1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32 
33 #include "internal.h"
34 
35 #define ACPI_EC_CLASS			"embedded_controller"
36 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
37 
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
40 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
41 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
43 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
44 
45 /*
46  * The SCI_EVT clearing timing is not defined by the ACPI specification.
47  * This leads to lots of practical timing issues for the host EC driver.
48  * The following variations are defined (from the target EC firmware's
49  * perspective):
50  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51  *         target can clear SCI_EVT at any time so long as the host can see
52  *         the indication by reading the status register (EC_SC). So the
53  *         host should re-check SCI_EVT after the first time the SCI_EVT
54  *         indication is seen, which is the same time the query request
55  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56  *         at any later time could indicate another event. Normally such
57  *         kind of EC firmware has implemented an event queue and will
58  *         return 0x00 to indicate "no outstanding event".
59  * QUERY: After seeing the query request (QR_EC) written to the command
60  *        register (EC_CMD) by the host and having prepared the responding
61  *        event value in the data register (EC_DATA), the target can safely
62  *        clear SCI_EVT because the target can confirm that the current
63  *        event is being handled by the host. The host then should check
64  *        SCI_EVT right after reading the event response from the data
65  *        register (EC_DATA).
66  * EVENT: After seeing the event response read from the data register
67  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
68  *        target requires time to notice the change in the data register
69  *        (EC_DATA), the host may be required to wait additional guarding
70  *        time before checking the SCI_EVT again. Such guarding may not be
71  *        necessary if the host is notified via another IRQ.
72  */
73 #define ACPI_EC_EVT_TIMING_STATUS	0x00
74 #define ACPI_EC_EVT_TIMING_QUERY	0x01
75 #define ACPI_EC_EVT_TIMING_EVENT	0x02
76 
77 /* EC commands */
78 enum ec_command {
79 	ACPI_EC_COMMAND_READ = 0x80,
80 	ACPI_EC_COMMAND_WRITE = 0x81,
81 	ACPI_EC_BURST_ENABLE = 0x82,
82 	ACPI_EC_BURST_DISABLE = 0x83,
83 	ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85 
86 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
90 					 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
92 
93 enum {
94 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
95 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
96 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
97 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
98 	EC_FLAGS_STARTED,		/* Driver is started */
99 	EC_FLAGS_STOPPED,		/* Driver is stopped */
100 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
101 };
102 
103 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
104 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
105 
106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
108 module_param(ec_delay, uint, 0644);
109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
110 
111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
112 module_param(ec_max_queries, uint, 0644);
113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
114 
115 static bool ec_busy_polling __read_mostly;
116 module_param(ec_busy_polling, bool, 0644);
117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
118 
119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
120 module_param(ec_polling_guard, uint, 0644);
121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
122 
123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
124 
125 /*
126  * If the number of false interrupts per one transaction exceeds
127  * this threshold, will think there is a GPE storm happened and
128  * will disable the GPE for normal transaction.
129  */
130 static unsigned int ec_storm_threshold  __read_mostly = 8;
131 module_param(ec_storm_threshold, uint, 0644);
132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
133 
134 static bool ec_freeze_events __read_mostly;
135 module_param(ec_freeze_events, bool, 0644);
136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
137 
138 static bool ec_no_wakeup __read_mostly;
139 module_param(ec_no_wakeup, bool, 0644);
140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
141 
142 struct acpi_ec_query_handler {
143 	struct list_head node;
144 	acpi_ec_query_func func;
145 	acpi_handle handle;
146 	void *data;
147 	u8 query_bit;
148 	struct kref kref;
149 };
150 
151 struct transaction {
152 	const u8 *wdata;
153 	u8 *rdata;
154 	unsigned short irq_count;
155 	u8 command;
156 	u8 wi;
157 	u8 ri;
158 	u8 wlen;
159 	u8 rlen;
160 	u8 flags;
161 };
162 
163 struct acpi_ec_query {
164 	struct transaction transaction;
165 	struct work_struct work;
166 	struct acpi_ec_query_handler *handler;
167 	struct acpi_ec *ec;
168 };
169 
170 static int acpi_ec_submit_query(struct acpi_ec *ec);
171 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
172 static void acpi_ec_event_handler(struct work_struct *work);
173 
174 struct acpi_ec *first_ec;
175 EXPORT_SYMBOL(first_ec);
176 
177 static struct acpi_ec *boot_ec;
178 static bool boot_ec_is_ecdt;
179 static struct workqueue_struct *ec_wq;
180 static struct workqueue_struct *ec_query_wq;
181 
182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
183 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
184 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
185 
186 /* --------------------------------------------------------------------------
187  *                           Logging/Debugging
188  * -------------------------------------------------------------------------- */
189 
190 /*
191  * Splitters used by the developers to track the boundary of the EC
192  * handling processes.
193  */
194 #ifdef DEBUG
195 #define EC_DBG_SEP	" "
196 #define EC_DBG_DRV	"+++++"
197 #define EC_DBG_STM	"====="
198 #define EC_DBG_REQ	"*****"
199 #define EC_DBG_EVT	"#####"
200 #else
201 #define EC_DBG_SEP	""
202 #define EC_DBG_DRV
203 #define EC_DBG_STM
204 #define EC_DBG_REQ
205 #define EC_DBG_EVT
206 #endif
207 
208 #define ec_log_raw(fmt, ...) \
209 	pr_info(fmt "\n", ##__VA_ARGS__)
210 #define ec_dbg_raw(fmt, ...) \
211 	pr_debug(fmt "\n", ##__VA_ARGS__)
212 #define ec_log(filter, fmt, ...) \
213 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
214 #define ec_dbg(filter, fmt, ...) \
215 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
216 
217 #define ec_log_drv(fmt, ...) \
218 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
219 #define ec_dbg_drv(fmt, ...) \
220 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
221 #define ec_dbg_stm(fmt, ...) \
222 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
223 #define ec_dbg_req(fmt, ...) \
224 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
225 #define ec_dbg_evt(fmt, ...) \
226 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
227 #define ec_dbg_ref(ec, fmt, ...) \
228 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
229 
230 /* --------------------------------------------------------------------------
231  *                           Device Flags
232  * -------------------------------------------------------------------------- */
233 
acpi_ec_started(struct acpi_ec * ec)234 static bool acpi_ec_started(struct acpi_ec *ec)
235 {
236 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
237 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
238 }
239 
acpi_ec_event_enabled(struct acpi_ec * ec)240 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
241 {
242 	/*
243 	 * There is an OSPM early stage logic. During the early stages
244 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
245 	 * the EC transactions are allowed to be performed.
246 	 */
247 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
248 		return false;
249 	/*
250 	 * However, disabling the event handling is experimental for late
251 	 * stage (suspend), and is controlled by the boot parameter of
252 	 * "ec_freeze_events":
253 	 * 1. true:  The EC event handling is disabled before entering
254 	 *           the noirq stage.
255 	 * 2. false: The EC event handling is automatically disabled as
256 	 *           soon as the EC driver is stopped.
257 	 */
258 	if (ec_freeze_events)
259 		return acpi_ec_started(ec);
260 	else
261 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
262 }
263 
acpi_ec_flushed(struct acpi_ec * ec)264 static bool acpi_ec_flushed(struct acpi_ec *ec)
265 {
266 	return ec->reference_count == 1;
267 }
268 
269 /* --------------------------------------------------------------------------
270  *                           EC Registers
271  * -------------------------------------------------------------------------- */
272 
acpi_ec_read_status(struct acpi_ec * ec)273 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
274 {
275 	u8 x = inb(ec->command_addr);
276 
277 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
278 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
279 		   x,
280 		   !!(x & ACPI_EC_FLAG_SCI),
281 		   !!(x & ACPI_EC_FLAG_BURST),
282 		   !!(x & ACPI_EC_FLAG_CMD),
283 		   !!(x & ACPI_EC_FLAG_IBF),
284 		   !!(x & ACPI_EC_FLAG_OBF));
285 	return x;
286 }
287 
acpi_ec_read_data(struct acpi_ec * ec)288 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
289 {
290 	u8 x = inb(ec->data_addr);
291 
292 	ec->timestamp = jiffies;
293 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
294 	return x;
295 }
296 
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)297 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
298 {
299 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
300 	outb(command, ec->command_addr);
301 	ec->timestamp = jiffies;
302 }
303 
acpi_ec_write_data(struct acpi_ec * ec,u8 data)304 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
305 {
306 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
307 	outb(data, ec->data_addr);
308 	ec->timestamp = jiffies;
309 }
310 
311 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)312 static const char *acpi_ec_cmd_string(u8 cmd)
313 {
314 	switch (cmd) {
315 	case 0x80:
316 		return "RD_EC";
317 	case 0x81:
318 		return "WR_EC";
319 	case 0x82:
320 		return "BE_EC";
321 	case 0x83:
322 		return "BD_EC";
323 	case 0x84:
324 		return "QR_EC";
325 	}
326 	return "UNKNOWN";
327 }
328 #else
329 #define acpi_ec_cmd_string(cmd)		"UNDEF"
330 #endif
331 
332 /* --------------------------------------------------------------------------
333  *                           GPE Registers
334  * -------------------------------------------------------------------------- */
335 
acpi_ec_gpe_status_set(struct acpi_ec * ec)336 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
337 {
338 	acpi_event_status gpe_status = 0;
339 
340 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
341 	return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
342 }
343 
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)344 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
345 {
346 	if (open)
347 		acpi_enable_gpe(NULL, ec->gpe);
348 	else {
349 		BUG_ON(ec->reference_count < 1);
350 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
351 	}
352 	if (acpi_ec_gpe_status_set(ec)) {
353 		/*
354 		 * On some platforms, EN=1 writes cannot trigger GPE. So
355 		 * software need to manually trigger a pseudo GPE event on
356 		 * EN=1 writes.
357 		 */
358 		ec_dbg_raw("Polling quirk");
359 		advance_transaction(ec, false);
360 	}
361 }
362 
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)363 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
364 {
365 	if (close)
366 		acpi_disable_gpe(NULL, ec->gpe);
367 	else {
368 		BUG_ON(ec->reference_count < 1);
369 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
370 	}
371 }
372 
373 /* --------------------------------------------------------------------------
374  *                           Transaction Management
375  * -------------------------------------------------------------------------- */
376 
acpi_ec_submit_request(struct acpi_ec * ec)377 static void acpi_ec_submit_request(struct acpi_ec *ec)
378 {
379 	ec->reference_count++;
380 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
381 	    ec->gpe >= 0 && ec->reference_count == 1)
382 		acpi_ec_enable_gpe(ec, true);
383 }
384 
acpi_ec_complete_request(struct acpi_ec * ec)385 static void acpi_ec_complete_request(struct acpi_ec *ec)
386 {
387 	bool flushed = false;
388 
389 	ec->reference_count--;
390 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
391 	    ec->gpe >= 0 && ec->reference_count == 0)
392 		acpi_ec_disable_gpe(ec, true);
393 	flushed = acpi_ec_flushed(ec);
394 	if (flushed)
395 		wake_up(&ec->wait);
396 }
397 
acpi_ec_mask_events(struct acpi_ec * ec)398 static void acpi_ec_mask_events(struct acpi_ec *ec)
399 {
400 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
401 		if (ec->gpe >= 0)
402 			acpi_ec_disable_gpe(ec, false);
403 		else
404 			disable_irq_nosync(ec->irq);
405 
406 		ec_dbg_drv("Polling enabled");
407 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
408 	}
409 }
410 
acpi_ec_unmask_events(struct acpi_ec * ec)411 static void acpi_ec_unmask_events(struct acpi_ec *ec)
412 {
413 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
414 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
415 		if (ec->gpe >= 0)
416 			acpi_ec_enable_gpe(ec, false);
417 		else
418 			enable_irq(ec->irq);
419 
420 		ec_dbg_drv("Polling disabled");
421 	}
422 }
423 
424 /*
425  * acpi_ec_submit_flushable_request() - Increase the reference count unless
426  *                                      the flush operation is not in
427  *                                      progress
428  * @ec: the EC device
429  *
430  * This function must be used before taking a new action that should hold
431  * the reference count.  If this function returns false, then the action
432  * must be discarded or it will prevent the flush operation from being
433  * completed.
434  */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)435 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
436 {
437 	if (!acpi_ec_started(ec))
438 		return false;
439 	acpi_ec_submit_request(ec);
440 	return true;
441 }
442 
acpi_ec_submit_event(struct acpi_ec * ec)443 static void acpi_ec_submit_event(struct acpi_ec *ec)
444 {
445 	/*
446 	 * It is safe to mask the events here, because acpi_ec_close_event()
447 	 * will run at least once after this.
448 	 */
449 	acpi_ec_mask_events(ec);
450 	if (!acpi_ec_event_enabled(ec))
451 		return;
452 
453 	if (ec->event_state != EC_EVENT_READY)
454 		return;
455 
456 	ec_dbg_evt("Command(%s) submitted/blocked",
457 		   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
458 
459 	ec->event_state = EC_EVENT_IN_PROGRESS;
460 	/*
461 	 * If events_to_process is greater than 0 at this point, the while ()
462 	 * loop in acpi_ec_event_handler() is still running and incrementing
463 	 * events_to_process will cause it to invoke acpi_ec_submit_query() once
464 	 * more, so it is not necessary to queue up the event work to start the
465 	 * same loop again.
466 	 */
467 	if (ec->events_to_process++ > 0)
468 		return;
469 
470 	ec->events_in_progress++;
471 	queue_work(ec_wq, &ec->work);
472 }
473 
acpi_ec_complete_event(struct acpi_ec * ec)474 static void acpi_ec_complete_event(struct acpi_ec *ec)
475 {
476 	if (ec->event_state == EC_EVENT_IN_PROGRESS)
477 		ec->event_state = EC_EVENT_COMPLETE;
478 }
479 
acpi_ec_close_event(struct acpi_ec * ec)480 static void acpi_ec_close_event(struct acpi_ec *ec)
481 {
482 	if (ec->event_state != EC_EVENT_READY)
483 		ec_dbg_evt("Command(%s) unblocked",
484 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
485 
486 	ec->event_state = EC_EVENT_READY;
487 	acpi_ec_unmask_events(ec);
488 }
489 
__acpi_ec_enable_event(struct acpi_ec * ec)490 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
491 {
492 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
493 		ec_log_drv("event unblocked");
494 	/*
495 	 * Unconditionally invoke this once after enabling the event
496 	 * handling mechanism to detect the pending events.
497 	 */
498 	advance_transaction(ec, false);
499 }
500 
__acpi_ec_disable_event(struct acpi_ec * ec)501 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
502 {
503 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
504 		ec_log_drv("event blocked");
505 }
506 
507 /*
508  * Process _Q events that might have accumulated in the EC.
509  * Run with locked ec mutex.
510  */
acpi_ec_clear(struct acpi_ec * ec)511 static void acpi_ec_clear(struct acpi_ec *ec)
512 {
513 	int i;
514 
515 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
516 		if (acpi_ec_submit_query(ec))
517 			break;
518 	}
519 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
520 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
521 	else
522 		pr_info("%d stale EC events cleared\n", i);
523 }
524 
acpi_ec_enable_event(struct acpi_ec * ec)525 static void acpi_ec_enable_event(struct acpi_ec *ec)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&ec->lock, flags);
530 	if (acpi_ec_started(ec))
531 		__acpi_ec_enable_event(ec);
532 	spin_unlock_irqrestore(&ec->lock, flags);
533 
534 	/* Drain additional events if hardware requires that */
535 	if (EC_FLAGS_CLEAR_ON_RESUME)
536 		acpi_ec_clear(ec);
537 }
538 
539 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)540 static void __acpi_ec_flush_work(void)
541 {
542 	flush_workqueue(ec_wq); /* flush ec->work */
543 	flush_workqueue(ec_query_wq); /* flush queries */
544 }
545 
acpi_ec_disable_event(struct acpi_ec * ec)546 static void acpi_ec_disable_event(struct acpi_ec *ec)
547 {
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&ec->lock, flags);
551 	__acpi_ec_disable_event(ec);
552 	spin_unlock_irqrestore(&ec->lock, flags);
553 
554 	/*
555 	 * When ec_freeze_events is true, we need to flush events in
556 	 * the proper position before entering the noirq stage.
557 	 */
558 	__acpi_ec_flush_work();
559 }
560 
acpi_ec_flush_work(void)561 void acpi_ec_flush_work(void)
562 {
563 	/* Without ec_wq there is nothing to flush. */
564 	if (!ec_wq)
565 		return;
566 
567 	__acpi_ec_flush_work();
568 }
569 #endif /* CONFIG_PM_SLEEP */
570 
acpi_ec_guard_event(struct acpi_ec * ec)571 static bool acpi_ec_guard_event(struct acpi_ec *ec)
572 {
573 	unsigned long flags;
574 	bool guarded;
575 
576 	spin_lock_irqsave(&ec->lock, flags);
577 	/*
578 	 * If firmware SCI_EVT clearing timing is "event", we actually
579 	 * don't know when the SCI_EVT will be cleared by firmware after
580 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
581 	 * acceptable period.
582 	 *
583 	 * The guarding period is applicable if the event state is not
584 	 * EC_EVENT_READY, but otherwise if the current transaction is of the
585 	 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
586 	 * and it should not be applied to let the transaction transition into
587 	 * the ACPI_EC_COMMAND_POLL state immediately.
588 	 */
589 	guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
590 		ec->event_state != EC_EVENT_READY &&
591 		(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
592 	spin_unlock_irqrestore(&ec->lock, flags);
593 	return guarded;
594 }
595 
ec_transaction_polled(struct acpi_ec * ec)596 static int ec_transaction_polled(struct acpi_ec *ec)
597 {
598 	unsigned long flags;
599 	int ret = 0;
600 
601 	spin_lock_irqsave(&ec->lock, flags);
602 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
603 		ret = 1;
604 	spin_unlock_irqrestore(&ec->lock, flags);
605 	return ret;
606 }
607 
ec_transaction_completed(struct acpi_ec * ec)608 static int ec_transaction_completed(struct acpi_ec *ec)
609 {
610 	unsigned long flags;
611 	int ret = 0;
612 
613 	spin_lock_irqsave(&ec->lock, flags);
614 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
615 		ret = 1;
616 	spin_unlock_irqrestore(&ec->lock, flags);
617 	return ret;
618 }
619 
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
621 {
622 	ec->curr->flags |= flag;
623 
624 	if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
625 		return;
626 
627 	switch (ec_event_clearing) {
628 	case ACPI_EC_EVT_TIMING_STATUS:
629 		if (flag == ACPI_EC_COMMAND_POLL)
630 			acpi_ec_close_event(ec);
631 
632 		return;
633 
634 	case ACPI_EC_EVT_TIMING_QUERY:
635 		if (flag == ACPI_EC_COMMAND_COMPLETE)
636 			acpi_ec_close_event(ec);
637 
638 		return;
639 
640 	case ACPI_EC_EVT_TIMING_EVENT:
641 		if (flag == ACPI_EC_COMMAND_COMPLETE)
642 			acpi_ec_complete_event(ec);
643 	}
644 }
645 
acpi_ec_spurious_interrupt(struct acpi_ec * ec,struct transaction * t)646 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
647 {
648 	if (t->irq_count < ec_storm_threshold)
649 		++t->irq_count;
650 
651 	/* Trigger if the threshold is 0 too. */
652 	if (t->irq_count == ec_storm_threshold)
653 		acpi_ec_mask_events(ec);
654 }
655 
advance_transaction(struct acpi_ec * ec,bool interrupt)656 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
657 {
658 	struct transaction *t = ec->curr;
659 	bool wakeup = false;
660 	u8 status;
661 
662 	ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
663 
664 	/*
665 	 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
666 	 * changes to always trigger a GPE interrupt.
667 	 *
668 	 * GPE STS is a W1C register, which means:
669 	 *
670 	 * 1. Software can clear it without worrying about clearing the other
671 	 *    GPEs' STS bits when the hardware sets them in parallel.
672 	 *
673 	 * 2. As long as software can ensure only clearing it when it is set,
674 	 *    hardware won't set it in parallel.
675 	 */
676 	if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
677 		acpi_clear_gpe(NULL, ec->gpe);
678 
679 	status = acpi_ec_read_status(ec);
680 
681 	/*
682 	 * Another IRQ or a guarded polling mode advancement is detected,
683 	 * the next QR_EC submission is then allowed.
684 	 */
685 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
686 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
687 		    ec->event_state == EC_EVENT_COMPLETE)
688 			acpi_ec_close_event(ec);
689 
690 		if (!t)
691 			goto out;
692 	}
693 
694 	if (t->flags & ACPI_EC_COMMAND_POLL) {
695 		if (t->wlen > t->wi) {
696 			if (!(status & ACPI_EC_FLAG_IBF))
697 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
698 			else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
699 				acpi_ec_spurious_interrupt(ec, t);
700 		} else if (t->rlen > t->ri) {
701 			if (status & ACPI_EC_FLAG_OBF) {
702 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
703 				if (t->rlen == t->ri) {
704 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
705 					wakeup = true;
706 					if (t->command == ACPI_EC_COMMAND_QUERY)
707 						ec_dbg_evt("Command(%s) completed by hardware",
708 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
709 				}
710 			} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
711 				acpi_ec_spurious_interrupt(ec, t);
712 			}
713 		} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
714 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
715 			wakeup = true;
716 		}
717 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
718 		acpi_ec_write_cmd(ec, t->command);
719 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
720 	}
721 
722 out:
723 	if (status & ACPI_EC_FLAG_SCI)
724 		acpi_ec_submit_event(ec);
725 
726 	if (wakeup && interrupt)
727 		wake_up(&ec->wait);
728 }
729 
start_transaction(struct acpi_ec * ec)730 static void start_transaction(struct acpi_ec *ec)
731 {
732 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
733 	ec->curr->flags = 0;
734 }
735 
ec_guard(struct acpi_ec * ec)736 static int ec_guard(struct acpi_ec *ec)
737 {
738 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
739 	unsigned long timeout = ec->timestamp + guard;
740 
741 	/* Ensure guarding period before polling EC status */
742 	do {
743 		if (ec->busy_polling) {
744 			/* Perform busy polling */
745 			if (ec_transaction_completed(ec))
746 				return 0;
747 			udelay(jiffies_to_usecs(guard));
748 		} else {
749 			/*
750 			 * Perform wait polling
751 			 * 1. Wait the transaction to be completed by the
752 			 *    GPE handler after the transaction enters
753 			 *    ACPI_EC_COMMAND_POLL state.
754 			 * 2. A special guarding logic is also required
755 			 *    for event clearing mode "event" before the
756 			 *    transaction enters ACPI_EC_COMMAND_POLL
757 			 *    state.
758 			 */
759 			if (!ec_transaction_polled(ec) &&
760 			    !acpi_ec_guard_event(ec))
761 				break;
762 			if (wait_event_timeout(ec->wait,
763 					       ec_transaction_completed(ec),
764 					       guard))
765 				return 0;
766 		}
767 	} while (time_before(jiffies, timeout));
768 	return -ETIME;
769 }
770 
ec_poll(struct acpi_ec * ec)771 static int ec_poll(struct acpi_ec *ec)
772 {
773 	unsigned long flags;
774 	int repeat = 5; /* number of command restarts */
775 
776 	while (repeat--) {
777 		unsigned long delay = jiffies +
778 			msecs_to_jiffies(ec_delay);
779 		do {
780 			if (!ec_guard(ec))
781 				return 0;
782 			spin_lock_irqsave(&ec->lock, flags);
783 			advance_transaction(ec, false);
784 			spin_unlock_irqrestore(&ec->lock, flags);
785 		} while (time_before(jiffies, delay));
786 		pr_debug("controller reset, restart transaction\n");
787 		spin_lock_irqsave(&ec->lock, flags);
788 		start_transaction(ec);
789 		spin_unlock_irqrestore(&ec->lock, flags);
790 	}
791 	return -ETIME;
792 }
793 
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)794 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
795 					struct transaction *t)
796 {
797 	unsigned long tmp;
798 	int ret = 0;
799 
800 	/* start transaction */
801 	spin_lock_irqsave(&ec->lock, tmp);
802 	/* Enable GPE for command processing (IBF=0/OBF=1) */
803 	if (!acpi_ec_submit_flushable_request(ec)) {
804 		ret = -EINVAL;
805 		goto unlock;
806 	}
807 	ec_dbg_ref(ec, "Increase command");
808 	/* following two actions should be kept atomic */
809 	ec->curr = t;
810 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
811 	start_transaction(ec);
812 	spin_unlock_irqrestore(&ec->lock, tmp);
813 
814 	ret = ec_poll(ec);
815 
816 	spin_lock_irqsave(&ec->lock, tmp);
817 	if (t->irq_count == ec_storm_threshold)
818 		acpi_ec_unmask_events(ec);
819 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
820 	ec->curr = NULL;
821 	/* Disable GPE for command processing (IBF=0/OBF=1) */
822 	acpi_ec_complete_request(ec);
823 	ec_dbg_ref(ec, "Decrease command");
824 unlock:
825 	spin_unlock_irqrestore(&ec->lock, tmp);
826 	return ret;
827 }
828 
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)829 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
830 {
831 	int status;
832 	u32 glk;
833 
834 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
835 		return -EINVAL;
836 	if (t->rdata)
837 		memset(t->rdata, 0, t->rlen);
838 
839 	mutex_lock(&ec->mutex);
840 	if (ec->global_lock) {
841 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
842 		if (ACPI_FAILURE(status)) {
843 			status = -ENODEV;
844 			goto unlock;
845 		}
846 	}
847 
848 	status = acpi_ec_transaction_unlocked(ec, t);
849 
850 	if (ec->global_lock)
851 		acpi_release_global_lock(glk);
852 unlock:
853 	mutex_unlock(&ec->mutex);
854 	return status;
855 }
856 
acpi_ec_burst_enable(struct acpi_ec * ec)857 static int acpi_ec_burst_enable(struct acpi_ec *ec)
858 {
859 	u8 d;
860 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
861 				.wdata = NULL, .rdata = &d,
862 				.wlen = 0, .rlen = 1};
863 
864 	return acpi_ec_transaction(ec, &t);
865 }
866 
acpi_ec_burst_disable(struct acpi_ec * ec)867 static int acpi_ec_burst_disable(struct acpi_ec *ec)
868 {
869 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
870 				.wdata = NULL, .rdata = NULL,
871 				.wlen = 0, .rlen = 0};
872 
873 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
874 				acpi_ec_transaction(ec, &t) : 0;
875 }
876 
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)877 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
878 {
879 	int result;
880 	u8 d;
881 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
882 				.wdata = &address, .rdata = &d,
883 				.wlen = 1, .rlen = 1};
884 
885 	result = acpi_ec_transaction(ec, &t);
886 	*data = d;
887 	return result;
888 }
889 
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)890 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
891 {
892 	u8 wdata[2] = { address, data };
893 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
894 				.wdata = wdata, .rdata = NULL,
895 				.wlen = 2, .rlen = 0};
896 
897 	return acpi_ec_transaction(ec, &t);
898 }
899 
ec_read(u8 addr,u8 * val)900 int ec_read(u8 addr, u8 *val)
901 {
902 	int err;
903 	u8 temp_data;
904 
905 	if (!first_ec)
906 		return -ENODEV;
907 
908 	err = acpi_ec_read(first_ec, addr, &temp_data);
909 
910 	if (!err) {
911 		*val = temp_data;
912 		return 0;
913 	}
914 	return err;
915 }
916 EXPORT_SYMBOL(ec_read);
917 
ec_write(u8 addr,u8 val)918 int ec_write(u8 addr, u8 val)
919 {
920 	if (!first_ec)
921 		return -ENODEV;
922 
923 	return acpi_ec_write(first_ec, addr, val);
924 }
925 EXPORT_SYMBOL(ec_write);
926 
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)927 int ec_transaction(u8 command,
928 		   const u8 *wdata, unsigned wdata_len,
929 		   u8 *rdata, unsigned rdata_len)
930 {
931 	struct transaction t = {.command = command,
932 				.wdata = wdata, .rdata = rdata,
933 				.wlen = wdata_len, .rlen = rdata_len};
934 
935 	if (!first_ec)
936 		return -ENODEV;
937 
938 	return acpi_ec_transaction(first_ec, &t);
939 }
940 EXPORT_SYMBOL(ec_transaction);
941 
942 /* Get the handle to the EC device */
ec_get_handle(void)943 acpi_handle ec_get_handle(void)
944 {
945 	if (!first_ec)
946 		return NULL;
947 	return first_ec->handle;
948 }
949 EXPORT_SYMBOL(ec_get_handle);
950 
acpi_ec_start(struct acpi_ec * ec,bool resuming)951 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
952 {
953 	unsigned long flags;
954 
955 	spin_lock_irqsave(&ec->lock, flags);
956 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
957 		ec_dbg_drv("Starting EC");
958 		/* Enable GPE for event processing (SCI_EVT=1) */
959 		if (!resuming) {
960 			acpi_ec_submit_request(ec);
961 			ec_dbg_ref(ec, "Increase driver");
962 		}
963 		ec_log_drv("EC started");
964 	}
965 	spin_unlock_irqrestore(&ec->lock, flags);
966 }
967 
acpi_ec_stopped(struct acpi_ec * ec)968 static bool acpi_ec_stopped(struct acpi_ec *ec)
969 {
970 	unsigned long flags;
971 	bool flushed;
972 
973 	spin_lock_irqsave(&ec->lock, flags);
974 	flushed = acpi_ec_flushed(ec);
975 	spin_unlock_irqrestore(&ec->lock, flags);
976 	return flushed;
977 }
978 
acpi_ec_stop(struct acpi_ec * ec,bool suspending)979 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
980 {
981 	unsigned long flags;
982 
983 	spin_lock_irqsave(&ec->lock, flags);
984 	if (acpi_ec_started(ec)) {
985 		ec_dbg_drv("Stopping EC");
986 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
987 		spin_unlock_irqrestore(&ec->lock, flags);
988 		wait_event(ec->wait, acpi_ec_stopped(ec));
989 		spin_lock_irqsave(&ec->lock, flags);
990 		/* Disable GPE for event processing (SCI_EVT=1) */
991 		if (!suspending) {
992 			acpi_ec_complete_request(ec);
993 			ec_dbg_ref(ec, "Decrease driver");
994 		} else if (!ec_freeze_events)
995 			__acpi_ec_disable_event(ec);
996 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
997 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
998 		ec_log_drv("EC stopped");
999 	}
1000 	spin_unlock_irqrestore(&ec->lock, flags);
1001 }
1002 
acpi_ec_enter_noirq(struct acpi_ec * ec)1003 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1004 {
1005 	unsigned long flags;
1006 
1007 	spin_lock_irqsave(&ec->lock, flags);
1008 	ec->busy_polling = true;
1009 	ec->polling_guard = 0;
1010 	ec_log_drv("interrupt blocked");
1011 	spin_unlock_irqrestore(&ec->lock, flags);
1012 }
1013 
acpi_ec_leave_noirq(struct acpi_ec * ec)1014 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1015 {
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&ec->lock, flags);
1019 	ec->busy_polling = ec_busy_polling;
1020 	ec->polling_guard = ec_polling_guard;
1021 	ec_log_drv("interrupt unblocked");
1022 	spin_unlock_irqrestore(&ec->lock, flags);
1023 }
1024 
acpi_ec_block_transactions(void)1025 void acpi_ec_block_transactions(void)
1026 {
1027 	struct acpi_ec *ec = first_ec;
1028 
1029 	if (!ec)
1030 		return;
1031 
1032 	mutex_lock(&ec->mutex);
1033 	/* Prevent transactions from being carried out */
1034 	acpi_ec_stop(ec, true);
1035 	mutex_unlock(&ec->mutex);
1036 }
1037 
acpi_ec_unblock_transactions(void)1038 void acpi_ec_unblock_transactions(void)
1039 {
1040 	/*
1041 	 * Allow transactions to happen again (this function is called from
1042 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1043 	 */
1044 	if (first_ec)
1045 		acpi_ec_start(first_ec, true);
1046 }
1047 
1048 /* --------------------------------------------------------------------------
1049                                 Event Management
1050    -------------------------------------------------------------------------- */
1051 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1052 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1053 {
1054 	struct acpi_ec_query_handler *handler;
1055 
1056 	mutex_lock(&ec->mutex);
1057 	list_for_each_entry(handler, &ec->list, node) {
1058 		if (value == handler->query_bit) {
1059 			kref_get(&handler->kref);
1060 			mutex_unlock(&ec->mutex);
1061 			return handler;
1062 		}
1063 	}
1064 	mutex_unlock(&ec->mutex);
1065 	return NULL;
1066 }
1067 
acpi_ec_query_handler_release(struct kref * kref)1068 static void acpi_ec_query_handler_release(struct kref *kref)
1069 {
1070 	struct acpi_ec_query_handler *handler =
1071 		container_of(kref, struct acpi_ec_query_handler, kref);
1072 
1073 	kfree(handler);
1074 }
1075 
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1076 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1077 {
1078 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1079 }
1080 
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1081 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1082 			      acpi_handle handle, acpi_ec_query_func func,
1083 			      void *data)
1084 {
1085 	struct acpi_ec_query_handler *handler =
1086 	    kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1087 
1088 	if (!handler)
1089 		return -ENOMEM;
1090 
1091 	handler->query_bit = query_bit;
1092 	handler->handle = handle;
1093 	handler->func = func;
1094 	handler->data = data;
1095 	mutex_lock(&ec->mutex);
1096 	kref_init(&handler->kref);
1097 	list_add(&handler->node, &ec->list);
1098 	mutex_unlock(&ec->mutex);
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1102 
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1103 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1104 					  bool remove_all, u8 query_bit)
1105 {
1106 	struct acpi_ec_query_handler *handler, *tmp;
1107 	LIST_HEAD(free_list);
1108 
1109 	mutex_lock(&ec->mutex);
1110 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1111 		if (remove_all || query_bit == handler->query_bit) {
1112 			list_del_init(&handler->node);
1113 			list_add(&handler->node, &free_list);
1114 		}
1115 	}
1116 	mutex_unlock(&ec->mutex);
1117 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1118 		acpi_ec_put_query_handler(handler);
1119 }
1120 
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1121 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1122 {
1123 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1124 }
1125 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1126 
acpi_ec_event_processor(struct work_struct * work)1127 static void acpi_ec_event_processor(struct work_struct *work)
1128 {
1129 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1130 	struct acpi_ec_query_handler *handler = q->handler;
1131 	struct acpi_ec *ec = q->ec;
1132 
1133 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1134 
1135 	if (handler->func)
1136 		handler->func(handler->data);
1137 	else if (handler->handle)
1138 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1139 
1140 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1141 
1142 	spin_lock_irq(&ec->lock);
1143 	ec->queries_in_progress--;
1144 	spin_unlock_irq(&ec->lock);
1145 
1146 	acpi_ec_put_query_handler(handler);
1147 	kfree(q);
1148 }
1149 
acpi_ec_create_query(struct acpi_ec * ec,u8 * pval)1150 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1151 {
1152 	struct acpi_ec_query *q;
1153 	struct transaction *t;
1154 
1155 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1156 	if (!q)
1157 		return NULL;
1158 
1159 	INIT_WORK(&q->work, acpi_ec_event_processor);
1160 	t = &q->transaction;
1161 	t->command = ACPI_EC_COMMAND_QUERY;
1162 	t->rdata = pval;
1163 	t->rlen = 1;
1164 	q->ec = ec;
1165 	return q;
1166 }
1167 
acpi_ec_submit_query(struct acpi_ec * ec)1168 static int acpi_ec_submit_query(struct acpi_ec *ec)
1169 {
1170 	struct acpi_ec_query *q;
1171 	u8 value = 0;
1172 	int result;
1173 
1174 	q = acpi_ec_create_query(ec, &value);
1175 	if (!q)
1176 		return -ENOMEM;
1177 
1178 	/*
1179 	 * Query the EC to find out which _Qxx method we need to evaluate.
1180 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1181 	 * bit to be cleared (and thus clearing the interrupt source).
1182 	 */
1183 	result = acpi_ec_transaction(ec, &q->transaction);
1184 	if (result)
1185 		goto err_exit;
1186 
1187 	if (!value) {
1188 		result = -ENODATA;
1189 		goto err_exit;
1190 	}
1191 
1192 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1193 	if (!q->handler) {
1194 		result = -ENODATA;
1195 		goto err_exit;
1196 	}
1197 
1198 	/*
1199 	 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1200 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1201 	 *
1202 	 * Put this log entry before queue_work() to make it appear in the log
1203 	 * before any other messages emitted during workqueue handling.
1204 	 */
1205 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1206 
1207 	spin_lock_irq(&ec->lock);
1208 
1209 	ec->queries_in_progress++;
1210 	queue_work(ec_query_wq, &q->work);
1211 
1212 	spin_unlock_irq(&ec->lock);
1213 
1214 	return 0;
1215 
1216 err_exit:
1217 	kfree(q);
1218 
1219 	return result;
1220 }
1221 
acpi_ec_event_handler(struct work_struct * work)1222 static void acpi_ec_event_handler(struct work_struct *work)
1223 {
1224 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1225 
1226 	ec_dbg_evt("Event started");
1227 
1228 	spin_lock_irq(&ec->lock);
1229 
1230 	while (ec->events_to_process) {
1231 		spin_unlock_irq(&ec->lock);
1232 
1233 		acpi_ec_submit_query(ec);
1234 
1235 		spin_lock_irq(&ec->lock);
1236 
1237 		ec->events_to_process--;
1238 	}
1239 
1240 	/*
1241 	 * Before exit, make sure that the it will be possible to queue up the
1242 	 * event handling work again regardless of whether or not the query
1243 	 * queued up above is processed successfully.
1244 	 */
1245 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1246 		bool guard_timeout;
1247 
1248 		acpi_ec_complete_event(ec);
1249 
1250 		ec_dbg_evt("Event stopped");
1251 
1252 		spin_unlock_irq(&ec->lock);
1253 
1254 		guard_timeout = !!ec_guard(ec);
1255 
1256 		spin_lock_irq(&ec->lock);
1257 
1258 		/* Take care of SCI_EVT unless someone else is doing that. */
1259 		if (guard_timeout && !ec->curr)
1260 			advance_transaction(ec, false);
1261 	} else {
1262 		acpi_ec_close_event(ec);
1263 
1264 		ec_dbg_evt("Event stopped");
1265 	}
1266 
1267 	ec->events_in_progress--;
1268 
1269 	spin_unlock_irq(&ec->lock);
1270 }
1271 
acpi_ec_handle_interrupt(struct acpi_ec * ec)1272 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1273 {
1274 	unsigned long flags;
1275 
1276 	spin_lock_irqsave(&ec->lock, flags);
1277 	advance_transaction(ec, true);
1278 	spin_unlock_irqrestore(&ec->lock, flags);
1279 }
1280 
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1281 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1282 			       u32 gpe_number, void *data)
1283 {
1284 	acpi_ec_handle_interrupt(data);
1285 	return ACPI_INTERRUPT_HANDLED;
1286 }
1287 
acpi_ec_irq_handler(int irq,void * data)1288 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1289 {
1290 	acpi_ec_handle_interrupt(data);
1291 	return IRQ_HANDLED;
1292 }
1293 
1294 /* --------------------------------------------------------------------------
1295  *                           Address Space Management
1296  * -------------------------------------------------------------------------- */
1297 
1298 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1299 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1300 		      u32 bits, u64 *value64,
1301 		      void *handler_context, void *region_context)
1302 {
1303 	struct acpi_ec *ec = handler_context;
1304 	int result = 0, i, bytes = bits / 8;
1305 	u8 *value = (u8 *)value64;
1306 
1307 	if ((address > 0xFF) || !value || !handler_context)
1308 		return AE_BAD_PARAMETER;
1309 
1310 	if (function != ACPI_READ && function != ACPI_WRITE)
1311 		return AE_BAD_PARAMETER;
1312 
1313 	if (ec->busy_polling || bits > 8)
1314 		acpi_ec_burst_enable(ec);
1315 
1316 	for (i = 0; i < bytes; ++i, ++address, ++value)
1317 		result = (function == ACPI_READ) ?
1318 			acpi_ec_read(ec, address, value) :
1319 			acpi_ec_write(ec, address, *value);
1320 
1321 	if (ec->busy_polling || bits > 8)
1322 		acpi_ec_burst_disable(ec);
1323 
1324 	switch (result) {
1325 	case -EINVAL:
1326 		return AE_BAD_PARAMETER;
1327 	case -ENODEV:
1328 		return AE_NOT_FOUND;
1329 	case -ETIME:
1330 		return AE_TIME;
1331 	default:
1332 		return AE_OK;
1333 	}
1334 }
1335 
1336 /* --------------------------------------------------------------------------
1337  *                             Driver Interface
1338  * -------------------------------------------------------------------------- */
1339 
1340 static acpi_status
1341 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1342 
acpi_ec_free(struct acpi_ec * ec)1343 static void acpi_ec_free(struct acpi_ec *ec)
1344 {
1345 	if (first_ec == ec)
1346 		first_ec = NULL;
1347 	if (boot_ec == ec)
1348 		boot_ec = NULL;
1349 	kfree(ec);
1350 }
1351 
acpi_ec_alloc(void)1352 static struct acpi_ec *acpi_ec_alloc(void)
1353 {
1354 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1355 
1356 	if (!ec)
1357 		return NULL;
1358 	mutex_init(&ec->mutex);
1359 	init_waitqueue_head(&ec->wait);
1360 	INIT_LIST_HEAD(&ec->list);
1361 	spin_lock_init(&ec->lock);
1362 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1363 	ec->timestamp = jiffies;
1364 	ec->busy_polling = true;
1365 	ec->polling_guard = 0;
1366 	ec->gpe = -1;
1367 	ec->irq = -1;
1368 	return ec;
1369 }
1370 
1371 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1372 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1373 			       void *context, void **return_value)
1374 {
1375 	char node_name[5];
1376 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1377 	struct acpi_ec *ec = context;
1378 	int value = 0;
1379 	acpi_status status;
1380 
1381 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1382 
1383 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1384 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1385 	return AE_OK;
1386 }
1387 
1388 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1389 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1390 {
1391 	acpi_status status;
1392 	unsigned long long tmp = 0;
1393 	struct acpi_ec *ec = context;
1394 
1395 	/* clear addr values, ec_parse_io_ports depend on it */
1396 	ec->command_addr = ec->data_addr = 0;
1397 
1398 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1399 				     ec_parse_io_ports, ec);
1400 	if (ACPI_FAILURE(status))
1401 		return status;
1402 	if (ec->data_addr == 0 || ec->command_addr == 0)
1403 		return AE_OK;
1404 
1405 	/* Get GPE bit assignment (EC events). */
1406 	/* TODO: Add support for _GPE returning a package */
1407 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1408 	if (ACPI_SUCCESS(status))
1409 		ec->gpe = tmp;
1410 	/*
1411 	 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1412 	 * platforms which use GpioInt instead of GPE.
1413 	 */
1414 
1415 	/* Use the global lock for all EC transactions? */
1416 	tmp = 0;
1417 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1418 	ec->global_lock = tmp;
1419 	ec->handle = handle;
1420 	return AE_CTRL_TERMINATE;
1421 }
1422 
install_gpe_event_handler(struct acpi_ec * ec)1423 static bool install_gpe_event_handler(struct acpi_ec *ec)
1424 {
1425 	acpi_status status;
1426 
1427 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1428 					      ACPI_GPE_EDGE_TRIGGERED,
1429 					      &acpi_ec_gpe_handler, ec);
1430 	if (ACPI_FAILURE(status))
1431 		return false;
1432 
1433 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1434 		acpi_ec_enable_gpe(ec, true);
1435 
1436 	return true;
1437 }
1438 
install_gpio_irq_event_handler(struct acpi_ec * ec)1439 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1440 {
1441 	return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1442 			   "ACPI EC", ec) >= 0;
1443 }
1444 
1445 /**
1446  * ec_install_handlers - Install service callbacks and register query methods.
1447  * @ec: Target EC.
1448  * @device: ACPI device object corresponding to @ec.
1449  *
1450  * Install a handler for the EC address space type unless it has been installed
1451  * already.  If @device is not NULL, also look for EC query methods in the
1452  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1453  * handler for the EC, if possible.
1454  *
1455  * Return:
1456  * -ENODEV if the address space handler cannot be installed, which means
1457  *  "unable to handle transactions",
1458  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1459  * or 0 (success) otherwise.
1460  */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device)1461 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1462 {
1463 	acpi_status status;
1464 
1465 	acpi_ec_start(ec, false);
1466 
1467 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1468 		acpi_ec_enter_noirq(ec);
1469 		status = acpi_install_address_space_handler(ec->handle,
1470 							    ACPI_ADR_SPACE_EC,
1471 							    &acpi_ec_space_handler,
1472 							    NULL, ec);
1473 		if (ACPI_FAILURE(status)) {
1474 			acpi_ec_stop(ec, false);
1475 			return -ENODEV;
1476 		}
1477 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1478 	}
1479 
1480 	if (!device)
1481 		return 0;
1482 
1483 	if (ec->gpe < 0) {
1484 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1485 		int irq = acpi_dev_gpio_irq_get(device, 0);
1486 		/*
1487 		 * Bail out right away for deferred probing or complete the
1488 		 * initialization regardless of any other errors.
1489 		 */
1490 		if (irq == -EPROBE_DEFER)
1491 			return -EPROBE_DEFER;
1492 		else if (irq >= 0)
1493 			ec->irq = irq;
1494 	}
1495 
1496 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1497 		/* Find and register all query methods */
1498 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1499 				    acpi_ec_register_query_methods,
1500 				    NULL, ec, NULL);
1501 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1502 	}
1503 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1504 		bool ready = false;
1505 
1506 		if (ec->gpe >= 0)
1507 			ready = install_gpe_event_handler(ec);
1508 		else if (ec->irq >= 0)
1509 			ready = install_gpio_irq_event_handler(ec);
1510 
1511 		if (ready) {
1512 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1513 			acpi_ec_leave_noirq(ec);
1514 		}
1515 		/*
1516 		 * Failures to install an event handler are not fatal, because
1517 		 * the EC can be polled for events.
1518 		 */
1519 	}
1520 	/* EC is fully operational, allow queries */
1521 	acpi_ec_enable_event(ec);
1522 
1523 	return 0;
1524 }
1525 
ec_remove_handlers(struct acpi_ec * ec)1526 static void ec_remove_handlers(struct acpi_ec *ec)
1527 {
1528 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1529 		if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1530 					ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1531 			pr_err("failed to remove space handler\n");
1532 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1533 	}
1534 
1535 	/*
1536 	 * Stops handling the EC transactions after removing the operation
1537 	 * region handler. This is required because _REG(DISCONNECT)
1538 	 * invoked during the removal can result in new EC transactions.
1539 	 *
1540 	 * Flushes the EC requests and thus disables the GPE before
1541 	 * removing the GPE handler. This is required by the current ACPICA
1542 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1543 	 * it is indicated but there is no way to handle it. So the drivers
1544 	 * must disable the GPEs prior to removing the GPE handlers.
1545 	 */
1546 	acpi_ec_stop(ec, false);
1547 
1548 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1549 		if (ec->gpe >= 0 &&
1550 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1551 				 &acpi_ec_gpe_handler)))
1552 			pr_err("failed to remove gpe handler\n");
1553 
1554 		if (ec->irq >= 0)
1555 			free_irq(ec->irq, ec);
1556 
1557 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1558 	}
1559 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1560 		acpi_ec_remove_query_handlers(ec, true, 0);
1561 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1562 	}
1563 }
1564 
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device)1565 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1566 {
1567 	int ret;
1568 
1569 	ret = ec_install_handlers(ec, device);
1570 	if (ret)
1571 		return ret;
1572 
1573 	/* First EC capable of handling transactions */
1574 	if (!first_ec)
1575 		first_ec = ec;
1576 
1577 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1578 		ec->data_addr);
1579 
1580 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1581 		if (ec->gpe >= 0)
1582 			pr_info("GPE=0x%x\n", ec->gpe);
1583 		else
1584 			pr_info("IRQ=%d\n", ec->irq);
1585 	}
1586 
1587 	return ret;
1588 }
1589 
acpi_ec_add(struct acpi_device * device)1590 static int acpi_ec_add(struct acpi_device *device)
1591 {
1592 	struct acpi_ec *ec;
1593 	int ret;
1594 
1595 	strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1596 	strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1597 
1598 	if (boot_ec && (boot_ec->handle == device->handle ||
1599 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1600 		/* Fast path: this device corresponds to the boot EC. */
1601 		ec = boot_ec;
1602 	} else {
1603 		acpi_status status;
1604 
1605 		ec = acpi_ec_alloc();
1606 		if (!ec)
1607 			return -ENOMEM;
1608 
1609 		status = ec_parse_device(device->handle, 0, ec, NULL);
1610 		if (status != AE_CTRL_TERMINATE) {
1611 			ret = -EINVAL;
1612 			goto err;
1613 		}
1614 
1615 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1616 		    ec->data_addr == boot_ec->data_addr) {
1617 			/*
1618 			 * Trust PNP0C09 namespace location rather than ECDT ID.
1619 			 * But trust ECDT GPE rather than _GPE because of ASUS
1620 			 * quirks. So do not change boot_ec->gpe to ec->gpe,
1621 			 * except when the TRUST_DSDT_GPE quirk is set.
1622 			 */
1623 			boot_ec->handle = ec->handle;
1624 
1625 			if (EC_FLAGS_TRUST_DSDT_GPE)
1626 				boot_ec->gpe = ec->gpe;
1627 
1628 			acpi_handle_debug(ec->handle, "duplicated.\n");
1629 			acpi_ec_free(ec);
1630 			ec = boot_ec;
1631 		}
1632 	}
1633 
1634 	ret = acpi_ec_setup(ec, device);
1635 	if (ret)
1636 		goto err;
1637 
1638 	if (ec == boot_ec)
1639 		acpi_handle_info(boot_ec->handle,
1640 				 "Boot %s EC initialization complete\n",
1641 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1642 
1643 	acpi_handle_info(ec->handle,
1644 			 "EC: Used to handle transactions and events\n");
1645 
1646 	device->driver_data = ec;
1647 
1648 	ret = !!request_region(ec->data_addr, 1, "EC data");
1649 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1650 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1651 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1652 
1653 	/* Reprobe devices depending on the EC */
1654 	acpi_dev_clear_dependencies(device);
1655 
1656 	acpi_handle_debug(ec->handle, "enumerated.\n");
1657 	return 0;
1658 
1659 err:
1660 	if (ec != boot_ec)
1661 		acpi_ec_free(ec);
1662 
1663 	return ret;
1664 }
1665 
acpi_ec_remove(struct acpi_device * device)1666 static int acpi_ec_remove(struct acpi_device *device)
1667 {
1668 	struct acpi_ec *ec;
1669 
1670 	if (!device)
1671 		return -EINVAL;
1672 
1673 	ec = acpi_driver_data(device);
1674 	release_region(ec->data_addr, 1);
1675 	release_region(ec->command_addr, 1);
1676 	device->driver_data = NULL;
1677 	if (ec != boot_ec) {
1678 		ec_remove_handlers(ec);
1679 		acpi_ec_free(ec);
1680 	}
1681 	return 0;
1682 }
1683 
1684 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1685 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1686 {
1687 	struct acpi_ec *ec = context;
1688 
1689 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1690 		return AE_OK;
1691 
1692 	/*
1693 	 * The first address region returned is the data port, and
1694 	 * the second address region returned is the status/command
1695 	 * port.
1696 	 */
1697 	if (ec->data_addr == 0)
1698 		ec->data_addr = resource->data.io.minimum;
1699 	else if (ec->command_addr == 0)
1700 		ec->command_addr = resource->data.io.minimum;
1701 	else
1702 		return AE_CTRL_TERMINATE;
1703 
1704 	return AE_OK;
1705 }
1706 
1707 static const struct acpi_device_id ec_device_ids[] = {
1708 	{"PNP0C09", 0},
1709 	{ACPI_ECDT_HID, 0},
1710 	{"", 0},
1711 };
1712 
1713 /*
1714  * This function is not Windows-compatible as Windows never enumerates the
1715  * namespace EC before the main ACPI device enumeration process. It is
1716  * retained for historical reason and will be deprecated in the future.
1717  */
acpi_ec_dsdt_probe(void)1718 void __init acpi_ec_dsdt_probe(void)
1719 {
1720 	struct acpi_ec *ec;
1721 	acpi_status status;
1722 	int ret;
1723 
1724 	/*
1725 	 * If a platform has ECDT, there is no need to proceed as the
1726 	 * following probe is not a part of the ACPI device enumeration,
1727 	 * executing _STA is not safe, and thus this probe may risk of
1728 	 * picking up an invalid EC device.
1729 	 */
1730 	if (boot_ec)
1731 		return;
1732 
1733 	ec = acpi_ec_alloc();
1734 	if (!ec)
1735 		return;
1736 
1737 	/*
1738 	 * At this point, the namespace is initialized, so start to find
1739 	 * the namespace objects.
1740 	 */
1741 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1742 	if (ACPI_FAILURE(status) || !ec->handle) {
1743 		acpi_ec_free(ec);
1744 		return;
1745 	}
1746 
1747 	/*
1748 	 * When the DSDT EC is available, always re-configure boot EC to
1749 	 * have _REG evaluated. _REG can only be evaluated after the
1750 	 * namespace initialization.
1751 	 * At this point, the GPE is not fully initialized, so do not to
1752 	 * handle the events.
1753 	 */
1754 	ret = acpi_ec_setup(ec, NULL);
1755 	if (ret) {
1756 		acpi_ec_free(ec);
1757 		return;
1758 	}
1759 
1760 	boot_ec = ec;
1761 
1762 	acpi_handle_info(ec->handle,
1763 			 "Boot DSDT EC used to handle transactions\n");
1764 }
1765 
1766 /*
1767  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1768  *
1769  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1770  * found a matching object in the namespace.
1771  *
1772  * Next, in case the DSDT EC is not functioning, it is still necessary to
1773  * provide a functional ECDT EC to handle events, so add an extra device object
1774  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1775  *
1776  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1777  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1778  */
acpi_ec_ecdt_start(void)1779 static void __init acpi_ec_ecdt_start(void)
1780 {
1781 	struct acpi_table_ecdt *ecdt_ptr;
1782 	acpi_handle handle;
1783 	acpi_status status;
1784 
1785 	/* Bail out if a matching EC has been found in the namespace. */
1786 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1787 		return;
1788 
1789 	/* Look up the object pointed to from the ECDT in the namespace. */
1790 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1791 				(struct acpi_table_header **)&ecdt_ptr);
1792 	if (ACPI_FAILURE(status))
1793 		return;
1794 
1795 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1796 	if (ACPI_SUCCESS(status)) {
1797 		boot_ec->handle = handle;
1798 
1799 		/* Add a special ACPI device object to represent the boot EC. */
1800 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1801 	}
1802 
1803 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1804 }
1805 
1806 /*
1807  * On some hardware it is necessary to clear events accumulated by the EC during
1808  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1809  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1810  *
1811  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1812  *
1813  * Ideally, the EC should also be instructed NOT to accumulate events during
1814  * sleep (which Windows seems to do somehow), but the interface to control this
1815  * behaviour is not known at this time.
1816  *
1817  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1818  * however it is very likely that other Samsung models are affected.
1819  *
1820  * On systems which don't accumulate _Q events during sleep, this extra check
1821  * should be harmless.
1822  */
ec_clear_on_resume(const struct dmi_system_id * id)1823 static int ec_clear_on_resume(const struct dmi_system_id *id)
1824 {
1825 	pr_debug("Detected system needing EC poll on resume.\n");
1826 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1827 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1828 	return 0;
1829 }
1830 
1831 /*
1832  * Some ECDTs contain wrong register addresses.
1833  * MSI MS-171F
1834  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1835  */
ec_correct_ecdt(const struct dmi_system_id * id)1836 static int ec_correct_ecdt(const struct dmi_system_id *id)
1837 {
1838 	pr_debug("Detected system needing ECDT address correction.\n");
1839 	EC_FLAGS_CORRECT_ECDT = 1;
1840 	return 0;
1841 }
1842 
1843 /*
1844  * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1845  * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1846  * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1847  */
ec_honor_dsdt_gpe(const struct dmi_system_id * id)1848 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1849 {
1850 	pr_debug("Detected system needing DSDT GPE setting.\n");
1851 	EC_FLAGS_TRUST_DSDT_GPE = 1;
1852 	return 0;
1853 }
1854 
1855 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1856 	{
1857 		/*
1858 		 * MSI MS-171F
1859 		 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1860 		 */
1861 		.callback = ec_correct_ecdt,
1862 		.matches = {
1863 			DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1864 			DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1865 		},
1866 	},
1867 	{
1868 		/*
1869 		 * HP Pavilion Gaming Laptop 15-cx0xxx
1870 		 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1871 		 */
1872 		.callback = ec_honor_dsdt_gpe,
1873 		.matches = {
1874 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1875 			DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1876 		},
1877 	},
1878 	{
1879 		/*
1880 		 * HP Pavilion Gaming Laptop 15-cx0041ur
1881 		 */
1882 		.callback = ec_honor_dsdt_gpe,
1883 		.matches = {
1884 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1885 			DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1886 		},
1887 	},
1888 	{
1889 		/*
1890 		 * Samsung hardware
1891 		 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1892 		 */
1893 		.callback = ec_clear_on_resume,
1894 		.matches = {
1895 			DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
1896 		},
1897 	},
1898 	{}
1899 };
1900 
acpi_ec_ecdt_probe(void)1901 void __init acpi_ec_ecdt_probe(void)
1902 {
1903 	struct acpi_table_ecdt *ecdt_ptr;
1904 	struct acpi_ec *ec;
1905 	acpi_status status;
1906 	int ret;
1907 
1908 	/* Generate a boot ec context. */
1909 	dmi_check_system(ec_dmi_table);
1910 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1911 				(struct acpi_table_header **)&ecdt_ptr);
1912 	if (ACPI_FAILURE(status))
1913 		return;
1914 
1915 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1916 		/*
1917 		 * Asus X50GL:
1918 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1919 		 */
1920 		goto out;
1921 	}
1922 
1923 	ec = acpi_ec_alloc();
1924 	if (!ec)
1925 		goto out;
1926 
1927 	if (EC_FLAGS_CORRECT_ECDT) {
1928 		ec->command_addr = ecdt_ptr->data.address;
1929 		ec->data_addr = ecdt_ptr->control.address;
1930 	} else {
1931 		ec->command_addr = ecdt_ptr->control.address;
1932 		ec->data_addr = ecdt_ptr->data.address;
1933 	}
1934 
1935 	/*
1936 	 * Ignore the GPE value on Reduced Hardware platforms.
1937 	 * Some products have this set to an erroneous value.
1938 	 */
1939 	if (!acpi_gbl_reduced_hardware)
1940 		ec->gpe = ecdt_ptr->gpe;
1941 
1942 	ec->handle = ACPI_ROOT_OBJECT;
1943 
1944 	/*
1945 	 * At this point, the namespace is not initialized, so do not find
1946 	 * the namespace objects, or handle the events.
1947 	 */
1948 	ret = acpi_ec_setup(ec, NULL);
1949 	if (ret) {
1950 		acpi_ec_free(ec);
1951 		goto out;
1952 	}
1953 
1954 	boot_ec = ec;
1955 	boot_ec_is_ecdt = true;
1956 
1957 	pr_info("Boot ECDT EC used to handle transactions\n");
1958 
1959 out:
1960 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1961 }
1962 
1963 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)1964 static int acpi_ec_suspend(struct device *dev)
1965 {
1966 	struct acpi_ec *ec =
1967 		acpi_driver_data(to_acpi_device(dev));
1968 
1969 	if (!pm_suspend_no_platform() && ec_freeze_events)
1970 		acpi_ec_disable_event(ec);
1971 	return 0;
1972 }
1973 
acpi_ec_suspend_noirq(struct device * dev)1974 static int acpi_ec_suspend_noirq(struct device *dev)
1975 {
1976 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1977 
1978 	/*
1979 	 * The SCI handler doesn't run at this point, so the GPE can be
1980 	 * masked at the low level without side effects.
1981 	 */
1982 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1983 	    ec->gpe >= 0 && ec->reference_count >= 1)
1984 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1985 
1986 	acpi_ec_enter_noirq(ec);
1987 
1988 	return 0;
1989 }
1990 
acpi_ec_resume_noirq(struct device * dev)1991 static int acpi_ec_resume_noirq(struct device *dev)
1992 {
1993 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1994 
1995 	acpi_ec_leave_noirq(ec);
1996 
1997 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1998 	    ec->gpe >= 0 && ec->reference_count >= 1)
1999 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2000 
2001 	return 0;
2002 }
2003 
acpi_ec_resume(struct device * dev)2004 static int acpi_ec_resume(struct device *dev)
2005 {
2006 	struct acpi_ec *ec =
2007 		acpi_driver_data(to_acpi_device(dev));
2008 
2009 	acpi_ec_enable_event(ec);
2010 	return 0;
2011 }
2012 
acpi_ec_mark_gpe_for_wake(void)2013 void acpi_ec_mark_gpe_for_wake(void)
2014 {
2015 	if (first_ec && !ec_no_wakeup)
2016 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2017 }
2018 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2019 
acpi_ec_set_gpe_wake_mask(u8 action)2020 void acpi_ec_set_gpe_wake_mask(u8 action)
2021 {
2022 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2023 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2024 }
2025 
acpi_ec_work_in_progress(struct acpi_ec * ec)2026 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2027 {
2028 	return ec->events_in_progress + ec->queries_in_progress > 0;
2029 }
2030 
acpi_ec_dispatch_gpe(void)2031 bool acpi_ec_dispatch_gpe(void)
2032 {
2033 	bool work_in_progress = false;
2034 
2035 	if (!first_ec)
2036 		return acpi_any_gpe_status_set(U32_MAX);
2037 
2038 	/*
2039 	 * Report wakeup if the status bit is set for any enabled GPE other
2040 	 * than the EC one.
2041 	 */
2042 	if (acpi_any_gpe_status_set(first_ec->gpe))
2043 		return true;
2044 
2045 	/*
2046 	 * Cancel the SCI wakeup and process all pending events in case there
2047 	 * are any wakeup ones in there.
2048 	 *
2049 	 * Note that if any non-EC GPEs are active at this point, the SCI will
2050 	 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2051 	 * should be missed by canceling the wakeup here.
2052 	 */
2053 	pm_system_cancel_wakeup();
2054 
2055 	/*
2056 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2057 	 * to allow the caller to process events properly after that.
2058 	 */
2059 	spin_lock_irq(&first_ec->lock);
2060 
2061 	if (acpi_ec_gpe_status_set(first_ec)) {
2062 		pm_pr_dbg("ACPI EC GPE status set\n");
2063 
2064 		advance_transaction(first_ec, false);
2065 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2066 	}
2067 
2068 	spin_unlock_irq(&first_ec->lock);
2069 
2070 	if (!work_in_progress)
2071 		return false;
2072 
2073 	pm_pr_dbg("ACPI EC GPE dispatched\n");
2074 
2075 	/* Drain EC work. */
2076 	do {
2077 		acpi_ec_flush_work();
2078 
2079 		pm_pr_dbg("ACPI EC work flushed\n");
2080 
2081 		spin_lock_irq(&first_ec->lock);
2082 
2083 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2084 
2085 		spin_unlock_irq(&first_ec->lock);
2086 	} while (work_in_progress && !pm_wakeup_pending());
2087 
2088 	return false;
2089 }
2090 #endif /* CONFIG_PM_SLEEP */
2091 
2092 static const struct dev_pm_ops acpi_ec_pm = {
2093 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2094 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2095 };
2096 
param_set_event_clearing(const char * val,const struct kernel_param * kp)2097 static int param_set_event_clearing(const char *val,
2098 				    const struct kernel_param *kp)
2099 {
2100 	int result = 0;
2101 
2102 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2103 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2104 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2105 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2106 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2107 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2108 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2109 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2110 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2111 	} else
2112 		result = -EINVAL;
2113 	return result;
2114 }
2115 
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2116 static int param_get_event_clearing(char *buffer,
2117 				    const struct kernel_param *kp)
2118 {
2119 	switch (ec_event_clearing) {
2120 	case ACPI_EC_EVT_TIMING_STATUS:
2121 		return sprintf(buffer, "status\n");
2122 	case ACPI_EC_EVT_TIMING_QUERY:
2123 		return sprintf(buffer, "query\n");
2124 	case ACPI_EC_EVT_TIMING_EVENT:
2125 		return sprintf(buffer, "event\n");
2126 	default:
2127 		return sprintf(buffer, "invalid\n");
2128 	}
2129 	return 0;
2130 }
2131 
2132 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2133 		  NULL, 0644);
2134 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2135 
2136 static struct acpi_driver acpi_ec_driver = {
2137 	.name = "ec",
2138 	.class = ACPI_EC_CLASS,
2139 	.ids = ec_device_ids,
2140 	.ops = {
2141 		.add = acpi_ec_add,
2142 		.remove = acpi_ec_remove,
2143 		},
2144 	.drv.pm = &acpi_ec_pm,
2145 };
2146 
acpi_ec_destroy_workqueues(void)2147 static void acpi_ec_destroy_workqueues(void)
2148 {
2149 	if (ec_wq) {
2150 		destroy_workqueue(ec_wq);
2151 		ec_wq = NULL;
2152 	}
2153 	if (ec_query_wq) {
2154 		destroy_workqueue(ec_query_wq);
2155 		ec_query_wq = NULL;
2156 	}
2157 }
2158 
acpi_ec_init_workqueues(void)2159 static int acpi_ec_init_workqueues(void)
2160 {
2161 	if (!ec_wq)
2162 		ec_wq = alloc_ordered_workqueue("kec", 0);
2163 
2164 	if (!ec_query_wq)
2165 		ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2166 
2167 	if (!ec_wq || !ec_query_wq) {
2168 		acpi_ec_destroy_workqueues();
2169 		return -ENODEV;
2170 	}
2171 	return 0;
2172 }
2173 
2174 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2175 	{
2176 		.matches = {
2177 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2178 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2179 		},
2180 	},
2181 	{
2182 		.matches = {
2183 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2184 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2185 		},
2186 	},
2187 	{
2188 		.matches = {
2189 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2190 			DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2191 		},
2192 	},
2193 	{ },
2194 };
2195 
acpi_ec_init(void)2196 void __init acpi_ec_init(void)
2197 {
2198 	int result;
2199 
2200 	result = acpi_ec_init_workqueues();
2201 	if (result)
2202 		return;
2203 
2204 	/*
2205 	 * Disable EC wakeup on following systems to prevent periodic
2206 	 * wakeup from EC GPE.
2207 	 */
2208 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2209 		ec_no_wakeup = true;
2210 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2211 	}
2212 
2213 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2214 	acpi_bus_register_driver(&acpi_ec_driver);
2215 
2216 	acpi_ec_ecdt_start();
2217 }
2218 
2219 /* EC driver currently not unloadable */
2220 #if 0
2221 static void __exit acpi_ec_exit(void)
2222 {
2223 
2224 	acpi_bus_unregister_driver(&acpi_ec_driver);
2225 	acpi_ec_destroy_workqueues();
2226 }
2227 #endif	/* 0 */
2228