /*filter*/NULL, /*filterarg*/NULL,
6460 ahd_sglist_allocsize(ahd), /*nsegments*/1,
6461 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6462 /*flags*/0, &scb_data->sg_dmat) != 0) {
6463 goto error_exit;
6464 }
6465 #ifdef AHD_DEBUG
6466 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6467 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6468 ahd_sglist_allocsize(ahd));
6469 #endif
6470
6471 scb_data->init_level++;
6472
6473 /* DMA tag for our sense buffers. We allocate in page sized chunks */
6474 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6475 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6476 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6477 /*highaddr*/BUS_SPACE_MAXADDR,
6478 /*filter*/NULL, /*filterarg*/NULL,
6479 PAGE_SIZE, /*nsegments*/1,
6480 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6481 /*flags*/0, &scb_data->sense_dmat) != 0) {
6482 goto error_exit;
6483 }
6484
6485 scb_data->init_level++;
6486
6487 /* Perform initial CCB allocation */
6488 ahd_alloc_scbs(ahd);
6489
6490 if (scb_data->numscbs == 0) {
6491 printk("%s: ahd_init_scbdata - "
6492 "Unable to allocate initial scbs\n",
6493 ahd_name(ahd));
6494 goto error_exit;
6495 }
6496
6497 /*
6498 * Note that we were successful
6499 */
6500 return (0);
6501
6502 error_exit:
6503
6504 return (ENOMEM);
6505 }
6506
6507 static struct scb *
ahd_find_scb_by_tag(struct ahd_softc * ahd,u_int tag)6508 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6509 {
6510 struct scb *scb;
6511
6512 /*
6513 * Look on the pending list.
6514 */
6515 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6516 if (SCB_GET_TAG(scb) == tag)
6517 return (scb);
6518 }
6519
6520 /*
6521 * Then on all of the collision free lists.
6522 */
6523 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6524 struct scb *list_scb;
6525
6526 list_scb = scb;
6527 do {
6528 if (SCB_GET_TAG(list_scb) == tag)
6529 return (list_scb);
6530 list_scb = LIST_NEXT(list_scb, collision_links);
6531 } while (list_scb);
6532 }
6533
6534 /*
6535 * And finally on the generic free list.
6536 */
6537 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6538 if (SCB_GET_TAG(scb) == tag)
6539 return (scb);
6540 }
6541
6542 return (NULL);
6543 }
6544
6545 static void
ahd_fini_scbdata(struct ahd_softc * ahd)6546 ahd_fini_scbdata(struct ahd_softc *ahd)
6547 {
6548 struct scb_data *scb_data;
6549
6550 scb_data = &ahd->scb_data;
6551 if (scb_data == NULL)
6552 return;
6553
6554 switch (scb_data->init_level) {
6555 default:
6556 case 7:
6557 {
6558 struct map_node *sns_map;
6559
6560 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6561 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6562 ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6563 sns_map->dmamap);
6564 ahd_dmamem_free(ahd, scb_data->sense_dmat,
6565 sns_map->vaddr, sns_map->dmamap);
6566 kfree(sns_map);
6567 }
6568 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6569 /* FALLTHROUGH */
6570 }
6571 case 6:
6572 {
6573 struct map_node *sg_map;
6574
6575 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6576 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6577 ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6578 sg_map->dmamap);
6579 ahd_dmamem_free(ahd, scb_data->sg_dmat,
6580 sg_map->vaddr, sg_map->dmamap);
6581 kfree(sg_map);
6582 }
6583 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6584 /* FALLTHROUGH */
6585 }
6586 case 5:
6587 {
6588 struct map_node *hscb_map;
6589
6590 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6591 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6592 ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6593 hscb_map->dmamap);
6594 ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6595 hscb_map->vaddr, hscb_map->dmamap);
6596 kfree(hscb_map);
6597 }
6598 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6599 /* FALLTHROUGH */
6600 }
6601 case 4:
6602 case 3:
6603 case 2:
6604 case 1:
6605 case 0:
6606 break;
6607 }
6608 }
6609
6610 /*
6611 * DSP filter Bypass must be enabled until the first selection
6612 * after a change in bus mode (Razor #491 and #493).
6613 */
6614 static void
ahd_setup_iocell_workaround(struct ahd_softc * ahd)6615 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6616 {
6617 ahd_mode_state saved_modes;
6618
6619 saved_modes = ahd_save_modes(ahd);
6620 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6621 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6622 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6623 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6624 #ifdef AHD_DEBUG
6625 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6626 printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6627 #endif
6628 ahd_restore_modes(ahd, saved_modes);
6629 ahd->flags &= ~AHD_HAD_FIRST_SEL;
6630 }
6631
6632 static void
ahd_iocell_first_selection(struct ahd_softc * ahd)6633 ahd_iocell_first_selection(struct ahd_softc *ahd)
6634 {
6635 ahd_mode_state saved_modes;
6636 u_int sblkctl;
6637
6638 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6639 return;
6640 saved_modes = ahd_save_modes(ahd);
6641 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6642 sblkctl = ahd_inb(ahd, SBLKCTL);
6643 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6644 #ifdef AHD_DEBUG
6645 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6646 printk("%s: iocell first selection\n", ahd_name(ahd));
6647 #endif
6648 if ((sblkctl & ENAB40) != 0) {
6649 ahd_outb(ahd, DSPDATACTL,
6650 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6651 #ifdef AHD_DEBUG
6652 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6653 printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6654 #endif
6655 }
6656 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6657 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6658 ahd_restore_modes(ahd, saved_modes);
6659 ahd->flags |= AHD_HAD_FIRST_SEL;
6660 }
6661
6662 /*************************** SCB Management ***********************************/
6663 static void
ahd_add_col_list(struct ahd_softc * ahd,struct scb * scb,u_int col_idx)6664 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6665 {
6666 struct scb_list *free_list;
6667 struct scb_tailq *free_tailq;
6668 struct scb *first_scb;
6669
6670 scb->flags |= SCB_ON_COL_LIST;
6671 AHD_SET_SCB_COL_IDX(scb, col_idx);
6672 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6673 free_tailq = &ahd->scb_data.free_scbs;
6674 first_scb = LIST_FIRST(free_list);
6675 if (first_scb != NULL) {
6676 LIST_INSERT_AFTER(first_scb, scb, collision_links);
6677 } else {
6678 LIST_INSERT_HEAD(free_list, scb, collision_links);
6679 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6680 }
6681 }
6682
6683 static void
ahd_rem_col_list(struct ahd_softc * ahd,struct scb * scb)6684 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6685 {
6686 struct scb_list *free_list;
6687 struct scb_tailq *free_tailq;
6688 struct scb *first_scb;
6689 u_int col_idx;
6690
6691 scb->flags &= ~SCB_ON_COL_LIST;
6692 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6693 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6694 free_tailq = &ahd->scb_data.free_scbs;
6695 first_scb = LIST_FIRST(free_list);
6696 if (first_scb == scb) {
6697 struct scb *next_scb;
6698
6699 /*
6700 * Maintain order in the collision free
6701 * lists for fairness if this device has
6702 * other colliding tags active.
6703 */
6704 next_scb = LIST_NEXT(scb, collision_links);
6705 if (next_scb != NULL) {
6706 TAILQ_INSERT_AFTER(free_tailq, scb,
6707 next_scb, links.tqe);
6708 }
6709 TAILQ_REMOVE(free_tailq, scb, links.tqe);
6710 }
6711 LIST_REMOVE(scb, collision_links);
6712 }
6713
6714 /*
6715 * Get a free scb. If there are none, see if we can allocate a new SCB.
6716 */
6717 struct scb *
ahd_get_scb(struct ahd_softc * ahd,u_int col_idx)6718 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6719 {
6720 struct scb *scb;
6721 int tries;
6722
6723 tries = 0;
6724 look_again:
6725 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6726 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6727 ahd_rem_col_list(ahd, scb);
6728 goto found;
6729 }
6730 }
6731 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6732
6733 if (tries++ != 0)
6734 return (NULL);
6735 ahd_alloc_scbs(ahd);
6736 goto look_again;
6737 }
6738 LIST_REMOVE(scb, links.le);
6739 if (col_idx != AHD_NEVER_COL_IDX
6740 && (scb->col_scb != NULL)
6741 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6742 LIST_REMOVE(scb->col_scb, links.le);
6743 ahd_add_col_list(ahd, scb->col_scb, col_idx);
6744 }
6745 found:
6746 scb->flags |= SCB_ACTIVE;
6747 return (scb);
6748 }
6749
6750 /*
6751 * Return an SCB resource to the free list.
6752 */
6753 void
ahd_free_scb(struct ahd_softc * ahd,struct scb * scb)6754 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6755 {
6756 /* Clean up for the next user */
6757 scb->flags = SCB_FLAG_NONE;
6758 scb->hscb->control = 0;
6759 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6760
6761 if (scb->col_scb == NULL) {
6762
6763 /*
6764 * No collision possible. Just free normally.
6765 */
6766 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6767 scb, links.le);
6768 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6769
6770 /*
6771 * The SCB we might have collided with is on
6772 * a free collision list. Put both SCBs on
6773 * the generic list.
6774 */
6775 ahd_rem_col_list(ahd, scb->col_scb);
6776 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6777 scb, links.le);
6778 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6779 scb->col_scb, links.le);
6780 } else if ((scb->col_scb->flags
6781 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6782 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6783
6784 /*
6785 * The SCB we might collide with on the next allocation
6786 * is still active in a non-packetized, tagged, context.
6787 * Put us on the SCB collision list.
6788 */
6789 ahd_add_col_list(ahd, scb,
6790 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6791 } else {
6792 /*
6793 * The SCB we might collide with on the next allocation
6794 * is either active in a packetized context, or free.
6795 * Since we can't collide, put this SCB on the generic
6796 * free list.
6797 */
6798 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6799 scb, links.le);
6800 }
6801
6802 ahd_platform_scb_free(ahd, scb);
6803 }
6804
6805 static void
ahd_alloc_scbs(struct ahd_softc * ahd)6806 ahd_alloc_scbs(struct ahd_softc *ahd)
6807 {
6808 struct scb_data *scb_data;
6809 struct scb *next_scb;
6810 struct hardware_scb *hscb;
6811 struct map_node *hscb_map;
6812 struct map_node *sg_map;
6813 struct map_node *sense_map;
6814 uint8_t *segs;
6815 uint8_t *sense_data;
6816 dma_addr_t hscb_busaddr;
6817 dma_addr_t sg_busaddr;
6818 dma_addr_t sense_busaddr;
6819 int newcount;
6820 int i;
6821
6822 scb_data = &ahd->scb_data;
6823 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6824 /* Can't allocate any more */
6825 return;
6826
6827 if (scb_data->scbs_left != 0) {
6828 int offset;
6829
6830 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6831 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6832 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6833 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6834 } else {
6835 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6836
6837 if (hscb_map == NULL)
6838 return;
6839
6840 /* Allocate the next batch of hardware SCBs */
6841 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6842 (void **)&hscb_map->vaddr,
6843 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6844 kfree(hscb_map);
6845 return;
6846 }
6847
6848 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6849
6850 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6851 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6852 &hscb_map->physaddr, /*flags*/0);
6853
6854 hscb = (struct hardware_scb *)hscb_map->vaddr;
6855 hscb_busaddr = hscb_map->physaddr;
6856 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6857 }
6858
6859 if (scb_data->sgs_left != 0) {
6860 int offset;
6861
6862 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6863 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6864 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6865 segs = sg_map->vaddr + offset;
6866 sg_busaddr = sg_map->physaddr + offset;
6867 } else {
6868 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6869
6870 if (sg_map == NULL)
6871 return;
6872
6873 /* Allocate the next batch of S/G lists */
6874 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6875 (void **)&sg_map->vaddr,
6876 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6877 kfree(sg_map);
6878 return;
6879 }
6880
6881 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6882
6883 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6884 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6885 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6886
6887 segs = sg_map->vaddr;
6888 sg_busaddr = sg_map->physaddr;
6889 scb_data->sgs_left =
6890 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6891 #ifdef AHD_DEBUG
6892 if (ahd_debug & AHD_SHOW_MEMORY)
6893 printk("Mapped SG data\n");
6894 #endif
6895 }
6896
6897 if (scb_data->sense_left != 0) {
6898 int offset;
6899
6900 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6901 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6902 sense_data = sense_map->vaddr + offset;
6903 sense_busaddr = sense_map->physaddr + offset;
6904 } else {
6905 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6906
6907 if (sense_map == NULL)
6908 return;
6909
6910 /* Allocate the next batch of sense buffers */
6911 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6912 (void **)&sense_map->vaddr,
6913 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6914 kfree(sense_map);
6915 return;
6916 }
6917
6918 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6919
6920 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6921 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6922 &sense_map->physaddr, /*flags*/0);
6923
6924 sense_data = sense_map->vaddr;
6925 sense_busaddr = sense_map->physaddr;
6926 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6927 #ifdef AHD_DEBUG
6928 if (ahd_debug & AHD_SHOW_MEMORY)
6929 printk("Mapped sense data\n");
6930 #endif
6931 }
6932
6933 newcount = min(scb_data->sense_left, scb_data->scbs_left);
6934 newcount = min(newcount, scb_data->sgs_left);
6935 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6936 for (i = 0; i < newcount; i++) {
6937 struct scb_platform_data *pdata;
6938 u_int col_tag;
6939 #ifndef __linux__
6940 int error;
6941 #endif
6942
6943 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6944 if (next_scb == NULL)
6945 break;
6946
6947 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6948 if (pdata == NULL) {
6949 kfree(next_scb);
6950 break;
6951 }
6952 next_scb->platform_data = pdata;
6953 next_scb->hscb_map = hscb_map;
6954 next_scb->sg_map = sg_map;
6955 next_scb->sense_map = sense_map;
6956 next_scb->sg_list = segs;
6957 next_scb->sense_data = sense_data;
6958 next_scb->sense_busaddr = sense_busaddr;
6959 memset(hscb, 0, sizeof(*hscb));
6960 next_scb->hscb = hscb;
6961 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6962
6963 /*
6964 * The sequencer always starts with the second entry.
6965 * The first entry is embedded in the scb.
6966 */
6967 next_scb->sg_list_busaddr = sg_busaddr;
6968 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6969 next_scb->sg_list_busaddr
6970 += sizeof(struct ahd_dma64_seg);
6971 else
6972 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6973 next_scb->ahd_softc = ahd;
6974 next_scb->flags = SCB_FLAG_NONE;
6975 #ifndef __linux__
6976 error = ahd_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
6977 &next_scb->dmamap);
6978 if (error != 0) {
6979 kfree(next_scb);
6980 kfree(pdata);
6981 break;
6982 }
6983 #endif
6984 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6985 col_tag = scb_data->numscbs ^ 0x100;
6986 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6987 if (next_scb->col_scb != NULL)
6988 next_scb->col_scb->col_scb = next_scb;
6989 ahd_free_scb(ahd, next_scb);
6990 hscb++;
6991 hscb_busaddr += sizeof(*hscb);
6992 segs += ahd_sglist_size(ahd);
6993 sg_busaddr += ahd_sglist_size(ahd);
6994 sense_data += AHD_SENSE_BUFSIZE;
6995 sense_busaddr += AHD_SENSE_BUFSIZE;
6996 scb_data->numscbs++;
6997 scb_data->sense_left--;
6998 scb_data->scbs_left--;
6999 scb_data->sgs_left--;
7000 }
7001 }
7002
7003 void
ahd_controller_info(struct ahd_softc * ahd,char * buf)7004 ahd_controller_info(struct ahd_softc *ahd, char *buf)
7005 {
7006 const char *speed;
7007 const char *type;
7008 int len;
7009
7010 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
7011 buf += len;
7012
7013 speed = "Ultra320 ";
7014 if ((ahd->features & AHD_WIDE) != 0) {
7015 type = "Wide ";
7016 } else {
7017 type = "Single ";
7018 }
7019 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
7020 speed, type, ahd->channel, ahd->our_id);
7021 buf += len;
7022
7023 sprintf(buf, "%s, %d SCBs", ahd->bus_description,
7024 ahd->scb_data.maxhscbs);
7025 }
7026
7027 static const char *channel_strings[] = {
7028 "Primary Low",
7029 "Primary High",
7030 "Secondary Low",
7031 "Secondary High"
7032 };
7033
7034 static const char *termstat_strings[] = {
7035 "Terminated Correctly",
7036 "Over Terminated",
7037 "Under Terminated",
7038 "Not Configured"
7039 };
7040
7041 /***************************** Timer Facilities *******************************/
7042 #define ahd_timer_init init_timer
7043 #define ahd_timer_stop del_timer_sync
7044 typedef void ahd_linux_callback_t (u_long);
7045
7046 static void
ahd_timer_reset(ahd_timer_t * timer,int usec,ahd_callback_t * func,void * arg)7047 ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg)
7048 {
7049 struct ahd_softc *ahd;
7050
7051 ahd = (struct ahd_softc *)arg;
7052 del_timer(timer);
7053 timer->data = (u_long)arg;
7054 timer->expires = jiffies + (usec * HZ)/1000000;
7055 timer->function = (ahd_linux_callback_t*)func;
7056 add_timer(timer);
7057 }
7058
7059 /*
7060 * Start the board, ready for normal operation
7061 */
7062 int
ahd_init(struct ahd_softc * ahd)7063 ahd_init(struct ahd_softc *ahd)
7064 {
7065 uint8_t *next_vaddr;
7066 dma_addr_t next_baddr;
7067 size_t driver_data_size;
7068 int i;
7069 int error;
7070 u_int warn_user;
7071 uint8_t current_sensing;
7072 uint8_t fstat;
7073
7074 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7075
7076 ahd->stack_size = ahd_probe_stack_size(ahd);
7077 ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t), GFP_ATOMIC);
7078 if (ahd->saved_stack == NULL)
7079 return (ENOMEM);
7080
7081 /*
7082 * Verify that the compiler hasn't over-aggressively
7083 * padded important structures.
7084 */
7085 if (sizeof(struct hardware_scb) != 64)
7086 panic("Hardware SCB size is incorrect");
7087
7088 #ifdef AHD_DEBUG
7089 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7090 ahd->flags |= AHD_SEQUENCER_DEBUG;
7091 #endif
7092
7093 /*
7094 * Default to allowing initiator operations.
7095 */
7096 ahd->flags |= AHD_INITIATORROLE;
7097
7098 /*
7099 * Only allow target mode features if this unit has them enabled.
7100 */
7101 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7102 ahd->features &= ~AHD_TARGETMODE;
7103
7104 #ifndef __linux__
7105 /* DMA tag for mapping buffers into device visible space. */
7106 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7107 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7108 /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
7109 ? (dma_addr_t)0x7FFFFFFFFFULL
7110 : BUS_SPACE_MAXADDR_32BIT,
7111 /*highaddr*/BUS_SPACE_MAXADDR,
7112 /*filter*/NULL, /*filterarg*/NULL,
7113 /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
7114 /*nsegments*/AHD_NSEG,
7115 /*maxsegsz*/AHD_MAXTRANSFER_SIZE,
7116 /*flags*/BUS_DMA_ALLOCNOW,
7117 &ahd->buffer_dmat) != 0) {
7118 return (ENOMEM);
7119 }
7120 #endif
7121
7122 ahd->init_level++;
7123
7124 /*
7125 * DMA tag for our command fifos and other data in system memory
7126 * the card's sequencer must be able to access. For initiator
7127 * roles, we need to allocate space for the qoutfifo. When providing
7128 * for the target mode role, we must additionally provide space for
7129 * the incoming target command fifo.
7130 */
7131 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7132 + sizeof(struct hardware_scb);
7133 if ((ahd->features & AHD_TARGETMODE) != 0)
7134 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7135 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7136 driver_data_size += PKT_OVERRUN_BUFSIZE;
7137 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7138 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7139 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7140 /*highaddr*/BUS_SPACE_MAXADDR,
7141 /*filter*/NULL, /*filterarg*/NULL,
7142 driver_data_size,
7143 /*nsegments*/1,
7144 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7145 /*flags*/0, &ahd->shared_data_dmat) != 0) {
7146 return (ENOMEM);
7147 }
7148
7149 ahd->init_level++;
7150
7151 /* Allocation of driver data */
7152 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7153 (void **)&ahd->shared_data_map.vaddr,
7154 BUS_DMA_NOWAIT,
7155 &ahd->shared_data_map.dmamap) != 0) {
7156 return (ENOMEM);
7157 }
7158
7159 ahd->init_level++;
7160
7161 /* And permanently map it in */
7162 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7163 ahd->shared_data_map.vaddr, driver_data_size,
7164 ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7165 /*flags*/0);
7166 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7167 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7168 next_baddr = ahd->shared_data_map.physaddr
7169 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7170 if ((ahd->features & AHD_TARGETMODE) != 0) {
7171 ahd->targetcmds = (struct target_cmd *)next_vaddr;
7172 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7173 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7174 }
7175
7176 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7177 ahd->overrun_buf = next_vaddr;
7178 next_vaddr += PKT_OVERRUN_BUFSIZE;
7179 next_baddr += PKT_OVERRUN_BUFSIZE;
7180 }
7181
7182 /*
7183 * We need one SCB to serve as the "next SCB". Since the
7184 * tag identifier in this SCB will never be used, there is
7185 * no point in using a valid HSCB tag from an SCB pulled from
7186 * the standard free pool. So, we allocate this "sentinel"
7187 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7188 */
7189 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7190 ahd->next_queued_hscb_map = &ahd->shared_data_map;
7191 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7192
7193 ahd->init_level++;
7194
7195 /* Allocate SCB data now that buffer_dmat is initialized */
7196 if (ahd_init_scbdata(ahd) != 0)
7197 return (ENOMEM);
7198
7199 if ((ahd->flags & AHD_INITIATORROLE) == 0)
7200 ahd->flags &= ~AHD_RESET_BUS_A;
7201
7202 /*
7203 * Before committing these settings to the chip, give
7204 * the OSM one last chance to modify our configuration.
7205 */
7206 ahd_platform_init(ahd);
7207
7208 /* Bring up the chip. */
7209 ahd_chip_init(ahd);
7210
7211 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7212
7213 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7214 goto init_done;
7215
7216 /*
7217 * Verify termination based on current draw and
7218 * warn user if the bus is over/under terminated.
7219 */
7220 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7221 CURSENSE_ENB);
7222 if (error != 0) {
7223 printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7224 goto init_done;
7225 }
7226 for (i = 20, fstat = FLX_FSTAT_BUSY;
7227 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7228 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7229 if (error != 0) {
7230 printk("%s: current sensing timeout 2\n",
7231 ahd_name(ahd));
7232 goto init_done;
7233 }
7234 }
7235 if (i == 0) {
7236 printk("%s: Timedout during current-sensing test\n",
7237 ahd_name(ahd));
7238 goto init_done;
7239 }
7240
7241 /* Latch Current Sensing status. */
7242 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
7243 if (error != 0) {
7244 printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7245 goto init_done;
7246 }
7247
7248 /* Diable current sensing. */
7249 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7250
7251 #ifdef AHD_DEBUG
7252 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7253 printk("%s: current_sensing == 0x%x\n",
7254 ahd_name(ahd), current_sensing);
7255 }
7256 #endif
7257 warn_user = 0;
7258 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7259 u_int term_stat;
7260
7261 term_stat = (current_sensing & FLX_CSTAT_MASK);
7262 switch (term_stat) {
7263 case FLX_CSTAT_OVER:
7264 case FLX_CSTAT_UNDER:
7265 warn_user++;
7266 case FLX_CSTAT_INVALID:
7267 case FLX_CSTAT_OKAY:
7268 if (warn_user == 0 && bootverbose == 0)
7269 break;
7270 printk("%s: %s Channel %s\n", ahd_name(ahd),
7271 channel_strings[i], termstat_strings[term_stat]);
7272 break;
7273 }
7274 }
7275 if (warn_user) {
7276 printk("%s: WARNING. Termination is not configured correctly.\n"
7277 "%s: WARNING. SCSI bus operations may FAIL.\n",
7278 ahd_name(ahd), ahd_name(ahd));
7279 }
7280 init_done:
7281 ahd_restart(ahd);
7282 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
7283 ahd_stat_timer, ahd);
7284 return (0);
7285 }
7286
7287 /*
7288 * (Re)initialize chip state after a chip reset.
7289 */
7290 static void
ahd_chip_init(struct ahd_softc * ahd)7291 ahd_chip_init(struct ahd_softc *ahd)
7292 {
7293 uint32_t busaddr;
7294 u_int sxfrctl1;
7295 u_int scsiseq_template;
7296 u_int wait;
7297 u_int i;
7298 u_int target;
7299
7300 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7301 /*
7302 * Take the LED out of diagnostic mode
7303 */
7304 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7305
7306 /*
7307 * Return HS_MAILBOX to its default value.
7308 */
7309 ahd->hs_mailbox = 0;
7310 ahd_outb(ahd, HS_MAILBOX, 0);
7311
7312 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7313 ahd_outb(ahd, IOWNID, ahd->our_id);
7314 ahd_outb(ahd, TOWNID, ahd->our_id);
7315 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7316 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7317 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7318 && (ahd->seltime != STIMESEL_MIN)) {
7319 /*
7320 * The selection timer duration is twice as long
7321 * as it should be. Halve it by adding "1" to
7322 * the user specified setting.
7323 */
7324 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7325 } else {
7326 sxfrctl1 |= ahd->seltime;
7327 }
7328
7329 ahd_outb(ahd, SXFRCTL0, DFON);
7330 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7331 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7332
7333 /*
7334 * Now that termination is set, wait for up
7335 * to 500ms for our transceivers to settle. If
7336 * the adapter does not have a cable attached,
7337 * the transceivers may never settle, so don't
7338 * complain if we fail here.
7339 */
7340 for (wait = 10000;
7341 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7342 wait--)
7343 ahd_delay(100);
7344
7345 /* Clear any false bus resets due to the transceivers settling */
7346 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7347 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7348
7349 /* Initialize mode specific S/G state. */
7350 for (i = 0; i < 2; i++) {
7351 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7352 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7353 ahd_outb(ahd, SG_STATE, 0);
7354 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7355 ahd_outb(ahd, SEQIMODE,
7356 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7357 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7358 }
7359
7360 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7361 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7362 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7363 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7364 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7365 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7366 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7367 } else {
7368 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7369 }
7370 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7371 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7372 /*
7373 * Do not issue a target abort when a split completion
7374 * error occurs. Let our PCIX interrupt handler deal
7375 * with it instead. H2A4 Razor #625
7376 */
7377 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7378
7379 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7380 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7381
7382 /*
7383 * Tweak IOCELL settings.
7384 */
7385 if ((ahd->flags & AHD_HP_BOARD) != 0) {
7386 for (i = 0; i < NUMDSPS; i++) {
7387 ahd_outb(ahd, DSPSELECT, i);
7388 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7389 }
7390 #ifdef AHD_DEBUG
7391 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7392 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7393 WRTBIASCTL_HP_DEFAULT);
7394 #endif
7395 }
7396 ahd_setup_iocell_workaround(ahd);
7397
7398 /*
7399 * Enable LQI Manager interrupts.
7400 */
7401 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7402 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7403 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7404 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7405 /*
7406 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7407 * manually for the command phase at the start of a packetized
7408 * selection case. ENLQOBUSFREE should be made redundant by
7409 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7410 * events fail to assert the BUSFREE interrupt so we must
7411 * also enable LQOBUSFREE interrupts.
7412 */
7413 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7414
7415 /*
7416 * Setup sequencer interrupt handlers.
7417 */
7418 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7419 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7420
7421 /*
7422 * Setup SCB Offset registers.
7423 */
7424 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7425 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7426 pkt_long_lun));
7427 } else {
7428 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7429 }
7430 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7431 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7432 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7433 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7434 shared_data.idata.cdb));
7435 ahd_outb(ahd, QNEXTPTR,
7436 offsetof(struct hardware_scb, next_hscb_busaddr));
7437 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7438 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7439 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7440 ahd_outb(ahd, LUNLEN,
7441 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7442 } else {
7443 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7444 }
7445 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7446 ahd_outb(ahd, MAXCMD, 0xFF);
7447 ahd_outb(ahd, SCBAUTOPTR,
7448 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7449
7450 /* We haven't been enabled for target mode yet. */
7451 ahd_outb(ahd, MULTARGID, 0);
7452 ahd_outb(ahd, MULTARGID + 1, 0);
7453
7454 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7455 /* Initialize the negotiation table. */
7456 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7457 /*
7458 * Clear the spare bytes in the neg table to avoid
7459 * spurious parity errors.
7460 */
7461 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7462 ahd_outb(ahd, NEGOADDR, target);
7463 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7464 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7465 ahd_outb(ahd, ANNEXDAT, 0);
7466 }
7467 }
7468 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7469 struct ahd_devinfo devinfo;
7470 struct ahd_initiator_tinfo *tinfo;
7471 struct ahd_tmode_tstate *tstate;
7472
7473 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7474 target, &tstate);
7475 ahd_compile_devinfo(&devinfo, ahd->our_id,
7476 target, CAM_LUN_WILDCARD,
7477 'A', ROLE_INITIATOR);
7478 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7479 }
7480
7481 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7482 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7483
7484 #ifdef NEEDS_MORE_TESTING
7485 /*
7486 * Always enable abort on incoming L_Qs if this feature is
7487 * supported. We use this to catch invalid SCB references.
7488 */
7489 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7490 ahd_outb(ahd, LQCTL1, ABORTPENDING);
7491 else
7492 #endif
7493 ahd_outb(ahd, LQCTL1, 0);
7494
7495 /* All of our queues are empty */
7496 ahd->qoutfifonext = 0;
7497 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7498 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7499 for (i = 0; i < AHD_QOUT_SIZE; i++)
7500 ahd->qoutfifo[i].valid_tag = 0;
7501 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7502
7503 ahd->qinfifonext = 0;
7504 for (i = 0; i < AHD_QIN_SIZE; i++)
7505 ahd->qinfifo[i] = SCB_LIST_NULL;
7506
7507 if ((ahd->features & AHD_TARGETMODE) != 0) {
7508 /* All target command blocks start out invalid. */
7509 for (i = 0; i < AHD_TMODE_CMDS; i++)
7510 ahd->targetcmds[i].cmd_valid = 0;
7511 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7512 ahd->tqinfifonext = 1;
7513 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7514 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7515 }
7516
7517 /* Initialize Scratch Ram. */
7518 ahd_outb(ahd, SEQ_FLAGS, 0);
7519 ahd_outb(ahd, SEQ_FLAGS2, 0);
7520
7521 /* We don't have any waiting selections */
7522 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7523 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7524 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7525 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7526 for (i = 0; i < AHD_NUM_TARGETS; i++)
7527 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7528
7529 /*
7530 * Nobody is waiting to be DMAed into the QOUTFIFO.
7531 */
7532 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7533 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7534 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7535 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7536 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7537
7538 /*
7539 * The Freeze Count is 0.
7540 */
7541 ahd->qfreeze_cnt = 0;
7542 ahd_outw(ahd, QFREEZE_COUNT, 0);
7543 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7544
7545 /*
7546 * Tell the sequencer where it can find our arrays in memory.
7547 */
7548 busaddr = ahd->shared_data_map.physaddr;
7549 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7550 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7551
7552 /*
7553 * Setup the allowed SCSI Sequences based on operational mode.
7554 * If we are a target, we'll enable select in operations once
7555 * we've had a lun enabled.
7556 */
7557 scsiseq_template = ENAUTOATNP;
7558 if ((ahd->flags & AHD_INITIATORROLE) != 0)
7559 scsiseq_template |= ENRSELI;
7560 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7561
7562 /* There are no busy SCBs yet. */
7563 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7564 int lun;
7565
7566 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7567 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7568 }
7569
7570 /*
7571 * Initialize the group code to command length table.
7572 * Vendor Unique codes are set to 0 so we only capture
7573 * the first byte of the cdb. These can be overridden
7574 * when target mode is enabled.
7575 */
7576 ahd_outb(ahd, CMDSIZE_TABLE, 5);
7577 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7578 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7579 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7580 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7581 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7582 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7583 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7584
7585 /* Tell the sequencer of our initial queue positions */
7586 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7587 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7588 ahd->qinfifonext = 0;
7589 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7590 ahd_set_hescb_qoff(ahd, 0);
7591 ahd_set_snscb_qoff(ahd, 0);
7592 ahd_set_sescb_qoff(ahd, 0);
7593 ahd_set_sdscb_qoff(ahd, 0);
7594
7595 /*
7596 * Tell the sequencer which SCB will be the next one it receives.
7597 */
7598 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7599 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7600
7601 /*
7602 * Default to coalescing disabled.
7603 */
7604 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7605 ahd_outw(ahd, CMDS_PENDING, 0);
7606 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7607 ahd->int_coalescing_maxcmds,
7608 ahd->int_coalescing_mincmds);
7609 ahd_enable_coalescing(ahd, FALSE);
7610
7611 ahd_loadseq(ahd);
7612 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7613
7614 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7615 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7616
7617 negodat3 |= ENSLOWCRC;
7618 ahd_outb(ahd, NEGCONOPTS, negodat3);
7619 negodat3 = ahd_inb(ahd, NEGCONOPTS);
7620 if (!(negodat3 & ENSLOWCRC))
7621 printk("aic79xx: failed to set the SLOWCRC bit\n");
7622 else
7623 printk("aic79xx: SLOWCRC bit set\n");
7624 }
7625 }
7626
7627 /*
7628 * Setup default device and controller settings.
7629 * This should only be called if our probe has
7630 * determined that no configuration data is available.
7631 */
7632 int
ahd_default_config(struct ahd_softc * ahd)7633 ahd_default_config(struct ahd_softc *ahd)
7634 {
7635 int targ;
7636
7637 ahd->our_id = 7;
7638
7639 /*
7640 * Allocate a tstate to house information for our
7641 * initiator presence on the bus as well as the user
7642 * data for any target mode initiator.
7643 */
7644 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7645 printk("%s: unable to allocate ahd_tmode_tstate. "
7646 "Failing attach\n", ahd_name(ahd));
7647 return (ENOMEM);
7648 }
7649
7650 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7651 struct ahd_devinfo devinfo;
7652 struct ahd_initiator_tinfo *tinfo;
7653 struct ahd_tmode_tstate *tstate;
7654 uint16_t target_mask;
7655
7656 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7657 targ, &tstate);
7658 /*
7659 * We support SPC2 and SPI4.
7660 */
7661 tinfo->user.protocol_version = 4;
7662 tinfo->user.transport_version = 4;
7663
7664 target_mask = 0x01 << targ;
7665 ahd->user_discenable |= target_mask;
7666 tstate->discenable |= target_mask;
7667 ahd->user_tagenable |= target_mask;
7668 #ifdef AHD_FORCE_160
7669 tinfo->user.period = AHD_SYNCRATE_DT;
7670 #else
7671 tinfo->user.period = AHD_SYNCRATE_160;
7672 #endif
7673 tinfo->user.offset = MAX_OFFSET;
7674 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7675 | MSG_EXT_PPR_WR_FLOW
7676 | MSG_EXT_PPR_HOLD_MCS
7677 | MSG_EXT_PPR_IU_REQ
7678 | MSG_EXT_PPR_QAS_REQ
7679 | MSG_EXT_PPR_DT_REQ;
7680 if ((ahd->features & AHD_RTI) != 0)
7681 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7682
7683 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7684
7685 /*
7686 * Start out Async/Narrow/Untagged and with
7687 * conservative protocol support.
7688 */
7689 tinfo->goal.protocol_version = 2;
7690 tinfo->goal.transport_version = 2;
7691 tinfo->curr.protocol_version = 2;
7692 tinfo->curr.transport_version = 2;
7693 ahd_compile_devinfo(&devinfo, ahd->our_id,
7694 targ, CAM_LUN_WILDCARD,
7695 'A', ROLE_INITIATOR);
7696 tstate->tagenable &= ~target_mask;
7697 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7698 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7699 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7700 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7701 /*paused*/TRUE);
7702 }
7703 return (0);
7704 }
7705
7706 /*
7707 * Parse device configuration information.
7708 */
7709 int
ahd_parse_cfgdata(struct ahd_softc * ahd,struct seeprom_config * sc)7710 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7711 {
7712 int targ;
7713 int max_targ;
7714
7715 max_targ = sc->max_targets & CFMAXTARG;
7716 ahd->our_id = sc->brtime_id & CFSCSIID;
7717
7718 /*
7719 * Allocate a tstate to house information for our
7720 * initiator presence on the bus as well as the user
7721 * data for any target mode initiator.
7722 */
7723 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7724 printk("%s: unable to allocate ahd_tmode_tstate. "
7725 "Failing attach\n", ahd_name(ahd));
7726 return (ENOMEM);
7727 }
7728
7729 for (targ = 0; targ < max_targ; targ++) {
7730 struct ahd_devinfo devinfo;
7731 struct ahd_initiator_tinfo *tinfo;
7732 struct ahd_transinfo *user_tinfo;
7733 struct ahd_tmode_tstate *tstate;
7734 uint16_t target_mask;
7735
7736 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7737 targ, &tstate);
7738 user_tinfo = &tinfo->user;
7739
7740 /*
7741 * We support SPC2 and SPI4.
7742 */
7743 tinfo->user.protocol_version = 4;
7744 tinfo->user.transport_version = 4;
7745
7746 target_mask = 0x01 << targ;
7747 ahd->user_discenable &= ~target_mask;
7748 tstate->discenable &= ~target_mask;
7749 ahd->user_tagenable &= ~target_mask;
7750 if (sc->device_flags[targ] & CFDISC) {
7751 tstate->discenable |= target_mask;
7752 ahd->user_discenable |= target_mask;
7753 ahd->user_tagenable |= target_mask;
7754 } else {
7755 /*
7756 * Cannot be packetized without disconnection.
7757 */
7758 sc->device_flags[targ] &= ~CFPACKETIZED;
7759 }
7760
7761 user_tinfo->ppr_options = 0;
7762 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7763 if (user_tinfo->period < CFXFER_ASYNC) {
7764 if (user_tinfo->period <= AHD_PERIOD_10MHz)
7765 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7766 user_tinfo->offset = MAX_OFFSET;
7767 } else {
7768 user_tinfo->offset = 0;
7769 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7770 }
7771 #ifdef AHD_FORCE_160
7772 if (user_tinfo->period <= AHD_SYNCRATE_160)
7773 user_tinfo->period = AHD_SYNCRATE_DT;
7774 #endif
7775
7776 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7777 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7778 | MSG_EXT_PPR_WR_FLOW
7779 | MSG_EXT_PPR_HOLD_MCS
7780 | MSG_EXT_PPR_IU_REQ;
7781 if ((ahd->features & AHD_RTI) != 0)
7782 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7783 }
7784
7785 if ((sc->device_flags[targ] & CFQAS) != 0)
7786 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7787
7788 if ((sc->device_flags[targ] & CFWIDEB) != 0)
7789 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7790 else
7791 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7792 #ifdef AHD_DEBUG
7793 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7794 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7795 user_tinfo->period, user_tinfo->offset,
7796 user_tinfo->ppr_options);
7797 #endif
7798 /*
7799 * Start out Async/Narrow/Untagged and with
7800 * conservative protocol support.
7801 */
7802 tstate->tagenable &= ~target_mask;
7803 tinfo->goal.protocol_version = 2;
7804 tinfo->goal.transport_version = 2;
7805 tinfo->curr.protocol_version = 2;
7806 tinfo->curr.transport_version = 2;
7807 ahd_compile_devinfo(&devinfo, ahd->our_id,
7808 targ, CAM_LUN_WILDCARD,
7809 'A', ROLE_INITIATOR);
7810 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7811 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7812 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7813 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7814 /*paused*/TRUE);
7815 }
7816
7817 ahd->flags &= ~AHD_SPCHK_ENB_A;
7818 if (sc->bios_control & CFSPARITY)
7819 ahd->flags |= AHD_SPCHK_ENB_A;
7820
7821 ahd->flags &= ~AHD_RESET_BUS_A;
7822 if (sc->bios_control & CFRESETB)
7823 ahd->flags |= AHD_RESET_BUS_A;
7824
7825 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7826 if (sc->bios_control & CFEXTEND)
7827 ahd->flags |= AHD_EXTENDED_TRANS_A;
7828
7829 ahd->flags &= ~AHD_BIOS_ENABLED;
7830 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7831 ahd->flags |= AHD_BIOS_ENABLED;
7832
7833 ahd->flags &= ~AHD_STPWLEVEL_A;
7834 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7835 ahd->flags |= AHD_STPWLEVEL_A;
7836
7837 return (0);
7838 }
7839
7840 /*
7841 * Parse device configuration information.
7842 */
7843 int
ahd_parse_vpddata(struct ahd_softc * ahd,struct vpd_config * vpd)7844 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7845 {
7846 int error;
7847
7848 error = ahd_verify_vpd_cksum(vpd);
7849 if (error == 0)
7850 return (EINVAL);
7851 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7852 ahd->flags |= AHD_BOOT_CHANNEL;
7853 return (0);
7854 }
7855
7856 void
ahd_intr_enable(struct ahd_softc * ahd,int enable)7857 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7858 {
7859 u_int hcntrl;
7860
7861 hcntrl = ahd_inb(ahd, HCNTRL);
7862 hcntrl &= ~INTEN;
7863 ahd->pause &= ~INTEN;
7864 ahd->unpause &= ~INTEN;
7865 if (enable) {
7866 hcntrl |= INTEN;
7867 ahd->pause |= INTEN;
7868 ahd->unpause |= INTEN;
7869 }
7870 ahd_outb(ahd, HCNTRL, hcntrl);
7871 }
7872
7873 static void
ahd_update_coalescing_values(struct ahd_softc * ahd,u_int timer,u_int maxcmds,u_int mincmds)7874 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7875 u_int mincmds)
7876 {
7877 if (timer > AHD_TIMER_MAX_US)
7878 timer = AHD_TIMER_MAX_US;
7879 ahd->int_coalescing_timer = timer;
7880
7881 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7882 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7883 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7884 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7885 ahd->int_coalescing_maxcmds = maxcmds;
7886 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7887 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7888 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7889 }
7890
7891 static void
ahd_enable_coalescing(struct ahd_softc * ahd,int enable)7892 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7893 {
7894
7895 ahd->hs_mailbox &= ~ENINT_COALESCE;
7896 if (enable)
7897 ahd->hs_mailbox |= ENINT_COALESCE;
7898 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7899 ahd_flush_device_writes(ahd);
7900 ahd_run_qoutfifo(ahd);
7901 }
7902
7903 /*
7904 * Ensure that the card is paused in a location
7905 * outside of all critical sections and that all
7906 * pending work is completed prior to returning.
7907 * This routine should only be called from outside
7908 * an interrupt context.
7909 */
7910 void
ahd_pause_and_flushwork(struct ahd_softc * ahd)7911 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7912 {
7913 u_int intstat;
7914 u_int maxloops;
7915
7916 maxloops = 1000;
7917 ahd->flags |= AHD_ALL_INTERRUPTS;
7918 ahd_pause(ahd);
7919 /*
7920 * Freeze the outgoing selections. We do this only
7921 * until we are safely paused without further selections
7922 * pending.
7923 */
7924 ahd->qfreeze_cnt--;
7925 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7926 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7927 do {
7928
7929 ahd_unpause(ahd);
7930 /*
7931 * Give the sequencer some time to service
7932 * any active selections.
7933 */
7934 ahd_delay(500);
7935
7936 ahd_intr(ahd);
7937 ahd_pause(ahd);
7938 intstat = ahd_inb(ahd, INTSTAT);
7939 if ((intstat & INT_PEND) == 0) {
7940 ahd_clear_critical_section(ahd);
7941 intstat = ahd_inb(ahd, INTSTAT);
7942 }
7943 } while (--maxloops
7944 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7945 && ((intstat & INT_PEND) != 0
7946 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7947 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7948
7949 if (maxloops == 0) {
7950 printk("Infinite interrupt loop, INTSTAT = %x",
7951 ahd_inb(ahd, INTSTAT));
7952 }
7953 ahd->qfreeze_cnt++;
7954 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7955
7956 ahd_flush_qoutfifo(ahd);
7957
7958 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7959 }
7960
7961 #ifdef CONFIG_PM
7962 int
ahd_suspend(struct ahd_softc * ahd)7963 ahd_suspend(struct ahd_softc *ahd)
7964 {
7965
7966 ahd_pause_and_flushwork(ahd);
7967
7968 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7969 ahd_unpause(ahd);
7970 return (EBUSY);
7971 }
7972 ahd_shutdown(ahd);
7973 return (0);
7974 }
7975
7976 void
ahd_resume(struct ahd_softc * ahd)7977 ahd_resume(struct ahd_softc *ahd)
7978 {
7979
7980 ahd_reset(ahd, /*reinit*/TRUE);
7981 ahd_intr_enable(ahd, TRUE);
7982 ahd_restart(ahd);
7983 }
7984 #endif
7985
7986 /************************** Busy Target Table *********************************/
7987 /*
7988 * Set SCBPTR to the SCB that contains the busy
7989 * table entry for TCL. Return the offset into
7990 * the SCB that contains the entry for TCL.
7991 * saved_scbid is dereferenced and set to the
7992 * scbid that should be restored once manipualtion
7993 * of the TCL entry is complete.
7994 */
7995 static inline u_int
ahd_index_busy_tcl(struct ahd_softc * ahd,u_int * saved_scbid,u_int tcl)7996 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7997 {
7998 /*
7999 * Index to the SCB that contains the busy entry.
8000 */
8001 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8002 *saved_scbid = ahd_get_scbptr(ahd);
8003 ahd_set_scbptr(ahd, TCL_LUN(tcl)
8004 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
8005
8006 /*
8007 * And now calculate the SCB offset to the entry.
8008 * Each entry is 2 bytes wide, hence the
8009 * multiplication by 2.
8010 */
8011 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
8012 }
8013
8014 /*
8015 * Return the untagged transaction id for a given target/channel lun.
8016 */
8017 static u_int
ahd_find_busy_tcl(struct ahd_softc * ahd,u_int tcl)8018 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
8019 {
8020 u_int scbid;
8021 u_int scb_offset;
8022 u_int saved_scbptr;
8023
8024 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8025 scbid = ahd_inw_scbram(ahd, scb_offset);
8026 ahd_set_scbptr(ahd, saved_scbptr);
8027 return (scbid);
8028 }
8029
8030 static void
ahd_busy_tcl(struct ahd_softc * ahd,u_int tcl,u_int scbid)8031 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
8032 {
8033 u_int scb_offset;
8034 u_int saved_scbptr;
8035
8036 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
8037 ahd_outw(ahd, scb_offset, scbid);
8038 ahd_set_scbptr(ahd, saved_scbptr);
8039 }
8040
8041 /************************** SCB and SCB queue management **********************/
8042 static int
ahd_match_scb(struct ahd_softc * ahd,struct scb * scb,int target,char channel,int lun,u_int tag,role_t role)8043 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
8044 char channel, int lun, u_int tag, role_t role)
8045 {
8046 int targ = SCB_GET_TARGET(ahd, scb);
8047 char chan = SCB_GET_CHANNEL(ahd, scb);
8048 int slun = SCB_GET_LUN(scb);
8049 int match;
8050
8051 match = ((chan == channel) || (channel == ALL_CHANNELS));
8052 if (match != 0)
8053 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
8054 if (match != 0)
8055 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
8056 if (match != 0) {
8057 #ifdef AHD_TARGET_MODE
8058 int group;
8059
8060 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
8061 if (role == ROLE_INITIATOR) {
8062 match = (group != XPT_FC_GROUP_TMODE)
8063 && ((tag == SCB_GET_TAG(scb))
8064 || (tag == SCB_LIST_NULL));
8065 } else if (role == ROLE_TARGET) {
8066 match = (group == XPT_FC_GROUP_TMODE)
8067 && ((tag == scb->io_ctx->csio.tag_id)
8068 || (tag == SCB_LIST_NULL));
8069 }
8070 #else /* !AHD_TARGET_MODE */
8071 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8072 #endif /* AHD_TARGET_MODE */
8073 }
8074
8075 return match;
8076 }
8077
8078 static void
ahd_freeze_devq(struct ahd_softc * ahd,struct scb * scb)8079 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8080 {
8081 int target;
8082 char channel;
8083 int lun;
8084
8085 target = SCB_GET_TARGET(ahd, scb);
8086 lun = SCB_GET_LUN(scb);
8087 channel = SCB_GET_CHANNEL(ahd, scb);
8088
8089 ahd_search_qinfifo(ahd, target, channel, lun,
8090 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8091 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8092
8093 ahd_platform_freeze_devq(ahd, scb);
8094 }
8095
8096 void
ahd_qinfifo_requeue_tail(struct ahd_softc * ahd,struct scb * scb)8097 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8098 {
8099 struct scb *prev_scb;
8100 ahd_mode_state saved_modes;
8101
8102 saved_modes = ahd_save_modes(ahd);
8103 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8104 prev_scb = NULL;
8105 if (ahd_qinfifo_count(ahd) != 0) {
8106 u_int prev_tag;
8107 u_int prev_pos;
8108
8109 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8110 prev_tag = ahd->qinfifo[prev_pos];
8111 prev_scb = ahd_lookup_scb(ahd, prev_tag);
8112 }
8113 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8114 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8115 ahd_restore_modes(ahd, saved_modes);
8116 }
8117
8118 static void
ahd_qinfifo_requeue(struct ahd_softc * ahd,struct scb * prev_scb,struct scb * scb)8119 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8120 struct scb *scb)
8121 {
8122 if (prev_scb == NULL) {
8123 uint32_t busaddr;
8124
8125 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8126 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8127 } else {
8128 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8129 ahd_sync_scb(ahd, prev_scb,
8130 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8131 }
8132 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8133 ahd->qinfifonext++;
8134 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8135 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8136 }
8137
8138 static int
ahd_qinfifo_count(struct ahd_softc * ahd)8139 ahd_qinfifo_count(struct ahd_softc *ahd)
8140 {
8141 u_int qinpos;
8142 u_int wrap_qinpos;
8143 u_int wrap_qinfifonext;
8144
8145 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8146 qinpos = ahd_get_snscb_qoff(ahd);
8147 wrap_qinpos = AHD_QIN_WRAP(qinpos);
8148 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8149 if (wrap_qinfifonext >= wrap_qinpos)
8150 return (wrap_qinfifonext - wrap_qinpos);
8151 else
8152 return (wrap_qinfifonext
8153 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8154 }
8155
8156 static void
ahd_reset_cmds_pending(struct ahd_softc * ahd)8157 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8158 {
8159 struct scb *scb;
8160 ahd_mode_state saved_modes;
8161 u_int pending_cmds;
8162
8163 saved_modes = ahd_save_modes(ahd);
8164 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8165
8166 /*
8167 * Don't count any commands as outstanding that the
8168 * sequencer has already marked for completion.
8169 */
8170 ahd_flush_qoutfifo(ahd);
8171
8172 pending_cmds = 0;
8173 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8174 pending_cmds++;
8175 }
8176 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8177 ahd_restore_modes(ahd, saved_modes);
8178 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8179 }
8180
8181 static void
ahd_done_with_status(struct ahd_softc * ahd,struct scb * scb,uint32_t status)8182 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8183 {
8184 cam_status ostat;
8185 cam_status cstat;
8186
8187 ostat = ahd_get_transaction_status(scb);
8188 if (ostat == CAM_REQ_INPROG)
8189 ahd_set_transaction_status(scb, status);
8190 cstat = ahd_get_transaction_status(scb);
8191 if (cstat != CAM_REQ_CMP)
8192 ahd_freeze_scb(scb);
8193 ahd_done(ahd, scb);
8194 }
8195
8196 int
ahd_search_qinfifo(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action)8197 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8198 int lun, u_int tag, role_t role, uint32_t status,
8199 ahd_search_action action)
8200 {
8201 struct scb *scb;
8202 struct scb *mk_msg_scb;
8203 struct scb *prev_scb;
8204 ahd_mode_state saved_modes;
8205 u_int qinstart;
8206 u_int qinpos;
8207 u_int qintail;
8208 u_int tid_next;
8209 u_int tid_prev;
8210 u_int scbid;
8211 u_int seq_flags2;
8212 u_int savedscbptr;
8213 uint32_t busaddr;
8214 int found;
8215 int targets;
8216
8217 /* Must be in CCHAN mode */
8218 saved_modes = ahd_save_modes(ahd);
8219 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8220
8221 /*
8222 * Halt any pending SCB DMA. The sequencer will reinitiate
8223 * this dma if the qinfifo is not empty once we unpause.
8224 */
8225 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8226 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8227 ahd_outb(ahd, CCSCBCTL,
8228 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8229 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8230 ;
8231 }
8232 /* Determine sequencer's position in the qinfifo. */
8233 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8234 qinstart = ahd_get_snscb_qoff(ahd);
8235 qinpos = AHD_QIN_WRAP(qinstart);
8236 found = 0;
8237 prev_scb = NULL;
8238
8239 if (action == SEARCH_PRINT) {
8240 printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8241 qinstart, ahd->qinfifonext);
8242 }
8243
8244 /*
8245 * Start with an empty queue. Entries that are not chosen
8246 * for removal will be re-added to the queue as we go.
8247 */
8248 ahd->qinfifonext = qinstart;
8249 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8250 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8251
8252 while (qinpos != qintail) {
8253 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8254 if (scb == NULL) {
8255 printk("qinpos = %d, SCB index = %d\n",
8256 qinpos, ahd->qinfifo[qinpos]);
8257 panic("Loop 1\n");
8258 }
8259
8260 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8261 /*
8262 * We found an scb that needs to be acted on.
8263 */
8264 found++;
8265 switch (action) {
8266 case SEARCH_COMPLETE:
8267 if ((scb->flags & SCB_ACTIVE) == 0)
8268 printk("Inactive SCB in qinfifo\n");
8269 ahd_done_with_status(ahd, scb, status);
8270 /* FALLTHROUGH */
8271 case SEARCH_REMOVE:
8272 break;
8273 case SEARCH_PRINT:
8274 printk(" 0x%x", ahd->qinfifo[qinpos]);
8275 /* FALLTHROUGH */
8276 case SEARCH_COUNT:
8277 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8278 prev_scb = scb;
8279 break;
8280 }
8281 } else {
8282 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8283 prev_scb = scb;
8284 }
8285 qinpos = AHD_QIN_WRAP(qinpos+1);
8286 }
8287
8288 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8289
8290 if (action == SEARCH_PRINT)
8291 printk("\nWAITING_TID_QUEUES:\n");
8292
8293 /*
8294 * Search waiting for selection lists. We traverse the
8295 * list of "their ids" waiting for selection and, if
8296 * appropriate, traverse the SCBs of each "their id"
8297 * looking for matches.
8298 */
8299 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8300 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8301 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8302 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8303 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8304 } else
8305 mk_msg_scb = NULL;
8306 savedscbptr = ahd_get_scbptr(ahd);
8307 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8308 tid_prev = SCB_LIST_NULL;
8309 targets = 0;
8310 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8311 u_int tid_head;
8312 u_int tid_tail;
8313
8314 targets++;
8315 if (targets > AHD_NUM_TARGETS)
8316 panic("TID LIST LOOP");
8317
8318 if (scbid >= ahd->scb_data.numscbs) {
8319 printk("%s: Waiting TID List inconsistency. "
8320 "SCB index == 0x%x, yet numscbs == 0x%x.",
8321 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8322 ahd_dump_card_state(ahd);
8323 panic("for safety");
8324 }
8325 scb = ahd_lookup_scb(ahd, scbid);
8326 if (scb == NULL) {
8327 printk("%s: SCB = 0x%x Not Active!\n",
8328 ahd_name(ahd), scbid);
8329 panic("Waiting TID List traversal\n");
8330 }
8331 ahd_set_scbptr(ahd, scbid);
8332 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8333 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8334 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8335 tid_prev = scbid;
8336 continue;
8337 }
8338
8339 /*
8340 * We found a list of scbs that needs to be searched.
8341 */
8342 if (action == SEARCH_PRINT)
8343 printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8344 tid_head = scbid;
8345 found += ahd_search_scb_list(ahd, target, channel,
8346 lun, tag, role, status,
8347 action, &tid_head, &tid_tail,
8348 SCB_GET_TARGET(ahd, scb));
8349 /*
8350 * Check any MK_MESSAGE SCB that is still waiting to
8351 * enter this target's waiting for selection queue.
8352 */
8353 if (mk_msg_scb != NULL
8354 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8355 lun, tag, role)) {
8356
8357 /*
8358 * We found an scb that needs to be acted on.
8359 */
8360 found++;
8361 switch (action) {
8362 case SEARCH_COMPLETE:
8363 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8364 printk("Inactive SCB pending MK_MSG\n");
8365 ahd_done_with_status(ahd, mk_msg_scb, status);
8366 /* FALLTHROUGH */
8367 case SEARCH_REMOVE:
8368 {
8369 u_int tail_offset;
8370
8371 printk("Removing MK_MSG scb\n");
8372
8373 /*
8374 * Reset our tail to the tail of the
8375 * main per-target list.
8376 */
8377 tail_offset = WAITING_SCB_TAILS
8378 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8379 ahd_outw(ahd, tail_offset, tid_tail);
8380
8381 seq_flags2 &= ~PENDING_MK_MESSAGE;
8382 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8383 ahd_outw(ahd, CMDS_PENDING,
8384 ahd_inw(ahd, CMDS_PENDING)-1);
8385 mk_msg_scb = NULL;
8386 break;
8387 }
8388 case SEARCH_PRINT:
8389 printk(" 0x%x", SCB_GET_TAG(scb));
8390 /* FALLTHROUGH */
8391 case SEARCH_COUNT:
8392 break;
8393 }
8394 }
8395
8396 if (mk_msg_scb != NULL
8397 && SCBID_IS_NULL(tid_head)
8398 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8399 SCB_LIST_NULL, ROLE_UNKNOWN)) {
8400
8401 /*
8402 * When removing the last SCB for a target
8403 * queue with a pending MK_MESSAGE scb, we
8404 * must queue the MK_MESSAGE scb.
8405 */
8406 printk("Queueing mk_msg_scb\n");
8407 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8408 seq_flags2 &= ~PENDING_MK_MESSAGE;
8409 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8410 mk_msg_scb = NULL;
8411 }
8412 if (tid_head != scbid)
8413 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8414 if (!SCBID_IS_NULL(tid_head))
8415 tid_prev = tid_head;
8416 if (action == SEARCH_PRINT)
8417 printk(")\n");
8418 }
8419
8420 /* Restore saved state. */
8421 ahd_set_scbptr(ahd, savedscbptr);
8422 ahd_restore_modes(ahd, saved_modes);
8423 return (found);
8424 }
8425
8426 static int
ahd_search_scb_list(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action,u_int * list_head,u_int * list_tail,u_int tid)8427 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8428 int lun, u_int tag, role_t role, uint32_t status,
8429 ahd_search_action action, u_int *list_head,
8430 u_int *list_tail, u_int tid)
8431 {
8432 struct scb *scb;
8433 u_int scbid;
8434 u_int next;
8435 u_int prev;
8436 int found;
8437
8438 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8439 found = 0;
8440 prev = SCB_LIST_NULL;
8441 next = *list_head;
8442 *list_tail = SCB_LIST_NULL;
8443 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8444 if (scbid >= ahd->scb_data.numscbs) {
8445 printk("%s:SCB List inconsistency. "
8446 "SCB == 0x%x, yet numscbs == 0x%x.",
8447 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8448 ahd_dump_card_state(ahd);
8449 panic("for safety");
8450 }
8451 scb = ahd_lookup_scb(ahd, scbid);
8452 if (scb == NULL) {
8453 printk("%s: SCB = %d Not Active!\n",
8454 ahd_name(ahd), scbid);
8455 panic("Waiting List traversal\n");
8456 }
8457 ahd_set_scbptr(ahd, scbid);
8458 *list_tail = scbid;
8459 next = ahd_inw_scbram(ahd, SCB_NEXT);
8460 if (ahd_match_scb(ahd, scb, target, channel,
8461 lun, SCB_LIST_NULL, role) == 0) {
8462 prev = scbid;
8463 continue;
8464 }
8465 found++;
8466 switch (action) {
8467 case SEARCH_COMPLETE:
8468 if ((scb->flags & SCB_ACTIVE) == 0)
8469 printk("Inactive SCB in Waiting List\n");
8470 ahd_done_with_status(ahd, scb, status);
8471 /* FALLTHROUGH */
8472 case SEARCH_REMOVE:
8473 ahd_rem_wscb(ahd, scbid, prev, next, tid);
8474 *list_tail = prev;
8475 if (SCBID_IS_NULL(prev))
8476 *list_head = next;
8477 break;
8478 case SEARCH_PRINT:
8479 printk("0x%x ", scbid);
8480 case SEARCH_COUNT:
8481 prev = scbid;
8482 break;
8483 }
8484 if (found > AHD_SCB_MAX)
8485 panic("SCB LIST LOOP");
8486 }
8487 if (action == SEARCH_COMPLETE
8488 || action == SEARCH_REMOVE)
8489 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8490 return (found);
8491 }
8492
8493 static void
ahd_stitch_tid_list(struct ahd_softc * ahd,u_int tid_prev,u_int tid_cur,u_int tid_next)8494 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8495 u_int tid_cur, u_int tid_next)
8496 {
8497 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8498
8499 if (SCBID_IS_NULL(tid_cur)) {
8500
8501 /* Bypass current TID list */
8502 if (SCBID_IS_NULL(tid_prev)) {
8503 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8504 } else {
8505 ahd_set_scbptr(ahd, tid_prev);
8506 ahd_outw(ahd, SCB_NEXT2, tid_next);
8507 }
8508 if (SCBID_IS_NULL(tid_next))
8509 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8510 } else {
8511
8512 /* Stitch through tid_cur */
8513 if (SCBID_IS_NULL(tid_prev)) {
8514 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8515 } else {
8516 ahd_set_scbptr(ahd, tid_prev);
8517 ahd_outw(ahd, SCB_NEXT2, tid_cur);
8518 }
8519 ahd_set_scbptr(ahd, tid_cur);
8520 ahd_outw(ahd, SCB_NEXT2, tid_next);
8521
8522 if (SCBID_IS_NULL(tid_next))
8523 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8524 }
8525 }
8526
8527 /*
8528 * Manipulate the waiting for selection list and return the
8529 * scb that follows the one that we remove.
8530 */
8531 static u_int
ahd_rem_wscb(struct ahd_softc * ahd,u_int scbid,u_int prev,u_int next,u_int tid)8532 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8533 u_int prev, u_int next, u_int tid)
8534 {
8535 u_int tail_offset;
8536
8537 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8538 if (!SCBID_IS_NULL(prev)) {
8539 ahd_set_scbptr(ahd, prev);
8540 ahd_outw(ahd, SCB_NEXT, next);
8541 }
8542
8543 /*
8544 * SCBs that have MK_MESSAGE set in them may
8545 * cause the tail pointer to be updated without
8546 * setting the next pointer of the previous tail.
8547 * Only clear the tail if the removed SCB was
8548 * the tail.
8549 */
8550 tail_offset = WAITING_SCB_TAILS + (2 * tid);
8551 if (SCBID_IS_NULL(next)
8552 && ahd_inw(ahd, tail_offset) == scbid)
8553 ahd_outw(ahd, tail_offset, prev);
8554
8555 ahd_add_scb_to_free_list(ahd, scbid);
8556 return (next);
8557 }
8558
8559 /*
8560 * Add the SCB as selected by SCBPTR onto the on chip list of
8561 * free hardware SCBs. This list is empty/unused if we are not
8562 * performing SCB paging.
8563 */
8564 static void
ahd_add_scb_to_free_list(struct ahd_softc * ahd,u_int scbid)8565 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8566 {
8567 /* XXX Need some other mechanism to designate "free". */
8568 /*
8569 * Invalidate the tag so that our abort
8570 * routines don't think it's active.
8571 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8572 */
8573 }
8574
8575 /******************************** Error Handling ******************************/
8576 /*
8577 * Abort all SCBs that match the given description (target/channel/lun/tag),
8578 * setting their status to the passed in status if the status has not already
8579 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8580 * is paused before it is called.
8581 */
8582 static int
ahd_abort_scbs(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)8583 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8584 int lun, u_int tag, role_t role, uint32_t status)
8585 {
8586 struct scb *scbp;
8587 struct scb *scbp_next;
8588 u_int i, j;
8589 u_int maxtarget;
8590 u_int minlun;
8591 u_int maxlun;
8592 int found;
8593 ahd_mode_state saved_modes;
8594
8595 /* restore this when we're done */
8596 saved_modes = ahd_save_modes(ahd);
8597 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8598
8599 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8600 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8601
8602 /*
8603 * Clean out the busy target table for any untagged commands.
8604 */
8605 i = 0;
8606 maxtarget = 16;
8607 if (target != CAM_TARGET_WILDCARD) {
8608 i = target;
8609 if (channel == 'B')
8610 i += 8;
8611 maxtarget = i + 1;
8612 }
8613
8614 if (lun == CAM_LUN_WILDCARD) {
8615 minlun = 0;
8616 maxlun = AHD_NUM_LUNS_NONPKT;
8617 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8618 minlun = maxlun = 0;
8619 } else {
8620 minlun = lun;
8621 maxlun = lun + 1;
8622 }
8623
8624 if (role != ROLE_TARGET) {
8625 for (;i < maxtarget; i++) {
8626 for (j = minlun;j < maxlun; j++) {
8627 u_int scbid;
8628 u_int tcl;
8629
8630 tcl = BUILD_TCL_RAW(i, 'A', j);
8631 scbid = ahd_find_busy_tcl(ahd, tcl);
8632 scbp = ahd_lookup_scb(ahd, scbid);
8633 if (scbp == NULL
8634 || ahd_match_scb(ahd, scbp, target, channel,
8635 lun, tag, role) == 0)
8636 continue;
8637 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8638 }
8639 }
8640 }
8641
8642 /*
8643 * Don't abort commands that have already completed,
8644 * but haven't quite made it up to the host yet.
8645 */
8646 ahd_flush_qoutfifo(ahd);
8647
8648 /*
8649 * Go through the pending CCB list and look for
8650 * commands for this target that are still active.
8651 * These are other tagged commands that were
8652 * disconnected when the reset occurred.
8653 */
8654 scbp_next = LIST_FIRST(&ahd->pending_scbs);
8655 while (scbp_next != NULL) {
8656 scbp = scbp_next;
8657 scbp_next = LIST_NEXT(scbp, pending_links);
8658 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8659 cam_status ostat;
8660
8661 ostat = ahd_get_transaction_status(scbp);
8662 if (ostat == CAM_REQ_INPROG)
8663 ahd_set_transaction_status(scbp, status);
8664 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8665 ahd_freeze_scb(scbp);
8666 if ((scbp->flags & SCB_ACTIVE) == 0)
8667 printk("Inactive SCB on pending list\n");
8668 ahd_done(ahd, scbp);
8669 found++;
8670 }
8671 }
8672 ahd_restore_modes(ahd, saved_modes);
8673 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8674 ahd->flags |= AHD_UPDATE_PEND_CMDS;
8675 return found;
8676 }
8677
8678 static void
ahd_reset_current_bus(struct ahd_softc * ahd)8679 ahd_reset_current_bus(struct ahd_softc *ahd)
8680 {
8681 uint8_t scsiseq;
8682
8683 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8684 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8685 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8686 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8687 ahd_flush_device_writes(ahd);
8688 ahd_delay(AHD_BUSRESET_DELAY);
8689 /* Turn off the bus reset */
8690 ahd_outb(ahd, SCSISEQ0, scsiseq);
8691 ahd_flush_device_writes(ahd);
8692 ahd_delay(AHD_BUSRESET_DELAY);
8693 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8694 /*
8695 * 2A Razor #474
8696 * Certain chip state is not cleared for
8697 * SCSI bus resets that we initiate, so
8698 * we must reset the chip.
8699 */
8700 ahd_reset(ahd, /*reinit*/TRUE);
8701 ahd_intr_enable(ahd, /*enable*/TRUE);
8702 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8703 }
8704
8705 ahd_clear_intstat(ahd);
8706 }
8707
8708 int
ahd_reset_channel(struct ahd_softc * ahd,char channel,int initiate_reset)8709 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8710 {
8711 struct ahd_devinfo caminfo;
8712 u_int initiator;
8713 u_int target;
8714 u_int max_scsiid;
8715 int found;
8716 u_int fifo;
8717 u_int next_fifo;
8718 uint8_t scsiseq;
8719
8720 /*
8721 * Check if the last bus reset is cleared
8722 */
8723 if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8724 printk("%s: bus reset still active\n",
8725 ahd_name(ahd));
8726 return 0;
8727 }
8728 ahd->flags |= AHD_BUS_RESET_ACTIVE;
8729
8730 ahd->pending_device = NULL;
8731
8732 ahd_compile_devinfo(&caminfo,
8733 CAM_TARGET_WILDCARD,
8734 CAM_TARGET_WILDCARD,
8735 CAM_LUN_WILDCARD,
8736 channel, ROLE_UNKNOWN);
8737 ahd_pause(ahd);
8738
8739 /* Make sure the sequencer is in a safe location. */
8740 ahd_clear_critical_section(ahd);
8741
8742 /*
8743 * Run our command complete fifos to ensure that we perform
8744 * completion processing on any commands that 'completed'
8745 * before the reset occurred.
8746 */
8747 ahd_run_qoutfifo(ahd);
8748 #ifdef AHD_TARGET_MODE
8749 if ((ahd->flags & AHD_TARGETROLE) != 0) {
8750 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8751 }
8752 #endif
8753 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8754
8755 /*
8756 * Disable selections so no automatic hardware
8757 * functions will modify chip state.
8758 */
8759 ahd_outb(ahd, SCSISEQ0, 0);
8760 ahd_outb(ahd, SCSISEQ1, 0);
8761
8762 /*
8763 * Safely shut down our DMA engines. Always start with
8764 * the FIFO that is not currently active (if any are
8765 * actively connected).
8766 */
8767 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8768 if (next_fifo > CURRFIFO_1)
8769 /* If disconneced, arbitrarily start with FIFO1. */
8770 next_fifo = fifo = 0;
8771 do {
8772 next_fifo ^= CURRFIFO_1;
8773 ahd_set_modes(ahd, next_fifo, next_fifo);
8774 ahd_outb(ahd, DFCNTRL,
8775 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8776 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8777 ahd_delay(10);
8778 /*
8779 * Set CURRFIFO to the now inactive channel.
8780 */
8781 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8782 ahd_outb(ahd, DFFSTAT, next_fifo);
8783 } while (next_fifo != fifo);
8784
8785 /*
8786 * Reset the bus if we are initiating this reset
8787 */
8788 ahd_clear_msg_state(ahd);
8789 ahd_outb(ahd, SIMODE1,
8790 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8791
8792 if (initiate_reset)
8793 ahd_reset_current_bus(ahd);
8794
8795 ahd_clear_intstat(ahd);
8796
8797 /*
8798 * Clean up all the state information for the
8799 * pending transactions on this bus.
8800 */
8801 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8802 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8803 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8804
8805 /*
8806 * Cleanup anything left in the FIFOs.
8807 */
8808 ahd_clear_fifo(ahd, 0);
8809 ahd_clear_fifo(ahd, 1);
8810
8811 /*
8812 * Clear SCSI interrupt status
8813 */
8814 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8815
8816 /*
8817 * Reenable selections
8818 */
8819 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8820 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8821 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8822
8823 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8824 #ifdef AHD_TARGET_MODE
8825 /*
8826 * Send an immediate notify ccb to all target more peripheral
8827 * drivers affected by this action.
8828 */
8829 for (target = 0; target <= max_scsiid; target++) {
8830 struct ahd_tmode_tstate* tstate;
8831 u_int lun;
8832
8833 tstate = ahd->enabled_targets[target];
8834 if (tstate == NULL)
8835 continue;
8836 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8837 struct ahd_tmode_lstate* lstate;
8838
8839 lstate = tstate->enabled_luns[lun];
8840 if (lstate == NULL)
8841 continue;
8842
8843 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8844 EVENT_TYPE_BUS_RESET, /*arg*/0);
8845 ahd_send_lstate_events(ahd, lstate);
8846 }
8847 }
8848 #endif
8849 /*
8850 * Revert to async/narrow transfers until we renegotiate.
8851 */
8852 for (target = 0; target <= max_scsiid; target++) {
8853
8854 if (ahd->enabled_targets[target] == NULL)
8855 continue;
8856 for (initiator = 0; initiator <= max_scsiid; initiator++) {
8857 struct ahd_devinfo devinfo;
8858
8859 ahd_compile_devinfo(&devinfo, target, initiator,
8860 CAM_LUN_WILDCARD,
8861 'A', ROLE_UNKNOWN);
8862 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8863 AHD_TRANS_CUR, /*paused*/TRUE);
8864 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8865 /*offset*/0, /*ppr_options*/0,
8866 AHD_TRANS_CUR, /*paused*/TRUE);
8867 }
8868 }
8869
8870 /* Notify the XPT that a bus reset occurred */
8871 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8872 CAM_LUN_WILDCARD, AC_BUS_RESET);
8873
8874 ahd_restart(ahd);
8875
8876 return (found);
8877 }
8878
8879 /**************************** Statistics Processing ***************************/
8880 static void
ahd_stat_timer(void * arg)8881 ahd_stat_timer(void *arg)
8882 {
8883 struct ahd_softc *ahd = arg;
8884 u_long s;
8885 int enint_coal;
8886
8887 ahd_lock(ahd, &s);
8888
8889 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8890 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8891 enint_coal |= ENINT_COALESCE;
8892 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8893 enint_coal &= ~ENINT_COALESCE;
8894
8895 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8896 ahd_enable_coalescing(ahd, enint_coal);
8897 #ifdef AHD_DEBUG
8898 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8899 printk("%s: Interrupt coalescing "
8900 "now %sabled. Cmds %d\n",
8901 ahd_name(ahd),
8902 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8903 ahd->cmdcmplt_total);
8904 #endif
8905 }
8906
8907 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8908 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8909 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8910 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US,
8911 ahd_stat_timer, ahd);
8912 ahd_unlock(ahd, &s);
8913 }
8914
8915 /****************************** Status Processing *****************************/
8916
8917 static void
ahd_handle_scsi_status(struct ahd_softc * ahd,struct scb * scb)8918 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8919 {
8920 struct hardware_scb *hscb;
8921 int paused;
8922
8923 /*
8924 * The sequencer freezes its select-out queue
8925 * anytime a SCSI status error occurs. We must
8926 * handle the error and increment our qfreeze count
8927 * to allow the sequencer to continue. We don't
8928 * bother clearing critical sections here since all
8929 * operations are on data structures that the sequencer
8930 * is not touching once the queue is frozen.
8931 */
8932 hscb = scb->hscb;
8933
8934 if (ahd_is_paused(ahd)) {
8935 paused = 1;
8936 } else {
8937 paused = 0;
8938 ahd_pause(ahd);
8939 }
8940
8941 /* Freeze the queue until the client sees the error. */
8942 ahd_freeze_devq(ahd, scb);
8943 ahd_freeze_scb(scb);
8944 ahd->qfreeze_cnt++;
8945 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8946
8947 if (paused == 0)
8948 ahd_unpause(ahd);
8949
8950 /* Don't want to clobber the original sense code */
8951 if ((scb->flags & SCB_SENSE) != 0) {
8952 /*
8953 * Clear the SCB_SENSE Flag and perform
8954 * a normal command completion.
8955 */
8956 scb->flags &= ~SCB_SENSE;
8957 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8958 ahd_done(ahd, scb);
8959 return;
8960 }
8961 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8962 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8963 switch (hscb->shared_data.istatus.scsi_status) {
8964 case STATUS_PKT_SENSE:
8965 {
8966 struct scsi_status_iu_header *siu;
8967
8968 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8969 siu = (struct scsi_status_iu_header *)scb->sense_data;
8970 ahd_set_scsi_status(scb, siu->status);
8971 #ifdef AHD_DEBUG
8972 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8973 ahd_print_path(ahd, scb);
8974 printk("SCB 0x%x Received PKT Status of 0x%x\n",
8975 SCB_GET_TAG(scb), siu->status);
8976 printk("\tflags = 0x%x, sense len = 0x%x, "
8977 "pktfail = 0x%x\n",
8978 siu->flags, scsi_4btoul(siu->sense_length),
8979 scsi_4btoul(siu->pkt_failures_length));
8980 }
8981 #endif
8982 if ((siu->flags & SIU_RSPVALID) != 0) {
8983 ahd_print_path(ahd, scb);
8984 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8985 printk("Unable to parse pkt_failures\n");
8986 } else {
8987
8988 switch (SIU_PKTFAIL_CODE(siu)) {
8989 case SIU_PFC_NONE:
8990 printk("No packet failure found\n");
8991 break;
8992 case SIU_PFC_CIU_FIELDS_INVALID:
8993 printk("Invalid Command IU Field\n");
8994 break;
8995 case SIU_PFC_TMF_NOT_SUPPORTED:
8996 printk("TMF not supported\n");
8997 break;
8998 case SIU_PFC_TMF_FAILED:
8999 printk("TMF failed\n");
9000 break;
9001 case SIU_PFC_INVALID_TYPE_CODE:
9002 printk("Invalid L_Q Type code\n");
9003 break;
9004 case SIU_PFC_ILLEGAL_REQUEST:
9005 printk("Illegal request\n");
9006 default:
9007 break;
9008 }
9009 }
9010 if (siu->status == SCSI_STATUS_OK)
9011 ahd_set_transaction_status(scb,
9012 CAM_REQ_CMP_ERR);
9013 }
9014 if ((siu->flags & SIU_SNSVALID) != 0) {
9015 scb->flags |= SCB_PKT_SENSE;
9016 #ifdef AHD_DEBUG
9017 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
9018 printk("Sense data available\n");
9019 #endif
9020 }
9021 ahd_done(ahd, scb);
9022 break;
9023 }
9024 case SCSI_STATUS_CMD_TERMINATED:
9025 case SCSI_STATUS_CHECK_COND:
9026 {
9027 struct ahd_devinfo devinfo;
9028 struct ahd_dma_seg *sg;
9029 struct scsi_sense *sc;
9030 struct ahd_initiator_tinfo *targ_info;
9031 struct ahd_tmode_tstate *tstate;
9032 struct ahd_transinfo *tinfo;
9033 #ifdef AHD_DEBUG
9034 if (ahd_debug & AHD_SHOW_SENSE) {
9035 ahd_print_path(ahd, scb);
9036 printk("SCB %d: requests Check Status\n",
9037 SCB_GET_TAG(scb));
9038 }
9039 #endif
9040
9041 if (ahd_perform_autosense(scb) == 0)
9042 break;
9043
9044 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
9045 SCB_GET_TARGET(ahd, scb),
9046 SCB_GET_LUN(scb),
9047 SCB_GET_CHANNEL(ahd, scb),
9048 ROLE_INITIATOR);
9049 targ_info = ahd_fetch_transinfo(ahd,
9050 devinfo.channel,
9051 devinfo.our_scsiid,
9052 devinfo.target,
9053 &tstate);
9054 tinfo = &targ_info->curr;
9055 sg = scb->sg_list;
9056 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
9057 /*
9058 * Save off the residual if there is one.
9059 */
9060 ahd_update_residual(ahd, scb);
9061 #ifdef AHD_DEBUG
9062 if (ahd_debug & AHD_SHOW_SENSE) {
9063 ahd_print_path(ahd, scb);
9064 printk("Sending Sense\n");
9065 }
9066 #endif
9067 scb->sg_count = 0;
9068 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
9069 ahd_get_sense_bufsize(ahd, scb),
9070 /*last*/TRUE);
9071 sc->opcode = REQUEST_SENSE;
9072 sc->byte2 = 0;
9073 if (tinfo->protocol_version <= SCSI_REV_2
9074 && SCB_GET_LUN(scb) < 8)
9075 sc->byte2 = SCB_GET_LUN(scb) << 5;
9076 sc->unused[0] = 0;
9077 sc->unused[1] = 0;
9078 sc->length = ahd_get_sense_bufsize(ahd, scb);
9079 sc->control = 0;
9080
9081 /*
9082 * We can't allow the target to disconnect.
9083 * This will be an untagged transaction and
9084 * having the target disconnect will make this
9085 * transaction indestinguishable from outstanding
9086 * tagged transactions.
9087 */
9088 hscb->control = 0;
9089
9090 /*
9091 * This request sense could be because the
9092 * the device lost power or in some other
9093 * way has lost our transfer negotiations.
9094 * Renegotiate if appropriate. Unit attention
9095 * errors will be reported before any data
9096 * phases occur.
9097 */
9098 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9099 ahd_update_neg_request(ahd, &devinfo,
9100 tstate, targ_info,
9101 AHD_NEG_IF_NON_ASYNC);
9102 }
9103 if (tstate->auto_negotiate & devinfo.target_mask) {
9104 hscb->control |= MK_MESSAGE;
9105 scb->flags &=
9106 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9107 scb->flags |= SCB_AUTO_NEGOTIATE;
9108 }
9109 hscb->cdb_len = sizeof(*sc);
9110 ahd_setup_data_scb(ahd, scb);
9111 scb->flags |= SCB_SENSE;
9112 ahd_queue_scb(ahd, scb);
9113 break;
9114 }
9115 case SCSI_STATUS_OK:
9116 printk("%s: Interrupted for status of 0???\n",
9117 ahd_name(ahd));
9118 /* FALLTHROUGH */
9119 default:
9120 ahd_done(ahd, scb);
9121 break;
9122 }
9123 }
9124
9125 static void
ahd_handle_scb_status(struct ahd_softc * ahd,struct scb * scb)9126 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9127 {
9128 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9129 ahd_handle_scsi_status(ahd, scb);
9130 } else {
9131 ahd_calc_residual(ahd, scb);
9132 ahd_done(ahd, scb);
9133 }
9134 }
9135
9136 /*
9137 * Calculate the residual for a just completed SCB.
9138 */
9139 static void
ahd_calc_residual(struct ahd_softc * ahd,struct scb * scb)9140 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9141 {
9142 struct hardware_scb *hscb;
9143 struct initiator_status *spkt;
9144 uint32_t sgptr;
9145 uint32_t resid_sgptr;
9146 uint32_t resid;
9147
9148 /*
9149 * 5 cases.
9150 * 1) No residual.
9151 * SG_STATUS_VALID clear in sgptr.
9152 * 2) Transferless command
9153 * 3) Never performed any transfers.
9154 * sgptr has SG_FULL_RESID set.
9155 * 4) No residual but target did not
9156 * save data pointers after the
9157 * last transfer, so sgptr was
9158 * never updated.
9159 * 5) We have a partial residual.
9160 * Use residual_sgptr to determine
9161 * where we are.
9162 */
9163
9164 hscb = scb->hscb;
9165 sgptr = ahd_le32toh(hscb->sgptr);
9166 if ((sgptr & SG_STATUS_VALID) == 0)
9167 /* Case 1 */
9168 return;
9169 sgptr &= ~SG_STATUS_VALID;
9170
9171 if ((sgptr & SG_LIST_NULL) != 0)
9172 /* Case 2 */
9173 return;
9174
9175 /*
9176 * Residual fields are the same in both
9177 * target and initiator status packets,
9178 * so we can always use the initiator fields
9179 * regardless of the role for this SCB.
9180 */
9181 spkt = &hscb->shared_data.istatus;
9182 resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9183 if ((sgptr & SG_FULL_RESID) != 0) {
9184 /* Case 3 */
9185 resid = ahd_get_transfer_length(scb);
9186 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9187 /* Case 4 */
9188 return;
9189 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9190 ahd_print_path(ahd, scb);
9191 printk("data overrun detected Tag == 0x%x.\n",
9192 SCB_GET_TAG(scb));
9193 ahd_freeze_devq(ahd, scb);
9194 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9195 ahd_freeze_scb(scb);
9196 return;
9197 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9198 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9199 /* NOTREACHED */
9200 } else {
9201 struct ahd_dma_seg *sg;
9202
9203 /*
9204 * Remainder of the SG where the transfer
9205 * stopped.
9206 */
9207 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9208 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9209
9210 /* The residual sg_ptr always points to the next sg */
9211 sg--;
9212
9213 /*
9214 * Add up the contents of all residual
9215 * SG segments that are after the SG where
9216 * the transfer stopped.
9217 */
9218 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9219 sg++;
9220 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9221 }
9222 }
9223 if ((scb->flags & SCB_SENSE) == 0)
9224 ahd_set_residual(scb, resid);
9225 else
9226 ahd_set_sense_residual(scb, resid);
9227
9228 #ifdef AHD_DEBUG
9229 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9230 ahd_print_path(ahd, scb);
9231 printk("Handled %sResidual of %d bytes\n",
9232 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9233 }
9234 #endif
9235 }
9236
9237 /******************************* Target Mode **********************************/
9238 #ifdef AHD_TARGET_MODE
9239 /*
9240 * Add a target mode event to this lun's queue
9241 */
9242 static void
ahd_queue_lstate_event(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate,u_int initiator_id,u_int event_type,u_int event_arg)9243 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9244 u_int initiator_id, u_int event_type, u_int event_arg)
9245 {
9246 struct ahd_tmode_event *event;
9247 int pending;
9248
9249 xpt_freeze_devq(lstate->path, /*count*/1);
9250 if (lstate->event_w_idx >= lstate->event_r_idx)
9251 pending = lstate->event_w_idx - lstate->event_r_idx;
9252 else
9253 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9254 - (lstate->event_r_idx - lstate->event_w_idx);
9255
9256 if (event_type == EVENT_TYPE_BUS_RESET
9257 || event_type == MSG_BUS_DEV_RESET) {
9258 /*
9259 * Any earlier events are irrelevant, so reset our buffer.
9260 * This has the effect of allowing us to deal with reset
9261 * floods (an external device holding down the reset line)
9262 * without losing the event that is really interesting.
9263 */
9264 lstate->event_r_idx = 0;
9265 lstate->event_w_idx = 0;
9266 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9267 }
9268
9269 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9270 xpt_print_path(lstate->path);
9271 printk("immediate event %x:%x lost\n",
9272 lstate->event_buffer[lstate->event_r_idx].event_type,
9273 lstate->event_buffer[lstate->event_r_idx].event_arg);
9274 lstate->event_r_idx++;
9275 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9276 lstate->event_r_idx = 0;
9277 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9278 }
9279
9280 event = &lstate->event_buffer[lstate->event_w_idx];
9281 event->initiator_id = initiator_id;
9282 event->event_type = event_type;
9283 event->event_arg = event_arg;
9284 lstate->event_w_idx++;
9285 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9286 lstate->event_w_idx = 0;
9287 }
9288
9289 /*
9290 * Send any target mode events queued up waiting
9291 * for immediate notify resources.
9292 */
9293 void
ahd_send_lstate_events(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate)9294 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9295 {
9296 struct ccb_hdr *ccbh;
9297 struct ccb_immed_notify *inot;
9298
9299 while (lstate->event_r_idx != lstate->event_w_idx
9300 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9301 struct ahd_tmode_event *event;
9302
9303 event = &lstate->event_buffer[lstate->event_r_idx];
9304 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9305 inot = (struct ccb_immed_notify *)ccbh;
9306 switch (event->event_type) {
9307 case EVENT_TYPE_BUS_RESET:
9308 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9309 break;
9310 default:
9311 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9312 inot->message_args[0] = event->event_type;
9313 inot->message_args[1] = event->event_arg;
9314 break;
9315 }
9316 inot->initiator_id = event->initiator_id;
9317 inot->sense_len = 0;
9318 xpt_done((union ccb *)inot);
9319 lstate->event_r_idx++;
9320 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9321 lstate->event_r_idx = 0;
9322 }
9323 }
9324 #endif
9325
9326 /******************** Sequencer Program Patching/Download *********************/
9327
9328 #ifdef AHD_DUMP_SEQ
9329 void
ahd_dumpseq(struct ahd_softc * ahd)9330 ahd_dumpseq(struct ahd_softc* ahd)
9331 {
9332 int i;
9333 int max_prog;
9334
9335 max_prog = 2048;
9336
9337 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9338 ahd_outw(ahd, PRGMCNT, 0);
9339 for (i = 0; i < max_prog; i++) {
9340 uint8_t ins_bytes[4];
9341
9342 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9343 printk("0x%08x\n", ins_bytes[0] << 24
9344 | ins_bytes[1] << 16
9345 | ins_bytes[2] << 8
9346 | ins_bytes[3]);
9347 }
9348 }
9349 #endif
9350
9351 static void
ahd_loadseq(struct ahd_softc * ahd)9352 ahd_loadseq(struct ahd_softc *ahd)
9353 {
9354 struct cs cs_table[num_critical_sections];
9355 u_int begin_set[num_critical_sections];
9356 u_int end_set[num_critical_sections];
9357 const struct patch *cur_patch;
9358 u_int cs_count;
9359 u_int cur_cs;
9360 u_int i;
9361 int downloaded;
9362 u_int skip_addr;
9363 u_int sg_prefetch_cnt;
9364 u_int sg_prefetch_cnt_limit;
9365 u_int sg_prefetch_align;
9366 u_int sg_size;
9367 u_int cacheline_mask;
9368 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9369
9370 if (bootverbose)
9371 printk("%s: Downloading Sequencer Program...",
9372 ahd_name(ahd));
9373
9374 #if DOWNLOAD_CONST_COUNT != 8
9375 #error "Download Const Mismatch"
9376 #endif
9377 /*
9378 * Start out with 0 critical sections
9379 * that apply to this firmware load.
9380 */
9381 cs_count = 0;
9382 cur_cs = 0;
9383 memset(begin_set, 0, sizeof(begin_set));
9384 memset(end_set, 0, sizeof(end_set));
9385
9386 /*
9387 * Setup downloadable constant table.
9388 *
9389 * The computation for the S/G prefetch variables is
9390 * a bit complicated. We would like to always fetch
9391 * in terms of cachelined sized increments. However,
9392 * if the cacheline is not an even multiple of the
9393 * SG element size or is larger than our SG RAM, using
9394 * just the cache size might leave us with only a portion
9395 * of an SG element at the tail of a prefetch. If the
9396 * cacheline is larger than our S/G prefetch buffer less
9397 * the size of an SG element, we may round down to a cacheline
9398 * that doesn't contain any or all of the S/G of interest
9399 * within the bounds of our S/G ram. Provide variables to
9400 * the sequencer that will allow it to handle these edge
9401 * cases.
9402 */
9403 /* Start by aligning to the nearest cacheline. */
9404 sg_prefetch_align = ahd->pci_cachesize;
9405 if (sg_prefetch_align == 0)
9406 sg_prefetch_align = 8;
9407 /* Round down to the nearest power of 2. */
9408 while (powerof2(sg_prefetch_align) == 0)
9409 sg_prefetch_align--;
9410
9411 cacheline_mask = sg_prefetch_align - 1;
9412
9413 /*
9414 * If the cacheline boundary is greater than half our prefetch RAM
9415 * we risk not being able to fetch even a single complete S/G
9416 * segment if we align to that boundary.
9417 */
9418 if (sg_prefetch_align > CCSGADDR_MAX/2)
9419 sg_prefetch_align = CCSGADDR_MAX/2;
9420 /* Start by fetching a single cacheline. */
9421 sg_prefetch_cnt = sg_prefetch_align;
9422 /*
9423 * Increment the prefetch count by cachelines until
9424 * at least one S/G element will fit.
9425 */
9426 sg_size = sizeof(struct ahd_dma_seg);
9427 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9428 sg_size = sizeof(struct ahd_dma64_seg);
9429 while (sg_prefetch_cnt < sg_size)
9430 sg_prefetch_cnt += sg_prefetch_align;
9431 /*
9432 * If the cacheline is not an even multiple of
9433 * the S/G size, we may only get a partial S/G when
9434 * we align. Add a cacheline if this is the case.
9435 */
9436 if ((sg_prefetch_align % sg_size) != 0
9437 && (sg_prefetch_cnt < CCSGADDR_MAX))
9438 sg_prefetch_cnt += sg_prefetch_align;
9439 /*
9440 * Lastly, compute a value that the sequencer can use
9441 * to determine if the remainder of the CCSGRAM buffer
9442 * has a full S/G element in it.
9443 */
9444 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9445 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9446 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9447 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9448 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9449 download_consts[SG_SIZEOF] = sg_size;
9450 download_consts[PKT_OVERRUN_BUFOFFSET] =
9451 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9452 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9453 download_consts[CACHELINE_MASK] = cacheline_mask;
9454 cur_patch = patches;
9455 downloaded = 0;
9456 skip_addr = 0;
9457 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9458 ahd_outw(ahd, PRGMCNT, 0);
9459
9460 for (i = 0; i < sizeof(seqprog)/4; i++) {
9461 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9462 /*
9463 * Don't download this instruction as it
9464 * is in a patch that was removed.
9465 */
9466 continue;
9467 }
9468 /*
9469 * Move through the CS table until we find a CS
9470 * that might apply to this instruction.
9471 */
9472 for (; cur_cs < num_critical_sections; cur_cs++) {
9473 if (critical_sections[cur_cs].end <= i) {
9474 if (begin_set[cs_count] == TRUE
9475 && end_set[cs_count] == FALSE) {
9476 cs_table[cs_count].end = downloaded;
9477 end_set[cs_count] = TRUE;
9478 cs_count++;
9479 }
9480 continue;
9481 }
9482 if (critical_sections[cur_cs].begin <= i
9483 && begin_set[cs_count] == FALSE) {
9484 cs_table[cs_count].begin = downloaded;
9485 begin_set[cs_count] = TRUE;
9486 }
9487 break;
9488 }
9489 ahd_download_instr(ahd, i, download_consts);
9490 downloaded++;
9491 }
9492
9493 ahd->num_critical_sections = cs_count;
9494 if (cs_count != 0) {
9495
9496 cs_count *= sizeof(struct cs);
9497 ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9498 if (ahd->critical_sections == NULL)
9499 panic("ahd_loadseq: Could not malloc");
9500 memcpy(ahd->critical_sections, cs_table, cs_count);
9501 }
9502 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9503
9504 if (bootverbose) {
9505 printk(" %d instructions downloaded\n", downloaded);
9506 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9507 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9508 }
9509 }
9510
9511 static int
ahd_check_patch(struct ahd_softc * ahd,const struct patch ** start_patch,u_int start_instr,u_int * skip_addr)9512 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9513 u_int start_instr, u_int *skip_addr)
9514 {
9515 const struct patch *cur_patch;
9516 const struct patch *last_patch;
9517 u_int num_patches;
9518
9519 num_patches = ARRAY_SIZE(patches);
9520 last_patch = &patches[num_patches];
9521 cur_patch = *start_patch;
9522
9523 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9524
9525 if (cur_patch->patch_func(ahd) == 0) {
9526
9527 /* Start rejecting code */
9528 *skip_addr = start_instr + cur_patch->skip_instr;
9529 cur_patch += cur_patch->skip_patch;
9530 } else {
9531 /* Accepted this patch. Advance to the next
9532 * one and wait for our intruction pointer to
9533 * hit this point.
9534 */
9535 cur_patch++;
9536 }
9537 }
9538
9539 *start_patch = cur_patch;
9540 if (start_instr < *skip_addr)
9541 /* Still skipping */
9542 return (0);
9543
9544 return (1);
9545 }
9546
9547 static u_int
ahd_resolve_seqaddr(struct ahd_softc * ahd,u_int address)9548 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9549 {
9550 const struct patch *cur_patch;
9551 int address_offset;
9552 u_int skip_addr;
9553 u_int i;
9554
9555 address_offset = 0;
9556 cur_patch = patches;
9557 skip_addr = 0;
9558
9559 for (i = 0; i < address;) {
9560
9561 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9562
9563 if (skip_addr > i) {
9564 int end_addr;
9565
9566 end_addr = min(address, skip_addr);
9567 address_offset += end_addr - i;
9568 i = skip_addr;
9569 } else {
9570 i++;
9571 }
9572 }
9573 return (address - address_offset);
9574 }
9575
9576 static void
ahd_download_instr(struct ahd_softc * ahd,u_int instrptr,uint8_t * dconsts)9577 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9578 {
9579 union ins_formats instr;
9580 struct ins_format1 *fmt1_ins;
9581 struct ins_format3 *fmt3_ins;
9582 u_int opcode;
9583
9584 /*
9585 * The firmware is always compiled into a little endian format.
9586 */
9587 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9588
9589 fmt1_ins = &instr.format1;
9590 fmt3_ins = NULL;
9591
9592 /* Pull the opcode */
9593 opcode = instr.format1.opcode;
9594 switch (opcode) {
9595 case AIC_OP_JMP:
9596 case AIC_OP_JC:
9597 case AIC_OP_JNC:
9598 case AIC_OP_CALL:
9599 case AIC_OP_JNE:
9600 case AIC_OP_JNZ:
9601 case AIC_OP_JE:
9602 case AIC_OP_JZ:
9603 {
9604 fmt3_ins = &instr.format3;
9605 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9606 /* FALLTHROUGH */
9607 }
9608 case AIC_OP_OR:
9609 case AIC_OP_AND:
9610 case AIC_OP_XOR:
9611 case AIC_OP_ADD:
9612 case AIC_OP_ADC:
9613 case AIC_OP_BMOV:
9614 if (fmt1_ins->parity != 0) {
9615 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9616 }
9617 fmt1_ins->parity = 0;
9618 /* FALLTHROUGH */
9619 case AIC_OP_ROL:
9620 {
9621 int i, count;
9622
9623 /* Calculate odd parity for the instruction */
9624 for (i = 0, count = 0; i < 31; i++) {
9625 uint32_t mask;
9626
9627 mask = 0x01 << i;
9628 if ((instr.integer & mask) != 0)
9629 count++;
9630 }
9631 if ((count & 0x01) == 0)
9632 instr.format1.parity = 1;
9633
9634 /* The sequencer is a little endian cpu */
9635 instr.integer = ahd_htole32(instr.integer);
9636 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9637 break;
9638 }
9639 default:
9640 panic("Unknown opcode encountered in seq program");
9641 break;
9642 }
9643 }
9644
9645 static int
ahd_probe_stack_size(struct ahd_softc * ahd)9646 ahd_probe_stack_size(struct ahd_softc *ahd)
9647 {
9648 int last_probe;
9649
9650 last_probe = 0;
9651 while (1) {
9652 int i;
9653
9654 /*
9655 * We avoid using 0 as a pattern to avoid
9656 * confusion if the stack implementation
9657 * "back-fills" with zeros when "poping'
9658 * entries.
9659 */
9660 for (i = 1; i <= last_probe+1; i++) {
9661 ahd_outb(ahd, STACK, i & 0xFF);
9662 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9663 }
9664
9665 /* Verify */
9666 for (i = last_probe+1; i > 0; i--) {
9667 u_int stack_entry;
9668
9669 stack_entry = ahd_inb(ahd, STACK)
9670 |(ahd_inb(ahd, STACK) << 8);
9671 if (stack_entry != i)
9672 goto sized;
9673 }
9674 last_probe++;
9675 }
9676 sized:
9677 return (last_probe);
9678 }
9679
9680 int
ahd_print_register(const ahd_reg_parse_entry_t * table,u_int num_entries,const char * name,u_int address,u_int value,u_int * cur_column,u_int wrap_point)9681 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9682 const char *name, u_int address, u_int value,
9683 u_int *cur_column, u_int wrap_point)
9684 {
9685 int printed;
9686 u_int printed_mask;
9687
9688 if (cur_column != NULL && *cur_column >= wrap_point) {
9689 printk("\n");
9690 *cur_column = 0;
9691 }
9692 printed = printk("%s[0x%x]", name, value);
9693 if (table == NULL) {
9694 printed += printk(" ");
9695 *cur_column += printed;
9696 return (printed);
9697 }
9698 printed_mask = 0;
9699 while (printed_mask != 0xFF) {
9700 int entry;
9701
9702 for (entry = 0; entry < num_entries; entry++) {
9703 if (((value & table[entry].mask)
9704 != table[entry].value)
9705 || ((printed_mask & table[entry].mask)
9706 == table[entry].mask))
9707 continue;
9708
9709 printed += printk("%s%s",
9710 printed_mask == 0 ? ":(" : "|",
9711 table[entry].name);
9712 printed_mask |= table[entry].mask;
9713
9714 break;
9715 }
9716 if (entry >= num_entries)
9717 break;
9718 }
9719 if (printed_mask != 0)
9720 printed += printk(") ");
9721 else
9722 printed += printk(" ");
9723 if (cur_column != NULL)
9724 *cur_column += printed;
9725 return (printed);
9726 }
9727
9728 void
ahd_dump_card_state(struct ahd_softc * ahd)9729 ahd_dump_card_state(struct ahd_softc *ahd)
9730 {
9731 struct scb *scb;
9732 ahd_mode_state saved_modes;
9733 u_int dffstat;
9734 int paused;
9735 u_int scb_index;
9736 u_int saved_scb_index;
9737 u_int cur_col;
9738 int i;
9739
9740 if (ahd_is_paused(ahd)) {
9741 paused = 1;
9742 } else {
9743 paused = 0;
9744 ahd_pause(ahd);
9745 }
9746 saved_modes = ahd_save_modes(ahd);
9747 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9748 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9749 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9750 ahd_name(ahd),
9751 ahd_inw(ahd, CURADDR),
9752 ahd_build_mode_state(ahd, ahd->saved_src_mode,
9753 ahd->saved_dst_mode));
9754 if (paused)
9755 printk("Card was paused\n");
9756
9757 if (ahd_check_cmdcmpltqueues(ahd))
9758 printk("Completions are pending\n");
9759
9760 /*
9761 * Mode independent registers.
9762 */
9763 cur_col = 0;
9764 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9765 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9766 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9767 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9768 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9769 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9770 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9771 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9772 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9773 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9774 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9775 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9776 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9777 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9778 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9779 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9780 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9781 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9782 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9783 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9784 &cur_col, 50);
9785 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9786 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9787 &cur_col, 50);
9788 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9789 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9790 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9791 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9792 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9793 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9794 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9795 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9796 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9797 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9798 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9799 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9800 printk("\n");
9801 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9802 "CURRSCB 0x%x NEXTSCB 0x%x\n",
9803 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9804 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9805 ahd_inw(ahd, NEXTSCB));
9806 cur_col = 0;
9807 /* QINFIFO */
9808 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9809 CAM_LUN_WILDCARD, SCB_LIST_NULL,
9810 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9811 saved_scb_index = ahd_get_scbptr(ahd);
9812 printk("Pending list:");
9813 i = 0;
9814 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9815 if (i++ > AHD_SCB_MAX)
9816 break;
9817 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9818 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9819 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9820 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9821 &cur_col, 60);
9822 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9823 &cur_col, 60);
9824 }
9825 printk("\nTotal %d\n", i);
9826
9827 printk("Kernel Free SCB list: ");
9828 i = 0;
9829 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9830 struct scb *list_scb;
9831
9832 list_scb = scb;
9833 do {
9834 printk("%d ", SCB_GET_TAG(list_scb));
9835 list_scb = LIST_NEXT(list_scb, collision_links);
9836 } while (list_scb && i++ < AHD_SCB_MAX);
9837 }
9838
9839 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9840 if (i++ > AHD_SCB_MAX)
9841 break;
9842 printk("%d ", SCB_GET_TAG(scb));
9843 }
9844 printk("\n");
9845
9846 printk("Sequencer Complete DMA-inprog list: ");
9847 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9848 i = 0;
9849 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9850 ahd_set_scbptr(ahd, scb_index);
9851 printk("%d ", scb_index);
9852 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9853 }
9854 printk("\n");
9855
9856 printk("Sequencer Complete list: ");
9857 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9858 i = 0;
9859 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9860 ahd_set_scbptr(ahd, scb_index);
9861 printk("%d ", scb_index);
9862 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9863 }
9864 printk("\n");
9865
9866
9867 printk("Sequencer DMA-Up and Complete list: ");
9868 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9869 i = 0;
9870 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9871 ahd_set_scbptr(ahd, scb_index);
9872 printk("%d ", scb_index);
9873 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9874 }
9875 printk("\n");
9876 printk("Sequencer On QFreeze and Complete list: ");
9877 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9878 i = 0;
9879 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9880 ahd_set_scbptr(ahd, scb_index);
9881 printk("%d ", scb_index);
9882 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9883 }
9884 printk("\n");
9885 ahd_set_scbptr(ahd, saved_scb_index);
9886 dffstat = ahd_inb(ahd, DFFSTAT);
9887 for (i = 0; i < 2; i++) {
9888 #ifdef AHD_DEBUG
9889 struct scb *fifo_scb;
9890 #endif
9891 u_int fifo_scbptr;
9892
9893 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9894 fifo_scbptr = ahd_get_scbptr(ahd);
9895 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9896 ahd_name(ahd), i,
9897 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9898 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9899 cur_col = 0;
9900 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9901 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9902 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9903 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9904 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9905 &cur_col, 50);
9906 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9907 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9908 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9909 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9910 if (cur_col > 50) {
9911 printk("\n");
9912 cur_col = 0;
9913 }
9914 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9915 ahd_inl(ahd, SHADDR+4),
9916 ahd_inl(ahd, SHADDR),
9917 (ahd_inb(ahd, SHCNT)
9918 | (ahd_inb(ahd, SHCNT + 1) << 8)
9919 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9920 if (cur_col > 50) {
9921 printk("\n");
9922 cur_col = 0;
9923 }
9924 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9925 ahd_inl(ahd, HADDR+4),
9926 ahd_inl(ahd, HADDR),
9927 (ahd_inb(ahd, HCNT)
9928 | (ahd_inb(ahd, HCNT + 1) << 8)
9929 | (ahd_inb(ahd, HCNT + 2) << 16)));
9930 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9931 #ifdef AHD_DEBUG
9932 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9933 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9934 if (fifo_scb != NULL)
9935 ahd_dump_sglist(fifo_scb);
9936 }
9937 #endif
9938 }
9939 printk("\nLQIN: ");
9940 for (i = 0; i < 20; i++)
9941 printk("0x%x ", ahd_inb(ahd, LQIN + i));
9942 printk("\n");
9943 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9944 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9945 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9946 ahd_inb(ahd, OPTIONMODE));
9947 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9948 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9949 ahd_inb(ahd, MAXCMDCNT));
9950 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9951 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9952 ahd_inb(ahd, SAVED_LUN));
9953 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9954 printk("\n");
9955 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9956 cur_col = 0;
9957 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9958 printk("\n");
9959 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9960 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9961 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9962 ahd_inw(ahd, DINDEX));
9963 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9964 ahd_name(ahd), ahd_get_scbptr(ahd),
9965 ahd_inw_scbram(ahd, SCB_NEXT),
9966 ahd_inw_scbram(ahd, SCB_NEXT2));
9967 printk("CDB %x %x %x %x %x %x\n",
9968 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9969 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9970 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9971 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9972 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9973 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9974 printk("STACK:");
9975 for (i = 0; i < ahd->stack_size; i++) {
9976 ahd->saved_stack[i] =
9977 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9978 printk(" 0x%x", ahd->saved_stack[i]);
9979 }
9980 for (i = ahd->stack_size-1; i >= 0; i--) {
9981 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9982 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9983 }
9984 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9985 ahd_restore_modes(ahd, saved_modes);
9986 if (paused == 0)
9987 ahd_unpause(ahd);
9988 }
9989
9990 #if 0
9991 void
9992 ahd_dump_scbs(struct ahd_softc *ahd)
9993 {
9994 ahd_mode_state saved_modes;
9995 u_int saved_scb_index;
9996 int i;
9997
9998 saved_modes = ahd_save_modes(ahd);
9999 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
10000 saved_scb_index = ahd_get_scbptr(ahd);
10001 for (i = 0; i < AHD_SCB_MAX; i++) {
10002 ahd_set_scbptr(ahd, i);
10003 printk("%3d", i);
10004 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
10005 ahd_inb_scbram(ahd, SCB_CONTROL),
10006 ahd_inb_scbram(ahd, SCB_SCSIID),
10007 ahd_inw_scbram(ahd, SCB_NEXT),
10008 ahd_inw_scbram(ahd, SCB_NEXT2),
10009 ahd_inl_scbram(ahd, SCB_SGPTR),
10010 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
10011 }
10012 printk("\n");
10013 ahd_set_scbptr(ahd, saved_scb_index);
10014 ahd_restore_modes(ahd, saved_modes);
10015 }
10016 #endif /* 0 */
10017
10018 /**************************** Flexport Logic **********************************/
10019 /*
10020 * Read count 16bit words from 16bit word address start_addr from the
10021 * SEEPROM attached to the controller, into buf, using the controller's
10022 * SEEPROM reading state machine. Optionally treat the data as a byte
10023 * stream in terms of byte order.
10024 */
10025 int
ahd_read_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count,int bytestream)10026 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10027 u_int start_addr, u_int count, int bytestream)
10028 {
10029 u_int cur_addr;
10030 u_int end_addr;
10031 int error;
10032
10033 /*
10034 * If we never make it through the loop even once,
10035 * we were passed invalid arguments.
10036 */
10037 error = EINVAL;
10038 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10039 end_addr = start_addr + count;
10040 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10041
10042 ahd_outb(ahd, SEEADR, cur_addr);
10043 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
10044
10045 error = ahd_wait_seeprom(ahd);
10046 if (error)
10047 break;
10048 if (bytestream != 0) {
10049 uint8_t *bytestream_ptr;
10050
10051 bytestream_ptr = (uint8_t *)buf;
10052 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
10053 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
10054 } else {
10055 /*
10056 * ahd_inw() already handles machine byte order.
10057 */
10058 *buf = ahd_inw(ahd, SEEDAT);
10059 }
10060 buf++;
10061 }
10062 return (error);
10063 }
10064
10065 /*
10066 * Write count 16bit words from buf, into SEEPROM attache to the
10067 * controller starting at 16bit word address start_addr, using the
10068 * controller's SEEPROM writing state machine.
10069 */
10070 int
ahd_write_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count)10071 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10072 u_int start_addr, u_int count)
10073 {
10074 u_int cur_addr;
10075 u_int end_addr;
10076 int error;
10077 int retval;
10078
10079 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10080 error = ENOENT;
10081
10082 /* Place the chip into write-enable mode */
10083 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10084 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10085 error = ahd_wait_seeprom(ahd);
10086 if (error)
10087 return (error);
10088
10089 /*
10090 * Write the data. If we don't get through the loop at
10091 * least once, the arguments were invalid.
10092 */
10093 retval = EINVAL;
10094 end_addr = start_addr + count;
10095 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10096 ahd_outw(ahd, SEEDAT, *buf++);
10097 ahd_outb(ahd, SEEADR, cur_addr);
10098 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10099
10100 retval = ahd_wait_seeprom(ahd);
10101 if (retval)
10102 break;
10103 }
10104
10105 /*
10106 * Disable writes.
10107 */
10108 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10109 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10110 error = ahd_wait_seeprom(ahd);
10111 if (error)
10112 return (error);
10113 return (retval);
10114 }
10115
10116 /*
10117 * Wait ~100us for the serial eeprom to satisfy our request.
10118 */
10119 static int
ahd_wait_seeprom(struct ahd_softc * ahd)10120 ahd_wait_seeprom(struct ahd_softc *ahd)
10121 {
10122 int cnt;
10123
10124 cnt = 5000;
10125 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10126 ahd_delay(5);
10127
10128 if (cnt == 0)
10129 return (ETIMEDOUT);
10130 return (0);
10131 }
10132
10133 /*
10134 * Validate the two checksums in the per_channel
10135 * vital product data struct.
10136 */
10137 static int
ahd_verify_vpd_cksum(struct vpd_config * vpd)10138 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10139 {
10140 int i;
10141 int maxaddr;
10142 uint32_t checksum;
10143 uint8_t *vpdarray;
10144
10145 vpdarray = (uint8_t *)vpd;
10146 maxaddr = offsetof(struct vpd_config, vpd_checksum);
10147 checksum = 0;
10148 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10149 checksum = checksum + vpdarray[i];
10150 if (checksum == 0
10151 || (-checksum & 0xFF) != vpd->vpd_checksum)
10152 return (0);
10153
10154 checksum = 0;
10155 maxaddr = offsetof(struct vpd_config, checksum);
10156 for (i = offsetof(struct vpd_config, default_target_flags);
10157 i < maxaddr; i++)
10158 checksum = checksum + vpdarray[i];
10159 if (checksum == 0
10160 || (-checksum & 0xFF) != vpd->checksum)
10161 return (0);
10162 return (1);
10163 }
10164
10165 int
ahd_verify_cksum(struct seeprom_config * sc)10166 ahd_verify_cksum(struct seeprom_config *sc)
10167 {
10168 int i;
10169 int maxaddr;
10170 uint32_t checksum;
10171 uint16_t *scarray;
10172
10173 maxaddr = (sizeof(*sc)/2) - 1;
10174 checksum = 0;
10175 scarray = (uint16_t *)sc;
10176
10177 for (i = 0; i < maxaddr; i++)
10178 checksum = checksum + scarray[i];
10179 if (checksum == 0
10180 || (checksum & 0xFFFF) != sc->checksum) {
10181 return (0);
10182 } else {
10183 return (1);
10184 }
10185 }
10186
10187 int
ahd_acquire_seeprom(struct ahd_softc * ahd)10188 ahd_acquire_seeprom(struct ahd_softc *ahd)
10189 {
10190 /*
10191 * We should be able to determine the SEEPROM type
10192 * from the flexport logic, but unfortunately not
10193 * all implementations have this logic and there is
10194 * no programatic method for determining if the logic
10195 * is present.
10196 */
10197 return (1);
10198 #if 0
10199 uint8_t seetype;
10200 int error;
10201
10202 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10203 if (error != 0
10204 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10205 return (0);
10206 return (1);
10207 #endif
10208 }
10209
10210 void
ahd_release_seeprom(struct ahd_softc * ahd)10211 ahd_release_seeprom(struct ahd_softc *ahd)
10212 {
10213 /* Currently a no-op */
10214 }
10215
10216 /*
10217 * Wait at most 2 seconds for flexport arbitration to succeed.
10218 */
10219 static int
ahd_wait_flexport(struct ahd_softc * ahd)10220 ahd_wait_flexport(struct ahd_softc *ahd)
10221 {
10222 int cnt;
10223
10224 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10225 cnt = 1000000 * 2 / 5;
10226 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10227 ahd_delay(5);
10228
10229 if (cnt == 0)
10230 return (ETIMEDOUT);
10231 return (0);
10232 }
10233
10234 int
ahd_write_flexport(struct ahd_softc * ahd,u_int addr,u_int value)10235 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10236 {
10237 int error;
10238
10239 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10240 if (addr > 7)
10241 panic("ahd_write_flexport: address out of range");
10242 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10243 error = ahd_wait_flexport(ahd);
10244 if (error != 0)
10245 return (error);
10246 ahd_outb(ahd, BRDDAT, value);
10247 ahd_flush_device_writes(ahd);
10248 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10249 ahd_flush_device_writes(ahd);
10250 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10251 ahd_flush_device_writes(ahd);
10252 ahd_outb(ahd, BRDCTL, 0);
10253 ahd_flush_device_writes(ahd);
10254 return (0);
10255 }
10256
10257 int
ahd_read_flexport(struct ahd_softc * ahd,u_int addr,uint8_t * value)10258 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10259 {
10260 int error;
10261
10262 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10263 if (addr > 7)
10264 panic("ahd_read_flexport: address out of range");
10265 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10266 error = ahd_wait_flexport(ahd);
10267 if (error != 0)
10268 return (error);
10269 *value = ahd_inb(ahd, BRDDAT);
10270 ahd_outb(ahd, BRDCTL, 0);
10271 ahd_flush_device_writes(ahd);
10272 return (0);
10273 }
10274
10275 /************************* Target Mode ****************************************/
10276 #ifdef AHD_TARGET_MODE
10277 cam_status
ahd_find_tmode_devs(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb,struct ahd_tmode_tstate ** tstate,struct ahd_tmode_lstate ** lstate,int notfound_failure)10278 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10279 struct ahd_tmode_tstate **tstate,
10280 struct ahd_tmode_lstate **lstate,
10281 int notfound_failure)
10282 {
10283
10284 if ((ahd->features & AHD_TARGETMODE) == 0)
10285 return (CAM_REQ_INVALID);
10286
10287 /*
10288 * Handle the 'black hole' device that sucks up
10289 * requests to unattached luns on enabled targets.
10290 */
10291 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10292 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10293 *tstate = NULL;
10294 *lstate = ahd->black_hole;
10295 } else {
10296 u_int max_id;
10297
10298 max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10299 if (ccb->ccb_h.target_id >= max_id)
10300 return (CAM_TID_INVALID);
10301
10302 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10303 return (CAM_LUN_INVALID);
10304
10305 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10306 *lstate = NULL;
10307 if (*tstate != NULL)
10308 *lstate =
10309 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10310 }
10311
10312 if (notfound_failure != 0 && *lstate == NULL)
10313 return (CAM_PATH_INVALID);
10314
10315 return (CAM_REQ_CMP);
10316 }
10317
10318 void
ahd_handle_en_lun(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb)10319 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10320 {
10321 #if NOT_YET
10322 struct ahd_tmode_tstate *tstate;
10323 struct ahd_tmode_lstate *lstate;
10324 struct ccb_en_lun *cel;
10325 cam_status status;
10326 u_int target;
10327 u_int lun;
10328 u_int target_mask;
10329 u_long s;
10330 char channel;
10331
10332 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10333 /*notfound_failure*/FALSE);
10334
10335 if (status != CAM_REQ_CMP) {
10336 ccb->ccb_h.status = status;
10337 return;
10338 }
10339
10340 if ((ahd->features & AHD_MULTIROLE) != 0) {
10341 u_int our_id;
10342
10343 our_id = ahd->our_id;
10344 if (ccb->ccb_h.target_id != our_id) {
10345 if ((ahd->features & AHD_MULTI_TID) != 0
10346 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10347 /*
10348 * Only allow additional targets if
10349 * the initiator role is disabled.
10350 * The hardware cannot handle a re-select-in
10351 * on the initiator id during a re-select-out
10352 * on a different target id.
10353 */
10354 status = CAM_TID_INVALID;
10355 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10356 || ahd->enabled_luns > 0) {
10357 /*
10358 * Only allow our target id to change
10359 * if the initiator role is not configured
10360 * and there are no enabled luns which
10361 * are attached to the currently registered
10362 * scsi id.
10363 */
10364 status = CAM_TID_INVALID;
10365 }
10366 }
10367 }
10368
10369 if (status != CAM_REQ_CMP) {
10370 ccb->ccb_h.status = status;
10371 return;
10372 }
10373
10374 /*
10375 * We now have an id that is valid.
10376 * If we aren't in target mode, switch modes.
10377 */
10378 if ((ahd->flags & AHD_TARGETROLE) == 0
10379 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10380 u_long s;
10381
10382 printk("Configuring Target Mode\n");
10383 ahd_lock(ahd, &s);
10384 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10385 ccb->ccb_h.status = CAM_BUSY;
10386 ahd_unlock(ahd, &s);
10387 return;
10388 }
10389 ahd->flags |= AHD_TARGETROLE;
10390 if ((ahd->features & AHD_MULTIROLE) == 0)
10391 ahd->flags &= ~AHD_INITIATORROLE;
10392 ahd_pause(ahd);
10393 ahd_loadseq(ahd);
10394 ahd_restart(ahd);
10395 ahd_unlock(ahd, &s);
10396 }
10397 cel = &ccb->cel;
10398 target = ccb->ccb_h.target_id;
10399 lun = ccb->ccb_h.target_lun;
10400 channel = SIM_CHANNEL(ahd, sim);
10401 target_mask = 0x01 << target;
10402 if (channel == 'B')
10403 target_mask <<= 8;
10404
10405 if (cel->enable != 0) {
10406 u_int scsiseq1;
10407
10408 /* Are we already enabled?? */
10409 if (lstate != NULL) {
10410 xpt_print_path(ccb->ccb_h.path);
10411 printk("Lun already enabled\n");
10412 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10413 return;
10414 }
10415
10416 if (cel->grp6_len != 0
10417 || cel->grp7_len != 0) {
10418 /*
10419 * Don't (yet?) support vendor
10420 * specific commands.
10421 */
10422 ccb->ccb_h.status = CAM_REQ_INVALID;
10423 printk("Non-zero Group Codes\n");
10424 return;
10425 }
10426
10427 /*
10428 * Seems to be okay.
10429 * Setup our data structures.
10430 */
10431 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10432 tstate = ahd_alloc_tstate(ahd, target, channel);
10433 if (tstate == NULL) {
10434 xpt_print_path(ccb->ccb_h.path);
10435 printk("Couldn't allocate tstate\n");
10436 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10437 return;
10438 }
10439 }
10440 lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC);
10441 if (lstate == NULL) {
10442 xpt_print_path(ccb->ccb_h.path);
10443 printk("Couldn't allocate lstate\n");
10444 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10445 return;
10446 }
10447 memset(lstate, 0, sizeof(*lstate));
10448 status = xpt_create_path(&lstate->path, /*periph*/NULL,
10449 xpt_path_path_id(ccb->ccb_h.path),
10450 xpt_path_target_id(ccb->ccb_h.path),
10451 xpt_path_lun_id(ccb->ccb_h.path));
10452 if (status != CAM_REQ_CMP) {
10453 kfree(lstate);
10454 xpt_print_path(ccb->ccb_h.path);
10455 printk("Couldn't allocate path\n");
10456 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10457 return;
10458 }
10459 SLIST_INIT(&lstate->accept_tios);
10460 SLIST_INIT(&lstate->immed_notifies);
10461 ahd_lock(ahd, &s);
10462 ahd_pause(ahd);
10463 if (target != CAM_TARGET_WILDCARD) {
10464 tstate->enabled_luns[lun] = lstate;
10465 ahd->enabled_luns++;
10466
10467 if ((ahd->features & AHD_MULTI_TID) != 0) {
10468 u_int targid_mask;
10469
10470 targid_mask = ahd_inw(ahd, TARGID);
10471 targid_mask |= target_mask;
10472 ahd_outw(ahd, TARGID, targid_mask);
10473 ahd_update_scsiid(ahd, targid_mask);
10474 } else {
10475 u_int our_id;
10476 char channel;
10477
10478 channel = SIM_CHANNEL(ahd, sim);
10479 our_id = SIM_SCSI_ID(ahd, sim);
10480
10481 /*
10482 * This can only happen if selections
10483 * are not enabled
10484 */
10485 if (target != our_id) {
10486 u_int sblkctl;
10487 char cur_channel;
10488 int swap;
10489
10490 sblkctl = ahd_inb(ahd, SBLKCTL);
10491 cur_channel = (sblkctl & SELBUSB)
10492 ? 'B' : 'A';
10493 if ((ahd->features & AHD_TWIN) == 0)
10494 cur_channel = 'A';
10495 swap = cur_channel != channel;
10496 ahd->our_id = target;
10497
10498 if (swap)
10499 ahd_outb(ahd, SBLKCTL,
10500 sblkctl ^ SELBUSB);
10501
10502 ahd_outb(ahd, SCSIID, target);
10503
10504 if (swap)
10505 ahd_outb(ahd, SBLKCTL, sblkctl);
10506 }
10507 }
10508 } else
10509 ahd->black_hole = lstate;
10510 /* Allow select-in operations */
10511 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10512 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10513 scsiseq1 |= ENSELI;
10514 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10515 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10516 scsiseq1 |= ENSELI;
10517 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10518 }
10519 ahd_unpause(ahd);
10520 ahd_unlock(ahd, &s);
10521 ccb->ccb_h.status = CAM_REQ_CMP;
10522 xpt_print_path(ccb->ccb_h.path);
10523 printk("Lun now enabled for target mode\n");
10524 } else {
10525 struct scb *scb;
10526 int i, empty;
10527
10528 if (lstate == NULL) {
10529 ccb->ccb_h.status = CAM_LUN_INVALID;
10530 return;
10531 }
10532
10533 ahd_lock(ahd, &s);
10534
10535 ccb->ccb_h.status = CAM_REQ_CMP;
10536 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10537 struct ccb_hdr *ccbh;
10538
10539 ccbh = &scb->io_ctx->ccb_h;
10540 if (ccbh->func_code == XPT_CONT_TARGET_IO
10541 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10542 printk("CTIO pending\n");
10543 ccb->ccb_h.status = CAM_REQ_INVALID;
10544 ahd_unlock(ahd, &s);
10545 return;
10546 }
10547 }
10548
10549 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10550 printk("ATIOs pending\n");
10551 ccb->ccb_h.status = CAM_REQ_INVALID;
10552 }
10553
10554 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10555 printk("INOTs pending\n");
10556 ccb->ccb_h.status = CAM_REQ_INVALID;
10557 }
10558
10559 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10560 ahd_unlock(ahd, &s);
10561 return;
10562 }
10563
10564 xpt_print_path(ccb->ccb_h.path);
10565 printk("Target mode disabled\n");
10566 xpt_free_path(lstate->path);
10567 kfree(lstate);
10568
10569 ahd_pause(ahd);
10570 /* Can we clean up the target too? */
10571 if (target != CAM_TARGET_WILDCARD) {
10572 tstate->enabled_luns[lun] = NULL;
10573 ahd->enabled_luns--;
10574 for (empty = 1, i = 0; i < 8; i++)
10575 if (tstate->enabled_luns[i] != NULL) {
10576 empty = 0;
10577 break;
10578 }
10579
10580 if (empty) {
10581 ahd_free_tstate(ahd, target, channel,
10582 /*force*/FALSE);
10583 if (ahd->features & AHD_MULTI_TID) {
10584 u_int targid_mask;
10585
10586 targid_mask = ahd_inw(ahd, TARGID);
10587 targid_mask &= ~target_mask;
10588 ahd_outw(ahd, TARGID, targid_mask);
10589 ahd_update_scsiid(ahd, targid_mask);
10590 }
10591 }
10592 } else {
10593
10594 ahd->black_hole = NULL;
10595
10596 /*
10597 * We can't allow selections without
10598 * our black hole device.
10599 */
10600 empty = TRUE;
10601 }
10602 if (ahd->enabled_luns == 0) {
10603 /* Disallow select-in */
10604 u_int scsiseq1;
10605
10606 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10607 scsiseq1 &= ~ENSELI;
10608 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10609 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10610 scsiseq1 &= ~ENSELI;
10611 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10612
10613 if ((ahd->features & AHD_MULTIROLE) == 0) {
10614 printk("Configuring Initiator Mode\n");
10615 ahd->flags &= ~AHD_TARGETROLE;
10616 ahd->flags |= AHD_INITIATORROLE;
10617 ahd_pause(ahd);
10618 ahd_loadseq(ahd);
10619 ahd_restart(ahd);
10620 /*
10621 * Unpaused. The extra unpause
10622 * that follows is harmless.
10623 */
10624 }
10625 }
10626 ahd_unpause(ahd);
10627 ahd_unlock(ahd, &s);
10628 }
10629 #endif
10630 }
10631
10632 static void
ahd_update_scsiid(struct ahd_softc * ahd,u_int targid_mask)10633 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10634 {
10635 #if NOT_YET
10636 u_int scsiid_mask;
10637 u_int scsiid;
10638
10639 if ((ahd->features & AHD_MULTI_TID) == 0)
10640 panic("ahd_update_scsiid called on non-multitid unit\n");
10641
10642 /*
10643 * Since we will rely on the TARGID mask
10644 * for selection enables, ensure that OID
10645 * in SCSIID is not set to some other ID
10646 * that we don't want to allow selections on.
10647 */
10648 if ((ahd->features & AHD_ULTRA2) != 0)
10649 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10650 else
10651 scsiid = ahd_inb(ahd, SCSIID);
10652 scsiid_mask = 0x1 << (scsiid & OID);
10653 if ((targid_mask & scsiid_mask) == 0) {
10654 u_int our_id;
10655
10656 /* ffs counts from 1 */
10657 our_id = ffs(targid_mask);
10658 if (our_id == 0)
10659 our_id = ahd->our_id;
10660 else
10661 our_id--;
10662 scsiid &= TID;
10663 scsiid |= our_id;
10664 }
10665 if ((ahd->features & AHD_ULTRA2) != 0)
10666 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10667 else
10668 ahd_outb(ahd, SCSIID, scsiid);
10669 #endif
10670 }
10671
10672 static void
ahd_run_tqinfifo(struct ahd_softc * ahd,int paused)10673 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10674 {
10675 struct target_cmd *cmd;
10676
10677 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10678 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10679
10680 /*
10681 * Only advance through the queue if we
10682 * have the resources to process the command.
10683 */
10684 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10685 break;
10686
10687 cmd->cmd_valid = 0;
10688 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10689 ahd->shared_data_map.dmamap,
10690 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10691 sizeof(struct target_cmd),
10692 BUS_DMASYNC_PREREAD);
10693 ahd->tqinfifonext++;
10694
10695 /*
10696 * Lazily update our position in the target mode incoming
10697 * command queue as seen by the sequencer.
10698 */
10699 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10700 u_int hs_mailbox;
10701
10702 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10703 hs_mailbox &= ~HOST_TQINPOS;
10704 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10705 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10706 }
10707 }
10708 }
10709
10710 static int
ahd_handle_target_cmd(struct ahd_softc * ahd,struct target_cmd * cmd)10711 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10712 {
10713 struct ahd_tmode_tstate *tstate;
10714 struct ahd_tmode_lstate *lstate;
10715 struct ccb_accept_tio *atio;
10716 uint8_t *byte;
10717 int initiator;
10718 int target;
10719 int lun;
10720
10721 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10722 target = SCSIID_OUR_ID(cmd->scsiid);
10723 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10724
10725 byte = cmd->bytes;
10726 tstate = ahd->enabled_targets[target];
10727 lstate = NULL;
10728 if (tstate != NULL)
10729 lstate = tstate->enabled_luns[lun];
10730
10731 /*
10732 * Commands for disabled luns go to the black hole driver.
10733 */
10734 if (lstate == NULL)
10735 lstate = ahd->black_hole;
10736
10737 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10738 if (atio == NULL) {
10739 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10740 /*
10741 * Wait for more ATIOs from the peripheral driver for this lun.
10742 */
10743 return (1);
10744 } else
10745 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10746 #ifdef AHD_DEBUG
10747 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10748 printk("Incoming command from %d for %d:%d%s\n",
10749 initiator, target, lun,
10750 lstate == ahd->black_hole ? "(Black Holed)" : "");
10751 #endif
10752 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10753
10754 if (lstate == ahd->black_hole) {
10755 /* Fill in the wildcards */
10756 atio->ccb_h.target_id = target;
10757 atio->ccb_h.target_lun = lun;
10758 }
10759
10760 /*
10761 * Package it up and send it off to
10762 * whomever has this lun enabled.
10763 */
10764 atio->sense_len = 0;
10765 atio->init_id = initiator;
10766 if (byte[0] != 0xFF) {
10767 /* Tag was included */
10768 atio->tag_action = *byte++;
10769 atio->tag_id = *byte++;
10770 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10771 } else {
10772 atio->ccb_h.flags = 0;
10773 }
10774 byte++;
10775
10776 /* Okay. Now determine the cdb size based on the command code */
10777 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10778 case 0:
10779 atio->cdb_len = 6;
10780 break;
10781 case 1:
10782 case 2:
10783 atio->cdb_len = 10;
10784 break;
10785 case 4:
10786 atio->cdb_len = 16;
10787 break;
10788 case 5:
10789 atio->cdb_len = 12;
10790 break;
10791 case 3:
10792 default:
10793 /* Only copy the opcode. */
10794 atio->cdb_len = 1;
10795 printk("Reserved or VU command code type encountered\n");
10796 break;
10797 }
10798
10799 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10800
10801 atio->ccb_h.status |= CAM_CDB_RECVD;
10802
10803 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10804 /*
10805 * We weren't allowed to disconnect.
10806 * We're hanging on the bus until a
10807 * continue target I/O comes in response
10808 * to this accept tio.
10809 */
10810 #ifdef AHD_DEBUG
10811 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10812 printk("Received Immediate Command %d:%d:%d - %p\n",
10813 initiator, target, lun, ahd->pending_device);
10814 #endif
10815 ahd->pending_device = lstate;
10816 ahd_freeze_ccb((union ccb *)atio);
10817 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10818 }
10819 xpt_done((union ccb*)atio);
10820 return (0);
10821 }
10822
10823 #endif
10824