1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  ec.c - ACPI Embedded Controller Driver (v3)
4  *
5  *  Copyright (C) 2001-2015 Intel Corporation
6  *    Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7  *            2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8  *            2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  *            2004       Luming Yu <luming.yu@intel.com>
10  *            2001, 2002 Andy Grover <andrew.grover@intel.com>
11  *            2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12  *  Copyright (C) 2008      Alexey Starikovskiy <astarikovskiy@suse.de>
13  */
14 
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32 
33 #include "internal.h"
34 
35 #define ACPI_EC_CLASS			"embedded_controller"
36 #define ACPI_EC_DEVICE_NAME		"Embedded Controller"
37 
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF	0x01	/* Output buffer full */
40 #define ACPI_EC_FLAG_IBF	0x02	/* Input buffer full */
41 #define ACPI_EC_FLAG_CMD	0x08	/* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST	0x10	/* burst mode */
43 #define ACPI_EC_FLAG_SCI	0x20	/* EC-SCI occurred */
44 
45 /*
46  * The SCI_EVT clearing timing is not defined by the ACPI specification.
47  * This leads to lots of practical timing issues for the host EC driver.
48  * The following variations are defined (from the target EC firmware's
49  * perspective):
50  * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51  *         target can clear SCI_EVT at any time so long as the host can see
52  *         the indication by reading the status register (EC_SC). So the
53  *         host should re-check SCI_EVT after the first time the SCI_EVT
54  *         indication is seen, which is the same time the query request
55  *         (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56  *         at any later time could indicate another event. Normally such
57  *         kind of EC firmware has implemented an event queue and will
58  *         return 0x00 to indicate "no outstanding event".
59  * QUERY: After seeing the query request (QR_EC) written to the command
60  *        register (EC_CMD) by the host and having prepared the responding
61  *        event value in the data register (EC_DATA), the target can safely
62  *        clear SCI_EVT because the target can confirm that the current
63  *        event is being handled by the host. The host then should check
64  *        SCI_EVT right after reading the event response from the data
65  *        register (EC_DATA).
66  * EVENT: After seeing the event response read from the data register
67  *        (EC_DATA) by the host, the target can clear SCI_EVT. As the
68  *        target requires time to notice the change in the data register
69  *        (EC_DATA), the host may be required to wait additional guarding
70  *        time before checking the SCI_EVT again. Such guarding may not be
71  *        necessary if the host is notified via another IRQ.
72  */
73 #define ACPI_EC_EVT_TIMING_STATUS	0x00
74 #define ACPI_EC_EVT_TIMING_QUERY	0x01
75 #define ACPI_EC_EVT_TIMING_EVENT	0x02
76 
77 /* EC commands */
78 enum ec_command {
79 	ACPI_EC_COMMAND_READ = 0x80,
80 	ACPI_EC_COMMAND_WRITE = 0x81,
81 	ACPI_EC_BURST_ENABLE = 0x82,
82 	ACPI_EC_BURST_DISABLE = 0x83,
83 	ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85 
86 #define ACPI_EC_DELAY		500	/* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK	1000	/* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL	550	/* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX	100	/* Maximum number of events to query
90 					 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES	16	/* Maximum number of parallel queries */
92 
93 enum {
94 	EC_FLAGS_QUERY_ENABLED,		/* Query is enabled */
95 	EC_FLAGS_EVENT_HANDLER_INSTALLED,	/* Event handler installed */
96 	EC_FLAGS_EC_HANDLER_INSTALLED,	/* OpReg handler installed */
97 	EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
98 	EC_FLAGS_STARTED,		/* Driver is started */
99 	EC_FLAGS_STOPPED,		/* Driver is stopped */
100 	EC_FLAGS_EVENTS_MASKED,		/* Events masked */
101 };
102 
103 #define ACPI_EC_COMMAND_POLL		0x01 /* Available for command byte */
104 #define ACPI_EC_COMMAND_COMPLETE	0x02 /* Completed last byte */
105 
106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
108 module_param(ec_delay, uint, 0644);
109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
110 
111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
112 module_param(ec_max_queries, uint, 0644);
113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
114 
115 static bool ec_busy_polling __read_mostly;
116 module_param(ec_busy_polling, bool, 0644);
117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
118 
119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
120 module_param(ec_polling_guard, uint, 0644);
121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
122 
123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
124 
125 /*
126  * If the number of false interrupts per one transaction exceeds
127  * this threshold, will think there is a GPE storm happened and
128  * will disable the GPE for normal transaction.
129  */
130 static unsigned int ec_storm_threshold  __read_mostly = 8;
131 module_param(ec_storm_threshold, uint, 0644);
132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
133 
134 static bool ec_freeze_events __read_mostly;
135 module_param(ec_freeze_events, bool, 0644);
136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
137 
138 static bool ec_no_wakeup __read_mostly;
139 module_param(ec_no_wakeup, bool, 0644);
140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
141 
142 struct acpi_ec_query_handler {
143 	struct list_head node;
144 	acpi_ec_query_func func;
145 	acpi_handle handle;
146 	void *data;
147 	u8 query_bit;
148 	struct kref kref;
149 };
150 
151 struct transaction {
152 	const u8 *wdata;
153 	u8 *rdata;
154 	unsigned short irq_count;
155 	u8 command;
156 	u8 wi;
157 	u8 ri;
158 	u8 wlen;
159 	u8 rlen;
160 	u8 flags;
161 };
162 
163 struct acpi_ec_query {
164 	struct transaction transaction;
165 	struct work_struct work;
166 	struct acpi_ec_query_handler *handler;
167 	struct acpi_ec *ec;
168 };
169 
170 static int acpi_ec_submit_query(struct acpi_ec *ec);
171 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
172 static void acpi_ec_event_handler(struct work_struct *work);
173 
174 struct acpi_ec *first_ec;
175 EXPORT_SYMBOL(first_ec);
176 
177 static struct acpi_ec *boot_ec;
178 static bool boot_ec_is_ecdt;
179 static struct workqueue_struct *ec_wq;
180 static struct workqueue_struct *ec_query_wq;
181 
182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
183 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
184 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
185 
186 /* --------------------------------------------------------------------------
187  *                           Logging/Debugging
188  * -------------------------------------------------------------------------- */
189 
190 /*
191  * Splitters used by the developers to track the boundary of the EC
192  * handling processes.
193  */
194 #ifdef DEBUG
195 #define EC_DBG_SEP	" "
196 #define EC_DBG_DRV	"+++++"
197 #define EC_DBG_STM	"====="
198 #define EC_DBG_REQ	"*****"
199 #define EC_DBG_EVT	"#####"
200 #else
201 #define EC_DBG_SEP	""
202 #define EC_DBG_DRV
203 #define EC_DBG_STM
204 #define EC_DBG_REQ
205 #define EC_DBG_EVT
206 #endif
207 
208 #define ec_log_raw(fmt, ...) \
209 	pr_info(fmt "\n", ##__VA_ARGS__)
210 #define ec_dbg_raw(fmt, ...) \
211 	pr_debug(fmt "\n", ##__VA_ARGS__)
212 #define ec_log(filter, fmt, ...) \
213 	ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
214 #define ec_dbg(filter, fmt, ...) \
215 	ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
216 
217 #define ec_log_drv(fmt, ...) \
218 	ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
219 #define ec_dbg_drv(fmt, ...) \
220 	ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
221 #define ec_dbg_stm(fmt, ...) \
222 	ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
223 #define ec_dbg_req(fmt, ...) \
224 	ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
225 #define ec_dbg_evt(fmt, ...) \
226 	ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
227 #define ec_dbg_ref(ec, fmt, ...) \
228 	ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
229 
230 /* --------------------------------------------------------------------------
231  *                           Device Flags
232  * -------------------------------------------------------------------------- */
233 
acpi_ec_started(struct acpi_ec * ec)234 static bool acpi_ec_started(struct acpi_ec *ec)
235 {
236 	return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
237 	       !test_bit(EC_FLAGS_STOPPED, &ec->flags);
238 }
239 
acpi_ec_event_enabled(struct acpi_ec * ec)240 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
241 {
242 	/*
243 	 * There is an OSPM early stage logic. During the early stages
244 	 * (boot/resume), OSPMs shouldn't enable the event handling, only
245 	 * the EC transactions are allowed to be performed.
246 	 */
247 	if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
248 		return false;
249 	/*
250 	 * However, disabling the event handling is experimental for late
251 	 * stage (suspend), and is controlled by the boot parameter of
252 	 * "ec_freeze_events":
253 	 * 1. true:  The EC event handling is disabled before entering
254 	 *           the noirq stage.
255 	 * 2. false: The EC event handling is automatically disabled as
256 	 *           soon as the EC driver is stopped.
257 	 */
258 	if (ec_freeze_events)
259 		return acpi_ec_started(ec);
260 	else
261 		return test_bit(EC_FLAGS_STARTED, &ec->flags);
262 }
263 
acpi_ec_flushed(struct acpi_ec * ec)264 static bool acpi_ec_flushed(struct acpi_ec *ec)
265 {
266 	return ec->reference_count == 1;
267 }
268 
269 /* --------------------------------------------------------------------------
270  *                           EC Registers
271  * -------------------------------------------------------------------------- */
272 
acpi_ec_read_status(struct acpi_ec * ec)273 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
274 {
275 	u8 x = inb(ec->command_addr);
276 
277 	ec_dbg_raw("EC_SC(R) = 0x%2.2x "
278 		   "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
279 		   x,
280 		   !!(x & ACPI_EC_FLAG_SCI),
281 		   !!(x & ACPI_EC_FLAG_BURST),
282 		   !!(x & ACPI_EC_FLAG_CMD),
283 		   !!(x & ACPI_EC_FLAG_IBF),
284 		   !!(x & ACPI_EC_FLAG_OBF));
285 	return x;
286 }
287 
acpi_ec_read_data(struct acpi_ec * ec)288 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
289 {
290 	u8 x = inb(ec->data_addr);
291 
292 	ec->timestamp = jiffies;
293 	ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
294 	return x;
295 }
296 
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)297 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
298 {
299 	ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
300 	outb(command, ec->command_addr);
301 	ec->timestamp = jiffies;
302 }
303 
acpi_ec_write_data(struct acpi_ec * ec,u8 data)304 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
305 {
306 	ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
307 	outb(data, ec->data_addr);
308 	ec->timestamp = jiffies;
309 }
310 
311 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)312 static const char *acpi_ec_cmd_string(u8 cmd)
313 {
314 	switch (cmd) {
315 	case 0x80:
316 		return "RD_EC";
317 	case 0x81:
318 		return "WR_EC";
319 	case 0x82:
320 		return "BE_EC";
321 	case 0x83:
322 		return "BD_EC";
323 	case 0x84:
324 		return "QR_EC";
325 	}
326 	return "UNKNOWN";
327 }
328 #else
329 #define acpi_ec_cmd_string(cmd)		"UNDEF"
330 #endif
331 
332 /* --------------------------------------------------------------------------
333  *                           GPE Registers
334  * -------------------------------------------------------------------------- */
335 
acpi_ec_gpe_status_set(struct acpi_ec * ec)336 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
337 {
338 	acpi_event_status gpe_status = 0;
339 
340 	(void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
341 	return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
342 }
343 
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)344 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
345 {
346 	if (open)
347 		acpi_enable_gpe(NULL, ec->gpe);
348 	else {
349 		BUG_ON(ec->reference_count < 1);
350 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
351 	}
352 	if (acpi_ec_gpe_status_set(ec)) {
353 		/*
354 		 * On some platforms, EN=1 writes cannot trigger GPE. So
355 		 * software need to manually trigger a pseudo GPE event on
356 		 * EN=1 writes.
357 		 */
358 		ec_dbg_raw("Polling quirk");
359 		advance_transaction(ec, false);
360 	}
361 }
362 
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)363 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
364 {
365 	if (close)
366 		acpi_disable_gpe(NULL, ec->gpe);
367 	else {
368 		BUG_ON(ec->reference_count < 1);
369 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
370 	}
371 }
372 
373 /* --------------------------------------------------------------------------
374  *                           Transaction Management
375  * -------------------------------------------------------------------------- */
376 
acpi_ec_submit_request(struct acpi_ec * ec)377 static void acpi_ec_submit_request(struct acpi_ec *ec)
378 {
379 	ec->reference_count++;
380 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
381 	    ec->gpe >= 0 && ec->reference_count == 1)
382 		acpi_ec_enable_gpe(ec, true);
383 }
384 
acpi_ec_complete_request(struct acpi_ec * ec)385 static void acpi_ec_complete_request(struct acpi_ec *ec)
386 {
387 	bool flushed = false;
388 
389 	ec->reference_count--;
390 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
391 	    ec->gpe >= 0 && ec->reference_count == 0)
392 		acpi_ec_disable_gpe(ec, true);
393 	flushed = acpi_ec_flushed(ec);
394 	if (flushed)
395 		wake_up(&ec->wait);
396 }
397 
acpi_ec_mask_events(struct acpi_ec * ec)398 static void acpi_ec_mask_events(struct acpi_ec *ec)
399 {
400 	if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
401 		if (ec->gpe >= 0)
402 			acpi_ec_disable_gpe(ec, false);
403 		else
404 			disable_irq_nosync(ec->irq);
405 
406 		ec_dbg_drv("Polling enabled");
407 		set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
408 	}
409 }
410 
acpi_ec_unmask_events(struct acpi_ec * ec)411 static void acpi_ec_unmask_events(struct acpi_ec *ec)
412 {
413 	if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
414 		clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
415 		if (ec->gpe >= 0)
416 			acpi_ec_enable_gpe(ec, false);
417 		else
418 			enable_irq(ec->irq);
419 
420 		ec_dbg_drv("Polling disabled");
421 	}
422 }
423 
424 /*
425  * acpi_ec_submit_flushable_request() - Increase the reference count unless
426  *                                      the flush operation is not in
427  *                                      progress
428  * @ec: the EC device
429  *
430  * This function must be used before taking a new action that should hold
431  * the reference count.  If this function returns false, then the action
432  * must be discarded or it will prevent the flush operation from being
433  * completed.
434  */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)435 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
436 {
437 	if (!acpi_ec_started(ec))
438 		return false;
439 	acpi_ec_submit_request(ec);
440 	return true;
441 }
442 
acpi_ec_submit_event(struct acpi_ec * ec)443 static void acpi_ec_submit_event(struct acpi_ec *ec)
444 {
445 	/*
446 	 * It is safe to mask the events here, because acpi_ec_close_event()
447 	 * will run at least once after this.
448 	 */
449 	acpi_ec_mask_events(ec);
450 	if (!acpi_ec_event_enabled(ec))
451 		return;
452 
453 	if (ec->event_state != EC_EVENT_READY)
454 		return;
455 
456 	ec_dbg_evt("Command(%s) submitted/blocked",
457 		   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
458 
459 	ec->event_state = EC_EVENT_IN_PROGRESS;
460 	/*
461 	 * If events_to_process is greater than 0 at this point, the while ()
462 	 * loop in acpi_ec_event_handler() is still running and incrementing
463 	 * events_to_process will cause it to invoke acpi_ec_submit_query() once
464 	 * more, so it is not necessary to queue up the event work to start the
465 	 * same loop again.
466 	 */
467 	if (ec->events_to_process++ > 0)
468 		return;
469 
470 	ec->events_in_progress++;
471 	queue_work(ec_wq, &ec->work);
472 }
473 
acpi_ec_complete_event(struct acpi_ec * ec)474 static void acpi_ec_complete_event(struct acpi_ec *ec)
475 {
476 	if (ec->event_state == EC_EVENT_IN_PROGRESS)
477 		ec->event_state = EC_EVENT_COMPLETE;
478 }
479 
acpi_ec_close_event(struct acpi_ec * ec)480 static void acpi_ec_close_event(struct acpi_ec *ec)
481 {
482 	if (ec->event_state != EC_EVENT_READY)
483 		ec_dbg_evt("Command(%s) unblocked",
484 			   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
485 
486 	ec->event_state = EC_EVENT_READY;
487 	acpi_ec_unmask_events(ec);
488 }
489 
__acpi_ec_enable_event(struct acpi_ec * ec)490 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
491 {
492 	if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
493 		ec_log_drv("event unblocked");
494 	/*
495 	 * Unconditionally invoke this once after enabling the event
496 	 * handling mechanism to detect the pending events.
497 	 */
498 	advance_transaction(ec, false);
499 }
500 
__acpi_ec_disable_event(struct acpi_ec * ec)501 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
502 {
503 	if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
504 		ec_log_drv("event blocked");
505 }
506 
507 /*
508  * Process _Q events that might have accumulated in the EC.
509  * Run with locked ec mutex.
510  */
acpi_ec_clear(struct acpi_ec * ec)511 static void acpi_ec_clear(struct acpi_ec *ec)
512 {
513 	int i;
514 
515 	for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
516 		if (acpi_ec_submit_query(ec))
517 			break;
518 	}
519 	if (unlikely(i == ACPI_EC_CLEAR_MAX))
520 		pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
521 	else
522 		pr_info("%d stale EC events cleared\n", i);
523 }
524 
acpi_ec_enable_event(struct acpi_ec * ec)525 static void acpi_ec_enable_event(struct acpi_ec *ec)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&ec->lock, flags);
530 	if (acpi_ec_started(ec))
531 		__acpi_ec_enable_event(ec);
532 	spin_unlock_irqrestore(&ec->lock, flags);
533 
534 	/* Drain additional events if hardware requires that */
535 	if (EC_FLAGS_CLEAR_ON_RESUME)
536 		acpi_ec_clear(ec);
537 }
538 
539 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)540 static void __acpi_ec_flush_work(void)
541 {
542 	flush_workqueue(ec_wq); /* flush ec->work */
543 	flush_workqueue(ec_query_wq); /* flush queries */
544 }
545 
acpi_ec_disable_event(struct acpi_ec * ec)546 static void acpi_ec_disable_event(struct acpi_ec *ec)
547 {
548 	unsigned long flags;
549 
550 	spin_lock_irqsave(&ec->lock, flags);
551 	__acpi_ec_disable_event(ec);
552 	spin_unlock_irqrestore(&ec->lock, flags);
553 
554 	/*
555 	 * When ec_freeze_events is true, we need to flush events in
556 	 * the proper position before entering the noirq stage.
557 	 */
558 	__acpi_ec_flush_work();
559 }
560 
acpi_ec_flush_work(void)561 void acpi_ec_flush_work(void)
562 {
563 	/* Without ec_wq there is nothing to flush. */
564 	if (!ec_wq)
565 		return;
566 
567 	__acpi_ec_flush_work();
568 }
569 #endif /* CONFIG_PM_SLEEP */
570 
acpi_ec_guard_event(struct acpi_ec * ec)571 static bool acpi_ec_guard_event(struct acpi_ec *ec)
572 {
573 	unsigned long flags;
574 	bool guarded;
575 
576 	spin_lock_irqsave(&ec->lock, flags);
577 	/*
578 	 * If firmware SCI_EVT clearing timing is "event", we actually
579 	 * don't know when the SCI_EVT will be cleared by firmware after
580 	 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
581 	 * acceptable period.
582 	 *
583 	 * The guarding period is applicable if the event state is not
584 	 * EC_EVENT_READY, but otherwise if the current transaction is of the
585 	 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
586 	 * and it should not be applied to let the transaction transition into
587 	 * the ACPI_EC_COMMAND_POLL state immediately.
588 	 */
589 	guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
590 		ec->event_state != EC_EVENT_READY &&
591 		(!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
592 	spin_unlock_irqrestore(&ec->lock, flags);
593 	return guarded;
594 }
595 
ec_transaction_polled(struct acpi_ec * ec)596 static int ec_transaction_polled(struct acpi_ec *ec)
597 {
598 	unsigned long flags;
599 	int ret = 0;
600 
601 	spin_lock_irqsave(&ec->lock, flags);
602 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
603 		ret = 1;
604 	spin_unlock_irqrestore(&ec->lock, flags);
605 	return ret;
606 }
607 
ec_transaction_completed(struct acpi_ec * ec)608 static int ec_transaction_completed(struct acpi_ec *ec)
609 {
610 	unsigned long flags;
611 	int ret = 0;
612 
613 	spin_lock_irqsave(&ec->lock, flags);
614 	if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
615 		ret = 1;
616 	spin_unlock_irqrestore(&ec->lock, flags);
617 	return ret;
618 }
619 
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
621 {
622 	ec->curr->flags |= flag;
623 
624 	if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
625 		return;
626 
627 	switch (ec_event_clearing) {
628 	case ACPI_EC_EVT_TIMING_STATUS:
629 		if (flag == ACPI_EC_COMMAND_POLL)
630 			acpi_ec_close_event(ec);
631 
632 		return;
633 
634 	case ACPI_EC_EVT_TIMING_QUERY:
635 		if (flag == ACPI_EC_COMMAND_COMPLETE)
636 			acpi_ec_close_event(ec);
637 
638 		return;
639 
640 	case ACPI_EC_EVT_TIMING_EVENT:
641 		if (flag == ACPI_EC_COMMAND_COMPLETE)
642 			acpi_ec_complete_event(ec);
643 	}
644 }
645 
acpi_ec_spurious_interrupt(struct acpi_ec * ec,struct transaction * t)646 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
647 {
648 	if (t->irq_count < ec_storm_threshold)
649 		++t->irq_count;
650 
651 	/* Trigger if the threshold is 0 too. */
652 	if (t->irq_count == ec_storm_threshold)
653 		acpi_ec_mask_events(ec);
654 }
655 
advance_transaction(struct acpi_ec * ec,bool interrupt)656 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
657 {
658 	struct transaction *t = ec->curr;
659 	bool wakeup = false;
660 	u8 status;
661 
662 	ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
663 
664 	/*
665 	 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
666 	 * changes to always trigger a GPE interrupt.
667 	 *
668 	 * GPE STS is a W1C register, which means:
669 	 *
670 	 * 1. Software can clear it without worrying about clearing the other
671 	 *    GPEs' STS bits when the hardware sets them in parallel.
672 	 *
673 	 * 2. As long as software can ensure only clearing it when it is set,
674 	 *    hardware won't set it in parallel.
675 	 */
676 	if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
677 		acpi_clear_gpe(NULL, ec->gpe);
678 
679 	status = acpi_ec_read_status(ec);
680 
681 	/*
682 	 * Another IRQ or a guarded polling mode advancement is detected,
683 	 * the next QR_EC submission is then allowed.
684 	 */
685 	if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
686 		if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
687 		    ec->event_state == EC_EVENT_COMPLETE)
688 			acpi_ec_close_event(ec);
689 
690 		if (!t)
691 			goto out;
692 	}
693 
694 	if (t->flags & ACPI_EC_COMMAND_POLL) {
695 		if (t->wlen > t->wi) {
696 			if (!(status & ACPI_EC_FLAG_IBF))
697 				acpi_ec_write_data(ec, t->wdata[t->wi++]);
698 			else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
699 				acpi_ec_spurious_interrupt(ec, t);
700 		} else if (t->rlen > t->ri) {
701 			if (status & ACPI_EC_FLAG_OBF) {
702 				t->rdata[t->ri++] = acpi_ec_read_data(ec);
703 				if (t->rlen == t->ri) {
704 					ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
705 					wakeup = true;
706 					if (t->command == ACPI_EC_COMMAND_QUERY)
707 						ec_dbg_evt("Command(%s) completed by hardware",
708 							   acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
709 				}
710 			} else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
711 				acpi_ec_spurious_interrupt(ec, t);
712 			}
713 		} else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
714 			ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
715 			wakeup = true;
716 		}
717 	} else if (!(status & ACPI_EC_FLAG_IBF)) {
718 		acpi_ec_write_cmd(ec, t->command);
719 		ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
720 	}
721 
722 out:
723 	if (status & ACPI_EC_FLAG_SCI)
724 		acpi_ec_submit_event(ec);
725 
726 	if (wakeup && interrupt)
727 		wake_up(&ec->wait);
728 }
729 
start_transaction(struct acpi_ec * ec)730 static void start_transaction(struct acpi_ec *ec)
731 {
732 	ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
733 	ec->curr->flags = 0;
734 }
735 
ec_guard(struct acpi_ec * ec)736 static int ec_guard(struct acpi_ec *ec)
737 {
738 	unsigned long guard = usecs_to_jiffies(ec->polling_guard);
739 	unsigned long timeout = ec->timestamp + guard;
740 
741 	/* Ensure guarding period before polling EC status */
742 	do {
743 		if (ec->busy_polling) {
744 			/* Perform busy polling */
745 			if (ec_transaction_completed(ec))
746 				return 0;
747 			udelay(jiffies_to_usecs(guard));
748 		} else {
749 			/*
750 			 * Perform wait polling
751 			 * 1. Wait the transaction to be completed by the
752 			 *    GPE handler after the transaction enters
753 			 *    ACPI_EC_COMMAND_POLL state.
754 			 * 2. A special guarding logic is also required
755 			 *    for event clearing mode "event" before the
756 			 *    transaction enters ACPI_EC_COMMAND_POLL
757 			 *    state.
758 			 */
759 			if (!ec_transaction_polled(ec) &&
760 			    !acpi_ec_guard_event(ec))
761 				break;
762 			if (wait_event_timeout(ec->wait,
763 					       ec_transaction_completed(ec),
764 					       guard))
765 				return 0;
766 		}
767 	} while (time_before(jiffies, timeout));
768 	return -ETIME;
769 }
770 
ec_poll(struct acpi_ec * ec)771 static int ec_poll(struct acpi_ec *ec)
772 {
773 	unsigned long flags;
774 	int repeat = 5; /* number of command restarts */
775 
776 	while (repeat--) {
777 		unsigned long delay = jiffies +
778 			msecs_to_jiffies(ec_delay);
779 		do {
780 			if (!ec_guard(ec))
781 				return 0;
782 			spin_lock_irqsave(&ec->lock, flags);
783 			advance_transaction(ec, false);
784 			spin_unlock_irqrestore(&ec->lock, flags);
785 		} while (time_before(jiffies, delay));
786 		pr_debug("controller reset, restart transaction\n");
787 		spin_lock_irqsave(&ec->lock, flags);
788 		start_transaction(ec);
789 		spin_unlock_irqrestore(&ec->lock, flags);
790 	}
791 	return -ETIME;
792 }
793 
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)794 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
795 					struct transaction *t)
796 {
797 	unsigned long tmp;
798 	int ret = 0;
799 
800 	/* start transaction */
801 	spin_lock_irqsave(&ec->lock, tmp);
802 	/* Enable GPE for command processing (IBF=0/OBF=1) */
803 	if (!acpi_ec_submit_flushable_request(ec)) {
804 		ret = -EINVAL;
805 		goto unlock;
806 	}
807 	ec_dbg_ref(ec, "Increase command");
808 	/* following two actions should be kept atomic */
809 	ec->curr = t;
810 	ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
811 	start_transaction(ec);
812 	spin_unlock_irqrestore(&ec->lock, tmp);
813 
814 	ret = ec_poll(ec);
815 
816 	spin_lock_irqsave(&ec->lock, tmp);
817 	if (t->irq_count == ec_storm_threshold)
818 		acpi_ec_unmask_events(ec);
819 	ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
820 	ec->curr = NULL;
821 	/* Disable GPE for command processing (IBF=0/OBF=1) */
822 	acpi_ec_complete_request(ec);
823 	ec_dbg_ref(ec, "Decrease command");
824 unlock:
825 	spin_unlock_irqrestore(&ec->lock, tmp);
826 	return ret;
827 }
828 
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)829 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
830 {
831 	int status;
832 	u32 glk;
833 
834 	if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
835 		return -EINVAL;
836 	if (t->rdata)
837 		memset(t->rdata, 0, t->rlen);
838 
839 	mutex_lock(&ec->mutex);
840 	if (ec->global_lock) {
841 		status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
842 		if (ACPI_FAILURE(status)) {
843 			status = -ENODEV;
844 			goto unlock;
845 		}
846 	}
847 
848 	status = acpi_ec_transaction_unlocked(ec, t);
849 
850 	if (ec->global_lock)
851 		acpi_release_global_lock(glk);
852 unlock:
853 	mutex_unlock(&ec->mutex);
854 	return status;
855 }
856 
acpi_ec_burst_enable(struct acpi_ec * ec)857 static int acpi_ec_burst_enable(struct acpi_ec *ec)
858 {
859 	u8 d;
860 	struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
861 				.wdata = NULL, .rdata = &d,
862 				.wlen = 0, .rlen = 1};
863 
864 	return acpi_ec_transaction(ec, &t);
865 }
866 
acpi_ec_burst_disable(struct acpi_ec * ec)867 static int acpi_ec_burst_disable(struct acpi_ec *ec)
868 {
869 	struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
870 				.wdata = NULL, .rdata = NULL,
871 				.wlen = 0, .rlen = 0};
872 
873 	return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
874 				acpi_ec_transaction(ec, &t) : 0;
875 }
876 
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)877 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
878 {
879 	int result;
880 	u8 d;
881 	struct transaction t = {.command = ACPI_EC_COMMAND_READ,
882 				.wdata = &address, .rdata = &d,
883 				.wlen = 1, .rlen = 1};
884 
885 	result = acpi_ec_transaction(ec, &t);
886 	*data = d;
887 	return result;
888 }
889 
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)890 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
891 {
892 	u8 wdata[2] = { address, data };
893 	struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
894 				.wdata = wdata, .rdata = NULL,
895 				.wlen = 2, .rlen = 0};
896 
897 	return acpi_ec_transaction(ec, &t);
898 }
899 
ec_read(u8 addr,u8 * val)900 int ec_read(u8 addr, u8 *val)
901 {
902 	int err;
903 	u8 temp_data;
904 
905 	if (!first_ec)
906 		return -ENODEV;
907 
908 	err = acpi_ec_read(first_ec, addr, &temp_data);
909 
910 	if (!err) {
911 		*val = temp_data;
912 		return 0;
913 	}
914 	return err;
915 }
916 EXPORT_SYMBOL(ec_read);
917 
ec_write(u8 addr,u8 val)918 int ec_write(u8 addr, u8 val)
919 {
920 	int err;
921 
922 	if (!first_ec)
923 		return -ENODEV;
924 
925 	err = acpi_ec_write(first_ec, addr, val);
926 
927 	return err;
928 }
929 EXPORT_SYMBOL(ec_write);
930 
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)931 int ec_transaction(u8 command,
932 		   const u8 *wdata, unsigned wdata_len,
933 		   u8 *rdata, unsigned rdata_len)
934 {
935 	struct transaction t = {.command = command,
936 				.wdata = wdata, .rdata = rdata,
937 				.wlen = wdata_len, .rlen = rdata_len};
938 
939 	if (!first_ec)
940 		return -ENODEV;
941 
942 	return acpi_ec_transaction(first_ec, &t);
943 }
944 EXPORT_SYMBOL(ec_transaction);
945 
946 /* Get the handle to the EC device */
ec_get_handle(void)947 acpi_handle ec_get_handle(void)
948 {
949 	if (!first_ec)
950 		return NULL;
951 	return first_ec->handle;
952 }
953 EXPORT_SYMBOL(ec_get_handle);
954 
acpi_ec_start(struct acpi_ec * ec,bool resuming)955 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
956 {
957 	unsigned long flags;
958 
959 	spin_lock_irqsave(&ec->lock, flags);
960 	if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
961 		ec_dbg_drv("Starting EC");
962 		/* Enable GPE for event processing (SCI_EVT=1) */
963 		if (!resuming) {
964 			acpi_ec_submit_request(ec);
965 			ec_dbg_ref(ec, "Increase driver");
966 		}
967 		ec_log_drv("EC started");
968 	}
969 	spin_unlock_irqrestore(&ec->lock, flags);
970 }
971 
acpi_ec_stopped(struct acpi_ec * ec)972 static bool acpi_ec_stopped(struct acpi_ec *ec)
973 {
974 	unsigned long flags;
975 	bool flushed;
976 
977 	spin_lock_irqsave(&ec->lock, flags);
978 	flushed = acpi_ec_flushed(ec);
979 	spin_unlock_irqrestore(&ec->lock, flags);
980 	return flushed;
981 }
982 
acpi_ec_stop(struct acpi_ec * ec,bool suspending)983 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
984 {
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&ec->lock, flags);
988 	if (acpi_ec_started(ec)) {
989 		ec_dbg_drv("Stopping EC");
990 		set_bit(EC_FLAGS_STOPPED, &ec->flags);
991 		spin_unlock_irqrestore(&ec->lock, flags);
992 		wait_event(ec->wait, acpi_ec_stopped(ec));
993 		spin_lock_irqsave(&ec->lock, flags);
994 		/* Disable GPE for event processing (SCI_EVT=1) */
995 		if (!suspending) {
996 			acpi_ec_complete_request(ec);
997 			ec_dbg_ref(ec, "Decrease driver");
998 		} else if (!ec_freeze_events)
999 			__acpi_ec_disable_event(ec);
1000 		clear_bit(EC_FLAGS_STARTED, &ec->flags);
1001 		clear_bit(EC_FLAGS_STOPPED, &ec->flags);
1002 		ec_log_drv("EC stopped");
1003 	}
1004 	spin_unlock_irqrestore(&ec->lock, flags);
1005 }
1006 
acpi_ec_enter_noirq(struct acpi_ec * ec)1007 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1008 {
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&ec->lock, flags);
1012 	ec->busy_polling = true;
1013 	ec->polling_guard = 0;
1014 	ec_log_drv("interrupt blocked");
1015 	spin_unlock_irqrestore(&ec->lock, flags);
1016 }
1017 
acpi_ec_leave_noirq(struct acpi_ec * ec)1018 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&ec->lock, flags);
1023 	ec->busy_polling = ec_busy_polling;
1024 	ec->polling_guard = ec_polling_guard;
1025 	ec_log_drv("interrupt unblocked");
1026 	spin_unlock_irqrestore(&ec->lock, flags);
1027 }
1028 
acpi_ec_block_transactions(void)1029 void acpi_ec_block_transactions(void)
1030 {
1031 	struct acpi_ec *ec = first_ec;
1032 
1033 	if (!ec)
1034 		return;
1035 
1036 	mutex_lock(&ec->mutex);
1037 	/* Prevent transactions from being carried out */
1038 	acpi_ec_stop(ec, true);
1039 	mutex_unlock(&ec->mutex);
1040 }
1041 
acpi_ec_unblock_transactions(void)1042 void acpi_ec_unblock_transactions(void)
1043 {
1044 	/*
1045 	 * Allow transactions to happen again (this function is called from
1046 	 * atomic context during wakeup, so we don't need to acquire the mutex).
1047 	 */
1048 	if (first_ec)
1049 		acpi_ec_start(first_ec, true);
1050 }
1051 
1052 /* --------------------------------------------------------------------------
1053                                 Event Management
1054    -------------------------------------------------------------------------- */
1055 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1056 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1057 {
1058 	struct acpi_ec_query_handler *handler;
1059 
1060 	mutex_lock(&ec->mutex);
1061 	list_for_each_entry(handler, &ec->list, node) {
1062 		if (value == handler->query_bit) {
1063 			kref_get(&handler->kref);
1064 			mutex_unlock(&ec->mutex);
1065 			return handler;
1066 		}
1067 	}
1068 	mutex_unlock(&ec->mutex);
1069 	return NULL;
1070 }
1071 
acpi_ec_query_handler_release(struct kref * kref)1072 static void acpi_ec_query_handler_release(struct kref *kref)
1073 {
1074 	struct acpi_ec_query_handler *handler =
1075 		container_of(kref, struct acpi_ec_query_handler, kref);
1076 
1077 	kfree(handler);
1078 }
1079 
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1080 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1081 {
1082 	kref_put(&handler->kref, acpi_ec_query_handler_release);
1083 }
1084 
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1085 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1086 			      acpi_handle handle, acpi_ec_query_func func,
1087 			      void *data)
1088 {
1089 	struct acpi_ec_query_handler *handler =
1090 	    kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1091 
1092 	if (!handler)
1093 		return -ENOMEM;
1094 
1095 	handler->query_bit = query_bit;
1096 	handler->handle = handle;
1097 	handler->func = func;
1098 	handler->data = data;
1099 	mutex_lock(&ec->mutex);
1100 	kref_init(&handler->kref);
1101 	list_add(&handler->node, &ec->list);
1102 	mutex_unlock(&ec->mutex);
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1106 
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1107 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1108 					  bool remove_all, u8 query_bit)
1109 {
1110 	struct acpi_ec_query_handler *handler, *tmp;
1111 	LIST_HEAD(free_list);
1112 
1113 	mutex_lock(&ec->mutex);
1114 	list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1115 		if (remove_all || query_bit == handler->query_bit) {
1116 			list_del_init(&handler->node);
1117 			list_add(&handler->node, &free_list);
1118 		}
1119 	}
1120 	mutex_unlock(&ec->mutex);
1121 	list_for_each_entry_safe(handler, tmp, &free_list, node)
1122 		acpi_ec_put_query_handler(handler);
1123 }
1124 
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1125 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1126 {
1127 	acpi_ec_remove_query_handlers(ec, false, query_bit);
1128 }
1129 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1130 
acpi_ec_event_processor(struct work_struct * work)1131 static void acpi_ec_event_processor(struct work_struct *work)
1132 {
1133 	struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1134 	struct acpi_ec_query_handler *handler = q->handler;
1135 	struct acpi_ec *ec = q->ec;
1136 
1137 	ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1138 
1139 	if (handler->func)
1140 		handler->func(handler->data);
1141 	else if (handler->handle)
1142 		acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1143 
1144 	ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1145 
1146 	spin_lock_irq(&ec->lock);
1147 	ec->queries_in_progress--;
1148 	spin_unlock_irq(&ec->lock);
1149 
1150 	acpi_ec_put_query_handler(handler);
1151 	kfree(q);
1152 }
1153 
acpi_ec_create_query(struct acpi_ec * ec,u8 * pval)1154 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1155 {
1156 	struct acpi_ec_query *q;
1157 	struct transaction *t;
1158 
1159 	q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1160 	if (!q)
1161 		return NULL;
1162 
1163 	INIT_WORK(&q->work, acpi_ec_event_processor);
1164 	t = &q->transaction;
1165 	t->command = ACPI_EC_COMMAND_QUERY;
1166 	t->rdata = pval;
1167 	t->rlen = 1;
1168 	q->ec = ec;
1169 	return q;
1170 }
1171 
acpi_ec_submit_query(struct acpi_ec * ec)1172 static int acpi_ec_submit_query(struct acpi_ec *ec)
1173 {
1174 	struct acpi_ec_query *q;
1175 	u8 value = 0;
1176 	int result;
1177 
1178 	q = acpi_ec_create_query(ec, &value);
1179 	if (!q)
1180 		return -ENOMEM;
1181 
1182 	/*
1183 	 * Query the EC to find out which _Qxx method we need to evaluate.
1184 	 * Note that successful completion of the query causes the ACPI_EC_SCI
1185 	 * bit to be cleared (and thus clearing the interrupt source).
1186 	 */
1187 	result = acpi_ec_transaction(ec, &q->transaction);
1188 	if (result)
1189 		goto err_exit;
1190 
1191 	if (!value) {
1192 		result = -ENODATA;
1193 		goto err_exit;
1194 	}
1195 
1196 	q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1197 	if (!q->handler) {
1198 		result = -ENODATA;
1199 		goto err_exit;
1200 	}
1201 
1202 	/*
1203 	 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1204 	 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1205 	 *
1206 	 * Put this log entry before queue_work() to make it appear in the log
1207 	 * before any other messages emitted during workqueue handling.
1208 	 */
1209 	ec_dbg_evt("Query(0x%02x) scheduled", value);
1210 
1211 	spin_lock_irq(&ec->lock);
1212 
1213 	ec->queries_in_progress++;
1214 	queue_work(ec_query_wq, &q->work);
1215 
1216 	spin_unlock_irq(&ec->lock);
1217 
1218 	return 0;
1219 
1220 err_exit:
1221 	kfree(q);
1222 
1223 	return result;
1224 }
1225 
acpi_ec_event_handler(struct work_struct * work)1226 static void acpi_ec_event_handler(struct work_struct *work)
1227 {
1228 	struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1229 
1230 	ec_dbg_evt("Event started");
1231 
1232 	spin_lock_irq(&ec->lock);
1233 
1234 	while (ec->events_to_process) {
1235 		spin_unlock_irq(&ec->lock);
1236 
1237 		acpi_ec_submit_query(ec);
1238 
1239 		spin_lock_irq(&ec->lock);
1240 
1241 		ec->events_to_process--;
1242 	}
1243 
1244 	/*
1245 	 * Before exit, make sure that the it will be possible to queue up the
1246 	 * event handling work again regardless of whether or not the query
1247 	 * queued up above is processed successfully.
1248 	 */
1249 	if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1250 		bool guard_timeout;
1251 
1252 		acpi_ec_complete_event(ec);
1253 
1254 		ec_dbg_evt("Event stopped");
1255 
1256 		spin_unlock_irq(&ec->lock);
1257 
1258 		guard_timeout = !!ec_guard(ec);
1259 
1260 		spin_lock_irq(&ec->lock);
1261 
1262 		/* Take care of SCI_EVT unless someone else is doing that. */
1263 		if (guard_timeout && !ec->curr)
1264 			advance_transaction(ec, false);
1265 	} else {
1266 		acpi_ec_close_event(ec);
1267 
1268 		ec_dbg_evt("Event stopped");
1269 	}
1270 
1271 	ec->events_in_progress--;
1272 
1273 	spin_unlock_irq(&ec->lock);
1274 }
1275 
acpi_ec_handle_interrupt(struct acpi_ec * ec)1276 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1277 {
1278 	unsigned long flags;
1279 
1280 	spin_lock_irqsave(&ec->lock, flags);
1281 	advance_transaction(ec, true);
1282 	spin_unlock_irqrestore(&ec->lock, flags);
1283 }
1284 
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1285 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1286 			       u32 gpe_number, void *data)
1287 {
1288 	acpi_ec_handle_interrupt(data);
1289 	return ACPI_INTERRUPT_HANDLED;
1290 }
1291 
acpi_ec_irq_handler(int irq,void * data)1292 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1293 {
1294 	acpi_ec_handle_interrupt(data);
1295 	return IRQ_HANDLED;
1296 }
1297 
1298 /* --------------------------------------------------------------------------
1299  *                           Address Space Management
1300  * -------------------------------------------------------------------------- */
1301 
1302 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1303 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1304 		      u32 bits, u64 *value64,
1305 		      void *handler_context, void *region_context)
1306 {
1307 	struct acpi_ec *ec = handler_context;
1308 	int result = 0, i, bytes = bits / 8;
1309 	u8 *value = (u8 *)value64;
1310 
1311 	if ((address > 0xFF) || !value || !handler_context)
1312 		return AE_BAD_PARAMETER;
1313 
1314 	if (function != ACPI_READ && function != ACPI_WRITE)
1315 		return AE_BAD_PARAMETER;
1316 
1317 	if (ec->busy_polling || bits > 8)
1318 		acpi_ec_burst_enable(ec);
1319 
1320 	for (i = 0; i < bytes; ++i, ++address, ++value)
1321 		result = (function == ACPI_READ) ?
1322 			acpi_ec_read(ec, address, value) :
1323 			acpi_ec_write(ec, address, *value);
1324 
1325 	if (ec->busy_polling || bits > 8)
1326 		acpi_ec_burst_disable(ec);
1327 
1328 	switch (result) {
1329 	case -EINVAL:
1330 		return AE_BAD_PARAMETER;
1331 	case -ENODEV:
1332 		return AE_NOT_FOUND;
1333 	case -ETIME:
1334 		return AE_TIME;
1335 	default:
1336 		return AE_OK;
1337 	}
1338 }
1339 
1340 /* --------------------------------------------------------------------------
1341  *                             Driver Interface
1342  * -------------------------------------------------------------------------- */
1343 
1344 static acpi_status
1345 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1346 
acpi_ec_free(struct acpi_ec * ec)1347 static void acpi_ec_free(struct acpi_ec *ec)
1348 {
1349 	if (first_ec == ec)
1350 		first_ec = NULL;
1351 	if (boot_ec == ec)
1352 		boot_ec = NULL;
1353 	kfree(ec);
1354 }
1355 
acpi_ec_alloc(void)1356 static struct acpi_ec *acpi_ec_alloc(void)
1357 {
1358 	struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1359 
1360 	if (!ec)
1361 		return NULL;
1362 	mutex_init(&ec->mutex);
1363 	init_waitqueue_head(&ec->wait);
1364 	INIT_LIST_HEAD(&ec->list);
1365 	spin_lock_init(&ec->lock);
1366 	INIT_WORK(&ec->work, acpi_ec_event_handler);
1367 	ec->timestamp = jiffies;
1368 	ec->busy_polling = true;
1369 	ec->polling_guard = 0;
1370 	ec->gpe = -1;
1371 	ec->irq = -1;
1372 	return ec;
1373 }
1374 
1375 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1376 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1377 			       void *context, void **return_value)
1378 {
1379 	char node_name[5];
1380 	struct acpi_buffer buffer = { sizeof(node_name), node_name };
1381 	struct acpi_ec *ec = context;
1382 	int value = 0;
1383 	acpi_status status;
1384 
1385 	status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1386 
1387 	if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1388 		acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1389 	return AE_OK;
1390 }
1391 
1392 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1393 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1394 {
1395 	acpi_status status;
1396 	unsigned long long tmp = 0;
1397 	struct acpi_ec *ec = context;
1398 
1399 	/* clear addr values, ec_parse_io_ports depend on it */
1400 	ec->command_addr = ec->data_addr = 0;
1401 
1402 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1403 				     ec_parse_io_ports, ec);
1404 	if (ACPI_FAILURE(status))
1405 		return status;
1406 	if (ec->data_addr == 0 || ec->command_addr == 0)
1407 		return AE_OK;
1408 
1409 	/* Get GPE bit assignment (EC events). */
1410 	/* TODO: Add support for _GPE returning a package */
1411 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1412 	if (ACPI_SUCCESS(status))
1413 		ec->gpe = tmp;
1414 	/*
1415 	 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1416 	 * platforms which use GpioInt instead of GPE.
1417 	 */
1418 
1419 	/* Use the global lock for all EC transactions? */
1420 	tmp = 0;
1421 	acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1422 	ec->global_lock = tmp;
1423 	ec->handle = handle;
1424 	return AE_CTRL_TERMINATE;
1425 }
1426 
install_gpe_event_handler(struct acpi_ec * ec)1427 static bool install_gpe_event_handler(struct acpi_ec *ec)
1428 {
1429 	acpi_status status;
1430 
1431 	status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1432 					      ACPI_GPE_EDGE_TRIGGERED,
1433 					      &acpi_ec_gpe_handler, ec);
1434 	if (ACPI_FAILURE(status))
1435 		return false;
1436 
1437 	if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1438 		acpi_ec_enable_gpe(ec, true);
1439 
1440 	return true;
1441 }
1442 
install_gpio_irq_event_handler(struct acpi_ec * ec)1443 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1444 {
1445 	return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1446 			   "ACPI EC", ec) >= 0;
1447 }
1448 
1449 /**
1450  * ec_install_handlers - Install service callbacks and register query methods.
1451  * @ec: Target EC.
1452  * @device: ACPI device object corresponding to @ec.
1453  *
1454  * Install a handler for the EC address space type unless it has been installed
1455  * already.  If @device is not NULL, also look for EC query methods in the
1456  * namespace and register them, and install an event (either GPE or GPIO IRQ)
1457  * handler for the EC, if possible.
1458  *
1459  * Return:
1460  * -ENODEV if the address space handler cannot be installed, which means
1461  *  "unable to handle transactions",
1462  * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1463  * or 0 (success) otherwise.
1464  */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device)1465 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1466 {
1467 	acpi_status status;
1468 
1469 	acpi_ec_start(ec, false);
1470 
1471 	if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1472 		acpi_ec_enter_noirq(ec);
1473 		status = acpi_install_address_space_handler(ec->handle,
1474 							    ACPI_ADR_SPACE_EC,
1475 							    &acpi_ec_space_handler,
1476 							    NULL, ec);
1477 		if (ACPI_FAILURE(status)) {
1478 			acpi_ec_stop(ec, false);
1479 			return -ENODEV;
1480 		}
1481 		set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1482 	}
1483 
1484 	if (!device)
1485 		return 0;
1486 
1487 	if (ec->gpe < 0) {
1488 		/* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1489 		int irq = acpi_dev_gpio_irq_get(device, 0);
1490 		/*
1491 		 * Bail out right away for deferred probing or complete the
1492 		 * initialization regardless of any other errors.
1493 		 */
1494 		if (irq == -EPROBE_DEFER)
1495 			return -EPROBE_DEFER;
1496 		else if (irq >= 0)
1497 			ec->irq = irq;
1498 	}
1499 
1500 	if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1501 		/* Find and register all query methods */
1502 		acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1503 				    acpi_ec_register_query_methods,
1504 				    NULL, ec, NULL);
1505 		set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1506 	}
1507 	if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1508 		bool ready = false;
1509 
1510 		if (ec->gpe >= 0)
1511 			ready = install_gpe_event_handler(ec);
1512 		else if (ec->irq >= 0)
1513 			ready = install_gpio_irq_event_handler(ec);
1514 
1515 		if (ready) {
1516 			set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1517 			acpi_ec_leave_noirq(ec);
1518 		}
1519 		/*
1520 		 * Failures to install an event handler are not fatal, because
1521 		 * the EC can be polled for events.
1522 		 */
1523 	}
1524 	/* EC is fully operational, allow queries */
1525 	acpi_ec_enable_event(ec);
1526 
1527 	return 0;
1528 }
1529 
ec_remove_handlers(struct acpi_ec * ec)1530 static void ec_remove_handlers(struct acpi_ec *ec)
1531 {
1532 	if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1533 		if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1534 					ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1535 			pr_err("failed to remove space handler\n");
1536 		clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1537 	}
1538 
1539 	/*
1540 	 * Stops handling the EC transactions after removing the operation
1541 	 * region handler. This is required because _REG(DISCONNECT)
1542 	 * invoked during the removal can result in new EC transactions.
1543 	 *
1544 	 * Flushes the EC requests and thus disables the GPE before
1545 	 * removing the GPE handler. This is required by the current ACPICA
1546 	 * GPE core. ACPICA GPE core will automatically disable a GPE when
1547 	 * it is indicated but there is no way to handle it. So the drivers
1548 	 * must disable the GPEs prior to removing the GPE handlers.
1549 	 */
1550 	acpi_ec_stop(ec, false);
1551 
1552 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1553 		if (ec->gpe >= 0 &&
1554 		    ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1555 				 &acpi_ec_gpe_handler)))
1556 			pr_err("failed to remove gpe handler\n");
1557 
1558 		if (ec->irq >= 0)
1559 			free_irq(ec->irq, ec);
1560 
1561 		clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1562 	}
1563 	if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1564 		acpi_ec_remove_query_handlers(ec, true, 0);
1565 		clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1566 	}
1567 }
1568 
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device)1569 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1570 {
1571 	int ret;
1572 
1573 	ret = ec_install_handlers(ec, device);
1574 	if (ret)
1575 		return ret;
1576 
1577 	/* First EC capable of handling transactions */
1578 	if (!first_ec)
1579 		first_ec = ec;
1580 
1581 	pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1582 		ec->data_addr);
1583 
1584 	if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1585 		if (ec->gpe >= 0)
1586 			pr_info("GPE=0x%x\n", ec->gpe);
1587 		else
1588 			pr_info("IRQ=%d\n", ec->irq);
1589 	}
1590 
1591 	return ret;
1592 }
1593 
acpi_ec_add(struct acpi_device * device)1594 static int acpi_ec_add(struct acpi_device *device)
1595 {
1596 	struct acpi_ec *ec;
1597 	int ret;
1598 
1599 	strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1600 	strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1601 
1602 	if (boot_ec && (boot_ec->handle == device->handle ||
1603 	    !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1604 		/* Fast path: this device corresponds to the boot EC. */
1605 		ec = boot_ec;
1606 	} else {
1607 		acpi_status status;
1608 
1609 		ec = acpi_ec_alloc();
1610 		if (!ec)
1611 			return -ENOMEM;
1612 
1613 		status = ec_parse_device(device->handle, 0, ec, NULL);
1614 		if (status != AE_CTRL_TERMINATE) {
1615 			ret = -EINVAL;
1616 			goto err;
1617 		}
1618 
1619 		if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1620 		    ec->data_addr == boot_ec->data_addr &&
1621 		    !EC_FLAGS_TRUST_DSDT_GPE) {
1622 			/*
1623 			 * Trust PNP0C09 namespace location rather than
1624 			 * ECDT ID. But trust ECDT GPE rather than _GPE
1625 			 * because of ASUS quirks, so do not change
1626 			 * boot_ec->gpe to ec->gpe.
1627 			 */
1628 			boot_ec->handle = ec->handle;
1629 			acpi_handle_debug(ec->handle, "duplicated.\n");
1630 			acpi_ec_free(ec);
1631 			ec = boot_ec;
1632 		}
1633 	}
1634 
1635 	ret = acpi_ec_setup(ec, device);
1636 	if (ret)
1637 		goto err;
1638 
1639 	if (ec == boot_ec)
1640 		acpi_handle_info(boot_ec->handle,
1641 				 "Boot %s EC initialization complete\n",
1642 				 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1643 
1644 	acpi_handle_info(ec->handle,
1645 			 "EC: Used to handle transactions and events\n");
1646 
1647 	device->driver_data = ec;
1648 
1649 	ret = !!request_region(ec->data_addr, 1, "EC data");
1650 	WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1651 	ret = !!request_region(ec->command_addr, 1, "EC cmd");
1652 	WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1653 
1654 	/* Reprobe devices depending on the EC */
1655 	acpi_dev_clear_dependencies(device);
1656 
1657 	acpi_handle_debug(ec->handle, "enumerated.\n");
1658 	return 0;
1659 
1660 err:
1661 	if (ec != boot_ec)
1662 		acpi_ec_free(ec);
1663 
1664 	return ret;
1665 }
1666 
acpi_ec_remove(struct acpi_device * device)1667 static int acpi_ec_remove(struct acpi_device *device)
1668 {
1669 	struct acpi_ec *ec;
1670 
1671 	if (!device)
1672 		return -EINVAL;
1673 
1674 	ec = acpi_driver_data(device);
1675 	release_region(ec->data_addr, 1);
1676 	release_region(ec->command_addr, 1);
1677 	device->driver_data = NULL;
1678 	if (ec != boot_ec) {
1679 		ec_remove_handlers(ec);
1680 		acpi_ec_free(ec);
1681 	}
1682 	return 0;
1683 }
1684 
1685 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1686 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1687 {
1688 	struct acpi_ec *ec = context;
1689 
1690 	if (resource->type != ACPI_RESOURCE_TYPE_IO)
1691 		return AE_OK;
1692 
1693 	/*
1694 	 * The first address region returned is the data port, and
1695 	 * the second address region returned is the status/command
1696 	 * port.
1697 	 */
1698 	if (ec->data_addr == 0)
1699 		ec->data_addr = resource->data.io.minimum;
1700 	else if (ec->command_addr == 0)
1701 		ec->command_addr = resource->data.io.minimum;
1702 	else
1703 		return AE_CTRL_TERMINATE;
1704 
1705 	return AE_OK;
1706 }
1707 
1708 static const struct acpi_device_id ec_device_ids[] = {
1709 	{"PNP0C09", 0},
1710 	{ACPI_ECDT_HID, 0},
1711 	{"", 0},
1712 };
1713 
1714 /*
1715  * This function is not Windows-compatible as Windows never enumerates the
1716  * namespace EC before the main ACPI device enumeration process. It is
1717  * retained for historical reason and will be deprecated in the future.
1718  */
acpi_ec_dsdt_probe(void)1719 void __init acpi_ec_dsdt_probe(void)
1720 {
1721 	struct acpi_ec *ec;
1722 	acpi_status status;
1723 	int ret;
1724 
1725 	/*
1726 	 * If a platform has ECDT, there is no need to proceed as the
1727 	 * following probe is not a part of the ACPI device enumeration,
1728 	 * executing _STA is not safe, and thus this probe may risk of
1729 	 * picking up an invalid EC device.
1730 	 */
1731 	if (boot_ec)
1732 		return;
1733 
1734 	ec = acpi_ec_alloc();
1735 	if (!ec)
1736 		return;
1737 
1738 	/*
1739 	 * At this point, the namespace is initialized, so start to find
1740 	 * the namespace objects.
1741 	 */
1742 	status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1743 	if (ACPI_FAILURE(status) || !ec->handle) {
1744 		acpi_ec_free(ec);
1745 		return;
1746 	}
1747 
1748 	/*
1749 	 * When the DSDT EC is available, always re-configure boot EC to
1750 	 * have _REG evaluated. _REG can only be evaluated after the
1751 	 * namespace initialization.
1752 	 * At this point, the GPE is not fully initialized, so do not to
1753 	 * handle the events.
1754 	 */
1755 	ret = acpi_ec_setup(ec, NULL);
1756 	if (ret) {
1757 		acpi_ec_free(ec);
1758 		return;
1759 	}
1760 
1761 	boot_ec = ec;
1762 
1763 	acpi_handle_info(ec->handle,
1764 			 "Boot DSDT EC used to handle transactions\n");
1765 }
1766 
1767 /*
1768  * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1769  *
1770  * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1771  * found a matching object in the namespace.
1772  *
1773  * Next, in case the DSDT EC is not functioning, it is still necessary to
1774  * provide a functional ECDT EC to handle events, so add an extra device object
1775  * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1776  *
1777  * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1778  * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1779  */
acpi_ec_ecdt_start(void)1780 static void __init acpi_ec_ecdt_start(void)
1781 {
1782 	struct acpi_table_ecdt *ecdt_ptr;
1783 	acpi_handle handle;
1784 	acpi_status status;
1785 
1786 	/* Bail out if a matching EC has been found in the namespace. */
1787 	if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1788 		return;
1789 
1790 	/* Look up the object pointed to from the ECDT in the namespace. */
1791 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1792 				(struct acpi_table_header **)&ecdt_ptr);
1793 	if (ACPI_FAILURE(status))
1794 		return;
1795 
1796 	status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1797 	if (ACPI_SUCCESS(status)) {
1798 		boot_ec->handle = handle;
1799 
1800 		/* Add a special ACPI device object to represent the boot EC. */
1801 		acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1802 	}
1803 
1804 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1805 }
1806 
1807 /*
1808  * On some hardware it is necessary to clear events accumulated by the EC during
1809  * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1810  * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1811  *
1812  * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1813  *
1814  * Ideally, the EC should also be instructed NOT to accumulate events during
1815  * sleep (which Windows seems to do somehow), but the interface to control this
1816  * behaviour is not known at this time.
1817  *
1818  * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1819  * however it is very likely that other Samsung models are affected.
1820  *
1821  * On systems which don't accumulate _Q events during sleep, this extra check
1822  * should be harmless.
1823  */
ec_clear_on_resume(const struct dmi_system_id * id)1824 static int ec_clear_on_resume(const struct dmi_system_id *id)
1825 {
1826 	pr_debug("Detected system needing EC poll on resume.\n");
1827 	EC_FLAGS_CLEAR_ON_RESUME = 1;
1828 	ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Some ECDTs contain wrong register addresses.
1834  * MSI MS-171F
1835  * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1836  */
ec_correct_ecdt(const struct dmi_system_id * id)1837 static int ec_correct_ecdt(const struct dmi_system_id *id)
1838 {
1839 	pr_debug("Detected system needing ECDT address correction.\n");
1840 	EC_FLAGS_CORRECT_ECDT = 1;
1841 	return 0;
1842 }
1843 
1844 /*
1845  * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1846  * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1847  * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1848  */
ec_honor_dsdt_gpe(const struct dmi_system_id * id)1849 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1850 {
1851 	pr_debug("Detected system needing DSDT GPE setting.\n");
1852 	EC_FLAGS_TRUST_DSDT_GPE = 1;
1853 	return 0;
1854 }
1855 
1856 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1857 	{
1858 	ec_correct_ecdt, "MSI MS-171F", {
1859 	DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1860 	DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL},
1861 	{
1862 	/* https://bugzilla.kernel.org/show_bug.cgi?id=209989 */
1863 	ec_honor_dsdt_gpe, "HP Pavilion Gaming Laptop 15-cx0xxx", {
1864 	DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1865 	DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),}, NULL},
1866 	{
1867 	ec_clear_on_resume, "Samsung hardware", {
1868 	DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL},
1869 	{},
1870 };
1871 
acpi_ec_ecdt_probe(void)1872 void __init acpi_ec_ecdt_probe(void)
1873 {
1874 	struct acpi_table_ecdt *ecdt_ptr;
1875 	struct acpi_ec *ec;
1876 	acpi_status status;
1877 	int ret;
1878 
1879 	/* Generate a boot ec context. */
1880 	dmi_check_system(ec_dmi_table);
1881 	status = acpi_get_table(ACPI_SIG_ECDT, 1,
1882 				(struct acpi_table_header **)&ecdt_ptr);
1883 	if (ACPI_FAILURE(status))
1884 		return;
1885 
1886 	if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1887 		/*
1888 		 * Asus X50GL:
1889 		 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1890 		 */
1891 		goto out;
1892 	}
1893 
1894 	ec = acpi_ec_alloc();
1895 	if (!ec)
1896 		goto out;
1897 
1898 	if (EC_FLAGS_CORRECT_ECDT) {
1899 		ec->command_addr = ecdt_ptr->data.address;
1900 		ec->data_addr = ecdt_ptr->control.address;
1901 	} else {
1902 		ec->command_addr = ecdt_ptr->control.address;
1903 		ec->data_addr = ecdt_ptr->data.address;
1904 	}
1905 
1906 	/*
1907 	 * Ignore the GPE value on Reduced Hardware platforms.
1908 	 * Some products have this set to an erroneous value.
1909 	 */
1910 	if (!acpi_gbl_reduced_hardware)
1911 		ec->gpe = ecdt_ptr->gpe;
1912 
1913 	ec->handle = ACPI_ROOT_OBJECT;
1914 
1915 	/*
1916 	 * At this point, the namespace is not initialized, so do not find
1917 	 * the namespace objects, or handle the events.
1918 	 */
1919 	ret = acpi_ec_setup(ec, NULL);
1920 	if (ret) {
1921 		acpi_ec_free(ec);
1922 		goto out;
1923 	}
1924 
1925 	boot_ec = ec;
1926 	boot_ec_is_ecdt = true;
1927 
1928 	pr_info("Boot ECDT EC used to handle transactions\n");
1929 
1930 out:
1931 	acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1932 }
1933 
1934 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)1935 static int acpi_ec_suspend(struct device *dev)
1936 {
1937 	struct acpi_ec *ec =
1938 		acpi_driver_data(to_acpi_device(dev));
1939 
1940 	if (!pm_suspend_no_platform() && ec_freeze_events)
1941 		acpi_ec_disable_event(ec);
1942 	return 0;
1943 }
1944 
acpi_ec_suspend_noirq(struct device * dev)1945 static int acpi_ec_suspend_noirq(struct device *dev)
1946 {
1947 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1948 
1949 	/*
1950 	 * The SCI handler doesn't run at this point, so the GPE can be
1951 	 * masked at the low level without side effects.
1952 	 */
1953 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1954 	    ec->gpe >= 0 && ec->reference_count >= 1)
1955 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
1956 
1957 	acpi_ec_enter_noirq(ec);
1958 
1959 	return 0;
1960 }
1961 
acpi_ec_resume_noirq(struct device * dev)1962 static int acpi_ec_resume_noirq(struct device *dev)
1963 {
1964 	struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1965 
1966 	acpi_ec_leave_noirq(ec);
1967 
1968 	if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
1969 	    ec->gpe >= 0 && ec->reference_count >= 1)
1970 		acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
1971 
1972 	return 0;
1973 }
1974 
acpi_ec_resume(struct device * dev)1975 static int acpi_ec_resume(struct device *dev)
1976 {
1977 	struct acpi_ec *ec =
1978 		acpi_driver_data(to_acpi_device(dev));
1979 
1980 	acpi_ec_enable_event(ec);
1981 	return 0;
1982 }
1983 
acpi_ec_mark_gpe_for_wake(void)1984 void acpi_ec_mark_gpe_for_wake(void)
1985 {
1986 	if (first_ec && !ec_no_wakeup)
1987 		acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
1988 }
1989 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
1990 
acpi_ec_set_gpe_wake_mask(u8 action)1991 void acpi_ec_set_gpe_wake_mask(u8 action)
1992 {
1993 	if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
1994 		acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
1995 }
1996 
acpi_ec_work_in_progress(struct acpi_ec * ec)1997 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
1998 {
1999 	return ec->events_in_progress + ec->queries_in_progress > 0;
2000 }
2001 
acpi_ec_dispatch_gpe(void)2002 bool acpi_ec_dispatch_gpe(void)
2003 {
2004 	bool work_in_progress = false;
2005 
2006 	if (!first_ec)
2007 		return acpi_any_gpe_status_set(U32_MAX);
2008 
2009 	/*
2010 	 * Report wakeup if the status bit is set for any enabled GPE other
2011 	 * than the EC one.
2012 	 */
2013 	if (acpi_any_gpe_status_set(first_ec->gpe))
2014 		return true;
2015 
2016 	/*
2017 	 * Cancel the SCI wakeup and process all pending events in case there
2018 	 * are any wakeup ones in there.
2019 	 *
2020 	 * Note that if any non-EC GPEs are active at this point, the SCI will
2021 	 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2022 	 * should be missed by canceling the wakeup here.
2023 	 */
2024 	pm_system_cancel_wakeup();
2025 
2026 	/*
2027 	 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2028 	 * to allow the caller to process events properly after that.
2029 	 */
2030 	spin_lock_irq(&first_ec->lock);
2031 
2032 	if (acpi_ec_gpe_status_set(first_ec)) {
2033 		pm_pr_dbg("ACPI EC GPE status set\n");
2034 
2035 		advance_transaction(first_ec, false);
2036 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2037 	}
2038 
2039 	spin_unlock_irq(&first_ec->lock);
2040 
2041 	if (!work_in_progress)
2042 		return false;
2043 
2044 	pm_pr_dbg("ACPI EC GPE dispatched\n");
2045 
2046 	/* Drain EC work. */
2047 	do {
2048 		acpi_ec_flush_work();
2049 
2050 		pm_pr_dbg("ACPI EC work flushed\n");
2051 
2052 		spin_lock_irq(&first_ec->lock);
2053 
2054 		work_in_progress = acpi_ec_work_in_progress(first_ec);
2055 
2056 		spin_unlock_irq(&first_ec->lock);
2057 	} while (work_in_progress && !pm_wakeup_pending());
2058 
2059 	return false;
2060 }
2061 #endif /* CONFIG_PM_SLEEP */
2062 
2063 static const struct dev_pm_ops acpi_ec_pm = {
2064 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2065 	SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2066 };
2067 
param_set_event_clearing(const char * val,const struct kernel_param * kp)2068 static int param_set_event_clearing(const char *val,
2069 				    const struct kernel_param *kp)
2070 {
2071 	int result = 0;
2072 
2073 	if (!strncmp(val, "status", sizeof("status") - 1)) {
2074 		ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2075 		pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2076 	} else if (!strncmp(val, "query", sizeof("query") - 1)) {
2077 		ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2078 		pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2079 	} else if (!strncmp(val, "event", sizeof("event") - 1)) {
2080 		ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2081 		pr_info("Assuming SCI_EVT clearing on event reads\n");
2082 	} else
2083 		result = -EINVAL;
2084 	return result;
2085 }
2086 
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2087 static int param_get_event_clearing(char *buffer,
2088 				    const struct kernel_param *kp)
2089 {
2090 	switch (ec_event_clearing) {
2091 	case ACPI_EC_EVT_TIMING_STATUS:
2092 		return sprintf(buffer, "status\n");
2093 	case ACPI_EC_EVT_TIMING_QUERY:
2094 		return sprintf(buffer, "query\n");
2095 	case ACPI_EC_EVT_TIMING_EVENT:
2096 		return sprintf(buffer, "event\n");
2097 	default:
2098 		return sprintf(buffer, "invalid\n");
2099 	}
2100 	return 0;
2101 }
2102 
2103 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2104 		  NULL, 0644);
2105 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2106 
2107 static struct acpi_driver acpi_ec_driver = {
2108 	.name = "ec",
2109 	.class = ACPI_EC_CLASS,
2110 	.ids = ec_device_ids,
2111 	.ops = {
2112 		.add = acpi_ec_add,
2113 		.remove = acpi_ec_remove,
2114 		},
2115 	.drv.pm = &acpi_ec_pm,
2116 };
2117 
acpi_ec_destroy_workqueues(void)2118 static void acpi_ec_destroy_workqueues(void)
2119 {
2120 	if (ec_wq) {
2121 		destroy_workqueue(ec_wq);
2122 		ec_wq = NULL;
2123 	}
2124 	if (ec_query_wq) {
2125 		destroy_workqueue(ec_query_wq);
2126 		ec_query_wq = NULL;
2127 	}
2128 }
2129 
acpi_ec_init_workqueues(void)2130 static int acpi_ec_init_workqueues(void)
2131 {
2132 	if (!ec_wq)
2133 		ec_wq = alloc_ordered_workqueue("kec", 0);
2134 
2135 	if (!ec_query_wq)
2136 		ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2137 
2138 	if (!ec_wq || !ec_query_wq) {
2139 		acpi_ec_destroy_workqueues();
2140 		return -ENODEV;
2141 	}
2142 	return 0;
2143 }
2144 
2145 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2146 	{
2147 		.ident = "Thinkpad X1 Carbon 6th",
2148 		.matches = {
2149 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2150 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2151 		},
2152 	},
2153 	{
2154 		.ident = "ThinkPad X1 Yoga 3rd",
2155 		.matches = {
2156 			DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2157 			DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2158 		},
2159 	},
2160 	{
2161 		.ident = "HP ZHAN 66 Pro",
2162 		.matches = {
2163 			DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2164 			DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2165 		},
2166 	},
2167 	{ },
2168 };
2169 
acpi_ec_init(void)2170 void __init acpi_ec_init(void)
2171 {
2172 	int result;
2173 
2174 	result = acpi_ec_init_workqueues();
2175 	if (result)
2176 		return;
2177 
2178 	/*
2179 	 * Disable EC wakeup on following systems to prevent periodic
2180 	 * wakeup from EC GPE.
2181 	 */
2182 	if (dmi_check_system(acpi_ec_no_wakeup)) {
2183 		ec_no_wakeup = true;
2184 		pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2185 	}
2186 
2187 	/* Driver must be registered after acpi_ec_init_workqueues(). */
2188 	acpi_bus_register_driver(&acpi_ec_driver);
2189 
2190 	acpi_ec_ecdt_start();
2191 }
2192 
2193 /* EC driver currently not unloadable */
2194 #if 0
2195 static void __exit acpi_ec_exit(void)
2196 {
2197 
2198 	acpi_bus_unregister_driver(&acpi_ec_driver);
2199 	acpi_ec_destroy_workqueues();
2200 }
2201 #endif	/* 0 */
2202