1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40 
41 #include "trace.h"
42 
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47 
48 static void tls_device_gc_task(struct work_struct *work);
49 
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55 
tls_device_free_ctx(struct tls_context * ctx)56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58 	if (ctx->tx_conf == TLS_HW) {
59 		kfree(tls_offload_ctx_tx(ctx));
60 		kfree(ctx->tx.rec_seq);
61 		kfree(ctx->tx.iv);
62 	}
63 
64 	if (ctx->rx_conf == TLS_HW)
65 		kfree(tls_offload_ctx_rx(ctx));
66 
67 	tls_ctx_free(NULL, ctx);
68 }
69 
tls_device_gc_task(struct work_struct * work)70 static void tls_device_gc_task(struct work_struct *work)
71 {
72 	struct tls_context *ctx, *tmp;
73 	unsigned long flags;
74 	LIST_HEAD(gc_list);
75 
76 	spin_lock_irqsave(&tls_device_lock, flags);
77 	list_splice_init(&tls_device_gc_list, &gc_list);
78 	spin_unlock_irqrestore(&tls_device_lock, flags);
79 
80 	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81 		struct net_device *netdev = ctx->netdev;
82 
83 		if (netdev && ctx->tx_conf == TLS_HW) {
84 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85 							TLS_OFFLOAD_CTX_DIR_TX);
86 			dev_put(netdev);
87 			ctx->netdev = NULL;
88 		}
89 
90 		list_del(&ctx->list);
91 		tls_device_free_ctx(ctx);
92 	}
93 }
94 
tls_device_queue_ctx_destruction(struct tls_context * ctx)95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(&tls_device_lock, flags);
100 	if (unlikely(!refcount_dec_and_test(&ctx->refcount)))
101 		goto unlock;
102 
103 	list_move_tail(&ctx->list, &tls_device_gc_list);
104 
105 	/* schedule_work inside the spinlock
106 	 * to make sure tls_device_down waits for that work.
107 	 */
108 	schedule_work(&tls_device_gc_work);
109 unlock:
110 	spin_unlock_irqrestore(&tls_device_lock, flags);
111 }
112 
113 /* We assume that the socket is already connected */
get_netdev_for_sock(struct sock * sk)114 static struct net_device *get_netdev_for_sock(struct sock *sk)
115 {
116 	struct dst_entry *dst = sk_dst_get(sk);
117 	struct net_device *netdev = NULL;
118 
119 	if (likely(dst)) {
120 		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
121 		dev_hold(netdev);
122 	}
123 
124 	dst_release(dst);
125 
126 	return netdev;
127 }
128 
destroy_record(struct tls_record_info * record)129 static void destroy_record(struct tls_record_info *record)
130 {
131 	int i;
132 
133 	for (i = 0; i < record->num_frags; i++)
134 		__skb_frag_unref(&record->frags[i], false);
135 	kfree(record);
136 }
137 
delete_all_records(struct tls_offload_context_tx * offload_ctx)138 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
139 {
140 	struct tls_record_info *info, *temp;
141 
142 	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
143 		list_del(&info->list);
144 		destroy_record(info);
145 	}
146 
147 	offload_ctx->retransmit_hint = NULL;
148 }
149 
tls_icsk_clean_acked(struct sock * sk,u32 acked_seq)150 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
151 {
152 	struct tls_context *tls_ctx = tls_get_ctx(sk);
153 	struct tls_record_info *info, *temp;
154 	struct tls_offload_context_tx *ctx;
155 	u64 deleted_records = 0;
156 	unsigned long flags;
157 
158 	if (!tls_ctx)
159 		return;
160 
161 	ctx = tls_offload_ctx_tx(tls_ctx);
162 
163 	spin_lock_irqsave(&ctx->lock, flags);
164 	info = ctx->retransmit_hint;
165 	if (info && !before(acked_seq, info->end_seq))
166 		ctx->retransmit_hint = NULL;
167 
168 	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
169 		if (before(acked_seq, info->end_seq))
170 			break;
171 		list_del(&info->list);
172 
173 		destroy_record(info);
174 		deleted_records++;
175 	}
176 
177 	ctx->unacked_record_sn += deleted_records;
178 	spin_unlock_irqrestore(&ctx->lock, flags);
179 }
180 
181 /* At this point, there should be no references on this
182  * socket and no in-flight SKBs associated with this
183  * socket, so it is safe to free all the resources.
184  */
tls_device_sk_destruct(struct sock * sk)185 void tls_device_sk_destruct(struct sock *sk)
186 {
187 	struct tls_context *tls_ctx = tls_get_ctx(sk);
188 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
189 
190 	tls_ctx->sk_destruct(sk);
191 
192 	if (tls_ctx->tx_conf == TLS_HW) {
193 		if (ctx->open_record)
194 			destroy_record(ctx->open_record);
195 		delete_all_records(ctx);
196 		crypto_free_aead(ctx->aead_send);
197 		clean_acked_data_disable(inet_csk(sk));
198 	}
199 
200 	tls_device_queue_ctx_destruction(tls_ctx);
201 }
202 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
203 
tls_device_free_resources_tx(struct sock * sk)204 void tls_device_free_resources_tx(struct sock *sk)
205 {
206 	struct tls_context *tls_ctx = tls_get_ctx(sk);
207 
208 	tls_free_partial_record(sk, tls_ctx);
209 }
210 
tls_offload_tx_resync_request(struct sock * sk,u32 got_seq,u32 exp_seq)211 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
212 {
213 	struct tls_context *tls_ctx = tls_get_ctx(sk);
214 
215 	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
216 	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
217 }
218 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
219 
tls_device_resync_tx(struct sock * sk,struct tls_context * tls_ctx,u32 seq)220 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
221 				 u32 seq)
222 {
223 	struct net_device *netdev;
224 	struct sk_buff *skb;
225 	int err = 0;
226 	u8 *rcd_sn;
227 
228 	skb = tcp_write_queue_tail(sk);
229 	if (skb)
230 		TCP_SKB_CB(skb)->eor = 1;
231 
232 	rcd_sn = tls_ctx->tx.rec_seq;
233 
234 	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
235 	down_read(&device_offload_lock);
236 	netdev = tls_ctx->netdev;
237 	if (netdev)
238 		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
239 							 rcd_sn,
240 							 TLS_OFFLOAD_CTX_DIR_TX);
241 	up_read(&device_offload_lock);
242 	if (err)
243 		return;
244 
245 	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
246 }
247 
tls_append_frag(struct tls_record_info * record,struct page_frag * pfrag,int size)248 static void tls_append_frag(struct tls_record_info *record,
249 			    struct page_frag *pfrag,
250 			    int size)
251 {
252 	skb_frag_t *frag;
253 
254 	frag = &record->frags[record->num_frags - 1];
255 	if (skb_frag_page(frag) == pfrag->page &&
256 	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
257 		skb_frag_size_add(frag, size);
258 	} else {
259 		++frag;
260 		__skb_frag_set_page(frag, pfrag->page);
261 		skb_frag_off_set(frag, pfrag->offset);
262 		skb_frag_size_set(frag, size);
263 		++record->num_frags;
264 		get_page(pfrag->page);
265 	}
266 
267 	pfrag->offset += size;
268 	record->len += size;
269 }
270 
tls_push_record(struct sock * sk,struct tls_context * ctx,struct tls_offload_context_tx * offload_ctx,struct tls_record_info * record,int flags)271 static int tls_push_record(struct sock *sk,
272 			   struct tls_context *ctx,
273 			   struct tls_offload_context_tx *offload_ctx,
274 			   struct tls_record_info *record,
275 			   int flags)
276 {
277 	struct tls_prot_info *prot = &ctx->prot_info;
278 	struct tcp_sock *tp = tcp_sk(sk);
279 	skb_frag_t *frag;
280 	int i;
281 
282 	record->end_seq = tp->write_seq + record->len;
283 	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
284 	offload_ctx->open_record = NULL;
285 
286 	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
287 		tls_device_resync_tx(sk, ctx, tp->write_seq);
288 
289 	tls_advance_record_sn(sk, prot, &ctx->tx);
290 
291 	for (i = 0; i < record->num_frags; i++) {
292 		frag = &record->frags[i];
293 		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
294 		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
295 			    skb_frag_size(frag), skb_frag_off(frag));
296 		sk_mem_charge(sk, skb_frag_size(frag));
297 		get_page(skb_frag_page(frag));
298 	}
299 	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
300 
301 	/* all ready, send */
302 	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
303 }
304 
tls_device_record_close(struct sock * sk,struct tls_context * ctx,struct tls_record_info * record,struct page_frag * pfrag,unsigned char record_type)305 static int tls_device_record_close(struct sock *sk,
306 				   struct tls_context *ctx,
307 				   struct tls_record_info *record,
308 				   struct page_frag *pfrag,
309 				   unsigned char record_type)
310 {
311 	struct tls_prot_info *prot = &ctx->prot_info;
312 	int ret;
313 
314 	/* append tag
315 	 * device will fill in the tag, we just need to append a placeholder
316 	 * use socket memory to improve coalescing (re-using a single buffer
317 	 * increases frag count)
318 	 * if we can't allocate memory now, steal some back from data
319 	 */
320 	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
321 					sk->sk_allocation))) {
322 		ret = 0;
323 		tls_append_frag(record, pfrag, prot->tag_size);
324 	} else {
325 		ret = prot->tag_size;
326 		if (record->len <= prot->overhead_size)
327 			return -ENOMEM;
328 	}
329 
330 	/* fill prepend */
331 	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
332 			 record->len - prot->overhead_size,
333 			 record_type);
334 	return ret;
335 }
336 
tls_create_new_record(struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)337 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
338 				 struct page_frag *pfrag,
339 				 size_t prepend_size)
340 {
341 	struct tls_record_info *record;
342 	skb_frag_t *frag;
343 
344 	record = kmalloc(sizeof(*record), GFP_KERNEL);
345 	if (!record)
346 		return -ENOMEM;
347 
348 	frag = &record->frags[0];
349 	__skb_frag_set_page(frag, pfrag->page);
350 	skb_frag_off_set(frag, pfrag->offset);
351 	skb_frag_size_set(frag, prepend_size);
352 
353 	get_page(pfrag->page);
354 	pfrag->offset += prepend_size;
355 
356 	record->num_frags = 1;
357 	record->len = prepend_size;
358 	offload_ctx->open_record = record;
359 	return 0;
360 }
361 
tls_do_allocation(struct sock * sk,struct tls_offload_context_tx * offload_ctx,struct page_frag * pfrag,size_t prepend_size)362 static int tls_do_allocation(struct sock *sk,
363 			     struct tls_offload_context_tx *offload_ctx,
364 			     struct page_frag *pfrag,
365 			     size_t prepend_size)
366 {
367 	int ret;
368 
369 	if (!offload_ctx->open_record) {
370 		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
371 						   sk->sk_allocation))) {
372 			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
373 			sk_stream_moderate_sndbuf(sk);
374 			return -ENOMEM;
375 		}
376 
377 		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
378 		if (ret)
379 			return ret;
380 
381 		if (pfrag->size > pfrag->offset)
382 			return 0;
383 	}
384 
385 	if (!sk_page_frag_refill(sk, pfrag))
386 		return -ENOMEM;
387 
388 	return 0;
389 }
390 
tls_device_copy_data(void * addr,size_t bytes,struct iov_iter * i)391 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
392 {
393 	size_t pre_copy, nocache;
394 
395 	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
396 	if (pre_copy) {
397 		pre_copy = min(pre_copy, bytes);
398 		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
399 			return -EFAULT;
400 		bytes -= pre_copy;
401 		addr += pre_copy;
402 	}
403 
404 	nocache = round_down(bytes, SMP_CACHE_BYTES);
405 	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
406 		return -EFAULT;
407 	bytes -= nocache;
408 	addr += nocache;
409 
410 	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
411 		return -EFAULT;
412 
413 	return 0;
414 }
415 
416 union tls_iter_offset {
417 	struct iov_iter *msg_iter;
418 	int offset;
419 };
420 
tls_push_data(struct sock * sk,union tls_iter_offset iter_offset,size_t size,int flags,unsigned char record_type,struct page * zc_page)421 static int tls_push_data(struct sock *sk,
422 			 union tls_iter_offset iter_offset,
423 			 size_t size, int flags,
424 			 unsigned char record_type,
425 			 struct page *zc_page)
426 {
427 	struct tls_context *tls_ctx = tls_get_ctx(sk);
428 	struct tls_prot_info *prot = &tls_ctx->prot_info;
429 	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
430 	struct tls_record_info *record;
431 	int tls_push_record_flags;
432 	struct page_frag *pfrag;
433 	size_t orig_size = size;
434 	u32 max_open_record_len;
435 	bool more = false;
436 	bool done = false;
437 	int copy, rc = 0;
438 	long timeo;
439 
440 	if (flags &
441 	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
442 		return -EOPNOTSUPP;
443 
444 	if (unlikely(sk->sk_err))
445 		return -sk->sk_err;
446 
447 	flags |= MSG_SENDPAGE_DECRYPTED;
448 	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
449 
450 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
451 	if (tls_is_partially_sent_record(tls_ctx)) {
452 		rc = tls_push_partial_record(sk, tls_ctx, flags);
453 		if (rc < 0)
454 			return rc;
455 	}
456 
457 	pfrag = sk_page_frag(sk);
458 
459 	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
460 	 * we need to leave room for an authentication tag.
461 	 */
462 	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
463 			      prot->prepend_size;
464 	do {
465 		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
466 		if (unlikely(rc)) {
467 			rc = sk_stream_wait_memory(sk, &timeo);
468 			if (!rc)
469 				continue;
470 
471 			record = ctx->open_record;
472 			if (!record)
473 				break;
474 handle_error:
475 			if (record_type != TLS_RECORD_TYPE_DATA) {
476 				/* avoid sending partial
477 				 * record with type !=
478 				 * application_data
479 				 */
480 				size = orig_size;
481 				destroy_record(record);
482 				ctx->open_record = NULL;
483 			} else if (record->len > prot->prepend_size) {
484 				goto last_record;
485 			}
486 
487 			break;
488 		}
489 
490 		record = ctx->open_record;
491 
492 		copy = min_t(size_t, size, max_open_record_len - record->len);
493 		if (copy && zc_page) {
494 			struct page_frag zc_pfrag;
495 
496 			zc_pfrag.page = zc_page;
497 			zc_pfrag.offset = iter_offset.offset;
498 			zc_pfrag.size = copy;
499 			tls_append_frag(record, &zc_pfrag, copy);
500 		} else if (copy) {
501 			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
502 
503 			rc = tls_device_copy_data(page_address(pfrag->page) +
504 						  pfrag->offset, copy,
505 						  iter_offset.msg_iter);
506 			if (rc)
507 				goto handle_error;
508 			tls_append_frag(record, pfrag, copy);
509 		}
510 
511 		size -= copy;
512 		if (!size) {
513 last_record:
514 			tls_push_record_flags = flags;
515 			if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
516 				more = true;
517 				break;
518 			}
519 
520 			done = true;
521 		}
522 
523 		if (done || record->len >= max_open_record_len ||
524 		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
525 			rc = tls_device_record_close(sk, tls_ctx, record,
526 						     pfrag, record_type);
527 			if (rc) {
528 				if (rc > 0) {
529 					size += rc;
530 				} else {
531 					size = orig_size;
532 					destroy_record(record);
533 					ctx->open_record = NULL;
534 					break;
535 				}
536 			}
537 
538 			rc = tls_push_record(sk,
539 					     tls_ctx,
540 					     ctx,
541 					     record,
542 					     tls_push_record_flags);
543 			if (rc < 0)
544 				break;
545 		}
546 	} while (!done);
547 
548 	tls_ctx->pending_open_record_frags = more;
549 
550 	if (orig_size - size > 0)
551 		rc = orig_size - size;
552 
553 	return rc;
554 }
555 
tls_device_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)556 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
557 {
558 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
559 	struct tls_context *tls_ctx = tls_get_ctx(sk);
560 	union tls_iter_offset iter;
561 	int rc;
562 
563 	mutex_lock(&tls_ctx->tx_lock);
564 	lock_sock(sk);
565 
566 	if (unlikely(msg->msg_controllen)) {
567 		rc = tls_proccess_cmsg(sk, msg, &record_type);
568 		if (rc)
569 			goto out;
570 	}
571 
572 	iter.msg_iter = &msg->msg_iter;
573 	rc = tls_push_data(sk, iter, size, msg->msg_flags, record_type, NULL);
574 
575 out:
576 	release_sock(sk);
577 	mutex_unlock(&tls_ctx->tx_lock);
578 	return rc;
579 }
580 
tls_device_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)581 int tls_device_sendpage(struct sock *sk, struct page *page,
582 			int offset, size_t size, int flags)
583 {
584 	struct tls_context *tls_ctx = tls_get_ctx(sk);
585 	union tls_iter_offset iter_offset;
586 	struct iov_iter msg_iter;
587 	char *kaddr;
588 	struct kvec iov;
589 	int rc;
590 
591 	if (flags & MSG_SENDPAGE_NOTLAST)
592 		flags |= MSG_MORE;
593 
594 	mutex_lock(&tls_ctx->tx_lock);
595 	lock_sock(sk);
596 
597 	if (flags & MSG_OOB) {
598 		rc = -EOPNOTSUPP;
599 		goto out;
600 	}
601 
602 	if (tls_ctx->zerocopy_sendfile) {
603 		iter_offset.offset = offset;
604 		rc = tls_push_data(sk, iter_offset, size,
605 				   flags, TLS_RECORD_TYPE_DATA, page);
606 		goto out;
607 	}
608 
609 	kaddr = kmap(page);
610 	iov.iov_base = kaddr + offset;
611 	iov.iov_len = size;
612 	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
613 	iter_offset.msg_iter = &msg_iter;
614 	rc = tls_push_data(sk, iter_offset, size, flags, TLS_RECORD_TYPE_DATA,
615 			   NULL);
616 	kunmap(page);
617 
618 out:
619 	release_sock(sk);
620 	mutex_unlock(&tls_ctx->tx_lock);
621 	return rc;
622 }
623 
tls_get_record(struct tls_offload_context_tx * context,u32 seq,u64 * p_record_sn)624 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
625 				       u32 seq, u64 *p_record_sn)
626 {
627 	u64 record_sn = context->hint_record_sn;
628 	struct tls_record_info *info, *last;
629 
630 	info = context->retransmit_hint;
631 	if (!info ||
632 	    before(seq, info->end_seq - info->len)) {
633 		/* if retransmit_hint is irrelevant start
634 		 * from the beginning of the list
635 		 */
636 		info = list_first_entry_or_null(&context->records_list,
637 						struct tls_record_info, list);
638 		if (!info)
639 			return NULL;
640 		/* send the start_marker record if seq number is before the
641 		 * tls offload start marker sequence number. This record is
642 		 * required to handle TCP packets which are before TLS offload
643 		 * started.
644 		 *  And if it's not start marker, look if this seq number
645 		 * belongs to the list.
646 		 */
647 		if (likely(!tls_record_is_start_marker(info))) {
648 			/* we have the first record, get the last record to see
649 			 * if this seq number belongs to the list.
650 			 */
651 			last = list_last_entry(&context->records_list,
652 					       struct tls_record_info, list);
653 
654 			if (!between(seq, tls_record_start_seq(info),
655 				     last->end_seq))
656 				return NULL;
657 		}
658 		record_sn = context->unacked_record_sn;
659 	}
660 
661 	/* We just need the _rcu for the READ_ONCE() */
662 	rcu_read_lock();
663 	list_for_each_entry_from_rcu(info, &context->records_list, list) {
664 		if (before(seq, info->end_seq)) {
665 			if (!context->retransmit_hint ||
666 			    after(info->end_seq,
667 				  context->retransmit_hint->end_seq)) {
668 				context->hint_record_sn = record_sn;
669 				context->retransmit_hint = info;
670 			}
671 			*p_record_sn = record_sn;
672 			goto exit_rcu_unlock;
673 		}
674 		record_sn++;
675 	}
676 	info = NULL;
677 
678 exit_rcu_unlock:
679 	rcu_read_unlock();
680 	return info;
681 }
682 EXPORT_SYMBOL(tls_get_record);
683 
tls_device_push_pending_record(struct sock * sk,int flags)684 static int tls_device_push_pending_record(struct sock *sk, int flags)
685 {
686 	union tls_iter_offset iter;
687 	struct iov_iter msg_iter;
688 
689 	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
690 	iter.msg_iter = &msg_iter;
691 	return tls_push_data(sk, iter, 0, flags, TLS_RECORD_TYPE_DATA, NULL);
692 }
693 
tls_device_write_space(struct sock * sk,struct tls_context * ctx)694 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
695 {
696 	if (tls_is_partially_sent_record(ctx)) {
697 		gfp_t sk_allocation = sk->sk_allocation;
698 
699 		WARN_ON_ONCE(sk->sk_write_pending);
700 
701 		sk->sk_allocation = GFP_ATOMIC;
702 		tls_push_partial_record(sk, ctx,
703 					MSG_DONTWAIT | MSG_NOSIGNAL |
704 					MSG_SENDPAGE_DECRYPTED);
705 		sk->sk_allocation = sk_allocation;
706 	}
707 }
708 
tls_device_resync_rx(struct tls_context * tls_ctx,struct sock * sk,u32 seq,u8 * rcd_sn)709 static void tls_device_resync_rx(struct tls_context *tls_ctx,
710 				 struct sock *sk, u32 seq, u8 *rcd_sn)
711 {
712 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
713 	struct net_device *netdev;
714 
715 	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
716 	rcu_read_lock();
717 	netdev = READ_ONCE(tls_ctx->netdev);
718 	if (netdev)
719 		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
720 						   TLS_OFFLOAD_CTX_DIR_RX);
721 	rcu_read_unlock();
722 	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
723 }
724 
725 static bool
tls_device_rx_resync_async(struct tls_offload_resync_async * resync_async,s64 resync_req,u32 * seq,u16 * rcd_delta)726 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
727 			   s64 resync_req, u32 *seq, u16 *rcd_delta)
728 {
729 	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
730 	u32 req_seq = resync_req >> 32;
731 	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
732 	u16 i;
733 
734 	*rcd_delta = 0;
735 
736 	if (is_async) {
737 		/* shouldn't get to wraparound:
738 		 * too long in async stage, something bad happened
739 		 */
740 		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
741 			return false;
742 
743 		/* asynchronous stage: log all headers seq such that
744 		 * req_seq <= seq <= end_seq, and wait for real resync request
745 		 */
746 		if (before(*seq, req_seq))
747 			return false;
748 		if (!after(*seq, req_end) &&
749 		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
750 			resync_async->log[resync_async->loglen++] = *seq;
751 
752 		resync_async->rcd_delta++;
753 
754 		return false;
755 	}
756 
757 	/* synchronous stage: check against the logged entries and
758 	 * proceed to check the next entries if no match was found
759 	 */
760 	for (i = 0; i < resync_async->loglen; i++)
761 		if (req_seq == resync_async->log[i] &&
762 		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
763 			*rcd_delta = resync_async->rcd_delta - i;
764 			*seq = req_seq;
765 			resync_async->loglen = 0;
766 			resync_async->rcd_delta = 0;
767 			return true;
768 		}
769 
770 	resync_async->loglen = 0;
771 	resync_async->rcd_delta = 0;
772 
773 	if (req_seq == *seq &&
774 	    atomic64_try_cmpxchg(&resync_async->req,
775 				 &resync_req, 0))
776 		return true;
777 
778 	return false;
779 }
780 
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)781 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
782 {
783 	struct tls_context *tls_ctx = tls_get_ctx(sk);
784 	struct tls_offload_context_rx *rx_ctx;
785 	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
786 	u32 sock_data, is_req_pending;
787 	struct tls_prot_info *prot;
788 	s64 resync_req;
789 	u16 rcd_delta;
790 	u32 req_seq;
791 
792 	if (tls_ctx->rx_conf != TLS_HW)
793 		return;
794 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
795 		return;
796 
797 	prot = &tls_ctx->prot_info;
798 	rx_ctx = tls_offload_ctx_rx(tls_ctx);
799 	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
800 
801 	switch (rx_ctx->resync_type) {
802 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
803 		resync_req = atomic64_read(&rx_ctx->resync_req);
804 		req_seq = resync_req >> 32;
805 		seq += TLS_HEADER_SIZE - 1;
806 		is_req_pending = resync_req;
807 
808 		if (likely(!is_req_pending) || req_seq != seq ||
809 		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
810 			return;
811 		break;
812 	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
813 		if (likely(!rx_ctx->resync_nh_do_now))
814 			return;
815 
816 		/* head of next rec is already in, note that the sock_inq will
817 		 * include the currently parsed message when called from parser
818 		 */
819 		sock_data = tcp_inq(sk);
820 		if (sock_data > rcd_len) {
821 			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
822 							    rcd_len);
823 			return;
824 		}
825 
826 		rx_ctx->resync_nh_do_now = 0;
827 		seq += rcd_len;
828 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
829 		break;
830 	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
831 		resync_req = atomic64_read(&rx_ctx->resync_async->req);
832 		is_req_pending = resync_req;
833 		if (likely(!is_req_pending))
834 			return;
835 
836 		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
837 						resync_req, &seq, &rcd_delta))
838 			return;
839 		tls_bigint_subtract(rcd_sn, rcd_delta);
840 		break;
841 	}
842 
843 	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
844 }
845 
tls_device_core_ctrl_rx_resync(struct tls_context * tls_ctx,struct tls_offload_context_rx * ctx,struct sock * sk,struct sk_buff * skb)846 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
847 					   struct tls_offload_context_rx *ctx,
848 					   struct sock *sk, struct sk_buff *skb)
849 {
850 	struct strp_msg *rxm;
851 
852 	/* device will request resyncs by itself based on stream scan */
853 	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
854 		return;
855 	/* already scheduled */
856 	if (ctx->resync_nh_do_now)
857 		return;
858 	/* seen decrypted fragments since last fully-failed record */
859 	if (ctx->resync_nh_reset) {
860 		ctx->resync_nh_reset = 0;
861 		ctx->resync_nh.decrypted_failed = 1;
862 		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
863 		return;
864 	}
865 
866 	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
867 		return;
868 
869 	/* doing resync, bump the next target in case it fails */
870 	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
871 		ctx->resync_nh.decrypted_tgt *= 2;
872 	else
873 		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
874 
875 	rxm = strp_msg(skb);
876 
877 	/* head of next rec is already in, parser will sync for us */
878 	if (tcp_inq(sk) > rxm->full_len) {
879 		trace_tls_device_rx_resync_nh_schedule(sk);
880 		ctx->resync_nh_do_now = 1;
881 	} else {
882 		struct tls_prot_info *prot = &tls_ctx->prot_info;
883 		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
884 
885 		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
886 		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
887 
888 		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
889 				     rcd_sn);
890 	}
891 }
892 
tls_device_reencrypt(struct sock * sk,struct sk_buff * skb)893 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
894 {
895 	struct strp_msg *rxm = strp_msg(skb);
896 	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
897 	struct sk_buff *skb_iter, *unused;
898 	struct scatterlist sg[1];
899 	char *orig_buf, *buf;
900 
901 	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
902 			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
903 	if (!orig_buf)
904 		return -ENOMEM;
905 	buf = orig_buf;
906 
907 	nsg = skb_cow_data(skb, 0, &unused);
908 	if (unlikely(nsg < 0)) {
909 		err = nsg;
910 		goto free_buf;
911 	}
912 
913 	sg_init_table(sg, 1);
914 	sg_set_buf(&sg[0], buf,
915 		   rxm->full_len + TLS_HEADER_SIZE +
916 		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
917 	err = skb_copy_bits(skb, offset, buf,
918 			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
919 	if (err)
920 		goto free_buf;
921 
922 	/* We are interested only in the decrypted data not the auth */
923 	err = decrypt_skb(sk, skb, sg);
924 	if (err != -EBADMSG)
925 		goto free_buf;
926 	else
927 		err = 0;
928 
929 	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
930 
931 	if (skb_pagelen(skb) > offset) {
932 		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
933 
934 		if (skb->decrypted) {
935 			err = skb_store_bits(skb, offset, buf, copy);
936 			if (err)
937 				goto free_buf;
938 		}
939 
940 		offset += copy;
941 		buf += copy;
942 	}
943 
944 	pos = skb_pagelen(skb);
945 	skb_walk_frags(skb, skb_iter) {
946 		int frag_pos;
947 
948 		/* Practically all frags must belong to msg if reencrypt
949 		 * is needed with current strparser and coalescing logic,
950 		 * but strparser may "get optimized", so let's be safe.
951 		 */
952 		if (pos + skb_iter->len <= offset)
953 			goto done_with_frag;
954 		if (pos >= data_len + rxm->offset)
955 			break;
956 
957 		frag_pos = offset - pos;
958 		copy = min_t(int, skb_iter->len - frag_pos,
959 			     data_len + rxm->offset - offset);
960 
961 		if (skb_iter->decrypted) {
962 			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
963 			if (err)
964 				goto free_buf;
965 		}
966 
967 		offset += copy;
968 		buf += copy;
969 done_with_frag:
970 		pos += skb_iter->len;
971 	}
972 
973 free_buf:
974 	kfree(orig_buf);
975 	return err;
976 }
977 
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx,struct sk_buff * skb,struct strp_msg * rxm)978 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
979 			 struct sk_buff *skb, struct strp_msg *rxm)
980 {
981 	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
982 	int is_decrypted = skb->decrypted;
983 	int is_encrypted = !is_decrypted;
984 	struct sk_buff *skb_iter;
985 
986 	/* Check if all the data is decrypted already */
987 	skb_walk_frags(skb, skb_iter) {
988 		is_decrypted &= skb_iter->decrypted;
989 		is_encrypted &= !skb_iter->decrypted;
990 	}
991 
992 	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
993 				   tls_ctx->rx.rec_seq, rxm->full_len,
994 				   is_encrypted, is_decrypted);
995 
996 	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
997 		if (likely(is_encrypted || is_decrypted))
998 			return is_decrypted;
999 
1000 		/* After tls_device_down disables the offload, the next SKB will
1001 		 * likely have initial fragments decrypted, and final ones not
1002 		 * decrypted. We need to reencrypt that single SKB.
1003 		 */
1004 		return tls_device_reencrypt(sk, skb);
1005 	}
1006 
1007 	/* Return immediately if the record is either entirely plaintext or
1008 	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1009 	 * record.
1010 	 */
1011 	if (is_decrypted) {
1012 		ctx->resync_nh_reset = 1;
1013 		return is_decrypted;
1014 	}
1015 	if (is_encrypted) {
1016 		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1017 		return 0;
1018 	}
1019 
1020 	ctx->resync_nh_reset = 1;
1021 	return tls_device_reencrypt(sk, skb);
1022 }
1023 
tls_device_attach(struct tls_context * ctx,struct sock * sk,struct net_device * netdev)1024 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1025 			      struct net_device *netdev)
1026 {
1027 	if (sk->sk_destruct != tls_device_sk_destruct) {
1028 		refcount_set(&ctx->refcount, 1);
1029 		dev_hold(netdev);
1030 		ctx->netdev = netdev;
1031 		spin_lock_irq(&tls_device_lock);
1032 		list_add_tail(&ctx->list, &tls_device_list);
1033 		spin_unlock_irq(&tls_device_lock);
1034 
1035 		ctx->sk_destruct = sk->sk_destruct;
1036 		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1037 	}
1038 }
1039 
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)1040 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1041 {
1042 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1043 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1044 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1045 	struct tls_record_info *start_marker_record;
1046 	struct tls_offload_context_tx *offload_ctx;
1047 	struct tls_crypto_info *crypto_info;
1048 	struct net_device *netdev;
1049 	char *iv, *rec_seq;
1050 	struct sk_buff *skb;
1051 	__be64 rcd_sn;
1052 	int rc;
1053 
1054 	if (!ctx)
1055 		return -EINVAL;
1056 
1057 	if (ctx->priv_ctx_tx)
1058 		return -EEXIST;
1059 
1060 	netdev = get_netdev_for_sock(sk);
1061 	if (!netdev) {
1062 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1067 		rc = -EOPNOTSUPP;
1068 		goto release_netdev;
1069 	}
1070 
1071 	crypto_info = &ctx->crypto_send.info;
1072 	if (crypto_info->version != TLS_1_2_VERSION) {
1073 		rc = -EOPNOTSUPP;
1074 		goto release_netdev;
1075 	}
1076 
1077 	switch (crypto_info->cipher_type) {
1078 	case TLS_CIPHER_AES_GCM_128:
1079 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1080 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1081 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1082 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1083 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1084 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1085 		rec_seq =
1086 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1087 		break;
1088 	default:
1089 		rc = -EINVAL;
1090 		goto release_netdev;
1091 	}
1092 
1093 	/* Sanity-check the rec_seq_size for stack allocations */
1094 	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1095 		rc = -EINVAL;
1096 		goto release_netdev;
1097 	}
1098 
1099 	prot->version = crypto_info->version;
1100 	prot->cipher_type = crypto_info->cipher_type;
1101 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1102 	prot->tag_size = tag_size;
1103 	prot->overhead_size = prot->prepend_size + prot->tag_size;
1104 	prot->iv_size = iv_size;
1105 	prot->salt_size = salt_size;
1106 	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1107 			     GFP_KERNEL);
1108 	if (!ctx->tx.iv) {
1109 		rc = -ENOMEM;
1110 		goto release_netdev;
1111 	}
1112 
1113 	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1114 
1115 	prot->rec_seq_size = rec_seq_size;
1116 	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1117 	if (!ctx->tx.rec_seq) {
1118 		rc = -ENOMEM;
1119 		goto free_iv;
1120 	}
1121 
1122 	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1123 	if (!start_marker_record) {
1124 		rc = -ENOMEM;
1125 		goto free_rec_seq;
1126 	}
1127 
1128 	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1129 	if (!offload_ctx) {
1130 		rc = -ENOMEM;
1131 		goto free_marker_record;
1132 	}
1133 
1134 	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1135 	if (rc)
1136 		goto free_offload_ctx;
1137 
1138 	/* start at rec_seq - 1 to account for the start marker record */
1139 	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1140 	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1141 
1142 	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1143 	start_marker_record->len = 0;
1144 	start_marker_record->num_frags = 0;
1145 
1146 	INIT_LIST_HEAD(&offload_ctx->records_list);
1147 	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1148 	spin_lock_init(&offload_ctx->lock);
1149 	sg_init_table(offload_ctx->sg_tx_data,
1150 		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1151 
1152 	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1153 	ctx->push_pending_record = tls_device_push_pending_record;
1154 
1155 	/* TLS offload is greatly simplified if we don't send
1156 	 * SKBs where only part of the payload needs to be encrypted.
1157 	 * So mark the last skb in the write queue as end of record.
1158 	 */
1159 	skb = tcp_write_queue_tail(sk);
1160 	if (skb)
1161 		TCP_SKB_CB(skb)->eor = 1;
1162 
1163 	/* Avoid offloading if the device is down
1164 	 * We don't want to offload new flows after
1165 	 * the NETDEV_DOWN event
1166 	 *
1167 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1168 	 * handler thus protecting from the device going down before
1169 	 * ctx was added to tls_device_list.
1170 	 */
1171 	down_read(&device_offload_lock);
1172 	if (!(netdev->flags & IFF_UP)) {
1173 		rc = -EINVAL;
1174 		goto release_lock;
1175 	}
1176 
1177 	ctx->priv_ctx_tx = offload_ctx;
1178 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1179 					     &ctx->crypto_send.info,
1180 					     tcp_sk(sk)->write_seq);
1181 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1182 				     tcp_sk(sk)->write_seq, rec_seq, rc);
1183 	if (rc)
1184 		goto release_lock;
1185 
1186 	tls_device_attach(ctx, sk, netdev);
1187 	up_read(&device_offload_lock);
1188 
1189 	/* following this assignment tls_is_sk_tx_device_offloaded
1190 	 * will return true and the context might be accessed
1191 	 * by the netdev's xmit function.
1192 	 */
1193 	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1194 	dev_put(netdev);
1195 
1196 	return 0;
1197 
1198 release_lock:
1199 	up_read(&device_offload_lock);
1200 	clean_acked_data_disable(inet_csk(sk));
1201 	crypto_free_aead(offload_ctx->aead_send);
1202 free_offload_ctx:
1203 	kfree(offload_ctx);
1204 	ctx->priv_ctx_tx = NULL;
1205 free_marker_record:
1206 	kfree(start_marker_record);
1207 free_rec_seq:
1208 	kfree(ctx->tx.rec_seq);
1209 free_iv:
1210 	kfree(ctx->tx.iv);
1211 release_netdev:
1212 	dev_put(netdev);
1213 	return rc;
1214 }
1215 
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)1216 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1217 {
1218 	struct tls12_crypto_info_aes_gcm_128 *info;
1219 	struct tls_offload_context_rx *context;
1220 	struct net_device *netdev;
1221 	int rc = 0;
1222 
1223 	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1224 		return -EOPNOTSUPP;
1225 
1226 	netdev = get_netdev_for_sock(sk);
1227 	if (!netdev) {
1228 		pr_err_ratelimited("%s: netdev not found\n", __func__);
1229 		return -EINVAL;
1230 	}
1231 
1232 	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1233 		rc = -EOPNOTSUPP;
1234 		goto release_netdev;
1235 	}
1236 
1237 	/* Avoid offloading if the device is down
1238 	 * We don't want to offload new flows after
1239 	 * the NETDEV_DOWN event
1240 	 *
1241 	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1242 	 * handler thus protecting from the device going down before
1243 	 * ctx was added to tls_device_list.
1244 	 */
1245 	down_read(&device_offload_lock);
1246 	if (!(netdev->flags & IFF_UP)) {
1247 		rc = -EINVAL;
1248 		goto release_lock;
1249 	}
1250 
1251 	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1252 	if (!context) {
1253 		rc = -ENOMEM;
1254 		goto release_lock;
1255 	}
1256 	context->resync_nh_reset = 1;
1257 
1258 	ctx->priv_ctx_rx = context;
1259 	rc = tls_set_sw_offload(sk, ctx, 0);
1260 	if (rc)
1261 		goto release_ctx;
1262 
1263 	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1264 					     &ctx->crypto_recv.info,
1265 					     tcp_sk(sk)->copied_seq);
1266 	info = (void *)&ctx->crypto_recv.info;
1267 	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1268 				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1269 	if (rc)
1270 		goto free_sw_resources;
1271 
1272 	tls_device_attach(ctx, sk, netdev);
1273 	up_read(&device_offload_lock);
1274 
1275 	dev_put(netdev);
1276 
1277 	return 0;
1278 
1279 free_sw_resources:
1280 	up_read(&device_offload_lock);
1281 	tls_sw_free_resources_rx(sk);
1282 	down_read(&device_offload_lock);
1283 release_ctx:
1284 	ctx->priv_ctx_rx = NULL;
1285 release_lock:
1286 	up_read(&device_offload_lock);
1287 release_netdev:
1288 	dev_put(netdev);
1289 	return rc;
1290 }
1291 
tls_device_offload_cleanup_rx(struct sock * sk)1292 void tls_device_offload_cleanup_rx(struct sock *sk)
1293 {
1294 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1295 	struct net_device *netdev;
1296 
1297 	down_read(&device_offload_lock);
1298 	netdev = tls_ctx->netdev;
1299 	if (!netdev)
1300 		goto out;
1301 
1302 	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1303 					TLS_OFFLOAD_CTX_DIR_RX);
1304 
1305 	if (tls_ctx->tx_conf != TLS_HW) {
1306 		dev_put(netdev);
1307 		tls_ctx->netdev = NULL;
1308 	} else {
1309 		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1310 	}
1311 out:
1312 	up_read(&device_offload_lock);
1313 	tls_sw_release_resources_rx(sk);
1314 }
1315 
tls_device_down(struct net_device * netdev)1316 static int tls_device_down(struct net_device *netdev)
1317 {
1318 	struct tls_context *ctx, *tmp;
1319 	unsigned long flags;
1320 	LIST_HEAD(list);
1321 
1322 	/* Request a write lock to block new offload attempts */
1323 	down_write(&device_offload_lock);
1324 
1325 	spin_lock_irqsave(&tls_device_lock, flags);
1326 	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1327 		if (ctx->netdev != netdev ||
1328 		    !refcount_inc_not_zero(&ctx->refcount))
1329 			continue;
1330 
1331 		list_move(&ctx->list, &list);
1332 	}
1333 	spin_unlock_irqrestore(&tls_device_lock, flags);
1334 
1335 	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1336 		/* Stop offloaded TX and switch to the fallback.
1337 		 * tls_is_sk_tx_device_offloaded will return false.
1338 		 */
1339 		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1340 
1341 		/* Stop the RX and TX resync.
1342 		 * tls_dev_resync must not be called after tls_dev_del.
1343 		 */
1344 		WRITE_ONCE(ctx->netdev, NULL);
1345 
1346 		/* Start skipping the RX resync logic completely. */
1347 		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1348 
1349 		/* Sync with inflight packets. After this point:
1350 		 * TX: no non-encrypted packets will be passed to the driver.
1351 		 * RX: resync requests from the driver will be ignored.
1352 		 */
1353 		synchronize_net();
1354 
1355 		/* Release the offload context on the driver side. */
1356 		if (ctx->tx_conf == TLS_HW)
1357 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1358 							TLS_OFFLOAD_CTX_DIR_TX);
1359 		if (ctx->rx_conf == TLS_HW &&
1360 		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1361 			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1362 							TLS_OFFLOAD_CTX_DIR_RX);
1363 
1364 		dev_put(netdev);
1365 
1366 		/* Move the context to a separate list for two reasons:
1367 		 * 1. When the context is deallocated, list_del is called.
1368 		 * 2. It's no longer an offloaded context, so we don't want to
1369 		 *    run offload-specific code on this context.
1370 		 */
1371 		spin_lock_irqsave(&tls_device_lock, flags);
1372 		list_move_tail(&ctx->list, &tls_device_down_list);
1373 		spin_unlock_irqrestore(&tls_device_lock, flags);
1374 
1375 		/* Device contexts for RX and TX will be freed in on sk_destruct
1376 		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1377 		 * Now release the ref taken above.
1378 		 */
1379 		if (refcount_dec_and_test(&ctx->refcount)) {
1380 			/* sk_destruct ran after tls_device_down took a ref, and
1381 			 * it returned early. Complete the destruction here.
1382 			 */
1383 			list_del(&ctx->list);
1384 			tls_device_free_ctx(ctx);
1385 		}
1386 	}
1387 
1388 	up_write(&device_offload_lock);
1389 
1390 	flush_work(&tls_device_gc_work);
1391 
1392 	return NOTIFY_DONE;
1393 }
1394 
tls_dev_event(struct notifier_block * this,unsigned long event,void * ptr)1395 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1396 			 void *ptr)
1397 {
1398 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1399 
1400 	if (!dev->tlsdev_ops &&
1401 	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1402 		return NOTIFY_DONE;
1403 
1404 	switch (event) {
1405 	case NETDEV_REGISTER:
1406 	case NETDEV_FEAT_CHANGE:
1407 		if (netif_is_bond_master(dev))
1408 			return NOTIFY_DONE;
1409 		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1410 		    !dev->tlsdev_ops->tls_dev_resync)
1411 			return NOTIFY_BAD;
1412 
1413 		if  (dev->tlsdev_ops &&
1414 		     dev->tlsdev_ops->tls_dev_add &&
1415 		     dev->tlsdev_ops->tls_dev_del)
1416 			return NOTIFY_DONE;
1417 		else
1418 			return NOTIFY_BAD;
1419 	case NETDEV_DOWN:
1420 		return tls_device_down(dev);
1421 	}
1422 	return NOTIFY_DONE;
1423 }
1424 
1425 static struct notifier_block tls_dev_notifier = {
1426 	.notifier_call	= tls_dev_event,
1427 };
1428 
tls_device_init(void)1429 int __init tls_device_init(void)
1430 {
1431 	return register_netdevice_notifier(&tls_dev_notifier);
1432 }
1433 
tls_device_cleanup(void)1434 void __exit tls_device_cleanup(void)
1435 {
1436 	unregister_netdevice_notifier(&tls_dev_notifier);
1437 	flush_work(&tls_device_gc_work);
1438 	clean_acked_data_flush();
1439 }
1440