1 /*
2 * Simple MTD partitioning layer
3 *
4 * (C) 2000 Nicolas Pitre <nico@cam.org>
5 *
6 * This code is GPL
7 *
8 * $Id: mtdpart.c,v 1.32 2002/10/21 13:40:05 jocke Exp $
9 *
10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
11 * added support for read_oob, write_oob
12 */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22
23
24 /* Our partition linked list */
25 static LIST_HEAD(mtd_partitions);
26
27 /* Our partition node structure */
28 struct mtd_part {
29 struct mtd_info mtd;
30 struct mtd_info *master;
31 u_int32_t offset;
32 int index;
33 struct list_head list;
34 int registered;
35 };
36
37 /*
38 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
39 * the pointer to that structure with this macro.
40 */
41 #define PART(x) ((struct mtd_part *)(x))
42
43
44 /*
45 * MTD methods which simply translate the effective address and pass through
46 * to the _real_ device.
47 */
48
part_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)49 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
50 size_t *retlen, u_char *buf)
51 {
52 struct mtd_part *part = PART(mtd);
53 if (from >= mtd->size)
54 len = 0;
55 else if (from + len > mtd->size)
56 len = mtd->size - from;
57 return part->master->read (part->master, from + part->offset,
58 len, retlen, buf);
59 }
60
part_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char ** buf)61 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
62 size_t *retlen, u_char **buf)
63 {
64 struct mtd_part *part = PART(mtd);
65 if (from >= mtd->size)
66 len = 0;
67 else if (from + len > mtd->size)
68 len = mtd->size - from;
69 return part->master->point (part->master, from + part->offset,
70 len, retlen, buf);
71 }
part_unpoint(struct mtd_info * mtd,u_char * addr,loff_t from,size_t len)72 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
73 {
74 struct mtd_part *part = PART(mtd);
75
76 part->master->unpoint (part->master, addr, from + part->offset, len);
77 }
78
79
part_read_ecc(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,u_char * eccbuf,int oobsel)80 static int part_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
81 size_t *retlen, u_char *buf, u_char *eccbuf, int oobsel)
82 {
83 struct mtd_part *part = PART(mtd);
84 if (from >= mtd->size)
85 len = 0;
86 else if (from + len > mtd->size)
87 len = mtd->size - from;
88 return part->master->read_ecc (part->master, from + part->offset,
89 len, retlen, buf, eccbuf, oobsel);
90 }
91
part_read_oob(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)92 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len,
93 size_t *retlen, u_char *buf)
94 {
95 struct mtd_part *part = PART(mtd);
96 if (from >= mtd->size)
97 len = 0;
98 else if (from + len > mtd->size)
99 len = mtd->size - from;
100 return part->master->read_oob (part->master, from + part->offset,
101 len, retlen, buf);
102 }
103
part_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)104 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
105 size_t *retlen, u_char *buf)
106 {
107 struct mtd_part *part = PART(mtd);
108 return part->master->read_user_prot_reg (part->master, from,
109 len, retlen, buf);
110 }
111
part_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)112 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
113 size_t *retlen, u_char *buf)
114 {
115 struct mtd_part *part = PART(mtd);
116 return part->master->read_user_prot_reg (part->master, from,
117 len, retlen, buf);
118 }
119
part_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)120 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
121 size_t *retlen, const u_char *buf)
122 {
123 struct mtd_part *part = PART(mtd);
124 if (!(mtd->flags & MTD_WRITEABLE))
125 return -EROFS;
126 if (to >= mtd->size)
127 len = 0;
128 else if (to + len > mtd->size)
129 len = mtd->size - to;
130 return part->master->write (part->master, to + part->offset,
131 len, retlen, buf);
132 }
133
part_write_ecc(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf,u_char * eccbuf,int oobsel)134 static int part_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
135 size_t *retlen, const u_char *buf,
136 u_char *eccbuf, int oobsel)
137 {
138 struct mtd_part *part = PART(mtd);
139 if (!(mtd->flags & MTD_WRITEABLE))
140 return -EROFS;
141 if (to >= mtd->size)
142 len = 0;
143 else if (to + len > mtd->size)
144 len = mtd->size - to;
145 return part->master->write_ecc (part->master, to + part->offset,
146 len, retlen, buf, eccbuf, oobsel);
147 }
148
part_write_oob(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)149 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len,
150 size_t *retlen, const u_char *buf)
151 {
152 struct mtd_part *part = PART(mtd);
153 if (!(mtd->flags & MTD_WRITEABLE))
154 return -EROFS;
155 if (to >= mtd->size)
156 len = 0;
157 else if (to + len > mtd->size)
158 len = mtd->size - to;
159 return part->master->write_oob (part->master, to + part->offset,
160 len, retlen, buf);
161 }
162
part_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)163 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
164 size_t *retlen, u_char *buf)
165 {
166 struct mtd_part *part = PART(mtd);
167 return part->master->write_user_prot_reg (part->master, from,
168 len, retlen, buf);
169 }
170
part_writev(struct mtd_info * mtd,const struct iovec * vecs,unsigned long count,loff_t to,size_t * retlen)171 static int part_writev (struct mtd_info *mtd, const struct iovec *vecs,
172 unsigned long count, loff_t to, size_t *retlen)
173 {
174 struct mtd_part *part = PART(mtd);
175 if (!(mtd->flags & MTD_WRITEABLE))
176 return -EROFS;
177 return part->master->writev (part->master, vecs, count,
178 to + part->offset, retlen);
179 }
180
part_readv(struct mtd_info * mtd,struct iovec * vecs,unsigned long count,loff_t from,size_t * retlen)181 static int part_readv (struct mtd_info *mtd, struct iovec *vecs,
182 unsigned long count, loff_t from, size_t *retlen)
183 {
184 struct mtd_part *part = PART(mtd);
185 return part->master->readv (part->master, vecs, count,
186 from + part->offset, retlen);
187 }
188
part_writev_ecc(struct mtd_info * mtd,const struct iovec * vecs,unsigned long count,loff_t to,size_t * retlen,u_char * eccbuf,int oobsel)189 static int part_writev_ecc (struct mtd_info *mtd, const struct iovec *vecs,
190 unsigned long count, loff_t to, size_t *retlen,
191 u_char *eccbuf, int oobsel)
192 {
193 struct mtd_part *part = PART(mtd);
194 if (!(mtd->flags & MTD_WRITEABLE))
195 return -EROFS;
196 return part->master->writev_ecc (part->master, vecs, count,
197 to + part->offset, retlen,
198 eccbuf, oobsel);
199 }
200
part_readv_ecc(struct mtd_info * mtd,struct iovec * vecs,unsigned long count,loff_t from,size_t * retlen,u_char * eccbuf,int oobsel)201 static int part_readv_ecc (struct mtd_info *mtd, struct iovec *vecs,
202 unsigned long count, loff_t from, size_t *retlen,
203 u_char *eccbuf, int oobsel)
204 {
205 struct mtd_part *part = PART(mtd);
206 return part->master->readv_ecc (part->master, vecs, count,
207 from + part->offset, retlen,
208 eccbuf, oobsel);
209 }
210
part_erase(struct mtd_info * mtd,struct erase_info * instr)211 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
212 {
213 struct mtd_part *part = PART(mtd);
214 if (!(mtd->flags & MTD_WRITEABLE))
215 return -EROFS;
216 if (instr->addr >= mtd->size)
217 return -EINVAL;
218 instr->addr += part->offset;
219 return part->master->erase(part->master, instr);
220 }
221
part_lock(struct mtd_info * mtd,loff_t ofs,size_t len)222 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
223 {
224 struct mtd_part *part = PART(mtd);
225 if ((len + ofs) > mtd->size)
226 return -EINVAL;
227 return part->master->lock(part->master, ofs + part->offset, len);
228 }
229
part_unlock(struct mtd_info * mtd,loff_t ofs,size_t len)230 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
231 {
232 struct mtd_part *part = PART(mtd);
233 if ((len + ofs) > mtd->size)
234 return -EINVAL;
235 return part->master->unlock(part->master, ofs + part->offset, len);
236 }
237
part_sync(struct mtd_info * mtd)238 static void part_sync(struct mtd_info *mtd)
239 {
240 struct mtd_part *part = PART(mtd);
241 part->master->sync(part->master);
242 }
243
part_suspend(struct mtd_info * mtd)244 static int part_suspend(struct mtd_info *mtd)
245 {
246 struct mtd_part *part = PART(mtd);
247 return part->master->suspend(part->master);
248 }
249
part_resume(struct mtd_info * mtd)250 static void part_resume(struct mtd_info *mtd)
251 {
252 struct mtd_part *part = PART(mtd);
253 part->master->resume(part->master);
254 }
255
256 /*
257 * This function unregisters and destroy all slave MTD objects which are
258 * attached to the given master MTD object.
259 */
260
del_mtd_partitions(struct mtd_info * master)261 int del_mtd_partitions(struct mtd_info *master)
262 {
263 struct list_head *node;
264 struct mtd_part *slave;
265
266 for (node = mtd_partitions.next;
267 node != &mtd_partitions;
268 node = node->next) {
269 slave = list_entry(node, struct mtd_part, list);
270 if (slave->master == master) {
271 struct list_head *prev = node->prev;
272 __list_del(prev, node->next);
273 if(slave->registered)
274 del_mtd_device(&slave->mtd);
275 kfree(slave);
276 node = prev;
277 }
278 }
279
280 return 0;
281 }
282
283 /*
284 * This function, given a master MTD object and a partition table, creates
285 * and registers slave MTD objects which are bound to the master according to
286 * the partition definitions.
287 * (Q: should we register the master MTD object as well?)
288 */
289
add_mtd_partitions(struct mtd_info * master,struct mtd_partition * parts,int nbparts)290 int add_mtd_partitions(struct mtd_info *master,
291 struct mtd_partition *parts,
292 int nbparts)
293 {
294 struct mtd_part *slave;
295 u_int32_t cur_offset = 0;
296 int i;
297
298 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
299
300 for (i = 0; i < nbparts; i++) {
301
302 /* allocate the partition structure */
303 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
304 if (!slave) {
305 printk ("memory allocation error while creating partitions for \"%s\"\n",
306 master->name);
307 del_mtd_partitions(master);
308 return -ENOMEM;
309 }
310 memset(slave, 0, sizeof(*slave));
311 list_add(&slave->list, &mtd_partitions);
312
313 /* set up the MTD object for this partition */
314 slave->mtd.type = master->type;
315 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
316 slave->mtd.size = parts[i].size;
317 slave->mtd.oobblock = master->oobblock;
318 slave->mtd.oobsize = master->oobsize;
319 slave->mtd.ecctype = master->ecctype;
320 slave->mtd.eccsize = master->eccsize;
321
322 slave->mtd.name = parts[i].name;
323 slave->mtd.bank_size = master->bank_size;
324 slave->mtd.module = master->module;
325
326 slave->mtd.read = part_read;
327 slave->mtd.write = part_write;
328
329 if(master->point && master->unpoint){
330 slave->mtd.point = part_point;
331 slave->mtd.unpoint = part_unpoint;
332 }
333
334 if (master->read_ecc)
335 slave->mtd.read_ecc = part_read_ecc;
336 if (master->write_ecc)
337 slave->mtd.write_ecc = part_write_ecc;
338 if (master->read_oob)
339 slave->mtd.read_oob = part_read_oob;
340 if (master->write_oob)
341 slave->mtd.write_oob = part_write_oob;
342 if(master->read_user_prot_reg)
343 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
344 if(master->read_fact_prot_reg)
345 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
346 if(master->write_user_prot_reg)
347 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
348 if (master->sync)
349 slave->mtd.sync = part_sync;
350 if (!i && master->suspend && master->resume) {
351 slave->mtd.suspend = part_suspend;
352 slave->mtd.resume = part_resume;
353 }
354 if (master->writev)
355 slave->mtd.writev = part_writev;
356 if (master->readv)
357 slave->mtd.readv = part_readv;
358 if (master->writev_ecc)
359 slave->mtd.writev_ecc = part_writev_ecc;
360 if (master->readv_ecc)
361 slave->mtd.readv_ecc = part_readv_ecc;
362 if (master->lock)
363 slave->mtd.lock = part_lock;
364 if (master->unlock)
365 slave->mtd.unlock = part_unlock;
366 slave->mtd.erase = part_erase;
367 slave->master = master;
368 slave->offset = parts[i].offset;
369 slave->index = i;
370
371 if (slave->offset == MTDPART_OFS_APPEND)
372 slave->offset = cur_offset;
373 if (slave->offset == MTDPART_OFS_NXTBLK) {
374 u_int32_t emask = master->erasesize-1;
375 slave->offset = (cur_offset + emask) & ~emask;
376 if (slave->offset != cur_offset) {
377 printk(KERN_NOTICE "Moving partition %d: "
378 "0x%08x -> 0x%08x\n", i,
379 cur_offset, slave->offset);
380 }
381 }
382 if (slave->mtd.size == MTDPART_SIZ_FULL)
383 slave->mtd.size = master->size - slave->offset;
384 cur_offset = slave->offset + slave->mtd.size;
385
386 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
387 slave->offset + slave->mtd.size, slave->mtd.name);
388
389 /* let's do some sanity checks */
390 if (slave->offset >= master->size) {
391 /* let's register it anyway to preserve ordering */
392 slave->offset = 0;
393 slave->mtd.size = 0;
394 printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
395 parts[i].name);
396 }
397 if (slave->offset + slave->mtd.size > master->size) {
398 slave->mtd.size = master->size - slave->offset;
399 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
400 parts[i].name, master->name, slave->mtd.size);
401 }
402 if (master->numeraseregions>1) {
403 /* Deal with variable erase size stuff */
404 int i;
405 struct mtd_erase_region_info *regions = master->eraseregions;
406
407 /* Find the first erase regions which is part of this partition. */
408 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
409 ;
410
411 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
412 if (slave->mtd.erasesize < regions[i].erasesize) {
413 slave->mtd.erasesize = regions[i].erasesize;
414 }
415 }
416 } else {
417 /* Single erase size */
418 slave->mtd.erasesize = master->erasesize;
419 }
420
421 if ((slave->mtd.flags & MTD_WRITEABLE) &&
422 (slave->offset % slave->mtd.erasesize)) {
423 /* Doesn't start on a boundary of major erase size */
424 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
425 slave->mtd.flags &= ~MTD_WRITEABLE;
426 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
427 parts[i].name);
428 }
429 if ((slave->mtd.flags & MTD_WRITEABLE) &&
430 (slave->mtd.size % slave->mtd.erasesize)) {
431 slave->mtd.flags &= ~MTD_WRITEABLE;
432 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
433 parts[i].name);
434 }
435
436 if(parts[i].mtdp)
437 { /* store the object pointer (caller may or may not register it */
438 *parts[i].mtdp = &slave->mtd;
439 slave->registered = 0;
440 }
441 else
442 {
443 /* register our partition */
444 add_mtd_device(&slave->mtd);
445 slave->registered = 1;
446 }
447 }
448
449 return 0;
450 }
451
452 EXPORT_SYMBOL(add_mtd_partitions);
453 EXPORT_SYMBOL(del_mtd_partitions);
454
455
456 MODULE_LICENSE("GPL");
457 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
458 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
459
460