1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23
24 #include "internal.h"
25
26 extern struct acpi_device *acpi_root;
27
28 #define ACPI_BUS_CLASS "system_bus"
29 #define ACPI_BUS_HID "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME "System Bus"
31
32 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
33
34 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
35
36 static const char *dummy_hid = "device";
37
38 static LIST_HEAD(acpi_dep_list);
39 static DEFINE_MUTEX(acpi_dep_list_lock);
40 LIST_HEAD(acpi_bus_id_list);
41 static DEFINE_MUTEX(acpi_scan_lock);
42 static LIST_HEAD(acpi_scan_handlers_list);
43 DEFINE_MUTEX(acpi_device_lock);
44 LIST_HEAD(acpi_wakeup_device_list);
45 static DEFINE_MUTEX(acpi_hp_context_lock);
46
47 /*
48 * The UART device described by the SPCR table is the only object which needs
49 * special-casing. Everything else is covered by ACPI namespace paths in STAO
50 * table.
51 */
52 static u64 spcr_uart_addr;
53
acpi_scan_lock_acquire(void)54 void acpi_scan_lock_acquire(void)
55 {
56 mutex_lock(&acpi_scan_lock);
57 }
58 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
59
acpi_scan_lock_release(void)60 void acpi_scan_lock_release(void)
61 {
62 mutex_unlock(&acpi_scan_lock);
63 }
64 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
65
acpi_lock_hp_context(void)66 void acpi_lock_hp_context(void)
67 {
68 mutex_lock(&acpi_hp_context_lock);
69 }
70
acpi_unlock_hp_context(void)71 void acpi_unlock_hp_context(void)
72 {
73 mutex_unlock(&acpi_hp_context_lock);
74 }
75
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))76 void acpi_initialize_hp_context(struct acpi_device *adev,
77 struct acpi_hotplug_context *hp,
78 int (*notify)(struct acpi_device *, u32),
79 void (*uevent)(struct acpi_device *, u32))
80 {
81 acpi_lock_hp_context();
82 hp->notify = notify;
83 hp->uevent = uevent;
84 acpi_set_hp_context(adev, hp);
85 acpi_unlock_hp_context();
86 }
87 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
88
acpi_scan_add_handler(struct acpi_scan_handler * handler)89 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
90 {
91 if (!handler)
92 return -EINVAL;
93
94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
95 return 0;
96 }
97
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)98 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
99 const char *hotplug_profile_name)
100 {
101 int error;
102
103 error = acpi_scan_add_handler(handler);
104 if (error)
105 return error;
106
107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
108 return 0;
109 }
110
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)111 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
112 {
113 struct acpi_device_physical_node *pn;
114 bool offline = true;
115 char *envp[] = { "EVENT=offline", NULL };
116
117 /*
118 * acpi_container_offline() calls this for all of the container's
119 * children under the container's physical_node_lock lock.
120 */
121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
122
123 list_for_each_entry(pn, &adev->physical_node_list, node)
124 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
125 if (uevent)
126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
127
128 offline = false;
129 break;
130 }
131
132 mutex_unlock(&adev->physical_node_lock);
133 return offline;
134 }
135
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)136 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
137 void **ret_p)
138 {
139 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
140 struct acpi_device_physical_node *pn;
141 bool second_pass = (bool)data;
142 acpi_status status = AE_OK;
143
144 if (!device)
145 return AE_OK;
146
147 if (device->handler && !device->handler->hotplug.enabled) {
148 *ret_p = &device->dev;
149 return AE_SUPPORT;
150 }
151
152 mutex_lock(&device->physical_node_lock);
153
154 list_for_each_entry(pn, &device->physical_node_list, node) {
155 int ret;
156
157 if (second_pass) {
158 /* Skip devices offlined by the first pass. */
159 if (pn->put_online)
160 continue;
161 } else {
162 pn->put_online = false;
163 }
164 ret = device_offline(pn->dev);
165 if (ret >= 0) {
166 pn->put_online = !ret;
167 } else {
168 *ret_p = pn->dev;
169 if (second_pass) {
170 status = AE_ERROR;
171 break;
172 }
173 }
174 }
175
176 mutex_unlock(&device->physical_node_lock);
177
178 return status;
179 }
180
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)181 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
182 void **ret_p)
183 {
184 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
185 struct acpi_device_physical_node *pn;
186
187 if (!device)
188 return AE_OK;
189
190 mutex_lock(&device->physical_node_lock);
191
192 list_for_each_entry(pn, &device->physical_node_list, node)
193 if (pn->put_online) {
194 device_online(pn->dev);
195 pn->put_online = false;
196 }
197
198 mutex_unlock(&device->physical_node_lock);
199
200 return AE_OK;
201 }
202
acpi_scan_try_to_offline(struct acpi_device * device)203 static int acpi_scan_try_to_offline(struct acpi_device *device)
204 {
205 acpi_handle handle = device->handle;
206 struct device *errdev = NULL;
207 acpi_status status;
208
209 /*
210 * Carry out two passes here and ignore errors in the first pass,
211 * because if the devices in question are memory blocks and
212 * CONFIG_MEMCG is set, one of the blocks may hold data structures
213 * that the other blocks depend on, but it is not known in advance which
214 * block holds them.
215 *
216 * If the first pass is successful, the second one isn't needed, though.
217 */
218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
219 NULL, acpi_bus_offline, (void *)false,
220 (void **)&errdev);
221 if (status == AE_SUPPORT) {
222 dev_warn(errdev, "Offline disabled.\n");
223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
224 acpi_bus_online, NULL, NULL, NULL);
225 return -EPERM;
226 }
227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
228 if (errdev) {
229 errdev = NULL;
230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
231 NULL, acpi_bus_offline, (void *)true,
232 (void **)&errdev);
233 if (!errdev)
234 acpi_bus_offline(handle, 0, (void *)true,
235 (void **)&errdev);
236
237 if (errdev) {
238 dev_warn(errdev, "Offline failed.\n");
239 acpi_bus_online(handle, 0, NULL, NULL);
240 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
241 ACPI_UINT32_MAX, acpi_bus_online,
242 NULL, NULL, NULL);
243 return -EBUSY;
244 }
245 }
246 return 0;
247 }
248
acpi_scan_hot_remove(struct acpi_device * device)249 static int acpi_scan_hot_remove(struct acpi_device *device)
250 {
251 acpi_handle handle = device->handle;
252 unsigned long long sta;
253 acpi_status status;
254
255 if (device->handler && device->handler->hotplug.demand_offline) {
256 if (!acpi_scan_is_offline(device, true))
257 return -EBUSY;
258 } else {
259 int error = acpi_scan_try_to_offline(device);
260 if (error)
261 return error;
262 }
263
264 acpi_handle_debug(handle, "Ejecting\n");
265
266 acpi_bus_trim(device);
267
268 acpi_evaluate_lck(handle, 0);
269 /*
270 * TBD: _EJD support.
271 */
272 status = acpi_evaluate_ej0(handle);
273 if (status == AE_NOT_FOUND)
274 return -ENODEV;
275 else if (ACPI_FAILURE(status))
276 return -EIO;
277
278 /*
279 * Verify if eject was indeed successful. If not, log an error
280 * message. No need to call _OST since _EJ0 call was made OK.
281 */
282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
283 if (ACPI_FAILURE(status)) {
284 acpi_handle_warn(handle,
285 "Status check after eject failed (0x%x)\n", status);
286 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
287 acpi_handle_warn(handle,
288 "Eject incomplete - status 0x%llx\n", sta);
289 }
290
291 return 0;
292 }
293
acpi_scan_device_not_present(struct acpi_device * adev)294 static int acpi_scan_device_not_present(struct acpi_device *adev)
295 {
296 if (!acpi_device_enumerated(adev)) {
297 dev_warn(&adev->dev, "Still not present\n");
298 return -EALREADY;
299 }
300 acpi_bus_trim(adev);
301 return 0;
302 }
303
acpi_scan_device_check(struct acpi_device * adev)304 static int acpi_scan_device_check(struct acpi_device *adev)
305 {
306 int error;
307
308 acpi_bus_get_status(adev);
309 if (adev->status.present || adev->status.functional) {
310 /*
311 * This function is only called for device objects for which
312 * matching scan handlers exist. The only situation in which
313 * the scan handler is not attached to this device object yet
314 * is when the device has just appeared (either it wasn't
315 * present at all before or it was removed and then added
316 * again).
317 */
318 if (adev->handler) {
319 dev_warn(&adev->dev, "Already enumerated\n");
320 return -EALREADY;
321 }
322 error = acpi_bus_scan(adev->handle);
323 if (error) {
324 dev_warn(&adev->dev, "Namespace scan failure\n");
325 return error;
326 }
327 if (!adev->handler) {
328 dev_warn(&adev->dev, "Enumeration failure\n");
329 error = -ENODEV;
330 }
331 } else {
332 error = acpi_scan_device_not_present(adev);
333 }
334 return error;
335 }
336
acpi_scan_bus_check(struct acpi_device * adev)337 static int acpi_scan_bus_check(struct acpi_device *adev)
338 {
339 struct acpi_scan_handler *handler = adev->handler;
340 struct acpi_device *child;
341 int error;
342
343 acpi_bus_get_status(adev);
344 if (!(adev->status.present || adev->status.functional)) {
345 acpi_scan_device_not_present(adev);
346 return 0;
347 }
348 if (handler && handler->hotplug.scan_dependent)
349 return handler->hotplug.scan_dependent(adev);
350
351 error = acpi_bus_scan(adev->handle);
352 if (error) {
353 dev_warn(&adev->dev, "Namespace scan failure\n");
354 return error;
355 }
356 list_for_each_entry(child, &adev->children, node) {
357 error = acpi_scan_bus_check(child);
358 if (error)
359 return error;
360 }
361 return 0;
362 }
363
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)364 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
365 {
366 switch (type) {
367 case ACPI_NOTIFY_BUS_CHECK:
368 return acpi_scan_bus_check(adev);
369 case ACPI_NOTIFY_DEVICE_CHECK:
370 return acpi_scan_device_check(adev);
371 case ACPI_NOTIFY_EJECT_REQUEST:
372 case ACPI_OST_EC_OSPM_EJECT:
373 if (adev->handler && !adev->handler->hotplug.enabled) {
374 dev_info(&adev->dev, "Eject disabled\n");
375 return -EPERM;
376 }
377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
379 return acpi_scan_hot_remove(adev);
380 }
381 return -EINVAL;
382 }
383
acpi_device_hotplug(struct acpi_device * adev,u32 src)384 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
385 {
386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
387 int error = -ENODEV;
388
389 lock_device_hotplug();
390 mutex_lock(&acpi_scan_lock);
391
392 /*
393 * The device object's ACPI handle cannot become invalid as long as we
394 * are holding acpi_scan_lock, but it might have become invalid before
395 * that lock was acquired.
396 */
397 if (adev->handle == INVALID_ACPI_HANDLE)
398 goto err_out;
399
400 if (adev->flags.is_dock_station) {
401 error = dock_notify(adev, src);
402 } else if (adev->flags.hotplug_notify) {
403 error = acpi_generic_hotplug_event(adev, src);
404 } else {
405 int (*notify)(struct acpi_device *, u32);
406
407 acpi_lock_hp_context();
408 notify = adev->hp ? adev->hp->notify : NULL;
409 acpi_unlock_hp_context();
410 /*
411 * There may be additional notify handlers for device objects
412 * without the .event() callback, so ignore them here.
413 */
414 if (notify)
415 error = notify(adev, src);
416 else
417 goto out;
418 }
419 switch (error) {
420 case 0:
421 ost_code = ACPI_OST_SC_SUCCESS;
422 break;
423 case -EPERM:
424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
425 break;
426 case -EBUSY:
427 ost_code = ACPI_OST_SC_DEVICE_BUSY;
428 break;
429 default:
430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
431 break;
432 }
433
434 err_out:
435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
436
437 out:
438 acpi_bus_put_acpi_device(adev);
439 mutex_unlock(&acpi_scan_lock);
440 unlock_device_hotplug();
441 }
442
acpi_free_power_resources_lists(struct acpi_device * device)443 static void acpi_free_power_resources_lists(struct acpi_device *device)
444 {
445 int i;
446
447 if (device->wakeup.flags.valid)
448 acpi_power_resources_list_free(&device->wakeup.resources);
449
450 if (!device->power.flags.power_resources)
451 return;
452
453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
454 struct acpi_device_power_state *ps = &device->power.states[i];
455 acpi_power_resources_list_free(&ps->resources);
456 }
457 }
458
acpi_device_release(struct device * dev)459 static void acpi_device_release(struct device *dev)
460 {
461 struct acpi_device *acpi_dev = to_acpi_device(dev);
462
463 acpi_free_properties(acpi_dev);
464 acpi_free_pnp_ids(&acpi_dev->pnp);
465 acpi_free_power_resources_lists(acpi_dev);
466 kfree(acpi_dev);
467 }
468
acpi_device_del(struct acpi_device * device)469 static void acpi_device_del(struct acpi_device *device)
470 {
471 struct acpi_device_bus_id *acpi_device_bus_id;
472
473 mutex_lock(&acpi_device_lock);
474 if (device->parent)
475 list_del(&device->node);
476
477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
478 if (!strcmp(acpi_device_bus_id->bus_id,
479 acpi_device_hid(device))) {
480 ida_free(&acpi_device_bus_id->instance_ida,
481 device->pnp.instance_no);
482 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
483 list_del(&acpi_device_bus_id->node);
484 kfree_const(acpi_device_bus_id->bus_id);
485 kfree(acpi_device_bus_id);
486 }
487 break;
488 }
489
490 list_del(&device->wakeup_list);
491 mutex_unlock(&acpi_device_lock);
492
493 acpi_power_add_remove_device(device, false);
494 acpi_device_remove_files(device);
495 if (device->remove)
496 device->remove(device);
497
498 device_del(&device->dev);
499 }
500
501 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
502
503 static LIST_HEAD(acpi_device_del_list);
504 static DEFINE_MUTEX(acpi_device_del_lock);
505
acpi_device_del_work_fn(struct work_struct * work_not_used)506 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
507 {
508 for (;;) {
509 struct acpi_device *adev;
510
511 mutex_lock(&acpi_device_del_lock);
512
513 if (list_empty(&acpi_device_del_list)) {
514 mutex_unlock(&acpi_device_del_lock);
515 break;
516 }
517 adev = list_first_entry(&acpi_device_del_list,
518 struct acpi_device, del_list);
519 list_del(&adev->del_list);
520
521 mutex_unlock(&acpi_device_del_lock);
522
523 blocking_notifier_call_chain(&acpi_reconfig_chain,
524 ACPI_RECONFIG_DEVICE_REMOVE, adev);
525
526 acpi_device_del(adev);
527 /*
528 * Drop references to all power resources that might have been
529 * used by the device.
530 */
531 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
532 acpi_dev_put(adev);
533 }
534 }
535
536 /**
537 * acpi_scan_drop_device - Drop an ACPI device object.
538 * @handle: Handle of an ACPI namespace node, not used.
539 * @context: Address of the ACPI device object to drop.
540 *
541 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
542 * namespace node the device object pointed to by @context is attached to.
543 *
544 * The unregistration is carried out asynchronously to avoid running
545 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
546 * ensure the correct ordering (the device objects must be unregistered in the
547 * same order in which the corresponding namespace nodes are deleted).
548 */
acpi_scan_drop_device(acpi_handle handle,void * context)549 static void acpi_scan_drop_device(acpi_handle handle, void *context)
550 {
551 static DECLARE_WORK(work, acpi_device_del_work_fn);
552 struct acpi_device *adev = context;
553
554 mutex_lock(&acpi_device_del_lock);
555
556 /*
557 * Use the ACPI hotplug workqueue which is ordered, so this work item
558 * won't run after any hotplug work items submitted subsequently. That
559 * prevents attempts to register device objects identical to those being
560 * deleted from happening concurrently (such attempts result from
561 * hotplug events handled via the ACPI hotplug workqueue). It also will
562 * run after all of the work items submitted previously, which helps
563 * those work items to ensure that they are not accessing stale device
564 * objects.
565 */
566 if (list_empty(&acpi_device_del_list))
567 acpi_queue_hotplug_work(&work);
568
569 list_add_tail(&adev->del_list, &acpi_device_del_list);
570 /* Make acpi_ns_validate_handle() return NULL for this handle. */
571 adev->handle = INVALID_ACPI_HANDLE;
572
573 mutex_unlock(&acpi_device_del_lock);
574 }
575
handle_to_device(acpi_handle handle,void (* callback)(void *))576 static struct acpi_device *handle_to_device(acpi_handle handle,
577 void (*callback)(void *))
578 {
579 struct acpi_device *adev = NULL;
580 acpi_status status;
581
582 status = acpi_get_data_full(handle, acpi_scan_drop_device,
583 (void **)&adev, callback);
584 if (ACPI_FAILURE(status) || !adev) {
585 acpi_handle_debug(handle, "No context!\n");
586 return NULL;
587 }
588 return adev;
589 }
590
591 /**
592 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
593 * @handle: ACPI handle associated with the requested ACPI device object.
594 *
595 * Return a pointer to the ACPI device object associated with @handle, if
596 * present, or NULL otherwise.
597 */
acpi_fetch_acpi_dev(acpi_handle handle)598 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
599 {
600 return handle_to_device(handle, NULL);
601 }
602 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
603
get_acpi_device(void * dev)604 static void get_acpi_device(void *dev)
605 {
606 acpi_dev_get(dev);
607 }
608
acpi_bus_get_acpi_device(acpi_handle handle)609 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
610 {
611 return handle_to_device(handle, get_acpi_device);
612 }
613 EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device);
614
acpi_device_bus_id_match(const char * dev_id)615 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
616 {
617 struct acpi_device_bus_id *acpi_device_bus_id;
618
619 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
620 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
621 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
622 return acpi_device_bus_id;
623 }
624 return NULL;
625 }
626
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)627 static int acpi_device_set_name(struct acpi_device *device,
628 struct acpi_device_bus_id *acpi_device_bus_id)
629 {
630 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
631 int result;
632
633 result = ida_alloc(instance_ida, GFP_KERNEL);
634 if (result < 0)
635 return result;
636
637 device->pnp.instance_no = result;
638 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
639 return 0;
640 }
641
acpi_tie_acpi_dev(struct acpi_device * adev)642 static int acpi_tie_acpi_dev(struct acpi_device *adev)
643 {
644 acpi_handle handle = adev->handle;
645 acpi_status status;
646
647 if (!handle)
648 return 0;
649
650 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
651 if (ACPI_FAILURE(status)) {
652 acpi_handle_err(handle, "Unable to attach device data\n");
653 return -ENODEV;
654 }
655
656 return 0;
657 }
658
acpi_store_pld_crc(struct acpi_device * adev)659 static void acpi_store_pld_crc(struct acpi_device *adev)
660 {
661 struct acpi_pld_info *pld;
662 acpi_status status;
663
664 status = acpi_get_physical_device_location(adev->handle, &pld);
665 if (ACPI_FAILURE(status))
666 return;
667
668 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
669 ACPI_FREE(pld);
670 }
671
__acpi_device_add(struct acpi_device * device,void (* release)(struct device *))672 static int __acpi_device_add(struct acpi_device *device,
673 void (*release)(struct device *))
674 {
675 struct acpi_device_bus_id *acpi_device_bus_id;
676 int result;
677
678 /*
679 * Linkage
680 * -------
681 * Link this device to its parent and siblings.
682 */
683 INIT_LIST_HEAD(&device->children);
684 INIT_LIST_HEAD(&device->node);
685 INIT_LIST_HEAD(&device->wakeup_list);
686 INIT_LIST_HEAD(&device->physical_node_list);
687 INIT_LIST_HEAD(&device->del_list);
688 mutex_init(&device->physical_node_lock);
689
690 mutex_lock(&acpi_device_lock);
691
692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
693 if (acpi_device_bus_id) {
694 result = acpi_device_set_name(device, acpi_device_bus_id);
695 if (result)
696 goto err_unlock;
697 } else {
698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
699 GFP_KERNEL);
700 if (!acpi_device_bus_id) {
701 result = -ENOMEM;
702 goto err_unlock;
703 }
704 acpi_device_bus_id->bus_id =
705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
706 if (!acpi_device_bus_id->bus_id) {
707 kfree(acpi_device_bus_id);
708 result = -ENOMEM;
709 goto err_unlock;
710 }
711
712 ida_init(&acpi_device_bus_id->instance_ida);
713
714 result = acpi_device_set_name(device, acpi_device_bus_id);
715 if (result) {
716 kfree_const(acpi_device_bus_id->bus_id);
717 kfree(acpi_device_bus_id);
718 goto err_unlock;
719 }
720
721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
722 }
723
724 if (device->parent)
725 list_add_tail(&device->node, &device->parent->children);
726
727 if (device->wakeup.flags.valid)
728 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
729
730 acpi_store_pld_crc(device);
731
732 mutex_unlock(&acpi_device_lock);
733
734 if (device->parent)
735 device->dev.parent = &device->parent->dev;
736
737 device->dev.bus = &acpi_bus_type;
738 device->dev.release = release;
739 result = device_add(&device->dev);
740 if (result) {
741 dev_err(&device->dev, "Error registering device\n");
742 goto err;
743 }
744
745 result = acpi_device_setup_files(device);
746 if (result)
747 pr_err("Error creating sysfs interface for device %s\n",
748 dev_name(&device->dev));
749
750 return 0;
751
752 err:
753 mutex_lock(&acpi_device_lock);
754
755 if (device->parent)
756 list_del(&device->node);
757
758 list_del(&device->wakeup_list);
759
760 err_unlock:
761 mutex_unlock(&acpi_device_lock);
762
763 acpi_detach_data(device->handle, acpi_scan_drop_device);
764
765 return result;
766 }
767
acpi_device_add(struct acpi_device * adev,void (* release)(struct device *))768 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
769 {
770 int ret;
771
772 ret = acpi_tie_acpi_dev(adev);
773 if (ret)
774 return ret;
775
776 return __acpi_device_add(adev, release);
777 }
778
779 /* --------------------------------------------------------------------------
780 Device Enumeration
781 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])782 static bool acpi_info_matches_ids(struct acpi_device_info *info,
783 const char * const ids[])
784 {
785 struct acpi_pnp_device_id_list *cid_list = NULL;
786 int i, index;
787
788 if (!(info->valid & ACPI_VALID_HID))
789 return false;
790
791 index = match_string(ids, -1, info->hardware_id.string);
792 if (index >= 0)
793 return true;
794
795 if (info->valid & ACPI_VALID_CID)
796 cid_list = &info->compatible_id_list;
797
798 if (!cid_list)
799 return false;
800
801 for (i = 0; i < cid_list->count; i++) {
802 index = match_string(ids, -1, cid_list->ids[i].string);
803 if (index >= 0)
804 return true;
805 }
806
807 return false;
808 }
809
810 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
811 static const char * const acpi_ignore_dep_ids[] = {
812 "PNP0D80", /* Windows-compatible System Power Management Controller */
813 "INT33BD", /* Intel Baytrail Mailbox Device */
814 NULL
815 };
816
817 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
818 static const char * const acpi_honor_dep_ids[] = {
819 "INT3472", /* Camera sensor PMIC / clk and regulator info */
820 NULL
821 };
822
acpi_bus_get_parent(acpi_handle handle)823 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
824 {
825 struct acpi_device *device;
826 acpi_status status;
827
828 /*
829 * Fixed hardware devices do not appear in the namespace and do not
830 * have handles, but we fabricate acpi_devices for them, so we have
831 * to deal with them specially.
832 */
833 if (!handle)
834 return acpi_root;
835
836 do {
837 status = acpi_get_parent(handle, &handle);
838 if (ACPI_FAILURE(status))
839 return status == AE_NULL_ENTRY ? NULL : acpi_root;
840
841 device = acpi_fetch_acpi_dev(handle);
842 } while (!device);
843 return device;
844 }
845
846 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)847 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
848 {
849 acpi_status status;
850 acpi_handle tmp;
851 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
852 union acpi_object *obj;
853
854 status = acpi_get_handle(handle, "_EJD", &tmp);
855 if (ACPI_FAILURE(status))
856 return status;
857
858 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
859 if (ACPI_SUCCESS(status)) {
860 obj = buffer.pointer;
861 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
862 ejd);
863 kfree(buffer.pointer);
864 }
865 return status;
866 }
867 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
868
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)869 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
870 {
871 acpi_handle handle = dev->handle;
872 struct acpi_device_wakeup *wakeup = &dev->wakeup;
873 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
874 union acpi_object *package = NULL;
875 union acpi_object *element = NULL;
876 acpi_status status;
877 int err = -ENODATA;
878
879 INIT_LIST_HEAD(&wakeup->resources);
880
881 /* _PRW */
882 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
883 if (ACPI_FAILURE(status)) {
884 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
885 acpi_format_exception(status));
886 return err;
887 }
888
889 package = (union acpi_object *)buffer.pointer;
890
891 if (!package || package->package.count < 2)
892 goto out;
893
894 element = &(package->package.elements[0]);
895 if (!element)
896 goto out;
897
898 if (element->type == ACPI_TYPE_PACKAGE) {
899 if ((element->package.count < 2) ||
900 (element->package.elements[0].type !=
901 ACPI_TYPE_LOCAL_REFERENCE)
902 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
903 goto out;
904
905 wakeup->gpe_device =
906 element->package.elements[0].reference.handle;
907 wakeup->gpe_number =
908 (u32) element->package.elements[1].integer.value;
909 } else if (element->type == ACPI_TYPE_INTEGER) {
910 wakeup->gpe_device = NULL;
911 wakeup->gpe_number = element->integer.value;
912 } else {
913 goto out;
914 }
915
916 element = &(package->package.elements[1]);
917 if (element->type != ACPI_TYPE_INTEGER)
918 goto out;
919
920 wakeup->sleep_state = element->integer.value;
921
922 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
923 if (err)
924 goto out;
925
926 if (!list_empty(&wakeup->resources)) {
927 int sleep_state;
928
929 err = acpi_power_wakeup_list_init(&wakeup->resources,
930 &sleep_state);
931 if (err) {
932 acpi_handle_warn(handle, "Retrieving current states "
933 "of wakeup power resources failed\n");
934 acpi_power_resources_list_free(&wakeup->resources);
935 goto out;
936 }
937 if (sleep_state < wakeup->sleep_state) {
938 acpi_handle_warn(handle, "Overriding _PRW sleep state "
939 "(S%d) by S%d from power resources\n",
940 (int)wakeup->sleep_state, sleep_state);
941 wakeup->sleep_state = sleep_state;
942 }
943 }
944
945 out:
946 kfree(buffer.pointer);
947 return err;
948 }
949
acpi_wakeup_gpe_init(struct acpi_device * device)950 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
951 {
952 static const struct acpi_device_id button_device_ids[] = {
953 {"PNP0C0C", 0}, /* Power button */
954 {"PNP0C0D", 0}, /* Lid */
955 {"PNP0C0E", 0}, /* Sleep button */
956 {"", 0},
957 };
958 struct acpi_device_wakeup *wakeup = &device->wakeup;
959 acpi_status status;
960
961 wakeup->flags.notifier_present = 0;
962
963 /* Power button, Lid switch always enable wakeup */
964 if (!acpi_match_device_ids(device, button_device_ids)) {
965 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
966 /* Do not use Lid/sleep button for S5 wakeup */
967 if (wakeup->sleep_state == ACPI_STATE_S5)
968 wakeup->sleep_state = ACPI_STATE_S4;
969 }
970 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
971 device_set_wakeup_capable(&device->dev, true);
972 return true;
973 }
974
975 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
976 wakeup->gpe_number);
977 return ACPI_SUCCESS(status);
978 }
979
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)980 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
981 {
982 int err;
983
984 /* Presence of _PRW indicates wake capable */
985 if (!acpi_has_method(device->handle, "_PRW"))
986 return;
987
988 err = acpi_bus_extract_wakeup_device_power_package(device);
989 if (err) {
990 dev_err(&device->dev, "Unable to extract wakeup power resources");
991 return;
992 }
993
994 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
995 device->wakeup.prepare_count = 0;
996 /*
997 * Call _PSW/_DSW object to disable its ability to wake the sleeping
998 * system for the ACPI device with the _PRW object.
999 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1000 * So it is necessary to call _DSW object first. Only when it is not
1001 * present will the _PSW object used.
1002 */
1003 err = acpi_device_sleep_wake(device, 0, 0, 0);
1004 if (err)
1005 pr_debug("error in _DSW or _PSW evaluation\n");
1006 }
1007
acpi_bus_init_power_state(struct acpi_device * device,int state)1008 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1009 {
1010 struct acpi_device_power_state *ps = &device->power.states[state];
1011 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1012 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1013 acpi_status status;
1014
1015 INIT_LIST_HEAD(&ps->resources);
1016
1017 /* Evaluate "_PRx" to get referenced power resources */
1018 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1019 if (ACPI_SUCCESS(status)) {
1020 union acpi_object *package = buffer.pointer;
1021
1022 if (buffer.length && package
1023 && package->type == ACPI_TYPE_PACKAGE
1024 && package->package.count)
1025 acpi_extract_power_resources(package, 0, &ps->resources);
1026
1027 ACPI_FREE(buffer.pointer);
1028 }
1029
1030 /* Evaluate "_PSx" to see if we can do explicit sets */
1031 pathname[2] = 'S';
1032 if (acpi_has_method(device->handle, pathname))
1033 ps->flags.explicit_set = 1;
1034
1035 /* State is valid if there are means to put the device into it. */
1036 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1037 ps->flags.valid = 1;
1038
1039 ps->power = -1; /* Unknown - driver assigned */
1040 ps->latency = -1; /* Unknown - driver assigned */
1041 }
1042
acpi_bus_get_power_flags(struct acpi_device * device)1043 static void acpi_bus_get_power_flags(struct acpi_device *device)
1044 {
1045 unsigned long long dsc = ACPI_STATE_D0;
1046 u32 i;
1047
1048 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1049 if (!acpi_has_method(device->handle, "_PS0") &&
1050 !acpi_has_method(device->handle, "_PR0"))
1051 return;
1052
1053 device->flags.power_manageable = 1;
1054
1055 /*
1056 * Power Management Flags
1057 */
1058 if (acpi_has_method(device->handle, "_PSC"))
1059 device->power.flags.explicit_get = 1;
1060
1061 if (acpi_has_method(device->handle, "_IRC"))
1062 device->power.flags.inrush_current = 1;
1063
1064 if (acpi_has_method(device->handle, "_DSW"))
1065 device->power.flags.dsw_present = 1;
1066
1067 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1068 device->power.state_for_enumeration = dsc;
1069
1070 /*
1071 * Enumerate supported power management states
1072 */
1073 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1074 acpi_bus_init_power_state(device, i);
1075
1076 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1077
1078 /* Set the defaults for D0 and D3hot (always supported). */
1079 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1080 device->power.states[ACPI_STATE_D0].power = 100;
1081 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1082
1083 /*
1084 * Use power resources only if the D0 list of them is populated, because
1085 * some platforms may provide _PR3 only to indicate D3cold support and
1086 * in those cases the power resources list returned by it may be bogus.
1087 */
1088 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1089 device->power.flags.power_resources = 1;
1090 /*
1091 * D3cold is supported if the D3hot list of power resources is
1092 * not empty.
1093 */
1094 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1095 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1096 }
1097
1098 if (acpi_bus_init_power(device))
1099 device->flags.power_manageable = 0;
1100 }
1101
acpi_bus_get_flags(struct acpi_device * device)1102 static void acpi_bus_get_flags(struct acpi_device *device)
1103 {
1104 /* Presence of _STA indicates 'dynamic_status' */
1105 if (acpi_has_method(device->handle, "_STA"))
1106 device->flags.dynamic_status = 1;
1107
1108 /* Presence of _RMV indicates 'removable' */
1109 if (acpi_has_method(device->handle, "_RMV"))
1110 device->flags.removable = 1;
1111
1112 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1113 if (acpi_has_method(device->handle, "_EJD") ||
1114 acpi_has_method(device->handle, "_EJ0"))
1115 device->flags.ejectable = 1;
1116 }
1117
acpi_device_get_busid(struct acpi_device * device)1118 static void acpi_device_get_busid(struct acpi_device *device)
1119 {
1120 char bus_id[5] = { '?', 0 };
1121 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1122 int i = 0;
1123
1124 /*
1125 * Bus ID
1126 * ------
1127 * The device's Bus ID is simply the object name.
1128 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1129 */
1130 if (ACPI_IS_ROOT_DEVICE(device)) {
1131 strcpy(device->pnp.bus_id, "ACPI");
1132 return;
1133 }
1134
1135 switch (device->device_type) {
1136 case ACPI_BUS_TYPE_POWER_BUTTON:
1137 strcpy(device->pnp.bus_id, "PWRF");
1138 break;
1139 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1140 strcpy(device->pnp.bus_id, "SLPF");
1141 break;
1142 case ACPI_BUS_TYPE_ECDT_EC:
1143 strcpy(device->pnp.bus_id, "ECDT");
1144 break;
1145 default:
1146 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1147 /* Clean up trailing underscores (if any) */
1148 for (i = 3; i > 1; i--) {
1149 if (bus_id[i] == '_')
1150 bus_id[i] = '\0';
1151 else
1152 break;
1153 }
1154 strcpy(device->pnp.bus_id, bus_id);
1155 break;
1156 }
1157 }
1158
1159 /*
1160 * acpi_ata_match - see if an acpi object is an ATA device
1161 *
1162 * If an acpi object has one of the ACPI ATA methods defined,
1163 * then we can safely call it an ATA device.
1164 */
acpi_ata_match(acpi_handle handle)1165 bool acpi_ata_match(acpi_handle handle)
1166 {
1167 return acpi_has_method(handle, "_GTF") ||
1168 acpi_has_method(handle, "_GTM") ||
1169 acpi_has_method(handle, "_STM") ||
1170 acpi_has_method(handle, "_SDD");
1171 }
1172
1173 /*
1174 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1175 *
1176 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1177 * then we can safely call it an ejectable drive bay
1178 */
acpi_bay_match(acpi_handle handle)1179 bool acpi_bay_match(acpi_handle handle)
1180 {
1181 acpi_handle phandle;
1182
1183 if (!acpi_has_method(handle, "_EJ0"))
1184 return false;
1185 if (acpi_ata_match(handle))
1186 return true;
1187 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1188 return false;
1189
1190 return acpi_ata_match(phandle);
1191 }
1192
acpi_device_is_battery(struct acpi_device * adev)1193 bool acpi_device_is_battery(struct acpi_device *adev)
1194 {
1195 struct acpi_hardware_id *hwid;
1196
1197 list_for_each_entry(hwid, &adev->pnp.ids, list)
1198 if (!strcmp("PNP0C0A", hwid->id))
1199 return true;
1200
1201 return false;
1202 }
1203
is_ejectable_bay(struct acpi_device * adev)1204 static bool is_ejectable_bay(struct acpi_device *adev)
1205 {
1206 acpi_handle handle = adev->handle;
1207
1208 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1209 return true;
1210
1211 return acpi_bay_match(handle);
1212 }
1213
1214 /*
1215 * acpi_dock_match - see if an acpi object has a _DCK method
1216 */
acpi_dock_match(acpi_handle handle)1217 bool acpi_dock_match(acpi_handle handle)
1218 {
1219 return acpi_has_method(handle, "_DCK");
1220 }
1221
1222 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1223 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1224 void **return_value)
1225 {
1226 long *cap = context;
1227
1228 if (acpi_has_method(handle, "_BCM") &&
1229 acpi_has_method(handle, "_BCL")) {
1230 acpi_handle_debug(handle, "Found generic backlight support\n");
1231 *cap |= ACPI_VIDEO_BACKLIGHT;
1232 /* We have backlight support, no need to scan further */
1233 return AE_CTRL_TERMINATE;
1234 }
1235 return 0;
1236 }
1237
1238 /* Returns true if the ACPI object is a video device which can be
1239 * handled by video.ko.
1240 * The device will get a Linux specific CID added in scan.c to
1241 * identify the device as an ACPI graphics device
1242 * Be aware that the graphics device may not be physically present
1243 * Use acpi_video_get_capabilities() to detect general ACPI video
1244 * capabilities of present cards
1245 */
acpi_is_video_device(acpi_handle handle)1246 long acpi_is_video_device(acpi_handle handle)
1247 {
1248 long video_caps = 0;
1249
1250 /* Is this device able to support video switching ? */
1251 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1252 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1253
1254 /* Is this device able to retrieve a video ROM ? */
1255 if (acpi_has_method(handle, "_ROM"))
1256 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1257
1258 /* Is this device able to configure which video head to be POSTed ? */
1259 if (acpi_has_method(handle, "_VPO") &&
1260 acpi_has_method(handle, "_GPD") &&
1261 acpi_has_method(handle, "_SPD"))
1262 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1263
1264 /* Only check for backlight functionality if one of the above hit. */
1265 if (video_caps)
1266 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1267 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1268 &video_caps, NULL);
1269
1270 return video_caps;
1271 }
1272 EXPORT_SYMBOL(acpi_is_video_device);
1273
acpi_device_hid(struct acpi_device * device)1274 const char *acpi_device_hid(struct acpi_device *device)
1275 {
1276 struct acpi_hardware_id *hid;
1277
1278 if (list_empty(&device->pnp.ids))
1279 return dummy_hid;
1280
1281 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1282 return hid->id;
1283 }
1284 EXPORT_SYMBOL(acpi_device_hid);
1285
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1286 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1287 {
1288 struct acpi_hardware_id *id;
1289
1290 id = kmalloc(sizeof(*id), GFP_KERNEL);
1291 if (!id)
1292 return;
1293
1294 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1295 if (!id->id) {
1296 kfree(id);
1297 return;
1298 }
1299
1300 list_add_tail(&id->list, &pnp->ids);
1301 pnp->type.hardware_id = 1;
1302 }
1303
1304 /*
1305 * Old IBM workstations have a DSDT bug wherein the SMBus object
1306 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1307 * prefix. Work around this.
1308 */
acpi_ibm_smbus_match(acpi_handle handle)1309 static bool acpi_ibm_smbus_match(acpi_handle handle)
1310 {
1311 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1312 struct acpi_buffer path = { sizeof(node_name), node_name };
1313
1314 if (!dmi_name_in_vendors("IBM"))
1315 return false;
1316
1317 /* Look for SMBS object */
1318 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1319 strcmp("SMBS", path.pointer))
1320 return false;
1321
1322 /* Does it have the necessary (but misnamed) methods? */
1323 if (acpi_has_method(handle, "SBI") &&
1324 acpi_has_method(handle, "SBR") &&
1325 acpi_has_method(handle, "SBW"))
1326 return true;
1327
1328 return false;
1329 }
1330
acpi_object_is_system_bus(acpi_handle handle)1331 static bool acpi_object_is_system_bus(acpi_handle handle)
1332 {
1333 acpi_handle tmp;
1334
1335 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1336 tmp == handle)
1337 return true;
1338 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1339 tmp == handle)
1340 return true;
1341
1342 return false;
1343 }
1344
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1345 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1346 int device_type)
1347 {
1348 struct acpi_device_info *info = NULL;
1349 struct acpi_pnp_device_id_list *cid_list;
1350 int i;
1351
1352 switch (device_type) {
1353 case ACPI_BUS_TYPE_DEVICE:
1354 if (handle == ACPI_ROOT_OBJECT) {
1355 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1356 break;
1357 }
1358
1359 acpi_get_object_info(handle, &info);
1360 if (!info) {
1361 pr_err("%s: Error reading device info\n", __func__);
1362 return;
1363 }
1364
1365 if (info->valid & ACPI_VALID_HID) {
1366 acpi_add_id(pnp, info->hardware_id.string);
1367 pnp->type.platform_id = 1;
1368 }
1369 if (info->valid & ACPI_VALID_CID) {
1370 cid_list = &info->compatible_id_list;
1371 for (i = 0; i < cid_list->count; i++)
1372 acpi_add_id(pnp, cid_list->ids[i].string);
1373 }
1374 if (info->valid & ACPI_VALID_ADR) {
1375 pnp->bus_address = info->address;
1376 pnp->type.bus_address = 1;
1377 }
1378 if (info->valid & ACPI_VALID_UID)
1379 pnp->unique_id = kstrdup(info->unique_id.string,
1380 GFP_KERNEL);
1381 if (info->valid & ACPI_VALID_CLS)
1382 acpi_add_id(pnp, info->class_code.string);
1383
1384 kfree(info);
1385
1386 /*
1387 * Some devices don't reliably have _HIDs & _CIDs, so add
1388 * synthetic HIDs to make sure drivers can find them.
1389 */
1390 if (acpi_is_video_device(handle))
1391 acpi_add_id(pnp, ACPI_VIDEO_HID);
1392 else if (acpi_bay_match(handle))
1393 acpi_add_id(pnp, ACPI_BAY_HID);
1394 else if (acpi_dock_match(handle))
1395 acpi_add_id(pnp, ACPI_DOCK_HID);
1396 else if (acpi_ibm_smbus_match(handle))
1397 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1398 else if (list_empty(&pnp->ids) &&
1399 acpi_object_is_system_bus(handle)) {
1400 /* \_SB, \_TZ, LNXSYBUS */
1401 acpi_add_id(pnp, ACPI_BUS_HID);
1402 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1403 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1404 }
1405
1406 break;
1407 case ACPI_BUS_TYPE_POWER:
1408 acpi_add_id(pnp, ACPI_POWER_HID);
1409 break;
1410 case ACPI_BUS_TYPE_PROCESSOR:
1411 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1412 break;
1413 case ACPI_BUS_TYPE_THERMAL:
1414 acpi_add_id(pnp, ACPI_THERMAL_HID);
1415 break;
1416 case ACPI_BUS_TYPE_POWER_BUTTON:
1417 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1418 break;
1419 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1420 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1421 break;
1422 case ACPI_BUS_TYPE_ECDT_EC:
1423 acpi_add_id(pnp, ACPI_ECDT_HID);
1424 break;
1425 }
1426 }
1427
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1428 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1429 {
1430 struct acpi_hardware_id *id, *tmp;
1431
1432 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1433 kfree_const(id->id);
1434 kfree(id);
1435 }
1436 kfree(pnp->unique_id);
1437 }
1438
1439 /**
1440 * acpi_dma_supported - Check DMA support for the specified device.
1441 * @adev: The pointer to acpi device
1442 *
1443 * Return false if DMA is not supported. Otherwise, return true
1444 */
acpi_dma_supported(const struct acpi_device * adev)1445 bool acpi_dma_supported(const struct acpi_device *adev)
1446 {
1447 if (!adev)
1448 return false;
1449
1450 if (adev->flags.cca_seen)
1451 return true;
1452
1453 /*
1454 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1455 * DMA on "Intel platforms". Presumably that includes all x86 and
1456 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1457 */
1458 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1459 return true;
1460
1461 return false;
1462 }
1463
1464 /**
1465 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1466 * @adev: The pointer to acpi device
1467 *
1468 * Return enum dev_dma_attr.
1469 */
acpi_get_dma_attr(struct acpi_device * adev)1470 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1471 {
1472 if (!acpi_dma_supported(adev))
1473 return DEV_DMA_NOT_SUPPORTED;
1474
1475 if (adev->flags.coherent_dma)
1476 return DEV_DMA_COHERENT;
1477 else
1478 return DEV_DMA_NON_COHERENT;
1479 }
1480
1481 /**
1482 * acpi_dma_get_range() - Get device DMA parameters.
1483 *
1484 * @dev: device to configure
1485 * @dma_addr: pointer device DMA address result
1486 * @offset: pointer to the DMA offset result
1487 * @size: pointer to DMA range size result
1488 *
1489 * Evaluate DMA regions and return respectively DMA region start, offset
1490 * and size in dma_addr, offset and size on parsing success; it does not
1491 * update the passed in values on failure.
1492 *
1493 * Return 0 on success, < 0 on failure.
1494 */
acpi_dma_get_range(struct device * dev,u64 * dma_addr,u64 * offset,u64 * size)1495 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1496 u64 *size)
1497 {
1498 struct acpi_device *adev;
1499 LIST_HEAD(list);
1500 struct resource_entry *rentry;
1501 int ret;
1502 struct device *dma_dev = dev;
1503 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1504
1505 /*
1506 * Walk the device tree chasing an ACPI companion with a _DMA
1507 * object while we go. Stop if we find a device with an ACPI
1508 * companion containing a _DMA method.
1509 */
1510 do {
1511 adev = ACPI_COMPANION(dma_dev);
1512 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1513 break;
1514
1515 dma_dev = dma_dev->parent;
1516 } while (dma_dev);
1517
1518 if (!dma_dev)
1519 return -ENODEV;
1520
1521 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1522 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1523 return -EINVAL;
1524 }
1525
1526 ret = acpi_dev_get_dma_resources(adev, &list);
1527 if (ret > 0) {
1528 list_for_each_entry(rentry, &list, node) {
1529 if (dma_offset && rentry->offset != dma_offset) {
1530 ret = -EINVAL;
1531 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1532 goto out;
1533 }
1534 dma_offset = rentry->offset;
1535
1536 /* Take lower and upper limits */
1537 if (rentry->res->start < dma_start)
1538 dma_start = rentry->res->start;
1539 if (rentry->res->end > dma_end)
1540 dma_end = rentry->res->end;
1541 }
1542
1543 if (dma_start >= dma_end) {
1544 ret = -EINVAL;
1545 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1546 goto out;
1547 }
1548
1549 *dma_addr = dma_start - dma_offset;
1550 len = dma_end - dma_start;
1551 *size = max(len, len + 1);
1552 *offset = dma_offset;
1553 }
1554 out:
1555 acpi_dev_free_resource_list(&list);
1556
1557 return ret >= 0 ? 0 : ret;
1558 }
1559
1560 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1561 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1562 struct fwnode_handle *fwnode,
1563 const struct iommu_ops *ops)
1564 {
1565 int ret = iommu_fwspec_init(dev, fwnode, ops);
1566
1567 if (!ret)
1568 ret = iommu_fwspec_add_ids(dev, &id, 1);
1569
1570 return ret;
1571 }
1572
acpi_iommu_fwspec_ops(struct device * dev)1573 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1574 {
1575 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1576
1577 return fwspec ? fwspec->ops : NULL;
1578 }
1579
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1580 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1581 const u32 *id_in)
1582 {
1583 int err;
1584 const struct iommu_ops *ops;
1585
1586 /*
1587 * If we already translated the fwspec there is nothing left to do,
1588 * return the iommu_ops.
1589 */
1590 ops = acpi_iommu_fwspec_ops(dev);
1591 if (ops)
1592 return ops;
1593
1594 err = iort_iommu_configure_id(dev, id_in);
1595 if (err && err != -EPROBE_DEFER)
1596 err = viot_iommu_configure(dev);
1597
1598 /*
1599 * If we have reason to believe the IOMMU driver missed the initial
1600 * iommu_probe_device() call for dev, replay it to get things in order.
1601 */
1602 if (!err && dev->bus && !device_iommu_mapped(dev))
1603 err = iommu_probe_device(dev);
1604
1605 /* Ignore all other errors apart from EPROBE_DEFER */
1606 if (err == -EPROBE_DEFER) {
1607 return ERR_PTR(err);
1608 } else if (err) {
1609 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1610 return NULL;
1611 }
1612 return acpi_iommu_fwspec_ops(dev);
1613 }
1614
1615 #else /* !CONFIG_IOMMU_API */
1616
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1617 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1618 struct fwnode_handle *fwnode,
1619 const struct iommu_ops *ops)
1620 {
1621 return -ENODEV;
1622 }
1623
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1624 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1625 const u32 *id_in)
1626 {
1627 return NULL;
1628 }
1629
1630 #endif /* !CONFIG_IOMMU_API */
1631
1632 /**
1633 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1634 * @dev: The pointer to the device
1635 * @attr: device dma attributes
1636 * @input_id: input device id const value pointer
1637 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1638 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1639 const u32 *input_id)
1640 {
1641 const struct iommu_ops *iommu;
1642 u64 dma_addr = 0, size = 0;
1643
1644 if (attr == DEV_DMA_NOT_SUPPORTED) {
1645 set_dma_ops(dev, &dma_dummy_ops);
1646 return 0;
1647 }
1648
1649 acpi_arch_dma_setup(dev, &dma_addr, &size);
1650
1651 iommu = acpi_iommu_configure_id(dev, input_id);
1652 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1653 return -EPROBE_DEFER;
1654
1655 arch_setup_dma_ops(dev, dma_addr, size,
1656 iommu, attr == DEV_DMA_COHERENT);
1657
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1661
acpi_init_coherency(struct acpi_device * adev)1662 static void acpi_init_coherency(struct acpi_device *adev)
1663 {
1664 unsigned long long cca = 0;
1665 acpi_status status;
1666 struct acpi_device *parent = adev->parent;
1667
1668 if (parent && parent->flags.cca_seen) {
1669 /*
1670 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1671 * already saw one.
1672 */
1673 adev->flags.cca_seen = 1;
1674 cca = parent->flags.coherent_dma;
1675 } else {
1676 status = acpi_evaluate_integer(adev->handle, "_CCA",
1677 NULL, &cca);
1678 if (ACPI_SUCCESS(status))
1679 adev->flags.cca_seen = 1;
1680 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1681 /*
1682 * If architecture does not specify that _CCA is
1683 * required for DMA-able devices (e.g. x86),
1684 * we default to _CCA=1.
1685 */
1686 cca = 1;
1687 else
1688 acpi_handle_debug(adev->handle,
1689 "ACPI device is missing _CCA.\n");
1690 }
1691
1692 adev->flags.coherent_dma = cca;
1693 }
1694
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1695 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1696 {
1697 bool *is_serial_bus_slave_p = data;
1698
1699 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1700 return 1;
1701
1702 *is_serial_bus_slave_p = true;
1703
1704 /* no need to do more checking */
1705 return -1;
1706 }
1707
acpi_is_indirect_io_slave(struct acpi_device * device)1708 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1709 {
1710 struct acpi_device *parent = device->parent;
1711 static const struct acpi_device_id indirect_io_hosts[] = {
1712 {"HISI0191", 0},
1713 {}
1714 };
1715
1716 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1717 }
1718
acpi_device_enumeration_by_parent(struct acpi_device * device)1719 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1720 {
1721 struct list_head resource_list;
1722 bool is_serial_bus_slave = false;
1723 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1724 /*
1725 * These devices have multiple SerialBus resources and a client
1726 * device must be instantiated for each of them, each with
1727 * its own device id.
1728 * Normally we only instantiate one client device for the first
1729 * resource, using the ACPI HID as id. These special cases are handled
1730 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1731 * knows which client device id to use for each resource.
1732 */
1733 {"BSG1160", },
1734 {"BSG2150", },
1735 {"CSC3551", },
1736 {"INT33FE", },
1737 {"INT3515", },
1738 /* Non-conforming _HID for Cirrus Logic already released */
1739 {"CLSA0100", },
1740 /*
1741 * Some ACPI devs contain SerialBus resources even though they are not
1742 * attached to a serial bus at all.
1743 */
1744 {"MSHW0028", },
1745 /*
1746 * HIDs of device with an UartSerialBusV2 resource for which userspace
1747 * expects a regular tty cdev to be created (instead of the in kernel
1748 * serdev) and which have a kernel driver which expects a platform_dev
1749 * such as the rfkill-gpio driver.
1750 */
1751 {"BCM4752", },
1752 {"LNV4752", },
1753 {}
1754 };
1755
1756 if (acpi_is_indirect_io_slave(device))
1757 return true;
1758
1759 /* Macs use device properties in lieu of _CRS resources */
1760 if (x86_apple_machine &&
1761 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1762 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1763 fwnode_property_present(&device->fwnode, "baud")))
1764 return true;
1765
1766 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1767 return false;
1768
1769 INIT_LIST_HEAD(&resource_list);
1770 acpi_dev_get_resources(device, &resource_list,
1771 acpi_check_serial_bus_slave,
1772 &is_serial_bus_slave);
1773 acpi_dev_free_resource_list(&resource_list);
1774
1775 return is_serial_bus_slave;
1776 }
1777
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type)1778 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1779 int type)
1780 {
1781 INIT_LIST_HEAD(&device->pnp.ids);
1782 device->device_type = type;
1783 device->handle = handle;
1784 device->parent = acpi_bus_get_parent(handle);
1785 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1786 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1787 acpi_device_get_busid(device);
1788 acpi_set_pnp_ids(handle, &device->pnp, type);
1789 acpi_init_properties(device);
1790 acpi_bus_get_flags(device);
1791 device->flags.match_driver = false;
1792 device->flags.initialized = true;
1793 device->flags.enumeration_by_parent =
1794 acpi_device_enumeration_by_parent(device);
1795 acpi_device_clear_enumerated(device);
1796 device_initialize(&device->dev);
1797 dev_set_uevent_suppress(&device->dev, true);
1798 acpi_init_coherency(device);
1799 }
1800
acpi_scan_dep_init(struct acpi_device * adev)1801 static void acpi_scan_dep_init(struct acpi_device *adev)
1802 {
1803 struct acpi_dep_data *dep;
1804
1805 list_for_each_entry(dep, &acpi_dep_list, node) {
1806 if (dep->consumer == adev->handle) {
1807 if (dep->honor_dep)
1808 adev->flags.honor_deps = 1;
1809
1810 adev->dep_unmet++;
1811 }
1812 }
1813 }
1814
acpi_device_add_finalize(struct acpi_device * device)1815 void acpi_device_add_finalize(struct acpi_device *device)
1816 {
1817 dev_set_uevent_suppress(&device->dev, false);
1818 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1819 }
1820
acpi_scan_init_status(struct acpi_device * adev)1821 static void acpi_scan_init_status(struct acpi_device *adev)
1822 {
1823 if (acpi_bus_get_status(adev))
1824 acpi_set_device_status(adev, 0);
1825 }
1826
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1827 static int acpi_add_single_object(struct acpi_device **child,
1828 acpi_handle handle, int type, bool dep_init)
1829 {
1830 struct acpi_device *device;
1831 bool release_dep_lock = false;
1832 int result;
1833
1834 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1835 if (!device)
1836 return -ENOMEM;
1837
1838 acpi_init_device_object(device, handle, type);
1839 /*
1840 * Getting the status is delayed till here so that we can call
1841 * acpi_bus_get_status() and use its quirk handling. Note that
1842 * this must be done before the get power-/wakeup_dev-flags calls.
1843 */
1844 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1845 if (dep_init) {
1846 mutex_lock(&acpi_dep_list_lock);
1847 /*
1848 * Hold the lock until the acpi_tie_acpi_dev() call
1849 * below to prevent concurrent acpi_scan_clear_dep()
1850 * from deleting a dependency list entry without
1851 * updating dep_unmet for the device.
1852 */
1853 release_dep_lock = true;
1854 acpi_scan_dep_init(device);
1855 }
1856 acpi_scan_init_status(device);
1857 }
1858
1859 acpi_bus_get_power_flags(device);
1860 acpi_bus_get_wakeup_device_flags(device);
1861
1862 result = acpi_tie_acpi_dev(device);
1863
1864 if (release_dep_lock)
1865 mutex_unlock(&acpi_dep_list_lock);
1866
1867 if (!result)
1868 result = __acpi_device_add(device, acpi_device_release);
1869
1870 if (result) {
1871 acpi_device_release(&device->dev);
1872 return result;
1873 }
1874
1875 acpi_power_add_remove_device(device, true);
1876 acpi_device_add_finalize(device);
1877
1878 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1879 dev_name(&device->dev), device->parent ?
1880 dev_name(&device->parent->dev) : "(null)");
1881
1882 *child = device;
1883 return 0;
1884 }
1885
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1886 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1887 void *context)
1888 {
1889 struct resource *res = context;
1890
1891 if (acpi_dev_resource_memory(ares, res))
1892 return AE_CTRL_TERMINATE;
1893
1894 return AE_OK;
1895 }
1896
acpi_device_should_be_hidden(acpi_handle handle)1897 static bool acpi_device_should_be_hidden(acpi_handle handle)
1898 {
1899 acpi_status status;
1900 struct resource res;
1901
1902 /* Check if it should ignore the UART device */
1903 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1904 return false;
1905
1906 /*
1907 * The UART device described in SPCR table is assumed to have only one
1908 * memory resource present. So we only look for the first one here.
1909 */
1910 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1911 acpi_get_resource_memory, &res);
1912 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1913 return false;
1914
1915 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1916 &res.start);
1917
1918 return true;
1919 }
1920
acpi_device_is_present(const struct acpi_device * adev)1921 bool acpi_device_is_present(const struct acpi_device *adev)
1922 {
1923 return adev->status.present || adev->status.functional;
1924 }
1925
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1926 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1927 const char *idstr,
1928 const struct acpi_device_id **matchid)
1929 {
1930 const struct acpi_device_id *devid;
1931
1932 if (handler->match)
1933 return handler->match(idstr, matchid);
1934
1935 for (devid = handler->ids; devid->id[0]; devid++)
1936 if (!strcmp((char *)devid->id, idstr)) {
1937 if (matchid)
1938 *matchid = devid;
1939
1940 return true;
1941 }
1942
1943 return false;
1944 }
1945
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1946 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1947 const struct acpi_device_id **matchid)
1948 {
1949 struct acpi_scan_handler *handler;
1950
1951 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1952 if (acpi_scan_handler_matching(handler, idstr, matchid))
1953 return handler;
1954
1955 return NULL;
1956 }
1957
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1958 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1959 {
1960 if (!!hotplug->enabled == !!val)
1961 return;
1962
1963 mutex_lock(&acpi_scan_lock);
1964
1965 hotplug->enabled = val;
1966
1967 mutex_unlock(&acpi_scan_lock);
1968 }
1969
acpi_scan_init_hotplug(struct acpi_device * adev)1970 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1971 {
1972 struct acpi_hardware_id *hwid;
1973
1974 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1975 acpi_dock_add(adev);
1976 return;
1977 }
1978 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1979 struct acpi_scan_handler *handler;
1980
1981 handler = acpi_scan_match_handler(hwid->id, NULL);
1982 if (handler) {
1983 adev->flags.hotplug_notify = true;
1984 break;
1985 }
1986 }
1987 }
1988
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1989 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1990 {
1991 struct acpi_handle_list dep_devices;
1992 acpi_status status;
1993 u32 count;
1994 int i;
1995
1996 /*
1997 * Check for _HID here to avoid deferring the enumeration of:
1998 * 1. PCI devices.
1999 * 2. ACPI nodes describing USB ports.
2000 * Still, checking for _HID catches more then just these cases ...
2001 */
2002 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
2003 !acpi_has_method(handle, "_HID"))
2004 return 0;
2005
2006 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
2007 if (ACPI_FAILURE(status)) {
2008 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2009 return 0;
2010 }
2011
2012 for (count = 0, i = 0; i < dep_devices.count; i++) {
2013 struct acpi_device_info *info;
2014 struct acpi_dep_data *dep;
2015 bool skip, honor_dep;
2016
2017 status = acpi_get_object_info(dep_devices.handles[i], &info);
2018 if (ACPI_FAILURE(status)) {
2019 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2020 continue;
2021 }
2022
2023 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2024 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2025 kfree(info);
2026
2027 if (skip)
2028 continue;
2029
2030 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2031 if (!dep)
2032 continue;
2033
2034 count++;
2035
2036 dep->supplier = dep_devices.handles[i];
2037 dep->consumer = handle;
2038 dep->honor_dep = honor_dep;
2039
2040 mutex_lock(&acpi_dep_list_lock);
2041 list_add_tail(&dep->node , &acpi_dep_list);
2042 mutex_unlock(&acpi_dep_list_lock);
2043 }
2044
2045 return count;
2046 }
2047
2048 static bool acpi_bus_scan_second_pass;
2049
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2050 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2051 struct acpi_device **adev_p)
2052 {
2053 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2054 acpi_object_type acpi_type;
2055 int type;
2056
2057 if (device)
2058 goto out;
2059
2060 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2061 return AE_OK;
2062
2063 switch (acpi_type) {
2064 case ACPI_TYPE_DEVICE:
2065 if (acpi_device_should_be_hidden(handle))
2066 return AE_OK;
2067
2068 /* Bail out if there are dependencies. */
2069 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2070 acpi_bus_scan_second_pass = true;
2071 return AE_CTRL_DEPTH;
2072 }
2073
2074 fallthrough;
2075 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2076 type = ACPI_BUS_TYPE_DEVICE;
2077 break;
2078
2079 case ACPI_TYPE_PROCESSOR:
2080 type = ACPI_BUS_TYPE_PROCESSOR;
2081 break;
2082
2083 case ACPI_TYPE_THERMAL:
2084 type = ACPI_BUS_TYPE_THERMAL;
2085 break;
2086
2087 case ACPI_TYPE_POWER:
2088 acpi_add_power_resource(handle);
2089 fallthrough;
2090 default:
2091 return AE_OK;
2092 }
2093
2094 /*
2095 * If check_dep is true at this point, the device has no dependencies,
2096 * or the creation of the device object would have been postponed above.
2097 */
2098 acpi_add_single_object(&device, handle, type, !check_dep);
2099 if (!device)
2100 return AE_CTRL_DEPTH;
2101
2102 acpi_scan_init_hotplug(device);
2103
2104 out:
2105 if (!*adev_p)
2106 *adev_p = device;
2107
2108 return AE_OK;
2109 }
2110
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2111 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2112 void *not_used, void **ret_p)
2113 {
2114 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2115 }
2116
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2117 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2118 void *not_used, void **ret_p)
2119 {
2120 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2121 }
2122
acpi_default_enumeration(struct acpi_device * device)2123 static void acpi_default_enumeration(struct acpi_device *device)
2124 {
2125 /*
2126 * Do not enumerate devices with enumeration_by_parent flag set as
2127 * they will be enumerated by their respective parents.
2128 */
2129 if (!device->flags.enumeration_by_parent) {
2130 acpi_create_platform_device(device, NULL);
2131 acpi_device_set_enumerated(device);
2132 } else {
2133 blocking_notifier_call_chain(&acpi_reconfig_chain,
2134 ACPI_RECONFIG_DEVICE_ADD, device);
2135 }
2136 }
2137
2138 static const struct acpi_device_id generic_device_ids[] = {
2139 {ACPI_DT_NAMESPACE_HID, },
2140 {"", },
2141 };
2142
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2143 static int acpi_generic_device_attach(struct acpi_device *adev,
2144 const struct acpi_device_id *not_used)
2145 {
2146 /*
2147 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2148 * below can be unconditional.
2149 */
2150 if (adev->data.of_compatible)
2151 acpi_default_enumeration(adev);
2152
2153 return 1;
2154 }
2155
2156 static struct acpi_scan_handler generic_device_handler = {
2157 .ids = generic_device_ids,
2158 .attach = acpi_generic_device_attach,
2159 };
2160
acpi_scan_attach_handler(struct acpi_device * device)2161 static int acpi_scan_attach_handler(struct acpi_device *device)
2162 {
2163 struct acpi_hardware_id *hwid;
2164 int ret = 0;
2165
2166 list_for_each_entry(hwid, &device->pnp.ids, list) {
2167 const struct acpi_device_id *devid;
2168 struct acpi_scan_handler *handler;
2169
2170 handler = acpi_scan_match_handler(hwid->id, &devid);
2171 if (handler) {
2172 if (!handler->attach) {
2173 device->pnp.type.platform_id = 0;
2174 continue;
2175 }
2176 device->handler = handler;
2177 ret = handler->attach(device, devid);
2178 if (ret > 0)
2179 break;
2180
2181 device->handler = NULL;
2182 if (ret < 0)
2183 break;
2184 }
2185 }
2186
2187 return ret;
2188 }
2189
acpi_bus_attach(struct acpi_device * device,bool first_pass)2190 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2191 {
2192 struct acpi_device *child;
2193 bool skip = !first_pass && device->flags.visited;
2194 acpi_handle ejd;
2195 int ret;
2196
2197 if (skip)
2198 goto ok;
2199
2200 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2201 register_dock_dependent_device(device, ejd);
2202
2203 acpi_bus_get_status(device);
2204 /* Skip devices that are not ready for enumeration (e.g. not present) */
2205 if (!acpi_dev_ready_for_enumeration(device)) {
2206 device->flags.initialized = false;
2207 acpi_device_clear_enumerated(device);
2208 device->flags.power_manageable = 0;
2209 return;
2210 }
2211 if (device->handler)
2212 goto ok;
2213
2214 if (!device->flags.initialized) {
2215 device->flags.power_manageable =
2216 device->power.states[ACPI_STATE_D0].flags.valid;
2217 if (acpi_bus_init_power(device))
2218 device->flags.power_manageable = 0;
2219
2220 device->flags.initialized = true;
2221 } else if (device->flags.visited) {
2222 goto ok;
2223 }
2224
2225 ret = acpi_scan_attach_handler(device);
2226 if (ret < 0)
2227 return;
2228
2229 device->flags.match_driver = true;
2230 if (ret > 0 && !device->flags.enumeration_by_parent) {
2231 acpi_device_set_enumerated(device);
2232 goto ok;
2233 }
2234
2235 ret = device_attach(&device->dev);
2236 if (ret < 0)
2237 return;
2238
2239 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2240 acpi_default_enumeration(device);
2241 else
2242 acpi_device_set_enumerated(device);
2243
2244 ok:
2245 list_for_each_entry(child, &device->children, node)
2246 acpi_bus_attach(child, first_pass);
2247
2248 if (!skip && device->handler && device->handler->hotplug.notify_online)
2249 device->handler->hotplug.notify_online(device);
2250 }
2251
acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2252 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2253 {
2254 struct acpi_device *adev;
2255
2256 adev = acpi_bus_get_acpi_device(dep->consumer);
2257 if (adev) {
2258 *(struct acpi_device **)data = adev;
2259 return 1;
2260 }
2261 /* Continue parsing if the device object is not present. */
2262 return 0;
2263 }
2264
2265 struct acpi_scan_clear_dep_work {
2266 struct work_struct work;
2267 struct acpi_device *adev;
2268 };
2269
acpi_scan_clear_dep_fn(struct work_struct * work)2270 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2271 {
2272 struct acpi_scan_clear_dep_work *cdw;
2273
2274 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2275
2276 acpi_scan_lock_acquire();
2277 acpi_bus_attach(cdw->adev, true);
2278 acpi_scan_lock_release();
2279
2280 acpi_dev_put(cdw->adev);
2281 kfree(cdw);
2282 }
2283
acpi_scan_clear_dep_queue(struct acpi_device * adev)2284 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2285 {
2286 struct acpi_scan_clear_dep_work *cdw;
2287
2288 if (adev->dep_unmet)
2289 return false;
2290
2291 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2292 if (!cdw)
2293 return false;
2294
2295 cdw->adev = adev;
2296 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2297 /*
2298 * Since the work function may block on the lock until the entire
2299 * initial enumeration of devices is complete, put it into the unbound
2300 * workqueue.
2301 */
2302 queue_work(system_unbound_wq, &cdw->work);
2303
2304 return true;
2305 }
2306
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2307 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2308 {
2309 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2310
2311 if (adev) {
2312 adev->dep_unmet--;
2313 if (!acpi_scan_clear_dep_queue(adev))
2314 acpi_dev_put(adev);
2315 }
2316
2317 list_del(&dep->node);
2318 kfree(dep);
2319
2320 return 0;
2321 }
2322
2323 /**
2324 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2325 * @handle: The ACPI handle of the supplier device
2326 * @callback: Pointer to the callback function to apply
2327 * @data: Pointer to some data to pass to the callback
2328 *
2329 * The return value of the callback determines this function's behaviour. If 0
2330 * is returned we continue to iterate over acpi_dep_list. If a positive value
2331 * is returned then the loop is broken but this function returns 0. If a
2332 * negative value is returned by the callback then the loop is broken and that
2333 * value is returned as the final error.
2334 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2335 static int acpi_walk_dep_device_list(acpi_handle handle,
2336 int (*callback)(struct acpi_dep_data *, void *),
2337 void *data)
2338 {
2339 struct acpi_dep_data *dep, *tmp;
2340 int ret = 0;
2341
2342 mutex_lock(&acpi_dep_list_lock);
2343 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2344 if (dep->supplier == handle) {
2345 ret = callback(dep, data);
2346 if (ret)
2347 break;
2348 }
2349 }
2350 mutex_unlock(&acpi_dep_list_lock);
2351
2352 return ret > 0 ? 0 : ret;
2353 }
2354
2355 /**
2356 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2357 * @supplier: Pointer to the supplier &struct acpi_device
2358 *
2359 * Clear dependencies on the given device.
2360 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2361 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2362 {
2363 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2364 }
2365 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2366
2367 /**
2368 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2369 * @device: Pointer to the &struct acpi_device to check
2370 *
2371 * Check if the device is present and has no unmet dependencies.
2372 *
2373 * Return true if the device is ready for enumeratino. Otherwise, return false.
2374 */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2375 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2376 {
2377 if (device->flags.honor_deps && device->dep_unmet)
2378 return false;
2379
2380 return acpi_device_is_present(device);
2381 }
2382 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2383
2384 /**
2385 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2386 * @supplier: Pointer to the dependee device
2387 *
2388 * Returns the first &struct acpi_device which declares itself dependent on
2389 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2390 *
2391 * The caller is responsible for putting the reference to adev when it is no
2392 * longer needed.
2393 */
acpi_dev_get_first_consumer_dev(struct acpi_device * supplier)2394 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2395 {
2396 struct acpi_device *adev = NULL;
2397
2398 acpi_walk_dep_device_list(supplier->handle,
2399 acpi_dev_get_first_consumer_dev_cb, &adev);
2400
2401 return adev;
2402 }
2403 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2404
2405 /**
2406 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2407 * @handle: Root of the namespace scope to scan.
2408 *
2409 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2410 * found devices.
2411 *
2412 * If no devices were found, -ENODEV is returned, but it does not mean that
2413 * there has been a real error. There just have been no suitable ACPI objects
2414 * in the table trunk from which the kernel could create a device and add an
2415 * appropriate driver.
2416 *
2417 * Must be called under acpi_scan_lock.
2418 */
acpi_bus_scan(acpi_handle handle)2419 int acpi_bus_scan(acpi_handle handle)
2420 {
2421 struct acpi_device *device = NULL;
2422
2423 acpi_bus_scan_second_pass = false;
2424
2425 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2426
2427 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2428 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2429 acpi_bus_check_add_1, NULL, NULL,
2430 (void **)&device);
2431
2432 if (!device)
2433 return -ENODEV;
2434
2435 acpi_bus_attach(device, true);
2436
2437 if (!acpi_bus_scan_second_pass)
2438 return 0;
2439
2440 /* Pass 2: Enumerate all of the remaining devices. */
2441
2442 device = NULL;
2443
2444 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2445 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2446 acpi_bus_check_add_2, NULL, NULL,
2447 (void **)&device);
2448
2449 acpi_bus_attach(device, false);
2450
2451 return 0;
2452 }
2453 EXPORT_SYMBOL(acpi_bus_scan);
2454
2455 /**
2456 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2457 * @adev: Root of the ACPI namespace scope to walk.
2458 *
2459 * Must be called under acpi_scan_lock.
2460 */
acpi_bus_trim(struct acpi_device * adev)2461 void acpi_bus_trim(struct acpi_device *adev)
2462 {
2463 struct acpi_scan_handler *handler = adev->handler;
2464 struct acpi_device *child;
2465
2466 list_for_each_entry_reverse(child, &adev->children, node)
2467 acpi_bus_trim(child);
2468
2469 adev->flags.match_driver = false;
2470 if (handler) {
2471 if (handler->detach)
2472 handler->detach(adev);
2473
2474 adev->handler = NULL;
2475 } else {
2476 device_release_driver(&adev->dev);
2477 }
2478 /*
2479 * Most likely, the device is going away, so put it into D3cold before
2480 * that.
2481 */
2482 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2483 adev->flags.initialized = false;
2484 acpi_device_clear_enumerated(adev);
2485 }
2486 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2487
acpi_bus_register_early_device(int type)2488 int acpi_bus_register_early_device(int type)
2489 {
2490 struct acpi_device *device = NULL;
2491 int result;
2492
2493 result = acpi_add_single_object(&device, NULL, type, false);
2494 if (result)
2495 return result;
2496
2497 device->flags.match_driver = true;
2498 return device_attach(&device->dev);
2499 }
2500 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2501
acpi_bus_scan_fixed(void)2502 static void acpi_bus_scan_fixed(void)
2503 {
2504 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2505 struct acpi_device *adev = NULL;
2506
2507 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2508 false);
2509 if (adev) {
2510 adev->flags.match_driver = true;
2511 if (device_attach(&adev->dev) >= 0)
2512 device_init_wakeup(&adev->dev, true);
2513 else
2514 dev_dbg(&adev->dev, "No driver\n");
2515 }
2516 }
2517
2518 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2519 struct acpi_device *adev = NULL;
2520
2521 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2522 false);
2523 if (adev) {
2524 adev->flags.match_driver = true;
2525 if (device_attach(&adev->dev) < 0)
2526 dev_dbg(&adev->dev, "No driver\n");
2527 }
2528 }
2529 }
2530
acpi_get_spcr_uart_addr(void)2531 static void __init acpi_get_spcr_uart_addr(void)
2532 {
2533 acpi_status status;
2534 struct acpi_table_spcr *spcr_ptr;
2535
2536 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2537 (struct acpi_table_header **)&spcr_ptr);
2538 if (ACPI_FAILURE(status)) {
2539 pr_warn("STAO table present, but SPCR is missing\n");
2540 return;
2541 }
2542
2543 spcr_uart_addr = spcr_ptr->serial_port.address;
2544 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2545 }
2546
2547 static bool acpi_scan_initialized;
2548
acpi_scan_init(void)2549 void __init acpi_scan_init(void)
2550 {
2551 acpi_status status;
2552 struct acpi_table_stao *stao_ptr;
2553
2554 acpi_pci_root_init();
2555 acpi_pci_link_init();
2556 acpi_processor_init();
2557 acpi_platform_init();
2558 acpi_lpss_init();
2559 acpi_apd_init();
2560 acpi_cmos_rtc_init();
2561 acpi_container_init();
2562 acpi_memory_hotplug_init();
2563 acpi_watchdog_init();
2564 acpi_pnp_init();
2565 acpi_int340x_thermal_init();
2566 acpi_amba_init();
2567 acpi_init_lpit();
2568
2569 acpi_scan_add_handler(&generic_device_handler);
2570
2571 /*
2572 * If there is STAO table, check whether it needs to ignore the UART
2573 * device in SPCR table.
2574 */
2575 status = acpi_get_table(ACPI_SIG_STAO, 0,
2576 (struct acpi_table_header **)&stao_ptr);
2577 if (ACPI_SUCCESS(status)) {
2578 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2579 pr_info("STAO Name List not yet supported.\n");
2580
2581 if (stao_ptr->ignore_uart)
2582 acpi_get_spcr_uart_addr();
2583
2584 acpi_put_table((struct acpi_table_header *)stao_ptr);
2585 }
2586
2587 acpi_gpe_apply_masked_gpes();
2588 acpi_update_all_gpes();
2589
2590 /*
2591 * Although we call __add_memory() that is documented to require the
2592 * device_hotplug_lock, it is not necessary here because this is an
2593 * early code when userspace or any other code path cannot trigger
2594 * hotplug/hotunplug operations.
2595 */
2596 mutex_lock(&acpi_scan_lock);
2597 /*
2598 * Enumerate devices in the ACPI namespace.
2599 */
2600 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2601 goto unlock;
2602
2603 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2604 if (!acpi_root)
2605 goto unlock;
2606
2607 /* Fixed feature devices do not exist on HW-reduced platform */
2608 if (!acpi_gbl_reduced_hardware)
2609 acpi_bus_scan_fixed();
2610
2611 acpi_turn_off_unused_power_resources();
2612
2613 acpi_scan_initialized = true;
2614
2615 unlock:
2616 mutex_unlock(&acpi_scan_lock);
2617 }
2618
2619 static struct acpi_probe_entry *ape;
2620 static int acpi_probe_count;
2621 static DEFINE_MUTEX(acpi_probe_mutex);
2622
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2623 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2624 const unsigned long end)
2625 {
2626 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2627 if (!ape->probe_subtbl(header, end))
2628 acpi_probe_count++;
2629
2630 return 0;
2631 }
2632
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2633 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2634 {
2635 int count = 0;
2636
2637 if (acpi_disabled)
2638 return 0;
2639
2640 mutex_lock(&acpi_probe_mutex);
2641 for (ape = ap_head; nr; ape++, nr--) {
2642 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2643 acpi_probe_count = 0;
2644 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2645 count += acpi_probe_count;
2646 } else {
2647 int res;
2648 res = acpi_table_parse(ape->id, ape->probe_table);
2649 if (!res)
2650 count++;
2651 }
2652 }
2653 mutex_unlock(&acpi_probe_mutex);
2654
2655 return count;
2656 }
2657
acpi_table_events_fn(struct work_struct * work)2658 static void acpi_table_events_fn(struct work_struct *work)
2659 {
2660 acpi_scan_lock_acquire();
2661 acpi_bus_scan(ACPI_ROOT_OBJECT);
2662 acpi_scan_lock_release();
2663
2664 kfree(work);
2665 }
2666
acpi_scan_table_notify(void)2667 void acpi_scan_table_notify(void)
2668 {
2669 struct work_struct *work;
2670
2671 if (!acpi_scan_initialized)
2672 return;
2673
2674 work = kmalloc(sizeof(*work), GFP_KERNEL);
2675 if (!work)
2676 return;
2677
2678 INIT_WORK(work, acpi_table_events_fn);
2679 schedule_work(work);
2680 }
2681
acpi_reconfig_notifier_register(struct notifier_block * nb)2682 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2683 {
2684 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2685 }
2686 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2687
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2688 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2689 {
2690 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2691 }
2692 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2693