1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_ATOMIC|__GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51 })
52
53 void page_writeback_init(void);
54
folio_raw_mapping(struct folio * folio)55 static inline void *folio_raw_mapping(struct folio *folio)
56 {
57 unsigned long mapping = (unsigned long)folio->mapping;
58
59 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
60 }
61
62 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
63 int nr_throttled);
acct_reclaim_writeback(struct folio * folio)64 static inline void acct_reclaim_writeback(struct folio *folio)
65 {
66 pg_data_t *pgdat = folio_pgdat(folio);
67 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
68
69 if (nr_throttled)
70 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
71 }
72
wake_throttle_isolated(pg_data_t * pgdat)73 static inline void wake_throttle_isolated(pg_data_t *pgdat)
74 {
75 wait_queue_head_t *wqh;
76
77 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
78 if (waitqueue_active(wqh))
79 wake_up(wqh);
80 }
81
82 vm_fault_t do_swap_page(struct vm_fault *vmf);
83 void folio_rotate_reclaimable(struct folio *folio);
84 bool __folio_end_writeback(struct folio *folio);
85 void deactivate_file_folio(struct folio *folio);
86 void folio_activate(struct folio *folio);
87
88 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
89 struct vm_area_struct *start_vma, unsigned long floor,
90 unsigned long ceiling);
91 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
92
93 struct zap_details;
94 void unmap_page_range(struct mmu_gather *tlb,
95 struct vm_area_struct *vma,
96 unsigned long addr, unsigned long end,
97 struct zap_details *details);
98
99 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
100 unsigned int order);
101 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)102 static inline void force_page_cache_readahead(struct address_space *mapping,
103 struct file *file, pgoff_t index, unsigned long nr_to_read)
104 {
105 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
106 force_page_cache_ra(&ractl, nr_to_read);
107 }
108
109 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
110 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
111 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
112 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
113 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
114 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
115 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
116 loff_t end);
117 long invalidate_inode_page(struct page *page);
118 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
119 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
120
121 /**
122 * folio_evictable - Test whether a folio is evictable.
123 * @folio: The folio to test.
124 *
125 * Test whether @folio is evictable -- i.e., should be placed on
126 * active/inactive lists vs unevictable list.
127 *
128 * Reasons folio might not be evictable:
129 * 1. folio's mapping marked unevictable
130 * 2. One of the pages in the folio is part of an mlocked VMA
131 */
folio_evictable(struct folio * folio)132 static inline bool folio_evictable(struct folio *folio)
133 {
134 bool ret;
135
136 /* Prevent address_space of inode and swap cache from being freed */
137 rcu_read_lock();
138 ret = !mapping_unevictable(folio_mapping(folio)) &&
139 !folio_test_mlocked(folio);
140 rcu_read_unlock();
141 return ret;
142 }
143
page_evictable(struct page * page)144 static inline bool page_evictable(struct page *page)
145 {
146 bool ret;
147
148 /* Prevent address_space of inode and swap cache from being freed */
149 rcu_read_lock();
150 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
151 rcu_read_unlock();
152 return ret;
153 }
154
155 /*
156 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
157 * a count of one.
158 */
set_page_refcounted(struct page * page)159 static inline void set_page_refcounted(struct page *page)
160 {
161 VM_BUG_ON_PAGE(PageTail(page), page);
162 VM_BUG_ON_PAGE(page_ref_count(page), page);
163 set_page_count(page, 1);
164 }
165
166 extern unsigned long highest_memmap_pfn;
167
168 /*
169 * Maximum number of reclaim retries without progress before the OOM
170 * killer is consider the only way forward.
171 */
172 #define MAX_RECLAIM_RETRIES 16
173
174 /*
175 * in mm/early_ioremap.c
176 */
177 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
178 unsigned long size, pgprot_t prot);
179
180 /*
181 * in mm/vmscan.c:
182 */
183 int isolate_lru_page(struct page *page);
184 int folio_isolate_lru(struct folio *folio);
185 void putback_lru_page(struct page *page);
186 void folio_putback_lru(struct folio *folio);
187 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
188
189 /*
190 * in mm/rmap.c:
191 */
192 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
193
194 /*
195 * in mm/page_alloc.c
196 */
197
198 /*
199 * Structure for holding the mostly immutable allocation parameters passed
200 * between functions involved in allocations, including the alloc_pages*
201 * family of functions.
202 *
203 * nodemask, migratetype and highest_zoneidx are initialized only once in
204 * __alloc_pages() and then never change.
205 *
206 * zonelist, preferred_zone and highest_zoneidx are set first in
207 * __alloc_pages() for the fast path, and might be later changed
208 * in __alloc_pages_slowpath(). All other functions pass the whole structure
209 * by a const pointer.
210 */
211 struct alloc_context {
212 struct zonelist *zonelist;
213 nodemask_t *nodemask;
214 struct zoneref *preferred_zoneref;
215 int migratetype;
216
217 /*
218 * highest_zoneidx represents highest usable zone index of
219 * the allocation request. Due to the nature of the zone,
220 * memory on lower zone than the highest_zoneidx will be
221 * protected by lowmem_reserve[highest_zoneidx].
222 *
223 * highest_zoneidx is also used by reclaim/compaction to limit
224 * the target zone since higher zone than this index cannot be
225 * usable for this allocation request.
226 */
227 enum zone_type highest_zoneidx;
228 bool spread_dirty_pages;
229 };
230
231 /*
232 * This function returns the order of a free page in the buddy system. In
233 * general, page_zone(page)->lock must be held by the caller to prevent the
234 * page from being allocated in parallel and returning garbage as the order.
235 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
236 * page cannot be allocated or merged in parallel. Alternatively, it must
237 * handle invalid values gracefully, and use buddy_order_unsafe() below.
238 */
buddy_order(struct page * page)239 static inline unsigned int buddy_order(struct page *page)
240 {
241 /* PageBuddy() must be checked by the caller */
242 return page_private(page);
243 }
244
245 /*
246 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
247 * PageBuddy() should be checked first by the caller to minimize race window,
248 * and invalid values must be handled gracefully.
249 *
250 * READ_ONCE is used so that if the caller assigns the result into a local
251 * variable and e.g. tests it for valid range before using, the compiler cannot
252 * decide to remove the variable and inline the page_private(page) multiple
253 * times, potentially observing different values in the tests and the actual
254 * use of the result.
255 */
256 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
257
258 /*
259 * This function checks whether a page is free && is the buddy
260 * we can coalesce a page and its buddy if
261 * (a) the buddy is not in a hole (check before calling!) &&
262 * (b) the buddy is in the buddy system &&
263 * (c) a page and its buddy have the same order &&
264 * (d) a page and its buddy are in the same zone.
265 *
266 * For recording whether a page is in the buddy system, we set PageBuddy.
267 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
268 *
269 * For recording page's order, we use page_private(page).
270 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)271 static inline bool page_is_buddy(struct page *page, struct page *buddy,
272 unsigned int order)
273 {
274 if (!page_is_guard(buddy) && !PageBuddy(buddy))
275 return false;
276
277 if (buddy_order(buddy) != order)
278 return false;
279
280 /*
281 * zone check is done late to avoid uselessly calculating
282 * zone/node ids for pages that could never merge.
283 */
284 if (page_zone_id(page) != page_zone_id(buddy))
285 return false;
286
287 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
288
289 return true;
290 }
291
292 /*
293 * Locate the struct page for both the matching buddy in our
294 * pair (buddy1) and the combined O(n+1) page they form (page).
295 *
296 * 1) Any buddy B1 will have an order O twin B2 which satisfies
297 * the following equation:
298 * B2 = B1 ^ (1 << O)
299 * For example, if the starting buddy (buddy2) is #8 its order
300 * 1 buddy is #10:
301 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
302 *
303 * 2) Any buddy B will have an order O+1 parent P which
304 * satisfies the following equation:
305 * P = B & ~(1 << O)
306 *
307 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
308 */
309 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)310 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
311 {
312 return page_pfn ^ (1 << order);
313 }
314
315 /*
316 * Find the buddy of @page and validate it.
317 * @page: The input page
318 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
319 * function is used in the performance-critical __free_one_page().
320 * @order: The order of the page
321 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
322 * page_to_pfn().
323 *
324 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
325 * not the same as @page. The validation is necessary before use it.
326 *
327 * Return: the found buddy page or NULL if not found.
328 */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)329 static inline struct page *find_buddy_page_pfn(struct page *page,
330 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
331 {
332 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
333 struct page *buddy;
334
335 buddy = page + (__buddy_pfn - pfn);
336 if (buddy_pfn)
337 *buddy_pfn = __buddy_pfn;
338
339 if (page_is_buddy(page, buddy, order))
340 return buddy;
341 return NULL;
342 }
343
344 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
345 unsigned long end_pfn, struct zone *zone);
346
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)347 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
348 unsigned long end_pfn, struct zone *zone)
349 {
350 if (zone->contiguous)
351 return pfn_to_page(start_pfn);
352
353 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
354 }
355
356 extern int __isolate_free_page(struct page *page, unsigned int order);
357 extern void __putback_isolated_page(struct page *page, unsigned int order,
358 int mt);
359 extern void memblock_free_pages(struct page *page, unsigned long pfn,
360 unsigned int order);
361 extern void __free_pages_core(struct page *page, unsigned int order);
362 extern void prep_compound_page(struct page *page, unsigned int order);
363 extern void post_alloc_hook(struct page *page, unsigned int order,
364 gfp_t gfp_flags);
365 extern int user_min_free_kbytes;
366
367 extern void free_unref_page(struct page *page, unsigned int order);
368 extern void free_unref_page_list(struct list_head *list);
369
370 extern void zone_pcp_reset(struct zone *zone);
371 extern void zone_pcp_disable(struct zone *zone);
372 extern void zone_pcp_enable(struct zone *zone);
373
374 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
375 phys_addr_t min_addr,
376 int nid, bool exact_nid);
377
378 int split_free_page(struct page *free_page,
379 unsigned int order, unsigned long split_pfn_offset);
380
381 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
382
383 /*
384 * in mm/compaction.c
385 */
386 /*
387 * compact_control is used to track pages being migrated and the free pages
388 * they are being migrated to during memory compaction. The free_pfn starts
389 * at the end of a zone and migrate_pfn begins at the start. Movable pages
390 * are moved to the end of a zone during a compaction run and the run
391 * completes when free_pfn <= migrate_pfn
392 */
393 struct compact_control {
394 struct list_head freepages; /* List of free pages to migrate to */
395 struct list_head migratepages; /* List of pages being migrated */
396 unsigned int nr_freepages; /* Number of isolated free pages */
397 unsigned int nr_migratepages; /* Number of pages to migrate */
398 unsigned long free_pfn; /* isolate_freepages search base */
399 /*
400 * Acts as an in/out parameter to page isolation for migration.
401 * isolate_migratepages uses it as a search base.
402 * isolate_migratepages_block will update the value to the next pfn
403 * after the last isolated one.
404 */
405 unsigned long migrate_pfn;
406 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
407 struct zone *zone;
408 unsigned long total_migrate_scanned;
409 unsigned long total_free_scanned;
410 unsigned short fast_search_fail;/* failures to use free list searches */
411 short search_order; /* order to start a fast search at */
412 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
413 int order; /* order a direct compactor needs */
414 int migratetype; /* migratetype of direct compactor */
415 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
416 const int highest_zoneidx; /* zone index of a direct compactor */
417 enum migrate_mode mode; /* Async or sync migration mode */
418 bool ignore_skip_hint; /* Scan blocks even if marked skip */
419 bool no_set_skip_hint; /* Don't mark blocks for skipping */
420 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
421 bool direct_compaction; /* False from kcompactd or /proc/... */
422 bool proactive_compaction; /* kcompactd proactive compaction */
423 bool whole_zone; /* Whole zone should/has been scanned */
424 bool contended; /* Signal lock contention */
425 bool rescan; /* Rescanning the same pageblock */
426 bool alloc_contig; /* alloc_contig_range allocation */
427 };
428
429 /*
430 * Used in direct compaction when a page should be taken from the freelists
431 * immediately when one is created during the free path.
432 */
433 struct capture_control {
434 struct compact_control *cc;
435 struct page *page;
436 };
437
438 unsigned long
439 isolate_freepages_range(struct compact_control *cc,
440 unsigned long start_pfn, unsigned long end_pfn);
441 int
442 isolate_migratepages_range(struct compact_control *cc,
443 unsigned long low_pfn, unsigned long end_pfn);
444
445 int __alloc_contig_migrate_range(struct compact_control *cc,
446 unsigned long start, unsigned long end);
447 #endif
448 int find_suitable_fallback(struct free_area *area, unsigned int order,
449 int migratetype, bool only_stealable, bool *can_steal);
450
451 /*
452 * These three helpers classifies VMAs for virtual memory accounting.
453 */
454
455 /*
456 * Executable code area - executable, not writable, not stack
457 */
is_exec_mapping(vm_flags_t flags)458 static inline bool is_exec_mapping(vm_flags_t flags)
459 {
460 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
461 }
462
463 /*
464 * Stack area - automatically grows in one direction
465 *
466 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
467 * do_mmap() forbids all other combinations.
468 */
is_stack_mapping(vm_flags_t flags)469 static inline bool is_stack_mapping(vm_flags_t flags)
470 {
471 return (flags & VM_STACK) == VM_STACK;
472 }
473
474 /*
475 * Data area - private, writable, not stack
476 */
is_data_mapping(vm_flags_t flags)477 static inline bool is_data_mapping(vm_flags_t flags)
478 {
479 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
480 }
481
482 /* mm/util.c */
483 struct anon_vma *folio_anon_vma(struct folio *folio);
484
485 #ifdef CONFIG_MMU
486 void unmap_mapping_folio(struct folio *folio);
487 extern long populate_vma_page_range(struct vm_area_struct *vma,
488 unsigned long start, unsigned long end, int *locked);
489 extern long faultin_vma_page_range(struct vm_area_struct *vma,
490 unsigned long start, unsigned long end,
491 bool write, int *locked);
492 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
493 unsigned long len);
494 /*
495 * mlock_vma_page() and munlock_vma_page():
496 * should be called with vma's mmap_lock held for read or write,
497 * under page table lock for the pte/pmd being added or removed.
498 *
499 * mlock is usually called at the end of page_add_*_rmap(),
500 * munlock at the end of page_remove_rmap(); but new anon
501 * pages are managed by lru_cache_add_inactive_or_unevictable()
502 * calling mlock_new_page().
503 *
504 * @compound is used to include pmd mappings of THPs, but filter out
505 * pte mappings of THPs, which cannot be consistently counted: a pte
506 * mapping of the THP head cannot be distinguished by the page alone.
507 */
508 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)509 static inline void mlock_vma_folio(struct folio *folio,
510 struct vm_area_struct *vma, bool compound)
511 {
512 /*
513 * The VM_SPECIAL check here serves two purposes.
514 * 1) VM_IO check prevents migration from double-counting during mlock.
515 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
516 * is never left set on a VM_SPECIAL vma, there is an interval while
517 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
518 * still be set while VM_SPECIAL bits are added: so ignore it then.
519 */
520 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
521 (compound || !folio_test_large(folio)))
522 mlock_folio(folio);
523 }
524
mlock_vma_page(struct page * page,struct vm_area_struct * vma,bool compound)525 static inline void mlock_vma_page(struct page *page,
526 struct vm_area_struct *vma, bool compound)
527 {
528 mlock_vma_folio(page_folio(page), vma, compound);
529 }
530
531 void munlock_page(struct page *page);
munlock_vma_page(struct page * page,struct vm_area_struct * vma,bool compound)532 static inline void munlock_vma_page(struct page *page,
533 struct vm_area_struct *vma, bool compound)
534 {
535 if (unlikely(vma->vm_flags & VM_LOCKED) &&
536 (compound || !PageTransCompound(page)))
537 munlock_page(page);
538 }
539 void mlock_new_page(struct page *page);
540 bool need_mlock_page_drain(int cpu);
541 void mlock_page_drain_local(void);
542 void mlock_page_drain_remote(int cpu);
543
544 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
545
546 /*
547 * Return the start of user virtual address at the specific offset within
548 * a vma.
549 */
550 static inline unsigned long
vma_pgoff_address(pgoff_t pgoff,unsigned long nr_pages,struct vm_area_struct * vma)551 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
552 struct vm_area_struct *vma)
553 {
554 unsigned long address;
555
556 if (pgoff >= vma->vm_pgoff) {
557 address = vma->vm_start +
558 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
559 /* Check for address beyond vma (or wrapped through 0?) */
560 if (address < vma->vm_start || address >= vma->vm_end)
561 address = -EFAULT;
562 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
563 /* Test above avoids possibility of wrap to 0 on 32-bit */
564 address = vma->vm_start;
565 } else {
566 address = -EFAULT;
567 }
568 return address;
569 }
570
571 /*
572 * Return the start of user virtual address of a page within a vma.
573 * Returns -EFAULT if all of the page is outside the range of vma.
574 * If page is a compound head, the entire compound page is considered.
575 */
576 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)577 vma_address(struct page *page, struct vm_area_struct *vma)
578 {
579 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
580 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
581 }
582
583 /*
584 * Then at what user virtual address will none of the range be found in vma?
585 * Assumes that vma_address() already returned a good starting address.
586 */
vma_address_end(struct page_vma_mapped_walk * pvmw)587 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
588 {
589 struct vm_area_struct *vma = pvmw->vma;
590 pgoff_t pgoff;
591 unsigned long address;
592
593 /* Common case, plus ->pgoff is invalid for KSM */
594 if (pvmw->nr_pages == 1)
595 return pvmw->address + PAGE_SIZE;
596
597 pgoff = pvmw->pgoff + pvmw->nr_pages;
598 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
599 /* Check for address beyond vma (or wrapped through 0?) */
600 if (address < vma->vm_start || address > vma->vm_end)
601 address = vma->vm_end;
602 return address;
603 }
604
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)605 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
606 struct file *fpin)
607 {
608 int flags = vmf->flags;
609
610 if (fpin)
611 return fpin;
612
613 /*
614 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
615 * anything, so we only pin the file and drop the mmap_lock if only
616 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
617 */
618 if (fault_flag_allow_retry_first(flags) &&
619 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
620 fpin = get_file(vmf->vma->vm_file);
621 mmap_read_unlock(vmf->vma->vm_mm);
622 }
623 return fpin;
624 }
625 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)626 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_vma_page(struct page * page,struct vm_area_struct * vma,bool compound)627 static inline void mlock_vma_page(struct page *page,
628 struct vm_area_struct *vma, bool compound) { }
munlock_vma_page(struct page * page,struct vm_area_struct * vma,bool compound)629 static inline void munlock_vma_page(struct page *page,
630 struct vm_area_struct *vma, bool compound) { }
mlock_new_page(struct page * page)631 static inline void mlock_new_page(struct page *page) { }
need_mlock_page_drain(int cpu)632 static inline bool need_mlock_page_drain(int cpu) { return false; }
mlock_page_drain_local(void)633 static inline void mlock_page_drain_local(void) { }
mlock_page_drain_remote(int cpu)634 static inline void mlock_page_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)635 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
636 {
637 }
638 #endif /* !CONFIG_MMU */
639
640 /* Memory initialisation debug and verification */
641 enum mminit_level {
642 MMINIT_WARNING,
643 MMINIT_VERIFY,
644 MMINIT_TRACE
645 };
646
647 #ifdef CONFIG_DEBUG_MEMORY_INIT
648
649 extern int mminit_loglevel;
650
651 #define mminit_dprintk(level, prefix, fmt, arg...) \
652 do { \
653 if (level < mminit_loglevel) { \
654 if (level <= MMINIT_WARNING) \
655 pr_warn("mminit::" prefix " " fmt, ##arg); \
656 else \
657 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
658 } \
659 } while (0)
660
661 extern void mminit_verify_pageflags_layout(void);
662 extern void mminit_verify_zonelist(void);
663 #else
664
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)665 static inline void mminit_dprintk(enum mminit_level level,
666 const char *prefix, const char *fmt, ...)
667 {
668 }
669
mminit_verify_pageflags_layout(void)670 static inline void mminit_verify_pageflags_layout(void)
671 {
672 }
673
mminit_verify_zonelist(void)674 static inline void mminit_verify_zonelist(void)
675 {
676 }
677 #endif /* CONFIG_DEBUG_MEMORY_INIT */
678
679 #define NODE_RECLAIM_NOSCAN -2
680 #define NODE_RECLAIM_FULL -1
681 #define NODE_RECLAIM_SOME 0
682 #define NODE_RECLAIM_SUCCESS 1
683
684 #ifdef CONFIG_NUMA
685 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
686 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
687 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)688 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
689 unsigned int order)
690 {
691 return NODE_RECLAIM_NOSCAN;
692 }
find_next_best_node(int node,nodemask_t * used_node_mask)693 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
694 {
695 return NUMA_NO_NODE;
696 }
697 #endif
698
699 /*
700 * mm/memory-failure.c
701 */
702 extern int hwpoison_filter(struct page *p);
703
704 extern u32 hwpoison_filter_dev_major;
705 extern u32 hwpoison_filter_dev_minor;
706 extern u64 hwpoison_filter_flags_mask;
707 extern u64 hwpoison_filter_flags_value;
708 extern u64 hwpoison_filter_memcg;
709 extern u32 hwpoison_filter_enable;
710
711 #ifdef CONFIG_MEMORY_FAILURE
712 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages);
713 #else
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)714 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
715 {
716 }
717 #endif
718
719 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
720 unsigned long, unsigned long,
721 unsigned long, unsigned long);
722
723 extern void set_pageblock_order(void);
724 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
725 struct list_head *page_list);
726 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
727 #define ALLOC_WMARK_MIN WMARK_MIN
728 #define ALLOC_WMARK_LOW WMARK_LOW
729 #define ALLOC_WMARK_HIGH WMARK_HIGH
730 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
731
732 /* Mask to get the watermark bits */
733 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
734
735 /*
736 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
737 * cannot assume a reduced access to memory reserves is sufficient for
738 * !MMU
739 */
740 #ifdef CONFIG_MMU
741 #define ALLOC_OOM 0x08
742 #else
743 #define ALLOC_OOM ALLOC_NO_WATERMARKS
744 #endif
745
746 #define ALLOC_HARDER 0x10 /* try to alloc harder */
747 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
748 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
749 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
750 #ifdef CONFIG_ZONE_DMA32
751 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
752 #else
753 #define ALLOC_NOFRAGMENT 0x0
754 #endif
755 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
756
757 enum ttu_flags;
758 struct tlbflush_unmap_batch;
759
760
761 /*
762 * only for MM internal work items which do not depend on
763 * any allocations or locks which might depend on allocations
764 */
765 extern struct workqueue_struct *mm_percpu_wq;
766
767 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
768 void try_to_unmap_flush(void);
769 void try_to_unmap_flush_dirty(void);
770 void flush_tlb_batched_pending(struct mm_struct *mm);
771 #else
try_to_unmap_flush(void)772 static inline void try_to_unmap_flush(void)
773 {
774 }
try_to_unmap_flush_dirty(void)775 static inline void try_to_unmap_flush_dirty(void)
776 {
777 }
flush_tlb_batched_pending(struct mm_struct * mm)778 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
779 {
780 }
781 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
782
783 extern const struct trace_print_flags pageflag_names[];
784 extern const struct trace_print_flags vmaflag_names[];
785 extern const struct trace_print_flags gfpflag_names[];
786
is_migrate_highatomic(enum migratetype migratetype)787 static inline bool is_migrate_highatomic(enum migratetype migratetype)
788 {
789 return migratetype == MIGRATE_HIGHATOMIC;
790 }
791
is_migrate_highatomic_page(struct page * page)792 static inline bool is_migrate_highatomic_page(struct page *page)
793 {
794 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
795 }
796
797 void setup_zone_pageset(struct zone *zone);
798
799 struct migration_target_control {
800 int nid; /* preferred node id */
801 nodemask_t *nmask;
802 gfp_t gfp_mask;
803 };
804
805 /*
806 * mm/vmalloc.c
807 */
808 #ifdef CONFIG_MMU
809 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
810 pgprot_t prot, struct page **pages, unsigned int page_shift);
811 #else
812 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)813 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
814 pgprot_t prot, struct page **pages, unsigned int page_shift)
815 {
816 return -EINVAL;
817 }
818 #endif
819
820 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
821 pgprot_t prot, struct page **pages,
822 unsigned int page_shift);
823
824 void vunmap_range_noflush(unsigned long start, unsigned long end);
825
826 void __vunmap_range_noflush(unsigned long start, unsigned long end);
827
828 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
829 unsigned long addr, int page_nid, int *flags);
830
831 void free_zone_device_page(struct page *page);
832 int migrate_device_coherent_page(struct page *page);
833
834 /*
835 * mm/gup.c
836 */
837 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
838
839 extern bool mirrored_kernelcore;
840
vma_soft_dirty_enabled(struct vm_area_struct * vma)841 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
842 {
843 /*
844 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
845 * enablements, because when without soft-dirty being compiled in,
846 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
847 * will be constantly true.
848 */
849 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
850 return false;
851
852 /*
853 * Soft-dirty is kind of special: its tracking is enabled when the
854 * vma flags not set.
855 */
856 return !(vma->vm_flags & VM_SOFTDIRTY);
857 }
858
859 #endif /* __MM_INTERNAL_H */
860