1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* AFS File Server client stubs
3 *
4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/circ_buf.h>
12 #include <linux/iversion.h>
13 #include <linux/netfs.h>
14 #include "internal.h"
15 #include "afs_fs.h"
16 #include "xdr_fs.h"
17
18 /*
19 * decode an AFSFid block
20 */
xdr_decode_AFSFid(const __be32 ** _bp,struct afs_fid * fid)21 static void xdr_decode_AFSFid(const __be32 **_bp, struct afs_fid *fid)
22 {
23 const __be32 *bp = *_bp;
24
25 fid->vid = ntohl(*bp++);
26 fid->vnode = ntohl(*bp++);
27 fid->unique = ntohl(*bp++);
28 *_bp = bp;
29 }
30
31 /*
32 * Dump a bad file status record.
33 */
xdr_dump_bad(const __be32 * bp)34 static void xdr_dump_bad(const __be32 *bp)
35 {
36 __be32 x[4];
37 int i;
38
39 pr_notice("AFS XDR: Bad status record\n");
40 for (i = 0; i < 5 * 4 * 4; i += 16) {
41 memcpy(x, bp, 16);
42 bp += 4;
43 pr_notice("%03x: %08x %08x %08x %08x\n",
44 i, ntohl(x[0]), ntohl(x[1]), ntohl(x[2]), ntohl(x[3]));
45 }
46
47 memcpy(x, bp, 4);
48 pr_notice("0x50: %08x\n", ntohl(x[0]));
49 }
50
51 /*
52 * decode an AFSFetchStatus block
53 */
xdr_decode_AFSFetchStatus(const __be32 ** _bp,struct afs_call * call,struct afs_status_cb * scb)54 static void xdr_decode_AFSFetchStatus(const __be32 **_bp,
55 struct afs_call *call,
56 struct afs_status_cb *scb)
57 {
58 const struct afs_xdr_AFSFetchStatus *xdr = (const void *)*_bp;
59 struct afs_file_status *status = &scb->status;
60 bool inline_error = (call->operation_ID == afs_FS_InlineBulkStatus);
61 u64 data_version, size;
62 u32 type, abort_code;
63
64 abort_code = ntohl(xdr->abort_code);
65
66 if (xdr->if_version != htonl(AFS_FSTATUS_VERSION)) {
67 if (xdr->if_version == htonl(0) &&
68 abort_code != 0 &&
69 inline_error) {
70 /* The OpenAFS fileserver has a bug in FS.InlineBulkStatus
71 * whereby it doesn't set the interface version in the error
72 * case.
73 */
74 status->abort_code = abort_code;
75 scb->have_error = true;
76 goto advance;
77 }
78
79 pr_warn("Unknown AFSFetchStatus version %u\n", ntohl(xdr->if_version));
80 goto bad;
81 }
82
83 if (abort_code != 0 && inline_error) {
84 status->abort_code = abort_code;
85 scb->have_error = true;
86 goto advance;
87 }
88
89 type = ntohl(xdr->type);
90 switch (type) {
91 case AFS_FTYPE_FILE:
92 case AFS_FTYPE_DIR:
93 case AFS_FTYPE_SYMLINK:
94 status->type = type;
95 break;
96 default:
97 goto bad;
98 }
99
100 status->nlink = ntohl(xdr->nlink);
101 status->author = ntohl(xdr->author);
102 status->owner = ntohl(xdr->owner);
103 status->caller_access = ntohl(xdr->caller_access); /* Ticket dependent */
104 status->anon_access = ntohl(xdr->anon_access);
105 status->mode = ntohl(xdr->mode) & S_IALLUGO;
106 status->group = ntohl(xdr->group);
107 status->lock_count = ntohl(xdr->lock_count);
108
109 status->mtime_client.tv_sec = ntohl(xdr->mtime_client);
110 status->mtime_client.tv_nsec = 0;
111 status->mtime_server.tv_sec = ntohl(xdr->mtime_server);
112 status->mtime_server.tv_nsec = 0;
113
114 size = (u64)ntohl(xdr->size_lo);
115 size |= (u64)ntohl(xdr->size_hi) << 32;
116 status->size = size;
117
118 data_version = (u64)ntohl(xdr->data_version_lo);
119 data_version |= (u64)ntohl(xdr->data_version_hi) << 32;
120 status->data_version = data_version;
121 scb->have_status = true;
122 advance:
123 *_bp = (const void *)*_bp + sizeof(*xdr);
124 return;
125
126 bad:
127 xdr_dump_bad(*_bp);
128 afs_protocol_error(call, afs_eproto_bad_status);
129 goto advance;
130 }
131
xdr_decode_expiry(struct afs_call * call,u32 expiry)132 static time64_t xdr_decode_expiry(struct afs_call *call, u32 expiry)
133 {
134 return ktime_divns(call->issue_time, NSEC_PER_SEC) + expiry;
135 }
136
xdr_decode_AFSCallBack(const __be32 ** _bp,struct afs_call * call,struct afs_status_cb * scb)137 static void xdr_decode_AFSCallBack(const __be32 **_bp,
138 struct afs_call *call,
139 struct afs_status_cb *scb)
140 {
141 struct afs_callback *cb = &scb->callback;
142 const __be32 *bp = *_bp;
143
144 bp++; /* version */
145 cb->expires_at = xdr_decode_expiry(call, ntohl(*bp++));
146 bp++; /* type */
147 scb->have_cb = true;
148 *_bp = bp;
149 }
150
151 /*
152 * decode an AFSVolSync block
153 */
xdr_decode_AFSVolSync(const __be32 ** _bp,struct afs_volsync * volsync)154 static void xdr_decode_AFSVolSync(const __be32 **_bp,
155 struct afs_volsync *volsync)
156 {
157 const __be32 *bp = *_bp;
158 u32 creation;
159
160 creation = ntohl(*bp++);
161 bp++; /* spare2 */
162 bp++; /* spare3 */
163 bp++; /* spare4 */
164 bp++; /* spare5 */
165 bp++; /* spare6 */
166 *_bp = bp;
167
168 if (volsync)
169 volsync->creation = creation;
170 }
171
172 /*
173 * encode the requested attributes into an AFSStoreStatus block
174 */
xdr_encode_AFS_StoreStatus(__be32 ** _bp,struct iattr * attr)175 static void xdr_encode_AFS_StoreStatus(__be32 **_bp, struct iattr *attr)
176 {
177 __be32 *bp = *_bp;
178 u32 mask = 0, mtime = 0, owner = 0, group = 0, mode = 0;
179
180 mask = 0;
181 if (attr->ia_valid & ATTR_MTIME) {
182 mask |= AFS_SET_MTIME;
183 mtime = attr->ia_mtime.tv_sec;
184 }
185
186 if (attr->ia_valid & ATTR_UID) {
187 mask |= AFS_SET_OWNER;
188 owner = from_kuid(&init_user_ns, attr->ia_uid);
189 }
190
191 if (attr->ia_valid & ATTR_GID) {
192 mask |= AFS_SET_GROUP;
193 group = from_kgid(&init_user_ns, attr->ia_gid);
194 }
195
196 if (attr->ia_valid & ATTR_MODE) {
197 mask |= AFS_SET_MODE;
198 mode = attr->ia_mode & S_IALLUGO;
199 }
200
201 *bp++ = htonl(mask);
202 *bp++ = htonl(mtime);
203 *bp++ = htonl(owner);
204 *bp++ = htonl(group);
205 *bp++ = htonl(mode);
206 *bp++ = 0; /* segment size */
207 *_bp = bp;
208 }
209
210 /*
211 * decode an AFSFetchVolumeStatus block
212 */
xdr_decode_AFSFetchVolumeStatus(const __be32 ** _bp,struct afs_volume_status * vs)213 static void xdr_decode_AFSFetchVolumeStatus(const __be32 **_bp,
214 struct afs_volume_status *vs)
215 {
216 const __be32 *bp = *_bp;
217
218 vs->vid = ntohl(*bp++);
219 vs->parent_id = ntohl(*bp++);
220 vs->online = ntohl(*bp++);
221 vs->in_service = ntohl(*bp++);
222 vs->blessed = ntohl(*bp++);
223 vs->needs_salvage = ntohl(*bp++);
224 vs->type = ntohl(*bp++);
225 vs->min_quota = ntohl(*bp++);
226 vs->max_quota = ntohl(*bp++);
227 vs->blocks_in_use = ntohl(*bp++);
228 vs->part_blocks_avail = ntohl(*bp++);
229 vs->part_max_blocks = ntohl(*bp++);
230 vs->vol_copy_date = 0;
231 vs->vol_backup_date = 0;
232 *_bp = bp;
233 }
234
235 /*
236 * deliver reply data to an FS.FetchStatus
237 */
afs_deliver_fs_fetch_status(struct afs_call * call)238 static int afs_deliver_fs_fetch_status(struct afs_call *call)
239 {
240 struct afs_operation *op = call->op;
241 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
242 const __be32 *bp;
243 int ret;
244
245 ret = afs_transfer_reply(call);
246 if (ret < 0)
247 return ret;
248
249 /* unmarshall the reply once we've received all of it */
250 bp = call->buffer;
251 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
252 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
253 xdr_decode_AFSVolSync(&bp, &op->volsync);
254
255 _leave(" = 0 [done]");
256 return 0;
257 }
258
259 /*
260 * FS.FetchStatus operation type
261 */
262 static const struct afs_call_type afs_RXFSFetchStatus = {
263 .name = "FS.FetchStatus",
264 .op = afs_FS_FetchStatus,
265 .deliver = afs_deliver_fs_fetch_status,
266 .destructor = afs_flat_call_destructor,
267 };
268
269 /*
270 * fetch the status information for a file
271 */
afs_fs_fetch_status(struct afs_operation * op)272 void afs_fs_fetch_status(struct afs_operation *op)
273 {
274 struct afs_vnode_param *vp = &op->file[op->fetch_status.which];
275 struct afs_call *call;
276 __be32 *bp;
277
278 _enter(",%x,{%llx:%llu},,",
279 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
280
281 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchStatus,
282 16, (21 + 3 + 6) * 4);
283 if (!call)
284 return afs_op_nomem(op);
285
286 /* marshall the parameters */
287 bp = call->request;
288 bp[0] = htonl(FSFETCHSTATUS);
289 bp[1] = htonl(vp->fid.vid);
290 bp[2] = htonl(vp->fid.vnode);
291 bp[3] = htonl(vp->fid.unique);
292
293 trace_afs_make_fs_call(call, &vp->fid);
294 afs_make_op_call(op, call, GFP_NOFS);
295 }
296
297 /*
298 * deliver reply data to an FS.FetchData
299 */
afs_deliver_fs_fetch_data(struct afs_call * call)300 static int afs_deliver_fs_fetch_data(struct afs_call *call)
301 {
302 struct afs_operation *op = call->op;
303 struct afs_vnode_param *vp = &op->file[0];
304 struct afs_read *req = op->fetch.req;
305 const __be32 *bp;
306 int ret;
307
308 _enter("{%u,%zu,%zu/%llu}",
309 call->unmarshall, call->iov_len, iov_iter_count(call->iter),
310 req->actual_len);
311
312 switch (call->unmarshall) {
313 case 0:
314 req->actual_len = 0;
315 call->unmarshall++;
316 if (call->operation_ID == FSFETCHDATA64) {
317 afs_extract_to_tmp64(call);
318 } else {
319 call->tmp_u = htonl(0);
320 afs_extract_to_tmp(call);
321 }
322 fallthrough;
323
324 /* Extract the returned data length into
325 * ->actual_len. This may indicate more or less data than was
326 * requested will be returned.
327 */
328 case 1:
329 _debug("extract data length");
330 ret = afs_extract_data(call, true);
331 if (ret < 0)
332 return ret;
333
334 req->actual_len = be64_to_cpu(call->tmp64);
335 _debug("DATA length: %llu", req->actual_len);
336
337 if (req->actual_len == 0)
338 goto no_more_data;
339
340 call->iter = req->iter;
341 call->iov_len = min(req->actual_len, req->len);
342 call->unmarshall++;
343 fallthrough;
344
345 /* extract the returned data */
346 case 2:
347 _debug("extract data %zu/%llu",
348 iov_iter_count(call->iter), req->actual_len);
349
350 ret = afs_extract_data(call, true);
351 if (ret < 0)
352 return ret;
353
354 call->iter = &call->def_iter;
355 if (req->actual_len <= req->len)
356 goto no_more_data;
357
358 /* Discard any excess data the server gave us */
359 afs_extract_discard(call, req->actual_len - req->len);
360 call->unmarshall = 3;
361 fallthrough;
362
363 case 3:
364 _debug("extract discard %zu/%llu",
365 iov_iter_count(call->iter), req->actual_len - req->len);
366
367 ret = afs_extract_data(call, true);
368 if (ret < 0)
369 return ret;
370
371 no_more_data:
372 call->unmarshall = 4;
373 afs_extract_to_buf(call, (21 + 3 + 6) * 4);
374 fallthrough;
375
376 /* extract the metadata */
377 case 4:
378 ret = afs_extract_data(call, false);
379 if (ret < 0)
380 return ret;
381
382 bp = call->buffer;
383 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
384 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
385 xdr_decode_AFSVolSync(&bp, &op->volsync);
386
387 req->data_version = vp->scb.status.data_version;
388 req->file_size = vp->scb.status.size;
389
390 call->unmarshall++;
391 fallthrough;
392
393 case 5:
394 break;
395 }
396
397 _leave(" = 0 [done]");
398 return 0;
399 }
400
401 /*
402 * FS.FetchData operation type
403 */
404 static const struct afs_call_type afs_RXFSFetchData = {
405 .name = "FS.FetchData",
406 .op = afs_FS_FetchData,
407 .deliver = afs_deliver_fs_fetch_data,
408 .destructor = afs_flat_call_destructor,
409 };
410
411 static const struct afs_call_type afs_RXFSFetchData64 = {
412 .name = "FS.FetchData64",
413 .op = afs_FS_FetchData64,
414 .deliver = afs_deliver_fs_fetch_data,
415 .destructor = afs_flat_call_destructor,
416 };
417
418 /*
419 * fetch data from a very large file
420 */
afs_fs_fetch_data64(struct afs_operation * op)421 static void afs_fs_fetch_data64(struct afs_operation *op)
422 {
423 struct afs_vnode_param *vp = &op->file[0];
424 struct afs_read *req = op->fetch.req;
425 struct afs_call *call;
426 __be32 *bp;
427
428 _enter("");
429
430 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData64, 32, (21 + 3 + 6) * 4);
431 if (!call)
432 return afs_op_nomem(op);
433
434 /* marshall the parameters */
435 bp = call->request;
436 bp[0] = htonl(FSFETCHDATA64);
437 bp[1] = htonl(vp->fid.vid);
438 bp[2] = htonl(vp->fid.vnode);
439 bp[3] = htonl(vp->fid.unique);
440 bp[4] = htonl(upper_32_bits(req->pos));
441 bp[5] = htonl(lower_32_bits(req->pos));
442 bp[6] = 0;
443 bp[7] = htonl(lower_32_bits(req->len));
444
445 trace_afs_make_fs_call(call, &vp->fid);
446 afs_make_op_call(op, call, GFP_NOFS);
447 }
448
449 /*
450 * fetch data from a file
451 */
afs_fs_fetch_data(struct afs_operation * op)452 void afs_fs_fetch_data(struct afs_operation *op)
453 {
454 struct afs_vnode_param *vp = &op->file[0];
455 struct afs_call *call;
456 struct afs_read *req = op->fetch.req;
457 __be32 *bp;
458
459 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
460 return afs_fs_fetch_data64(op);
461
462 _enter("");
463
464 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchData, 24, (21 + 3 + 6) * 4);
465 if (!call)
466 return afs_op_nomem(op);
467
468 req->call_debug_id = call->debug_id;
469
470 /* marshall the parameters */
471 bp = call->request;
472 bp[0] = htonl(FSFETCHDATA);
473 bp[1] = htonl(vp->fid.vid);
474 bp[2] = htonl(vp->fid.vnode);
475 bp[3] = htonl(vp->fid.unique);
476 bp[4] = htonl(lower_32_bits(req->pos));
477 bp[5] = htonl(lower_32_bits(req->len));
478
479 trace_afs_make_fs_call(call, &vp->fid);
480 afs_make_op_call(op, call, GFP_NOFS);
481 }
482
483 /*
484 * deliver reply data to an FS.CreateFile or an FS.MakeDir
485 */
afs_deliver_fs_create_vnode(struct afs_call * call)486 static int afs_deliver_fs_create_vnode(struct afs_call *call)
487 {
488 struct afs_operation *op = call->op;
489 struct afs_vnode_param *dvp = &op->file[0];
490 struct afs_vnode_param *vp = &op->file[1];
491 const __be32 *bp;
492 int ret;
493
494 ret = afs_transfer_reply(call);
495 if (ret < 0)
496 return ret;
497
498 /* unmarshall the reply once we've received all of it */
499 bp = call->buffer;
500 xdr_decode_AFSFid(&bp, &op->file[1].fid);
501 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
502 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
503 xdr_decode_AFSCallBack(&bp, call, &vp->scb);
504 xdr_decode_AFSVolSync(&bp, &op->volsync);
505
506 _leave(" = 0 [done]");
507 return 0;
508 }
509
510 /*
511 * FS.CreateFile and FS.MakeDir operation type
512 */
513 static const struct afs_call_type afs_RXFSCreateFile = {
514 .name = "FS.CreateFile",
515 .op = afs_FS_CreateFile,
516 .deliver = afs_deliver_fs_create_vnode,
517 .destructor = afs_flat_call_destructor,
518 };
519
520 /*
521 * Create a file.
522 */
afs_fs_create_file(struct afs_operation * op)523 void afs_fs_create_file(struct afs_operation *op)
524 {
525 const struct qstr *name = &op->dentry->d_name;
526 struct afs_vnode_param *dvp = &op->file[0];
527 struct afs_call *call;
528 size_t namesz, reqsz, padsz;
529 __be32 *bp;
530
531 _enter("");
532
533 namesz = name->len;
534 padsz = (4 - (namesz & 3)) & 3;
535 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
536
537 call = afs_alloc_flat_call(op->net, &afs_RXFSCreateFile,
538 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
539 if (!call)
540 return afs_op_nomem(op);
541
542 /* marshall the parameters */
543 bp = call->request;
544 *bp++ = htonl(FSCREATEFILE);
545 *bp++ = htonl(dvp->fid.vid);
546 *bp++ = htonl(dvp->fid.vnode);
547 *bp++ = htonl(dvp->fid.unique);
548 *bp++ = htonl(namesz);
549 memcpy(bp, name->name, namesz);
550 bp = (void *) bp + namesz;
551 if (padsz > 0) {
552 memset(bp, 0, padsz);
553 bp = (void *) bp + padsz;
554 }
555 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
556 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
557 *bp++ = 0; /* owner */
558 *bp++ = 0; /* group */
559 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
560 *bp++ = 0; /* segment size */
561
562 trace_afs_make_fs_call1(call, &dvp->fid, name);
563 afs_make_op_call(op, call, GFP_NOFS);
564 }
565
566 static const struct afs_call_type afs_RXFSMakeDir = {
567 .name = "FS.MakeDir",
568 .op = afs_FS_MakeDir,
569 .deliver = afs_deliver_fs_create_vnode,
570 .destructor = afs_flat_call_destructor,
571 };
572
573 /*
574 * Create a new directory
575 */
afs_fs_make_dir(struct afs_operation * op)576 void afs_fs_make_dir(struct afs_operation *op)
577 {
578 const struct qstr *name = &op->dentry->d_name;
579 struct afs_vnode_param *dvp = &op->file[0];
580 struct afs_call *call;
581 size_t namesz, reqsz, padsz;
582 __be32 *bp;
583
584 _enter("");
585
586 namesz = name->len;
587 padsz = (4 - (namesz & 3)) & 3;
588 reqsz = (5 * 4) + namesz + padsz + (6 * 4);
589
590 call = afs_alloc_flat_call(op->net, &afs_RXFSMakeDir,
591 reqsz, (3 + 21 + 21 + 3 + 6) * 4);
592 if (!call)
593 return afs_op_nomem(op);
594
595 /* marshall the parameters */
596 bp = call->request;
597 *bp++ = htonl(FSMAKEDIR);
598 *bp++ = htonl(dvp->fid.vid);
599 *bp++ = htonl(dvp->fid.vnode);
600 *bp++ = htonl(dvp->fid.unique);
601 *bp++ = htonl(namesz);
602 memcpy(bp, name->name, namesz);
603 bp = (void *) bp + namesz;
604 if (padsz > 0) {
605 memset(bp, 0, padsz);
606 bp = (void *) bp + padsz;
607 }
608 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
609 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
610 *bp++ = 0; /* owner */
611 *bp++ = 0; /* group */
612 *bp++ = htonl(op->create.mode & S_IALLUGO); /* unix mode */
613 *bp++ = 0; /* segment size */
614
615 trace_afs_make_fs_call1(call, &dvp->fid, name);
616 afs_make_op_call(op, call, GFP_NOFS);
617 }
618
619 /*
620 * Deliver reply data to any operation that returns status and volume sync.
621 */
afs_deliver_fs_file_status_and_vol(struct afs_call * call)622 static int afs_deliver_fs_file_status_and_vol(struct afs_call *call)
623 {
624 struct afs_operation *op = call->op;
625 struct afs_vnode_param *vp = &op->file[0];
626 const __be32 *bp;
627 int ret;
628
629 ret = afs_transfer_reply(call);
630 if (ret < 0)
631 return ret;
632
633 /* unmarshall the reply once we've received all of it */
634 bp = call->buffer;
635 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
636 xdr_decode_AFSVolSync(&bp, &op->volsync);
637
638 _leave(" = 0 [done]");
639 return 0;
640 }
641
642 /*
643 * FS.RemoveFile operation type
644 */
645 static const struct afs_call_type afs_RXFSRemoveFile = {
646 .name = "FS.RemoveFile",
647 .op = afs_FS_RemoveFile,
648 .deliver = afs_deliver_fs_file_status_and_vol,
649 .destructor = afs_flat_call_destructor,
650 };
651
652 /*
653 * Remove a file.
654 */
afs_fs_remove_file(struct afs_operation * op)655 void afs_fs_remove_file(struct afs_operation *op)
656 {
657 const struct qstr *name = &op->dentry->d_name;
658 struct afs_vnode_param *dvp = &op->file[0];
659 struct afs_call *call;
660 size_t namesz, reqsz, padsz;
661 __be32 *bp;
662
663 _enter("");
664
665 namesz = name->len;
666 padsz = (4 - (namesz & 3)) & 3;
667 reqsz = (5 * 4) + namesz + padsz;
668
669 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveFile,
670 reqsz, (21 + 6) * 4);
671 if (!call)
672 return afs_op_nomem(op);
673
674 /* marshall the parameters */
675 bp = call->request;
676 *bp++ = htonl(FSREMOVEFILE);
677 *bp++ = htonl(dvp->fid.vid);
678 *bp++ = htonl(dvp->fid.vnode);
679 *bp++ = htonl(dvp->fid.unique);
680 *bp++ = htonl(namesz);
681 memcpy(bp, name->name, namesz);
682 bp = (void *) bp + namesz;
683 if (padsz > 0) {
684 memset(bp, 0, padsz);
685 bp = (void *) bp + padsz;
686 }
687
688 trace_afs_make_fs_call1(call, &dvp->fid, name);
689 afs_make_op_call(op, call, GFP_NOFS);
690 }
691
692 static const struct afs_call_type afs_RXFSRemoveDir = {
693 .name = "FS.RemoveDir",
694 .op = afs_FS_RemoveDir,
695 .deliver = afs_deliver_fs_file_status_and_vol,
696 .destructor = afs_flat_call_destructor,
697 };
698
699 /*
700 * Remove a directory.
701 */
afs_fs_remove_dir(struct afs_operation * op)702 void afs_fs_remove_dir(struct afs_operation *op)
703 {
704 const struct qstr *name = &op->dentry->d_name;
705 struct afs_vnode_param *dvp = &op->file[0];
706 struct afs_call *call;
707 size_t namesz, reqsz, padsz;
708 __be32 *bp;
709
710 _enter("");
711
712 namesz = name->len;
713 padsz = (4 - (namesz & 3)) & 3;
714 reqsz = (5 * 4) + namesz + padsz;
715
716 call = afs_alloc_flat_call(op->net, &afs_RXFSRemoveDir,
717 reqsz, (21 + 6) * 4);
718 if (!call)
719 return afs_op_nomem(op);
720
721 /* marshall the parameters */
722 bp = call->request;
723 *bp++ = htonl(FSREMOVEDIR);
724 *bp++ = htonl(dvp->fid.vid);
725 *bp++ = htonl(dvp->fid.vnode);
726 *bp++ = htonl(dvp->fid.unique);
727 *bp++ = htonl(namesz);
728 memcpy(bp, name->name, namesz);
729 bp = (void *) bp + namesz;
730 if (padsz > 0) {
731 memset(bp, 0, padsz);
732 bp = (void *) bp + padsz;
733 }
734
735 trace_afs_make_fs_call1(call, &dvp->fid, name);
736 afs_make_op_call(op, call, GFP_NOFS);
737 }
738
739 /*
740 * deliver reply data to an FS.Link
741 */
afs_deliver_fs_link(struct afs_call * call)742 static int afs_deliver_fs_link(struct afs_call *call)
743 {
744 struct afs_operation *op = call->op;
745 struct afs_vnode_param *dvp = &op->file[0];
746 struct afs_vnode_param *vp = &op->file[1];
747 const __be32 *bp;
748 int ret;
749
750 _enter("{%u}", call->unmarshall);
751
752 ret = afs_transfer_reply(call);
753 if (ret < 0)
754 return ret;
755
756 /* unmarshall the reply once we've received all of it */
757 bp = call->buffer;
758 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
759 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
760 xdr_decode_AFSVolSync(&bp, &op->volsync);
761
762 _leave(" = 0 [done]");
763 return 0;
764 }
765
766 /*
767 * FS.Link operation type
768 */
769 static const struct afs_call_type afs_RXFSLink = {
770 .name = "FS.Link",
771 .op = afs_FS_Link,
772 .deliver = afs_deliver_fs_link,
773 .destructor = afs_flat_call_destructor,
774 };
775
776 /*
777 * make a hard link
778 */
afs_fs_link(struct afs_operation * op)779 void afs_fs_link(struct afs_operation *op)
780 {
781 const struct qstr *name = &op->dentry->d_name;
782 struct afs_vnode_param *dvp = &op->file[0];
783 struct afs_vnode_param *vp = &op->file[1];
784 struct afs_call *call;
785 size_t namesz, reqsz, padsz;
786 __be32 *bp;
787
788 _enter("");
789
790 namesz = name->len;
791 padsz = (4 - (namesz & 3)) & 3;
792 reqsz = (5 * 4) + namesz + padsz + (3 * 4);
793
794 call = afs_alloc_flat_call(op->net, &afs_RXFSLink, reqsz, (21 + 21 + 6) * 4);
795 if (!call)
796 return afs_op_nomem(op);
797
798 /* marshall the parameters */
799 bp = call->request;
800 *bp++ = htonl(FSLINK);
801 *bp++ = htonl(dvp->fid.vid);
802 *bp++ = htonl(dvp->fid.vnode);
803 *bp++ = htonl(dvp->fid.unique);
804 *bp++ = htonl(namesz);
805 memcpy(bp, name->name, namesz);
806 bp = (void *) bp + namesz;
807 if (padsz > 0) {
808 memset(bp, 0, padsz);
809 bp = (void *) bp + padsz;
810 }
811 *bp++ = htonl(vp->fid.vid);
812 *bp++ = htonl(vp->fid.vnode);
813 *bp++ = htonl(vp->fid.unique);
814
815 trace_afs_make_fs_call1(call, &vp->fid, name);
816 afs_make_op_call(op, call, GFP_NOFS);
817 }
818
819 /*
820 * deliver reply data to an FS.Symlink
821 */
afs_deliver_fs_symlink(struct afs_call * call)822 static int afs_deliver_fs_symlink(struct afs_call *call)
823 {
824 struct afs_operation *op = call->op;
825 struct afs_vnode_param *dvp = &op->file[0];
826 struct afs_vnode_param *vp = &op->file[1];
827 const __be32 *bp;
828 int ret;
829
830 _enter("{%u}", call->unmarshall);
831
832 ret = afs_transfer_reply(call);
833 if (ret < 0)
834 return ret;
835
836 /* unmarshall the reply once we've received all of it */
837 bp = call->buffer;
838 xdr_decode_AFSFid(&bp, &vp->fid);
839 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
840 xdr_decode_AFSFetchStatus(&bp, call, &dvp->scb);
841 xdr_decode_AFSVolSync(&bp, &op->volsync);
842
843 _leave(" = 0 [done]");
844 return 0;
845 }
846
847 /*
848 * FS.Symlink operation type
849 */
850 static const struct afs_call_type afs_RXFSSymlink = {
851 .name = "FS.Symlink",
852 .op = afs_FS_Symlink,
853 .deliver = afs_deliver_fs_symlink,
854 .destructor = afs_flat_call_destructor,
855 };
856
857 /*
858 * create a symbolic link
859 */
afs_fs_symlink(struct afs_operation * op)860 void afs_fs_symlink(struct afs_operation *op)
861 {
862 const struct qstr *name = &op->dentry->d_name;
863 struct afs_vnode_param *dvp = &op->file[0];
864 struct afs_call *call;
865 size_t namesz, reqsz, padsz, c_namesz, c_padsz;
866 __be32 *bp;
867
868 _enter("");
869
870 namesz = name->len;
871 padsz = (4 - (namesz & 3)) & 3;
872
873 c_namesz = strlen(op->create.symlink);
874 c_padsz = (4 - (c_namesz & 3)) & 3;
875
876 reqsz = (6 * 4) + namesz + padsz + c_namesz + c_padsz + (6 * 4);
877
878 call = afs_alloc_flat_call(op->net, &afs_RXFSSymlink, reqsz,
879 (3 + 21 + 21 + 6) * 4);
880 if (!call)
881 return afs_op_nomem(op);
882
883 /* marshall the parameters */
884 bp = call->request;
885 *bp++ = htonl(FSSYMLINK);
886 *bp++ = htonl(dvp->fid.vid);
887 *bp++ = htonl(dvp->fid.vnode);
888 *bp++ = htonl(dvp->fid.unique);
889 *bp++ = htonl(namesz);
890 memcpy(bp, name->name, namesz);
891 bp = (void *) bp + namesz;
892 if (padsz > 0) {
893 memset(bp, 0, padsz);
894 bp = (void *) bp + padsz;
895 }
896 *bp++ = htonl(c_namesz);
897 memcpy(bp, op->create.symlink, c_namesz);
898 bp = (void *) bp + c_namesz;
899 if (c_padsz > 0) {
900 memset(bp, 0, c_padsz);
901 bp = (void *) bp + c_padsz;
902 }
903 *bp++ = htonl(AFS_SET_MODE | AFS_SET_MTIME);
904 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
905 *bp++ = 0; /* owner */
906 *bp++ = 0; /* group */
907 *bp++ = htonl(S_IRWXUGO); /* unix mode */
908 *bp++ = 0; /* segment size */
909
910 trace_afs_make_fs_call1(call, &dvp->fid, name);
911 afs_make_op_call(op, call, GFP_NOFS);
912 }
913
914 /*
915 * deliver reply data to an FS.Rename
916 */
afs_deliver_fs_rename(struct afs_call * call)917 static int afs_deliver_fs_rename(struct afs_call *call)
918 {
919 struct afs_operation *op = call->op;
920 struct afs_vnode_param *orig_dvp = &op->file[0];
921 struct afs_vnode_param *new_dvp = &op->file[1];
922 const __be32 *bp;
923 int ret;
924
925 ret = afs_transfer_reply(call);
926 if (ret < 0)
927 return ret;
928
929 bp = call->buffer;
930 /* If the two dirs are the same, we have two copies of the same status
931 * report, so we just decode it twice.
932 */
933 xdr_decode_AFSFetchStatus(&bp, call, &orig_dvp->scb);
934 xdr_decode_AFSFetchStatus(&bp, call, &new_dvp->scb);
935 xdr_decode_AFSVolSync(&bp, &op->volsync);
936
937 _leave(" = 0 [done]");
938 return 0;
939 }
940
941 /*
942 * FS.Rename operation type
943 */
944 static const struct afs_call_type afs_RXFSRename = {
945 .name = "FS.Rename",
946 .op = afs_FS_Rename,
947 .deliver = afs_deliver_fs_rename,
948 .destructor = afs_flat_call_destructor,
949 };
950
951 /*
952 * Rename/move a file or directory.
953 */
afs_fs_rename(struct afs_operation * op)954 void afs_fs_rename(struct afs_operation *op)
955 {
956 struct afs_vnode_param *orig_dvp = &op->file[0];
957 struct afs_vnode_param *new_dvp = &op->file[1];
958 const struct qstr *orig_name = &op->dentry->d_name;
959 const struct qstr *new_name = &op->dentry_2->d_name;
960 struct afs_call *call;
961 size_t reqsz, o_namesz, o_padsz, n_namesz, n_padsz;
962 __be32 *bp;
963
964 _enter("");
965
966 o_namesz = orig_name->len;
967 o_padsz = (4 - (o_namesz & 3)) & 3;
968
969 n_namesz = new_name->len;
970 n_padsz = (4 - (n_namesz & 3)) & 3;
971
972 reqsz = (4 * 4) +
973 4 + o_namesz + o_padsz +
974 (3 * 4) +
975 4 + n_namesz + n_padsz;
976
977 call = afs_alloc_flat_call(op->net, &afs_RXFSRename, reqsz, (21 + 21 + 6) * 4);
978 if (!call)
979 return afs_op_nomem(op);
980
981 /* marshall the parameters */
982 bp = call->request;
983 *bp++ = htonl(FSRENAME);
984 *bp++ = htonl(orig_dvp->fid.vid);
985 *bp++ = htonl(orig_dvp->fid.vnode);
986 *bp++ = htonl(orig_dvp->fid.unique);
987 *bp++ = htonl(o_namesz);
988 memcpy(bp, orig_name->name, o_namesz);
989 bp = (void *) bp + o_namesz;
990 if (o_padsz > 0) {
991 memset(bp, 0, o_padsz);
992 bp = (void *) bp + o_padsz;
993 }
994
995 *bp++ = htonl(new_dvp->fid.vid);
996 *bp++ = htonl(new_dvp->fid.vnode);
997 *bp++ = htonl(new_dvp->fid.unique);
998 *bp++ = htonl(n_namesz);
999 memcpy(bp, new_name->name, n_namesz);
1000 bp = (void *) bp + n_namesz;
1001 if (n_padsz > 0) {
1002 memset(bp, 0, n_padsz);
1003 bp = (void *) bp + n_padsz;
1004 }
1005
1006 trace_afs_make_fs_call2(call, &orig_dvp->fid, orig_name, new_name);
1007 afs_make_op_call(op, call, GFP_NOFS);
1008 }
1009
1010 /*
1011 * Deliver reply data to FS.StoreData or FS.StoreStatus
1012 */
afs_deliver_fs_store_data(struct afs_call * call)1013 static int afs_deliver_fs_store_data(struct afs_call *call)
1014 {
1015 struct afs_operation *op = call->op;
1016 struct afs_vnode_param *vp = &op->file[0];
1017 const __be32 *bp;
1018 int ret;
1019
1020 _enter("");
1021
1022 ret = afs_transfer_reply(call);
1023 if (ret < 0)
1024 return ret;
1025
1026 /* unmarshall the reply once we've received all of it */
1027 bp = call->buffer;
1028 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1029 xdr_decode_AFSVolSync(&bp, &op->volsync);
1030
1031 _leave(" = 0 [done]");
1032 return 0;
1033 }
1034
1035 /*
1036 * FS.StoreData operation type
1037 */
1038 static const struct afs_call_type afs_RXFSStoreData = {
1039 .name = "FS.StoreData",
1040 .op = afs_FS_StoreData,
1041 .deliver = afs_deliver_fs_store_data,
1042 .destructor = afs_flat_call_destructor,
1043 };
1044
1045 static const struct afs_call_type afs_RXFSStoreData64 = {
1046 .name = "FS.StoreData64",
1047 .op = afs_FS_StoreData64,
1048 .deliver = afs_deliver_fs_store_data,
1049 .destructor = afs_flat_call_destructor,
1050 };
1051
1052 /*
1053 * store a set of pages to a very large file
1054 */
afs_fs_store_data64(struct afs_operation * op)1055 static void afs_fs_store_data64(struct afs_operation *op)
1056 {
1057 struct afs_vnode_param *vp = &op->file[0];
1058 struct afs_call *call;
1059 __be32 *bp;
1060
1061 _enter(",%x,{%llx:%llu},,",
1062 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1063
1064 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64,
1065 (4 + 6 + 3 * 2) * 4,
1066 (21 + 6) * 4);
1067 if (!call)
1068 return afs_op_nomem(op);
1069
1070 call->write_iter = op->store.write_iter;
1071
1072 /* marshall the parameters */
1073 bp = call->request;
1074 *bp++ = htonl(FSSTOREDATA64);
1075 *bp++ = htonl(vp->fid.vid);
1076 *bp++ = htonl(vp->fid.vnode);
1077 *bp++ = htonl(vp->fid.unique);
1078
1079 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1080 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1081 *bp++ = 0; /* owner */
1082 *bp++ = 0; /* group */
1083 *bp++ = 0; /* unix mode */
1084 *bp++ = 0; /* segment size */
1085
1086 *bp++ = htonl(upper_32_bits(op->store.pos));
1087 *bp++ = htonl(lower_32_bits(op->store.pos));
1088 *bp++ = htonl(upper_32_bits(op->store.size));
1089 *bp++ = htonl(lower_32_bits(op->store.size));
1090 *bp++ = htonl(upper_32_bits(op->store.i_size));
1091 *bp++ = htonl(lower_32_bits(op->store.i_size));
1092
1093 trace_afs_make_fs_call(call, &vp->fid);
1094 afs_make_op_call(op, call, GFP_NOFS);
1095 }
1096
1097 /*
1098 * Write data to a file on the server.
1099 */
afs_fs_store_data(struct afs_operation * op)1100 void afs_fs_store_data(struct afs_operation *op)
1101 {
1102 struct afs_vnode_param *vp = &op->file[0];
1103 struct afs_call *call;
1104 __be32 *bp;
1105
1106 _enter(",%x,{%llx:%llu},,",
1107 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1108
1109 _debug("size %llx, at %llx, i_size %llx",
1110 (unsigned long long)op->store.size,
1111 (unsigned long long)op->store.pos,
1112 (unsigned long long)op->store.i_size);
1113
1114 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1115 return afs_fs_store_data64(op);
1116
1117 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData,
1118 (4 + 6 + 3) * 4,
1119 (21 + 6) * 4);
1120 if (!call)
1121 return afs_op_nomem(op);
1122
1123 call->write_iter = op->store.write_iter;
1124
1125 /* marshall the parameters */
1126 bp = call->request;
1127 *bp++ = htonl(FSSTOREDATA);
1128 *bp++ = htonl(vp->fid.vid);
1129 *bp++ = htonl(vp->fid.vnode);
1130 *bp++ = htonl(vp->fid.unique);
1131
1132 *bp++ = htonl(AFS_SET_MTIME); /* mask */
1133 *bp++ = htonl(op->mtime.tv_sec); /* mtime */
1134 *bp++ = 0; /* owner */
1135 *bp++ = 0; /* group */
1136 *bp++ = 0; /* unix mode */
1137 *bp++ = 0; /* segment size */
1138
1139 *bp++ = htonl(lower_32_bits(op->store.pos));
1140 *bp++ = htonl(lower_32_bits(op->store.size));
1141 *bp++ = htonl(lower_32_bits(op->store.i_size));
1142
1143 trace_afs_make_fs_call(call, &vp->fid);
1144 afs_make_op_call(op, call, GFP_NOFS);
1145 }
1146
1147 /*
1148 * FS.StoreStatus operation type
1149 */
1150 static const struct afs_call_type afs_RXFSStoreStatus = {
1151 .name = "FS.StoreStatus",
1152 .op = afs_FS_StoreStatus,
1153 .deliver = afs_deliver_fs_store_data,
1154 .destructor = afs_flat_call_destructor,
1155 };
1156
1157 static const struct afs_call_type afs_RXFSStoreData_as_Status = {
1158 .name = "FS.StoreData",
1159 .op = afs_FS_StoreData,
1160 .deliver = afs_deliver_fs_store_data,
1161 .destructor = afs_flat_call_destructor,
1162 };
1163
1164 static const struct afs_call_type afs_RXFSStoreData64_as_Status = {
1165 .name = "FS.StoreData64",
1166 .op = afs_FS_StoreData64,
1167 .deliver = afs_deliver_fs_store_data,
1168 .destructor = afs_flat_call_destructor,
1169 };
1170
1171 /*
1172 * set the attributes on a very large file, using FS.StoreData rather than
1173 * FS.StoreStatus so as to alter the file size also
1174 */
afs_fs_setattr_size64(struct afs_operation * op)1175 static void afs_fs_setattr_size64(struct afs_operation *op)
1176 {
1177 struct afs_vnode_param *vp = &op->file[0];
1178 struct afs_call *call;
1179 struct iattr *attr = op->setattr.attr;
1180 __be32 *bp;
1181
1182 _enter(",%x,{%llx:%llu},,",
1183 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1184
1185 ASSERT(attr->ia_valid & ATTR_SIZE);
1186
1187 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData64_as_Status,
1188 (4 + 6 + 3 * 2) * 4,
1189 (21 + 6) * 4);
1190 if (!call)
1191 return afs_op_nomem(op);
1192
1193 /* marshall the parameters */
1194 bp = call->request;
1195 *bp++ = htonl(FSSTOREDATA64);
1196 *bp++ = htonl(vp->fid.vid);
1197 *bp++ = htonl(vp->fid.vnode);
1198 *bp++ = htonl(vp->fid.unique);
1199
1200 xdr_encode_AFS_StoreStatus(&bp, attr);
1201
1202 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* position of start of write */
1203 *bp++ = htonl(lower_32_bits(attr->ia_size));
1204 *bp++ = 0; /* size of write */
1205 *bp++ = 0;
1206 *bp++ = htonl(upper_32_bits(attr->ia_size)); /* new file length */
1207 *bp++ = htonl(lower_32_bits(attr->ia_size));
1208
1209 trace_afs_make_fs_call(call, &vp->fid);
1210 afs_make_op_call(op, call, GFP_NOFS);
1211 }
1212
1213 /*
1214 * set the attributes on a file, using FS.StoreData rather than FS.StoreStatus
1215 * so as to alter the file size also
1216 */
afs_fs_setattr_size(struct afs_operation * op)1217 static void afs_fs_setattr_size(struct afs_operation *op)
1218 {
1219 struct afs_vnode_param *vp = &op->file[0];
1220 struct afs_call *call;
1221 struct iattr *attr = op->setattr.attr;
1222 __be32 *bp;
1223
1224 _enter(",%x,{%llx:%llu},,",
1225 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1226
1227 ASSERT(attr->ia_valid & ATTR_SIZE);
1228 if (test_bit(AFS_SERVER_FL_HAS_FS64, &op->server->flags))
1229 return afs_fs_setattr_size64(op);
1230
1231 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreData_as_Status,
1232 (4 + 6 + 3) * 4,
1233 (21 + 6) * 4);
1234 if (!call)
1235 return afs_op_nomem(op);
1236
1237 /* marshall the parameters */
1238 bp = call->request;
1239 *bp++ = htonl(FSSTOREDATA);
1240 *bp++ = htonl(vp->fid.vid);
1241 *bp++ = htonl(vp->fid.vnode);
1242 *bp++ = htonl(vp->fid.unique);
1243
1244 xdr_encode_AFS_StoreStatus(&bp, attr);
1245
1246 *bp++ = htonl(attr->ia_size); /* position of start of write */
1247 *bp++ = 0; /* size of write */
1248 *bp++ = htonl(attr->ia_size); /* new file length */
1249
1250 trace_afs_make_fs_call(call, &vp->fid);
1251 afs_make_op_call(op, call, GFP_NOFS);
1252 }
1253
1254 /*
1255 * set the attributes on a file, using FS.StoreData if there's a change in file
1256 * size, and FS.StoreStatus otherwise
1257 */
afs_fs_setattr(struct afs_operation * op)1258 void afs_fs_setattr(struct afs_operation *op)
1259 {
1260 struct afs_vnode_param *vp = &op->file[0];
1261 struct afs_call *call;
1262 struct iattr *attr = op->setattr.attr;
1263 __be32 *bp;
1264
1265 if (attr->ia_valid & ATTR_SIZE)
1266 return afs_fs_setattr_size(op);
1267
1268 _enter(",%x,{%llx:%llu},,",
1269 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
1270
1271 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreStatus,
1272 (4 + 6) * 4,
1273 (21 + 6) * 4);
1274 if (!call)
1275 return afs_op_nomem(op);
1276
1277 /* marshall the parameters */
1278 bp = call->request;
1279 *bp++ = htonl(FSSTORESTATUS);
1280 *bp++ = htonl(vp->fid.vid);
1281 *bp++ = htonl(vp->fid.vnode);
1282 *bp++ = htonl(vp->fid.unique);
1283
1284 xdr_encode_AFS_StoreStatus(&bp, op->setattr.attr);
1285
1286 trace_afs_make_fs_call(call, &vp->fid);
1287 afs_make_op_call(op, call, GFP_NOFS);
1288 }
1289
1290 /*
1291 * deliver reply data to an FS.GetVolumeStatus
1292 */
afs_deliver_fs_get_volume_status(struct afs_call * call)1293 static int afs_deliver_fs_get_volume_status(struct afs_call *call)
1294 {
1295 struct afs_operation *op = call->op;
1296 const __be32 *bp;
1297 char *p;
1298 u32 size;
1299 int ret;
1300
1301 _enter("{%u}", call->unmarshall);
1302
1303 switch (call->unmarshall) {
1304 case 0:
1305 call->unmarshall++;
1306 afs_extract_to_buf(call, 12 * 4);
1307 fallthrough;
1308
1309 /* extract the returned status record */
1310 case 1:
1311 _debug("extract status");
1312 ret = afs_extract_data(call, true);
1313 if (ret < 0)
1314 return ret;
1315
1316 bp = call->buffer;
1317 xdr_decode_AFSFetchVolumeStatus(&bp, &op->volstatus.vs);
1318 call->unmarshall++;
1319 afs_extract_to_tmp(call);
1320 fallthrough;
1321
1322 /* extract the volume name length */
1323 case 2:
1324 ret = afs_extract_data(call, true);
1325 if (ret < 0)
1326 return ret;
1327
1328 call->count = ntohl(call->tmp);
1329 _debug("volname length: %u", call->count);
1330 if (call->count >= AFSNAMEMAX)
1331 return afs_protocol_error(call, afs_eproto_volname_len);
1332 size = (call->count + 3) & ~3; /* It's padded */
1333 afs_extract_to_buf(call, size);
1334 call->unmarshall++;
1335 fallthrough;
1336
1337 /* extract the volume name */
1338 case 3:
1339 _debug("extract volname");
1340 ret = afs_extract_data(call, true);
1341 if (ret < 0)
1342 return ret;
1343
1344 p = call->buffer;
1345 p[call->count] = 0;
1346 _debug("volname '%s'", p);
1347 afs_extract_to_tmp(call);
1348 call->unmarshall++;
1349 fallthrough;
1350
1351 /* extract the offline message length */
1352 case 4:
1353 ret = afs_extract_data(call, true);
1354 if (ret < 0)
1355 return ret;
1356
1357 call->count = ntohl(call->tmp);
1358 _debug("offline msg length: %u", call->count);
1359 if (call->count >= AFSNAMEMAX)
1360 return afs_protocol_error(call, afs_eproto_offline_msg_len);
1361 size = (call->count + 3) & ~3; /* It's padded */
1362 afs_extract_to_buf(call, size);
1363 call->unmarshall++;
1364 fallthrough;
1365
1366 /* extract the offline message */
1367 case 5:
1368 _debug("extract offline");
1369 ret = afs_extract_data(call, true);
1370 if (ret < 0)
1371 return ret;
1372
1373 p = call->buffer;
1374 p[call->count] = 0;
1375 _debug("offline '%s'", p);
1376
1377 afs_extract_to_tmp(call);
1378 call->unmarshall++;
1379 fallthrough;
1380
1381 /* extract the message of the day length */
1382 case 6:
1383 ret = afs_extract_data(call, true);
1384 if (ret < 0)
1385 return ret;
1386
1387 call->count = ntohl(call->tmp);
1388 _debug("motd length: %u", call->count);
1389 if (call->count >= AFSNAMEMAX)
1390 return afs_protocol_error(call, afs_eproto_motd_len);
1391 size = (call->count + 3) & ~3; /* It's padded */
1392 afs_extract_to_buf(call, size);
1393 call->unmarshall++;
1394 fallthrough;
1395
1396 /* extract the message of the day */
1397 case 7:
1398 _debug("extract motd");
1399 ret = afs_extract_data(call, false);
1400 if (ret < 0)
1401 return ret;
1402
1403 p = call->buffer;
1404 p[call->count] = 0;
1405 _debug("motd '%s'", p);
1406
1407 call->unmarshall++;
1408 fallthrough;
1409
1410 case 8:
1411 break;
1412 }
1413
1414 _leave(" = 0 [done]");
1415 return 0;
1416 }
1417
1418 /*
1419 * FS.GetVolumeStatus operation type
1420 */
1421 static const struct afs_call_type afs_RXFSGetVolumeStatus = {
1422 .name = "FS.GetVolumeStatus",
1423 .op = afs_FS_GetVolumeStatus,
1424 .deliver = afs_deliver_fs_get_volume_status,
1425 .destructor = afs_flat_call_destructor,
1426 };
1427
1428 /*
1429 * fetch the status of a volume
1430 */
afs_fs_get_volume_status(struct afs_operation * op)1431 void afs_fs_get_volume_status(struct afs_operation *op)
1432 {
1433 struct afs_vnode_param *vp = &op->file[0];
1434 struct afs_call *call;
1435 __be32 *bp;
1436
1437 _enter("");
1438
1439 call = afs_alloc_flat_call(op->net, &afs_RXFSGetVolumeStatus, 2 * 4,
1440 max(12 * 4, AFSOPAQUEMAX + 1));
1441 if (!call)
1442 return afs_op_nomem(op);
1443
1444 /* marshall the parameters */
1445 bp = call->request;
1446 bp[0] = htonl(FSGETVOLUMESTATUS);
1447 bp[1] = htonl(vp->fid.vid);
1448
1449 trace_afs_make_fs_call(call, &vp->fid);
1450 afs_make_op_call(op, call, GFP_NOFS);
1451 }
1452
1453 /*
1454 * deliver reply data to an FS.SetLock, FS.ExtendLock or FS.ReleaseLock
1455 */
afs_deliver_fs_xxxx_lock(struct afs_call * call)1456 static int afs_deliver_fs_xxxx_lock(struct afs_call *call)
1457 {
1458 struct afs_operation *op = call->op;
1459 const __be32 *bp;
1460 int ret;
1461
1462 _enter("{%u}", call->unmarshall);
1463
1464 ret = afs_transfer_reply(call);
1465 if (ret < 0)
1466 return ret;
1467
1468 /* unmarshall the reply once we've received all of it */
1469 bp = call->buffer;
1470 xdr_decode_AFSVolSync(&bp, &op->volsync);
1471
1472 _leave(" = 0 [done]");
1473 return 0;
1474 }
1475
1476 /*
1477 * FS.SetLock operation type
1478 */
1479 static const struct afs_call_type afs_RXFSSetLock = {
1480 .name = "FS.SetLock",
1481 .op = afs_FS_SetLock,
1482 .deliver = afs_deliver_fs_xxxx_lock,
1483 .done = afs_lock_op_done,
1484 .destructor = afs_flat_call_destructor,
1485 };
1486
1487 /*
1488 * FS.ExtendLock operation type
1489 */
1490 static const struct afs_call_type afs_RXFSExtendLock = {
1491 .name = "FS.ExtendLock",
1492 .op = afs_FS_ExtendLock,
1493 .deliver = afs_deliver_fs_xxxx_lock,
1494 .done = afs_lock_op_done,
1495 .destructor = afs_flat_call_destructor,
1496 };
1497
1498 /*
1499 * FS.ReleaseLock operation type
1500 */
1501 static const struct afs_call_type afs_RXFSReleaseLock = {
1502 .name = "FS.ReleaseLock",
1503 .op = afs_FS_ReleaseLock,
1504 .deliver = afs_deliver_fs_xxxx_lock,
1505 .destructor = afs_flat_call_destructor,
1506 };
1507
1508 /*
1509 * Set a lock on a file
1510 */
afs_fs_set_lock(struct afs_operation * op)1511 void afs_fs_set_lock(struct afs_operation *op)
1512 {
1513 struct afs_vnode_param *vp = &op->file[0];
1514 struct afs_call *call;
1515 __be32 *bp;
1516
1517 _enter("");
1518
1519 call = afs_alloc_flat_call(op->net, &afs_RXFSSetLock, 5 * 4, 6 * 4);
1520 if (!call)
1521 return afs_op_nomem(op);
1522
1523 /* marshall the parameters */
1524 bp = call->request;
1525 *bp++ = htonl(FSSETLOCK);
1526 *bp++ = htonl(vp->fid.vid);
1527 *bp++ = htonl(vp->fid.vnode);
1528 *bp++ = htonl(vp->fid.unique);
1529 *bp++ = htonl(op->lock.type);
1530
1531 trace_afs_make_fs_calli(call, &vp->fid, op->lock.type);
1532 afs_make_op_call(op, call, GFP_NOFS);
1533 }
1534
1535 /*
1536 * extend a lock on a file
1537 */
afs_fs_extend_lock(struct afs_operation * op)1538 void afs_fs_extend_lock(struct afs_operation *op)
1539 {
1540 struct afs_vnode_param *vp = &op->file[0];
1541 struct afs_call *call;
1542 __be32 *bp;
1543
1544 _enter("");
1545
1546 call = afs_alloc_flat_call(op->net, &afs_RXFSExtendLock, 4 * 4, 6 * 4);
1547 if (!call)
1548 return afs_op_nomem(op);
1549
1550 /* marshall the parameters */
1551 bp = call->request;
1552 *bp++ = htonl(FSEXTENDLOCK);
1553 *bp++ = htonl(vp->fid.vid);
1554 *bp++ = htonl(vp->fid.vnode);
1555 *bp++ = htonl(vp->fid.unique);
1556
1557 trace_afs_make_fs_call(call, &vp->fid);
1558 afs_make_op_call(op, call, GFP_NOFS);
1559 }
1560
1561 /*
1562 * release a lock on a file
1563 */
afs_fs_release_lock(struct afs_operation * op)1564 void afs_fs_release_lock(struct afs_operation *op)
1565 {
1566 struct afs_vnode_param *vp = &op->file[0];
1567 struct afs_call *call;
1568 __be32 *bp;
1569
1570 _enter("");
1571
1572 call = afs_alloc_flat_call(op->net, &afs_RXFSReleaseLock, 4 * 4, 6 * 4);
1573 if (!call)
1574 return afs_op_nomem(op);
1575
1576 /* marshall the parameters */
1577 bp = call->request;
1578 *bp++ = htonl(FSRELEASELOCK);
1579 *bp++ = htonl(vp->fid.vid);
1580 *bp++ = htonl(vp->fid.vnode);
1581 *bp++ = htonl(vp->fid.unique);
1582
1583 trace_afs_make_fs_call(call, &vp->fid);
1584 afs_make_op_call(op, call, GFP_NOFS);
1585 }
1586
1587 /*
1588 * Deliver reply data to an FS.GiveUpAllCallBacks operation.
1589 */
afs_deliver_fs_give_up_all_callbacks(struct afs_call * call)1590 static int afs_deliver_fs_give_up_all_callbacks(struct afs_call *call)
1591 {
1592 return afs_transfer_reply(call);
1593 }
1594
1595 /*
1596 * FS.GiveUpAllCallBacks operation type
1597 */
1598 static const struct afs_call_type afs_RXFSGiveUpAllCallBacks = {
1599 .name = "FS.GiveUpAllCallBacks",
1600 .op = afs_FS_GiveUpAllCallBacks,
1601 .deliver = afs_deliver_fs_give_up_all_callbacks,
1602 .destructor = afs_flat_call_destructor,
1603 };
1604
1605 /*
1606 * Flush all the callbacks we have on a server.
1607 */
afs_fs_give_up_all_callbacks(struct afs_net * net,struct afs_server * server,struct afs_addr_cursor * ac,struct key * key)1608 int afs_fs_give_up_all_callbacks(struct afs_net *net,
1609 struct afs_server *server,
1610 struct afs_addr_cursor *ac,
1611 struct key *key)
1612 {
1613 struct afs_call *call;
1614 __be32 *bp;
1615
1616 _enter("");
1617
1618 call = afs_alloc_flat_call(net, &afs_RXFSGiveUpAllCallBacks, 1 * 4, 0);
1619 if (!call)
1620 return -ENOMEM;
1621
1622 call->key = key;
1623
1624 /* marshall the parameters */
1625 bp = call->request;
1626 *bp++ = htonl(FSGIVEUPALLCALLBACKS);
1627
1628 call->server = afs_use_server(server, afs_server_trace_give_up_cb);
1629 afs_make_call(ac, call, GFP_NOFS);
1630 return afs_wait_for_call_to_complete(call, ac);
1631 }
1632
1633 /*
1634 * Deliver reply data to an FS.GetCapabilities operation.
1635 */
afs_deliver_fs_get_capabilities(struct afs_call * call)1636 static int afs_deliver_fs_get_capabilities(struct afs_call *call)
1637 {
1638 u32 count;
1639 int ret;
1640
1641 _enter("{%u,%zu}", call->unmarshall, iov_iter_count(call->iter));
1642
1643 switch (call->unmarshall) {
1644 case 0:
1645 afs_extract_to_tmp(call);
1646 call->unmarshall++;
1647 fallthrough;
1648
1649 /* Extract the capabilities word count */
1650 case 1:
1651 ret = afs_extract_data(call, true);
1652 if (ret < 0)
1653 return ret;
1654
1655 count = ntohl(call->tmp);
1656 call->count = count;
1657 call->count2 = count;
1658 if (count == 0) {
1659 call->unmarshall = 4;
1660 call->tmp = 0;
1661 break;
1662 }
1663
1664 /* Extract the first word of the capabilities to call->tmp */
1665 afs_extract_to_tmp(call);
1666 call->unmarshall++;
1667 fallthrough;
1668
1669 case 2:
1670 ret = afs_extract_data(call, false);
1671 if (ret < 0)
1672 return ret;
1673
1674 afs_extract_discard(call, (count - 1) * sizeof(__be32));
1675 call->unmarshall++;
1676 fallthrough;
1677
1678 /* Extract remaining capabilities words */
1679 case 3:
1680 ret = afs_extract_data(call, false);
1681 if (ret < 0)
1682 return ret;
1683
1684 call->unmarshall++;
1685 break;
1686 }
1687
1688 _leave(" = 0 [done]");
1689 return 0;
1690 }
1691
1692 /*
1693 * FS.GetCapabilities operation type
1694 */
1695 static const struct afs_call_type afs_RXFSGetCapabilities = {
1696 .name = "FS.GetCapabilities",
1697 .op = afs_FS_GetCapabilities,
1698 .deliver = afs_deliver_fs_get_capabilities,
1699 .done = afs_fileserver_probe_result,
1700 .destructor = afs_flat_call_destructor,
1701 };
1702
1703 /*
1704 * Probe a fileserver for the capabilities that it supports. This RPC can
1705 * reply with up to 196 words. The operation is asynchronous and if we managed
1706 * to allocate a call, true is returned the result is delivered through the
1707 * ->done() - otherwise we return false to indicate we didn't even try.
1708 */
afs_fs_get_capabilities(struct afs_net * net,struct afs_server * server,struct afs_addr_cursor * ac,struct key * key)1709 bool afs_fs_get_capabilities(struct afs_net *net, struct afs_server *server,
1710 struct afs_addr_cursor *ac, struct key *key)
1711 {
1712 struct afs_call *call;
1713 __be32 *bp;
1714
1715 _enter("");
1716
1717 call = afs_alloc_flat_call(net, &afs_RXFSGetCapabilities, 1 * 4, 16 * 4);
1718 if (!call)
1719 return false;
1720
1721 call->key = key;
1722 call->server = afs_use_server(server, afs_server_trace_get_caps);
1723 call->upgrade = true;
1724 call->async = true;
1725 call->max_lifespan = AFS_PROBE_MAX_LIFESPAN;
1726
1727 /* marshall the parameters */
1728 bp = call->request;
1729 *bp++ = htonl(FSGETCAPABILITIES);
1730
1731 trace_afs_make_fs_call(call, NULL);
1732 afs_make_call(ac, call, GFP_NOFS);
1733 afs_put_call(call);
1734 return true;
1735 }
1736
1737 /*
1738 * Deliver reply data to an FS.InlineBulkStatus call
1739 */
afs_deliver_fs_inline_bulk_status(struct afs_call * call)1740 static int afs_deliver_fs_inline_bulk_status(struct afs_call *call)
1741 {
1742 struct afs_operation *op = call->op;
1743 struct afs_status_cb *scb;
1744 const __be32 *bp;
1745 u32 tmp;
1746 int ret;
1747
1748 _enter("{%u}", call->unmarshall);
1749
1750 switch (call->unmarshall) {
1751 case 0:
1752 afs_extract_to_tmp(call);
1753 call->unmarshall++;
1754 fallthrough;
1755
1756 /* Extract the file status count and array in two steps */
1757 case 1:
1758 _debug("extract status count");
1759 ret = afs_extract_data(call, true);
1760 if (ret < 0)
1761 return ret;
1762
1763 tmp = ntohl(call->tmp);
1764 _debug("status count: %u/%u", tmp, op->nr_files);
1765 if (tmp != op->nr_files)
1766 return afs_protocol_error(call, afs_eproto_ibulkst_count);
1767
1768 call->count = 0;
1769 call->unmarshall++;
1770 more_counts:
1771 afs_extract_to_buf(call, 21 * sizeof(__be32));
1772 fallthrough;
1773
1774 case 2:
1775 _debug("extract status array %u", call->count);
1776 ret = afs_extract_data(call, true);
1777 if (ret < 0)
1778 return ret;
1779
1780 switch (call->count) {
1781 case 0:
1782 scb = &op->file[0].scb;
1783 break;
1784 case 1:
1785 scb = &op->file[1].scb;
1786 break;
1787 default:
1788 scb = &op->more_files[call->count - 2].scb;
1789 break;
1790 }
1791
1792 bp = call->buffer;
1793 xdr_decode_AFSFetchStatus(&bp, call, scb);
1794
1795 call->count++;
1796 if (call->count < op->nr_files)
1797 goto more_counts;
1798
1799 call->count = 0;
1800 call->unmarshall++;
1801 afs_extract_to_tmp(call);
1802 fallthrough;
1803
1804 /* Extract the callback count and array in two steps */
1805 case 3:
1806 _debug("extract CB count");
1807 ret = afs_extract_data(call, true);
1808 if (ret < 0)
1809 return ret;
1810
1811 tmp = ntohl(call->tmp);
1812 _debug("CB count: %u", tmp);
1813 if (tmp != op->nr_files)
1814 return afs_protocol_error(call, afs_eproto_ibulkst_cb_count);
1815 call->count = 0;
1816 call->unmarshall++;
1817 more_cbs:
1818 afs_extract_to_buf(call, 3 * sizeof(__be32));
1819 fallthrough;
1820
1821 case 4:
1822 _debug("extract CB array");
1823 ret = afs_extract_data(call, true);
1824 if (ret < 0)
1825 return ret;
1826
1827 _debug("unmarshall CB array");
1828 switch (call->count) {
1829 case 0:
1830 scb = &op->file[0].scb;
1831 break;
1832 case 1:
1833 scb = &op->file[1].scb;
1834 break;
1835 default:
1836 scb = &op->more_files[call->count - 2].scb;
1837 break;
1838 }
1839
1840 bp = call->buffer;
1841 xdr_decode_AFSCallBack(&bp, call, scb);
1842 call->count++;
1843 if (call->count < op->nr_files)
1844 goto more_cbs;
1845
1846 afs_extract_to_buf(call, 6 * sizeof(__be32));
1847 call->unmarshall++;
1848 fallthrough;
1849
1850 case 5:
1851 ret = afs_extract_data(call, false);
1852 if (ret < 0)
1853 return ret;
1854
1855 bp = call->buffer;
1856 xdr_decode_AFSVolSync(&bp, &op->volsync);
1857
1858 call->unmarshall++;
1859 fallthrough;
1860
1861 case 6:
1862 break;
1863 }
1864
1865 _leave(" = 0 [done]");
1866 return 0;
1867 }
1868
afs_done_fs_inline_bulk_status(struct afs_call * call)1869 static void afs_done_fs_inline_bulk_status(struct afs_call *call)
1870 {
1871 if (call->error == -ECONNABORTED &&
1872 call->abort_code == RX_INVALID_OPERATION) {
1873 set_bit(AFS_SERVER_FL_NO_IBULK, &call->server->flags);
1874 if (call->op)
1875 set_bit(AFS_VOLUME_MAYBE_NO_IBULK, &call->op->volume->flags);
1876 }
1877 }
1878
1879 /*
1880 * FS.InlineBulkStatus operation type
1881 */
1882 static const struct afs_call_type afs_RXFSInlineBulkStatus = {
1883 .name = "FS.InlineBulkStatus",
1884 .op = afs_FS_InlineBulkStatus,
1885 .deliver = afs_deliver_fs_inline_bulk_status,
1886 .done = afs_done_fs_inline_bulk_status,
1887 .destructor = afs_flat_call_destructor,
1888 };
1889
1890 /*
1891 * Fetch the status information for up to 50 files
1892 */
afs_fs_inline_bulk_status(struct afs_operation * op)1893 void afs_fs_inline_bulk_status(struct afs_operation *op)
1894 {
1895 struct afs_vnode_param *dvp = &op->file[0];
1896 struct afs_vnode_param *vp = &op->file[1];
1897 struct afs_call *call;
1898 __be32 *bp;
1899 int i;
1900
1901 if (test_bit(AFS_SERVER_FL_NO_IBULK, &op->server->flags)) {
1902 op->error = -ENOTSUPP;
1903 return;
1904 }
1905
1906 _enter(",%x,{%llx:%llu},%u",
1907 key_serial(op->key), vp->fid.vid, vp->fid.vnode, op->nr_files);
1908
1909 call = afs_alloc_flat_call(op->net, &afs_RXFSInlineBulkStatus,
1910 (2 + op->nr_files * 3) * 4,
1911 21 * 4);
1912 if (!call)
1913 return afs_op_nomem(op);
1914
1915 /* marshall the parameters */
1916 bp = call->request;
1917 *bp++ = htonl(FSINLINEBULKSTATUS);
1918 *bp++ = htonl(op->nr_files);
1919 *bp++ = htonl(dvp->fid.vid);
1920 *bp++ = htonl(dvp->fid.vnode);
1921 *bp++ = htonl(dvp->fid.unique);
1922 *bp++ = htonl(vp->fid.vid);
1923 *bp++ = htonl(vp->fid.vnode);
1924 *bp++ = htonl(vp->fid.unique);
1925 for (i = 0; i < op->nr_files - 2; i++) {
1926 *bp++ = htonl(op->more_files[i].fid.vid);
1927 *bp++ = htonl(op->more_files[i].fid.vnode);
1928 *bp++ = htonl(op->more_files[i].fid.unique);
1929 }
1930
1931 trace_afs_make_fs_call(call, &vp->fid);
1932 afs_make_op_call(op, call, GFP_NOFS);
1933 }
1934
1935 /*
1936 * deliver reply data to an FS.FetchACL
1937 */
afs_deliver_fs_fetch_acl(struct afs_call * call)1938 static int afs_deliver_fs_fetch_acl(struct afs_call *call)
1939 {
1940 struct afs_operation *op = call->op;
1941 struct afs_vnode_param *vp = &op->file[0];
1942 struct afs_acl *acl;
1943 const __be32 *bp;
1944 unsigned int size;
1945 int ret;
1946
1947 _enter("{%u}", call->unmarshall);
1948
1949 switch (call->unmarshall) {
1950 case 0:
1951 afs_extract_to_tmp(call);
1952 call->unmarshall++;
1953 fallthrough;
1954
1955 /* extract the returned data length */
1956 case 1:
1957 ret = afs_extract_data(call, true);
1958 if (ret < 0)
1959 return ret;
1960
1961 size = call->count2 = ntohl(call->tmp);
1962 size = round_up(size, 4);
1963
1964 acl = kmalloc(struct_size(acl, data, size), GFP_KERNEL);
1965 if (!acl)
1966 return -ENOMEM;
1967 op->acl = acl;
1968 acl->size = call->count2;
1969 afs_extract_begin(call, acl->data, size);
1970 call->unmarshall++;
1971 fallthrough;
1972
1973 /* extract the returned data */
1974 case 2:
1975 ret = afs_extract_data(call, true);
1976 if (ret < 0)
1977 return ret;
1978
1979 afs_extract_to_buf(call, (21 + 6) * 4);
1980 call->unmarshall++;
1981 fallthrough;
1982
1983 /* extract the metadata */
1984 case 3:
1985 ret = afs_extract_data(call, false);
1986 if (ret < 0)
1987 return ret;
1988
1989 bp = call->buffer;
1990 xdr_decode_AFSFetchStatus(&bp, call, &vp->scb);
1991 xdr_decode_AFSVolSync(&bp, &op->volsync);
1992
1993 call->unmarshall++;
1994 fallthrough;
1995
1996 case 4:
1997 break;
1998 }
1999
2000 _leave(" = 0 [done]");
2001 return 0;
2002 }
2003
2004 /*
2005 * FS.FetchACL operation type
2006 */
2007 static const struct afs_call_type afs_RXFSFetchACL = {
2008 .name = "FS.FetchACL",
2009 .op = afs_FS_FetchACL,
2010 .deliver = afs_deliver_fs_fetch_acl,
2011 };
2012
2013 /*
2014 * Fetch the ACL for a file.
2015 */
afs_fs_fetch_acl(struct afs_operation * op)2016 void afs_fs_fetch_acl(struct afs_operation *op)
2017 {
2018 struct afs_vnode_param *vp = &op->file[0];
2019 struct afs_call *call;
2020 __be32 *bp;
2021
2022 _enter(",%x,{%llx:%llu},,",
2023 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2024
2025 call = afs_alloc_flat_call(op->net, &afs_RXFSFetchACL, 16, (21 + 6) * 4);
2026 if (!call)
2027 return afs_op_nomem(op);
2028
2029 /* marshall the parameters */
2030 bp = call->request;
2031 bp[0] = htonl(FSFETCHACL);
2032 bp[1] = htonl(vp->fid.vid);
2033 bp[2] = htonl(vp->fid.vnode);
2034 bp[3] = htonl(vp->fid.unique);
2035
2036 trace_afs_make_fs_call(call, &vp->fid);
2037 afs_make_op_call(op, call, GFP_KERNEL);
2038 }
2039
2040 /*
2041 * FS.StoreACL operation type
2042 */
2043 static const struct afs_call_type afs_RXFSStoreACL = {
2044 .name = "FS.StoreACL",
2045 .op = afs_FS_StoreACL,
2046 .deliver = afs_deliver_fs_file_status_and_vol,
2047 .destructor = afs_flat_call_destructor,
2048 };
2049
2050 /*
2051 * Fetch the ACL for a file.
2052 */
afs_fs_store_acl(struct afs_operation * op)2053 void afs_fs_store_acl(struct afs_operation *op)
2054 {
2055 struct afs_vnode_param *vp = &op->file[0];
2056 struct afs_call *call;
2057 const struct afs_acl *acl = op->acl;
2058 size_t size;
2059 __be32 *bp;
2060
2061 _enter(",%x,{%llx:%llu},,",
2062 key_serial(op->key), vp->fid.vid, vp->fid.vnode);
2063
2064 size = round_up(acl->size, 4);
2065 call = afs_alloc_flat_call(op->net, &afs_RXFSStoreACL,
2066 5 * 4 + size, (21 + 6) * 4);
2067 if (!call)
2068 return afs_op_nomem(op);
2069
2070 /* marshall the parameters */
2071 bp = call->request;
2072 bp[0] = htonl(FSSTOREACL);
2073 bp[1] = htonl(vp->fid.vid);
2074 bp[2] = htonl(vp->fid.vnode);
2075 bp[3] = htonl(vp->fid.unique);
2076 bp[4] = htonl(acl->size);
2077 memcpy(&bp[5], acl->data, acl->size);
2078 if (acl->size != size)
2079 memset((void *)&bp[5] + acl->size, 0, size - acl->size);
2080
2081 trace_afs_make_fs_call(call, &vp->fid);
2082 afs_make_op_call(op, call, GFP_KERNEL);
2083 }
2084