1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50 
51 #include "aacraid.h"
52 
53 /**
54  *	fib_map_alloc		-	allocate the fib objects
55  *	@dev: Adapter to allocate for
56  *
57  *	Allocate and map the shared PCI space for the FIB blocks used to
58  *	talk to the Adaptec firmware.
59  */
60 
fib_map_alloc(struct aac_dev * dev)61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 	dprintk((KERN_INFO
64 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 		&dev->hw_fib_pa);
71 	if (dev->hw_fib_va == NULL)
72 		return -ENOMEM;
73 	return 0;
74 }
75 
76 /**
77  *	aac_fib_map_free		-	free the fib objects
78  *	@dev: Adapter to free
79  *
80  *	Free the PCI mappings and the memory allocated for FIB blocks
81  *	on this adapter.
82  */
83 
aac_fib_map_free(struct aac_dev * dev)84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 	pci_free_consistent(dev->pdev,
87 	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 	  dev->hw_fib_va, dev->hw_fib_pa);
89 	dev->hw_fib_va = NULL;
90 	dev->hw_fib_pa = 0;
91 }
92 
93 /**
94  *	aac_fib_setup	-	setup the fibs
95  *	@dev: Adapter to set up
96  *
97  *	Allocate the PCI space for the fibs, map it and then initialise the
98  *	fib area, the unmapped fib data and also the free list
99  */
100 
aac_fib_setup(struct aac_dev * dev)101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 	struct fib *fibptr;
104 	struct hw_fib *hw_fib;
105 	dma_addr_t hw_fib_pa;
106 	int i;
107 
108 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 	}
113 	if (i<0)
114 		return -ENOMEM;
115 
116 	/* 32 byte alignment for PMC */
117 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 		(hw_fib_pa - dev->hw_fib_pa));
120 	dev->hw_fib_pa = hw_fib_pa;
121 	memset(dev->hw_fib_va, 0,
122 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124 
125 	/* add Xport header */
126 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 		sizeof(struct aac_fib_xporthdr));
128 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129 
130 	hw_fib = dev->hw_fib_va;
131 	hw_fib_pa = dev->hw_fib_pa;
132 	/*
133 	 *	Initialise the fibs
134 	 */
135 	for (i = 0, fibptr = &dev->fibs[i];
136 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 		i++, fibptr++)
138 	{
139 		fibptr->dev = dev;
140 		fibptr->hw_fib_va = hw_fib;
141 		fibptr->data = (void *) fibptr->hw_fib_va->data;
142 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
143 		sema_init(&fibptr->event_wait, 0);
144 		spin_lock_init(&fibptr->event_lock);
145 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
146 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
147 		fibptr->hw_fib_pa = hw_fib_pa;
148 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
149 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
150 		hw_fib_pa = hw_fib_pa +
151 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
152 	}
153 	/*
154 	 *	Add the fib chain to the free list
155 	 */
156 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
157 	/*
158 	 *	Enable this to debug out of queue space
159 	 */
160 	dev->free_fib = &dev->fibs[0];
161 	return 0;
162 }
163 
164 /**
165  *	aac_fib_alloc	-	allocate a fib
166  *	@dev: Adapter to allocate the fib for
167  *
168  *	Allocate a fib from the adapter fib pool. If the pool is empty we
169  *	return NULL.
170  */
171 
aac_fib_alloc(struct aac_dev * dev)172 struct fib *aac_fib_alloc(struct aac_dev *dev)
173 {
174 	struct fib * fibptr;
175 	unsigned long flags;
176 	spin_lock_irqsave(&dev->fib_lock, flags);
177 	fibptr = dev->free_fib;
178 	if(!fibptr){
179 		spin_unlock_irqrestore(&dev->fib_lock, flags);
180 		return fibptr;
181 	}
182 	dev->free_fib = fibptr->next;
183 	spin_unlock_irqrestore(&dev->fib_lock, flags);
184 	/*
185 	 *	Set the proper node type code and node byte size
186 	 */
187 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
188 	fibptr->size = sizeof(struct fib);
189 	/*
190 	 *	Null out fields that depend on being zero at the start of
191 	 *	each I/O
192 	 */
193 	fibptr->hw_fib_va->header.XferState = 0;
194 	fibptr->flags = 0;
195 	fibptr->callback = NULL;
196 	fibptr->callback_data = NULL;
197 
198 	return fibptr;
199 }
200 
201 /**
202  *	aac_fib_free	-	free a fib
203  *	@fibptr: fib to free up
204  *
205  *	Frees up a fib and places it on the appropriate queue
206  */
207 
aac_fib_free(struct fib * fibptr)208 void aac_fib_free(struct fib *fibptr)
209 {
210 	unsigned long flags, flagsv;
211 
212 	spin_lock_irqsave(&fibptr->event_lock, flagsv);
213 	if (fibptr->done == 2) {
214 		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
215 		return;
216 	}
217 	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
218 
219 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
220 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
221 		aac_config.fib_timeouts++;
222 	if (fibptr->hw_fib_va->header.XferState != 0) {
223 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
224 			 (void*)fibptr,
225 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
226 	}
227 	fibptr->next = fibptr->dev->free_fib;
228 	fibptr->dev->free_fib = fibptr;
229 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
230 }
231 
232 /**
233  *	aac_fib_init	-	initialise a fib
234  *	@fibptr: The fib to initialize
235  *
236  *	Set up the generic fib fields ready for use
237  */
238 
aac_fib_init(struct fib * fibptr)239 void aac_fib_init(struct fib *fibptr)
240 {
241 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
242 
243 	hw_fib->header.StructType = FIB_MAGIC;
244 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
245 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
246 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
247 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
248 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
249 }
250 
251 /**
252  *	fib_deallocate		-	deallocate a fib
253  *	@fibptr: fib to deallocate
254  *
255  *	Will deallocate and return to the free pool the FIB pointed to by the
256  *	caller.
257  */
258 
fib_dealloc(struct fib * fibptr)259 static void fib_dealloc(struct fib * fibptr)
260 {
261 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
262 	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
263 	hw_fib->header.XferState = 0;
264 }
265 
266 /*
267  *	Commuication primitives define and support the queuing method we use to
268  *	support host to adapter commuication. All queue accesses happen through
269  *	these routines and are the only routines which have a knowledge of the
270  *	 how these queues are implemented.
271  */
272 
273 /**
274  *	aac_get_entry		-	get a queue entry
275  *	@dev: Adapter
276  *	@qid: Queue Number
277  *	@entry: Entry return
278  *	@index: Index return
279  *	@nonotify: notification control
280  *
281  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
282  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283  *	returned.
284  */
285 
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287 {
288 	struct aac_queue * q;
289 	unsigned long idx;
290 
291 	/*
292 	 *	All of the queues wrap when they reach the end, so we check
293 	 *	to see if they have reached the end and if they have we just
294 	 *	set the index back to zero. This is a wrap. You could or off
295 	 *	the high bits in all updates but this is a bit faster I think.
296 	 */
297 
298 	q = &dev->queues->queue[qid];
299 
300 	idx = *index = le32_to_cpu(*(q->headers.producer));
301 	/* Interrupt Moderation, only interrupt for first two entries */
302 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
303 		if (--idx == 0) {
304 			if (qid == AdapNormCmdQueue)
305 				idx = ADAP_NORM_CMD_ENTRIES;
306 			else
307 				idx = ADAP_NORM_RESP_ENTRIES;
308 		}
309 		if (idx != le32_to_cpu(*(q->headers.consumer)))
310 			*nonotify = 1;
311 	}
312 
313 	if (qid == AdapNormCmdQueue) {
314 		if (*index >= ADAP_NORM_CMD_ENTRIES)
315 			*index = 0; /* Wrap to front of the Producer Queue. */
316 	} else {
317 		if (*index >= ADAP_NORM_RESP_ENTRIES)
318 			*index = 0; /* Wrap to front of the Producer Queue. */
319 	}
320 
321 	/* Queue is full */
322 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324 				qid, q->numpending);
325 		return 0;
326 	} else {
327 		*entry = q->base + *index;
328 		return 1;
329 	}
330 }
331 
332 /**
333  *	aac_queue_get		-	get the next free QE
334  *	@dev: Adapter
335  *	@index: Returned index
336  *	@priority: Priority of fib
337  *	@fib: Fib to associate with the queue entry
338  *	@wait: Wait if queue full
339  *	@fibptr: Driver fib object to go with fib
340  *	@nonotify: Don't notify the adapter
341  *
342  *	Gets the next free QE off the requested priorty adapter command
343  *	queue and associates the Fib with the QE. The QE represented by
344  *	index is ready to insert on the queue when this routine returns
345  *	success.
346  */
347 
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349 {
350 	struct aac_entry * entry = NULL;
351 	int map = 0;
352 
353 	if (qid == AdapNormCmdQueue) {
354 		/*  if no entries wait for some if caller wants to */
355 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356 			printk(KERN_ERR "GetEntries failed\n");
357 		}
358 		/*
359 		 *	Setup queue entry with a command, status and fib mapped
360 		 */
361 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362 		map = 1;
363 	} else {
364 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365 			/* if no entries wait for some if caller wants to */
366 		}
367 		/*
368 		 *	Setup queue entry with command, status and fib mapped
369 		 */
370 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371 		entry->addr = hw_fib->header.SenderFibAddress;
372 			/* Restore adapters pointer to the FIB */
373 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
374 		map = 0;
375 	}
376 	/*
377 	 *	If MapFib is true than we need to map the Fib and put pointers
378 	 *	in the queue entry.
379 	 */
380 	if (map)
381 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382 	return 0;
383 }
384 
385 /*
386  *	Define the highest level of host to adapter communication routines.
387  *	These routines will support host to adapter FS commuication. These
388  *	routines have no knowledge of the commuication method used. This level
389  *	sends and receives FIBs. This level has no knowledge of how these FIBs
390  *	get passed back and forth.
391  */
392 
393 /**
394  *	aac_fib_send	-	send a fib to the adapter
395  *	@command: Command to send
396  *	@fibptr: The fib
397  *	@size: Size of fib data area
398  *	@priority: Priority of Fib
399  *	@wait: Async/sync select
400  *	@reply: True if a reply is wanted
401  *	@callback: Called with reply
402  *	@callback_data: Passed to callback
403  *
404  *	Sends the requested FIB to the adapter and optionally will wait for a
405  *	response FIB. If the caller does not wish to wait for a response than
406  *	an event to wait on must be supplied. This event will be set when a
407  *	response FIB is received from the adapter.
408  */
409 
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411 		int priority, int wait, int reply, fib_callback callback,
412 		void *callback_data)
413 {
414 	struct aac_dev * dev = fibptr->dev;
415 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
416 	unsigned long flags = 0;
417 	unsigned long qflags;
418 	unsigned long mflags = 0;
419 
420 
421 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
422 		return -EBUSY;
423 	/*
424 	 *	There are 5 cases with the wait and response requested flags.
425 	 *	The only invalid cases are if the caller requests to wait and
426 	 *	does not request a response and if the caller does not want a
427 	 *	response and the Fib is not allocated from pool. If a response
428 	 *	is not requesed the Fib will just be deallocaed by the DPC
429 	 *	routine when the response comes back from the adapter. No
430 	 *	further processing will be done besides deleting the Fib. We
431 	 *	will have a debug mode where the adapter can notify the host
432 	 *	it had a problem and the host can log that fact.
433 	 */
434 	fibptr->flags = 0;
435 	if (wait && !reply) {
436 		return -EINVAL;
437 	} else if (!wait && reply) {
438 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
439 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
440 	} else if (!wait && !reply) {
441 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
442 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
443 	} else if (wait && reply) {
444 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
445 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
446 	}
447 	/*
448 	 *	Map the fib into 32bits by using the fib number
449 	 */
450 
451 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
452 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
453 	/*
454 	 *	Set FIB state to indicate where it came from and if we want a
455 	 *	response from the adapter. Also load the command from the
456 	 *	caller.
457 	 *
458 	 *	Map the hw fib pointer as a 32bit value
459 	 */
460 	hw_fib->header.Command = cpu_to_le16(command);
461 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
462 	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
463 	/*
464 	 *	Set the size of the Fib we want to send to the adapter
465 	 */
466 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
467 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
468 		return -EMSGSIZE;
469 	}
470 	/*
471 	 *	Get a queue entry connect the FIB to it and send an notify
472 	 *	the adapter a command is ready.
473 	 */
474 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
475 
476 	/*
477 	 *	Fill in the Callback and CallbackContext if we are not
478 	 *	going to wait.
479 	 */
480 	if (!wait) {
481 		fibptr->callback = callback;
482 		fibptr->callback_data = callback_data;
483 		fibptr->flags = FIB_CONTEXT_FLAG;
484 	}
485 
486 	fibptr->done = 0;
487 
488 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
489 
490 	dprintk((KERN_DEBUG "Fib contents:.\n"));
491 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
492 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
493 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
494 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
495 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
496 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
497 
498 	if (!dev->queues)
499 		return -EBUSY;
500 
501 	if (wait) {
502 
503 		spin_lock_irqsave(&dev->manage_lock, mflags);
504 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
505 			printk(KERN_INFO "No management Fibs Available:%d\n",
506 						dev->management_fib_count);
507 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
508 			return -EBUSY;
509 		}
510 		dev->management_fib_count++;
511 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
512 		spin_lock_irqsave(&fibptr->event_lock, flags);
513 	}
514 
515 	if (aac_adapter_deliver(fibptr) != 0) {
516 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
517 		if (wait) {
518 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
519 			spin_lock_irqsave(&dev->manage_lock, mflags);
520 			dev->management_fib_count--;
521 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
522 		}
523 		return -EBUSY;
524 	}
525 
526 
527 	/*
528 	 *	If the caller wanted us to wait for response wait now.
529 	 */
530 
531 	if (wait) {
532 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
533 		/* Only set for first known interruptable command */
534 		if (wait < 0) {
535 			/*
536 			 * *VERY* Dangerous to time out a command, the
537 			 * assumption is made that we have no hope of
538 			 * functioning because an interrupt routing or other
539 			 * hardware failure has occurred.
540 			 */
541 			unsigned long count = 36000000L; /* 3 minutes */
542 			while (down_trylock(&fibptr->event_wait)) {
543 				int blink;
544 				if (--count == 0) {
545 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
546 					spin_lock_irqsave(q->lock, qflags);
547 					q->numpending--;
548 					spin_unlock_irqrestore(q->lock, qflags);
549 					if (wait == -1) {
550 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
551 						  "Usually a result of a PCI interrupt routing problem;\n"
552 						  "update mother board BIOS or consider utilizing one of\n"
553 						  "the SAFE mode kernel options (acpi, apic etc)\n");
554 					}
555 					return -ETIMEDOUT;
556 				}
557 				if ((blink = aac_adapter_check_health(dev)) > 0) {
558 					if (wait == -1) {
559 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
560 						  "Usually a result of a serious unrecoverable hardware problem\n",
561 						  blink);
562 					}
563 					return -EFAULT;
564 				}
565 				udelay(5);
566 			}
567 		} else if (down_interruptible(&fibptr->event_wait)) {
568 			/* Do nothing ... satisfy
569 			 * down_interruptible must_check */
570 		}
571 
572 		spin_lock_irqsave(&fibptr->event_lock, flags);
573 		if (fibptr->done == 0) {
574 			fibptr->done = 2; /* Tell interrupt we aborted */
575 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
576 			return -ERESTARTSYS;
577 		}
578 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
579 		BUG_ON(fibptr->done == 0);
580 
581 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
582 			return -ETIMEDOUT;
583 		return 0;
584 	}
585 	/*
586 	 *	If the user does not want a response than return success otherwise
587 	 *	return pending
588 	 */
589 	if (reply)
590 		return -EINPROGRESS;
591 	else
592 		return 0;
593 }
594 
595 /**
596  *	aac_consumer_get	-	get the top of the queue
597  *	@dev: Adapter
598  *	@q: Queue
599  *	@entry: Return entry
600  *
601  *	Will return a pointer to the entry on the top of the queue requested that
602  *	we are a consumer of, and return the address of the queue entry. It does
603  *	not change the state of the queue.
604  */
605 
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)606 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
607 {
608 	u32 index;
609 	int status;
610 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
611 		status = 0;
612 	} else {
613 		/*
614 		 *	The consumer index must be wrapped if we have reached
615 		 *	the end of the queue, else we just use the entry
616 		 *	pointed to by the header index
617 		 */
618 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
619 			index = 0;
620 		else
621 			index = le32_to_cpu(*q->headers.consumer);
622 		*entry = q->base + index;
623 		status = 1;
624 	}
625 	return(status);
626 }
627 
628 /**
629  *	aac_consumer_free	-	free consumer entry
630  *	@dev: Adapter
631  *	@q: Queue
632  *	@qid: Queue ident
633  *
634  *	Frees up the current top of the queue we are a consumer of. If the
635  *	queue was full notify the producer that the queue is no longer full.
636  */
637 
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)638 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
639 {
640 	int wasfull = 0;
641 	u32 notify;
642 
643 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
644 		wasfull = 1;
645 
646 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
647 		*q->headers.consumer = cpu_to_le32(1);
648 	else
649 		le32_add_cpu(q->headers.consumer, 1);
650 
651 	if (wasfull) {
652 		switch (qid) {
653 
654 		case HostNormCmdQueue:
655 			notify = HostNormCmdNotFull;
656 			break;
657 		case HostNormRespQueue:
658 			notify = HostNormRespNotFull;
659 			break;
660 		default:
661 			BUG();
662 			return;
663 		}
664 		aac_adapter_notify(dev, notify);
665 	}
666 }
667 
668 /**
669  *	aac_fib_adapter_complete	-	complete adapter issued fib
670  *	@fibptr: fib to complete
671  *	@size: size of fib
672  *
673  *	Will do all necessary work to complete a FIB that was sent from
674  *	the adapter.
675  */
676 
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)677 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
678 {
679 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
680 	struct aac_dev * dev = fibptr->dev;
681 	struct aac_queue * q;
682 	unsigned long nointr = 0;
683 	unsigned long qflags;
684 
685 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
686 		kfree(hw_fib);
687 		return 0;
688 	}
689 
690 	if (hw_fib->header.XferState == 0) {
691 		if (dev->comm_interface == AAC_COMM_MESSAGE)
692 			kfree(hw_fib);
693 		return 0;
694 	}
695 	/*
696 	 *	If we plan to do anything check the structure type first.
697 	 */
698 	if (hw_fib->header.StructType != FIB_MAGIC) {
699 		if (dev->comm_interface == AAC_COMM_MESSAGE)
700 			kfree(hw_fib);
701 		return -EINVAL;
702 	}
703 	/*
704 	 *	This block handles the case where the adapter had sent us a
705 	 *	command and we have finished processing the command. We
706 	 *	call completeFib when we are done processing the command
707 	 *	and want to send a response back to the adapter. This will
708 	 *	send the completed cdb to the adapter.
709 	 */
710 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
711 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
712 			kfree (hw_fib);
713 		} else {
714 			u32 index;
715 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
716 			if (size) {
717 				size += sizeof(struct aac_fibhdr);
718 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
719 					return -EMSGSIZE;
720 				hw_fib->header.Size = cpu_to_le16(size);
721 			}
722 			q = &dev->queues->queue[AdapNormRespQueue];
723 			spin_lock_irqsave(q->lock, qflags);
724 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
725 			*(q->headers.producer) = cpu_to_le32(index + 1);
726 			spin_unlock_irqrestore(q->lock, qflags);
727 			if (!(nointr & (int)aac_config.irq_mod))
728 				aac_adapter_notify(dev, AdapNormRespQueue);
729 		}
730 	} else {
731 		printk(KERN_WARNING "aac_fib_adapter_complete: "
732 			"Unknown xferstate detected.\n");
733 		BUG();
734 	}
735 	return 0;
736 }
737 
738 /**
739  *	aac_fib_complete	-	fib completion handler
740  *	@fib: FIB to complete
741  *
742  *	Will do all necessary work to complete a FIB.
743  */
744 
aac_fib_complete(struct fib * fibptr)745 int aac_fib_complete(struct fib *fibptr)
746 {
747 	unsigned long flags;
748 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
749 
750 	/*
751 	 *	Check for a fib which has already been completed
752 	 */
753 
754 	if (hw_fib->header.XferState == 0)
755 		return 0;
756 	/*
757 	 *	If we plan to do anything check the structure type first.
758 	 */
759 
760 	if (hw_fib->header.StructType != FIB_MAGIC)
761 		return -EINVAL;
762 	/*
763 	 *	This block completes a cdb which orginated on the host and we
764 	 *	just need to deallocate the cdb or reinit it. At this point the
765 	 *	command is complete that we had sent to the adapter and this
766 	 *	cdb could be reused.
767 	 */
768 	spin_lock_irqsave(&fibptr->event_lock, flags);
769 	if (fibptr->done == 2) {
770 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
771 		return 0;
772 	}
773 	spin_unlock_irqrestore(&fibptr->event_lock, flags);
774 
775 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
776 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
777 	{
778 		fib_dealloc(fibptr);
779 	}
780 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
781 	{
782 		/*
783 		 *	This handles the case when the host has aborted the I/O
784 		 *	to the adapter because the adapter is not responding
785 		 */
786 		fib_dealloc(fibptr);
787 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
788 		fib_dealloc(fibptr);
789 	} else {
790 		BUG();
791 	}
792 	return 0;
793 }
794 
795 /**
796  *	aac_printf	-	handle printf from firmware
797  *	@dev: Adapter
798  *	@val: Message info
799  *
800  *	Print a message passed to us by the controller firmware on the
801  *	Adaptec board
802  */
803 
aac_printf(struct aac_dev * dev,u32 val)804 void aac_printf(struct aac_dev *dev, u32 val)
805 {
806 	char *cp = dev->printfbuf;
807 	if (dev->printf_enabled)
808 	{
809 		int length = val & 0xffff;
810 		int level = (val >> 16) & 0xffff;
811 
812 		/*
813 		 *	The size of the printfbuf is set in port.c
814 		 *	There is no variable or define for it
815 		 */
816 		if (length > 255)
817 			length = 255;
818 		if (cp[length] != 0)
819 			cp[length] = 0;
820 		if (level == LOG_AAC_HIGH_ERROR)
821 			printk(KERN_WARNING "%s:%s", dev->name, cp);
822 		else
823 			printk(KERN_INFO "%s:%s", dev->name, cp);
824 	}
825 	memset(cp, 0, 256);
826 }
827 
828 
829 /**
830  *	aac_handle_aif		-	Handle a message from the firmware
831  *	@dev: Which adapter this fib is from
832  *	@fibptr: Pointer to fibptr from adapter
833  *
834  *	This routine handles a driver notify fib from the adapter and
835  *	dispatches it to the appropriate routine for handling.
836  */
837 
838 #define AIF_SNIFF_TIMEOUT	(30*HZ)
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)839 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
840 {
841 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
842 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
843 	u32 channel, id, lun, container;
844 	struct scsi_device *device;
845 	enum {
846 		NOTHING,
847 		DELETE,
848 		ADD,
849 		CHANGE
850 	} device_config_needed = NOTHING;
851 
852 	/* Sniff for container changes */
853 
854 	if (!dev || !dev->fsa_dev)
855 		return;
856 	container = channel = id = lun = (u32)-1;
857 
858 	/*
859 	 *	We have set this up to try and minimize the number of
860 	 * re-configures that take place. As a result of this when
861 	 * certain AIF's come in we will set a flag waiting for another
862 	 * type of AIF before setting the re-config flag.
863 	 */
864 	switch (le32_to_cpu(aifcmd->command)) {
865 	case AifCmdDriverNotify:
866 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
867 		/*
868 		 *	Morph or Expand complete
869 		 */
870 		case AifDenMorphComplete:
871 		case AifDenVolumeExtendComplete:
872 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
873 			if (container >= dev->maximum_num_containers)
874 				break;
875 
876 			/*
877 			 *	Find the scsi_device associated with the SCSI
878 			 * address. Make sure we have the right array, and if
879 			 * so set the flag to initiate a new re-config once we
880 			 * see an AifEnConfigChange AIF come through.
881 			 */
882 
883 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
884 				device = scsi_device_lookup(dev->scsi_host_ptr,
885 					CONTAINER_TO_CHANNEL(container),
886 					CONTAINER_TO_ID(container),
887 					CONTAINER_TO_LUN(container));
888 				if (device) {
889 					dev->fsa_dev[container].config_needed = CHANGE;
890 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
891 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
892 					scsi_device_put(device);
893 				}
894 			}
895 		}
896 
897 		/*
898 		 *	If we are waiting on something and this happens to be
899 		 * that thing then set the re-configure flag.
900 		 */
901 		if (container != (u32)-1) {
902 			if (container >= dev->maximum_num_containers)
903 				break;
904 			if ((dev->fsa_dev[container].config_waiting_on ==
905 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
906 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
907 				dev->fsa_dev[container].config_waiting_on = 0;
908 		} else for (container = 0;
909 		    container < dev->maximum_num_containers; ++container) {
910 			if ((dev->fsa_dev[container].config_waiting_on ==
911 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
912 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
913 				dev->fsa_dev[container].config_waiting_on = 0;
914 		}
915 		break;
916 
917 	case AifCmdEventNotify:
918 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
919 		case AifEnBatteryEvent:
920 			dev->cache_protected =
921 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
922 			break;
923 		/*
924 		 *	Add an Array.
925 		 */
926 		case AifEnAddContainer:
927 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
928 			if (container >= dev->maximum_num_containers)
929 				break;
930 			dev->fsa_dev[container].config_needed = ADD;
931 			dev->fsa_dev[container].config_waiting_on =
932 				AifEnConfigChange;
933 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
934 			break;
935 
936 		/*
937 		 *	Delete an Array.
938 		 */
939 		case AifEnDeleteContainer:
940 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
941 			if (container >= dev->maximum_num_containers)
942 				break;
943 			dev->fsa_dev[container].config_needed = DELETE;
944 			dev->fsa_dev[container].config_waiting_on =
945 				AifEnConfigChange;
946 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
947 			break;
948 
949 		/*
950 		 *	Container change detected. If we currently are not
951 		 * waiting on something else, setup to wait on a Config Change.
952 		 */
953 		case AifEnContainerChange:
954 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
955 			if (container >= dev->maximum_num_containers)
956 				break;
957 			if (dev->fsa_dev[container].config_waiting_on &&
958 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
959 				break;
960 			dev->fsa_dev[container].config_needed = CHANGE;
961 			dev->fsa_dev[container].config_waiting_on =
962 				AifEnConfigChange;
963 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
964 			break;
965 
966 		case AifEnConfigChange:
967 			break;
968 
969 		case AifEnAddJBOD:
970 		case AifEnDeleteJBOD:
971 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
972 			if ((container >> 28)) {
973 				container = (u32)-1;
974 				break;
975 			}
976 			channel = (container >> 24) & 0xF;
977 			if (channel >= dev->maximum_num_channels) {
978 				container = (u32)-1;
979 				break;
980 			}
981 			id = container & 0xFFFF;
982 			if (id >= dev->maximum_num_physicals) {
983 				container = (u32)-1;
984 				break;
985 			}
986 			lun = (container >> 16) & 0xFF;
987 			container = (u32)-1;
988 			channel = aac_phys_to_logical(channel);
989 			device_config_needed =
990 			  (((__le32 *)aifcmd->data)[0] ==
991 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
992 			if (device_config_needed == ADD) {
993 				device = scsi_device_lookup(dev->scsi_host_ptr,
994 					channel,
995 					id,
996 					lun);
997 				if (device) {
998 					scsi_remove_device(device);
999 					scsi_device_put(device);
1000 				}
1001 			}
1002 			break;
1003 
1004 		case AifEnEnclosureManagement:
1005 			/*
1006 			 * If in JBOD mode, automatic exposure of new
1007 			 * physical target to be suppressed until configured.
1008 			 */
1009 			if (dev->jbod)
1010 				break;
1011 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1012 			case EM_DRIVE_INSERTION:
1013 			case EM_DRIVE_REMOVAL:
1014 				container = le32_to_cpu(
1015 					((__le32 *)aifcmd->data)[2]);
1016 				if ((container >> 28)) {
1017 					container = (u32)-1;
1018 					break;
1019 				}
1020 				channel = (container >> 24) & 0xF;
1021 				if (channel >= dev->maximum_num_channels) {
1022 					container = (u32)-1;
1023 					break;
1024 				}
1025 				id = container & 0xFFFF;
1026 				lun = (container >> 16) & 0xFF;
1027 				container = (u32)-1;
1028 				if (id >= dev->maximum_num_physicals) {
1029 					/* legacy dev_t ? */
1030 					if ((0x2000 <= id) || lun || channel ||
1031 					  ((channel = (id >> 7) & 0x3F) >=
1032 					  dev->maximum_num_channels))
1033 						break;
1034 					lun = (id >> 4) & 7;
1035 					id &= 0xF;
1036 				}
1037 				channel = aac_phys_to_logical(channel);
1038 				device_config_needed =
1039 				  (((__le32 *)aifcmd->data)[3]
1040 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1041 				  ADD : DELETE;
1042 				break;
1043 			}
1044 			break;
1045 		}
1046 
1047 		/*
1048 		 *	If we are waiting on something and this happens to be
1049 		 * that thing then set the re-configure flag.
1050 		 */
1051 		if (container != (u32)-1) {
1052 			if (container >= dev->maximum_num_containers)
1053 				break;
1054 			if ((dev->fsa_dev[container].config_waiting_on ==
1055 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1056 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1057 				dev->fsa_dev[container].config_waiting_on = 0;
1058 		} else for (container = 0;
1059 		    container < dev->maximum_num_containers; ++container) {
1060 			if ((dev->fsa_dev[container].config_waiting_on ==
1061 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1062 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1063 				dev->fsa_dev[container].config_waiting_on = 0;
1064 		}
1065 		break;
1066 
1067 	case AifCmdJobProgress:
1068 		/*
1069 		 *	These are job progress AIF's. When a Clear is being
1070 		 * done on a container it is initially created then hidden from
1071 		 * the OS. When the clear completes we don't get a config
1072 		 * change so we monitor the job status complete on a clear then
1073 		 * wait for a container change.
1074 		 */
1075 
1076 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1077 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1078 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1079 			for (container = 0;
1080 			    container < dev->maximum_num_containers;
1081 			    ++container) {
1082 				/*
1083 				 * Stomp on all config sequencing for all
1084 				 * containers?
1085 				 */
1086 				dev->fsa_dev[container].config_waiting_on =
1087 					AifEnContainerChange;
1088 				dev->fsa_dev[container].config_needed = ADD;
1089 				dev->fsa_dev[container].config_waiting_stamp =
1090 					jiffies;
1091 			}
1092 		}
1093 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1094 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1095 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1096 			for (container = 0;
1097 			    container < dev->maximum_num_containers;
1098 			    ++container) {
1099 				/*
1100 				 * Stomp on all config sequencing for all
1101 				 * containers?
1102 				 */
1103 				dev->fsa_dev[container].config_waiting_on =
1104 					AifEnContainerChange;
1105 				dev->fsa_dev[container].config_needed = DELETE;
1106 				dev->fsa_dev[container].config_waiting_stamp =
1107 					jiffies;
1108 			}
1109 		}
1110 		break;
1111 	}
1112 
1113 	container = 0;
1114 retry_next:
1115 	if (device_config_needed == NOTHING)
1116 	for (; container < dev->maximum_num_containers; ++container) {
1117 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1118 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1119 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1120 			device_config_needed =
1121 				dev->fsa_dev[container].config_needed;
1122 			dev->fsa_dev[container].config_needed = NOTHING;
1123 			channel = CONTAINER_TO_CHANNEL(container);
1124 			id = CONTAINER_TO_ID(container);
1125 			lun = CONTAINER_TO_LUN(container);
1126 			break;
1127 		}
1128 	}
1129 	if (device_config_needed == NOTHING)
1130 		return;
1131 
1132 	/*
1133 	 *	If we decided that a re-configuration needs to be done,
1134 	 * schedule it here on the way out the door, please close the door
1135 	 * behind you.
1136 	 */
1137 
1138 	/*
1139 	 *	Find the scsi_device associated with the SCSI address,
1140 	 * and mark it as changed, invalidating the cache. This deals
1141 	 * with changes to existing device IDs.
1142 	 */
1143 
1144 	if (!dev || !dev->scsi_host_ptr)
1145 		return;
1146 	/*
1147 	 * force reload of disk info via aac_probe_container
1148 	 */
1149 	if ((channel == CONTAINER_CHANNEL) &&
1150 	  (device_config_needed != NOTHING)) {
1151 		if (dev->fsa_dev[container].valid == 1)
1152 			dev->fsa_dev[container].valid = 2;
1153 		aac_probe_container(dev, container);
1154 	}
1155 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1156 	if (device) {
1157 		switch (device_config_needed) {
1158 		case DELETE:
1159 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1160 			scsi_remove_device(device);
1161 #else
1162 			if (scsi_device_online(device)) {
1163 				scsi_device_set_state(device, SDEV_OFFLINE);
1164 				sdev_printk(KERN_INFO, device,
1165 					"Device offlined - %s\n",
1166 					(channel == CONTAINER_CHANNEL) ?
1167 						"array deleted" :
1168 						"enclosure services event");
1169 			}
1170 #endif
1171 			break;
1172 		case ADD:
1173 			if (!scsi_device_online(device)) {
1174 				sdev_printk(KERN_INFO, device,
1175 					"Device online - %s\n",
1176 					(channel == CONTAINER_CHANNEL) ?
1177 						"array created" :
1178 						"enclosure services event");
1179 				scsi_device_set_state(device, SDEV_RUNNING);
1180 			}
1181 			/* FALLTHRU */
1182 		case CHANGE:
1183 			if ((channel == CONTAINER_CHANNEL)
1184 			 && (!dev->fsa_dev[container].valid)) {
1185 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1186 				scsi_remove_device(device);
1187 #else
1188 				if (!scsi_device_online(device))
1189 					break;
1190 				scsi_device_set_state(device, SDEV_OFFLINE);
1191 				sdev_printk(KERN_INFO, device,
1192 					"Device offlined - %s\n",
1193 					"array failed");
1194 #endif
1195 				break;
1196 			}
1197 			scsi_rescan_device(&device->sdev_gendev);
1198 
1199 		default:
1200 			break;
1201 		}
1202 		scsi_device_put(device);
1203 		device_config_needed = NOTHING;
1204 	}
1205 	if (device_config_needed == ADD)
1206 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1207 	if (channel == CONTAINER_CHANNEL) {
1208 		container++;
1209 		device_config_needed = NOTHING;
1210 		goto retry_next;
1211 	}
1212 }
1213 
_aac_reset_adapter(struct aac_dev * aac,int forced)1214 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1215 {
1216 	int index, quirks;
1217 	int retval;
1218 	struct Scsi_Host *host;
1219 	struct scsi_device *dev;
1220 	struct scsi_cmnd *command;
1221 	struct scsi_cmnd *command_list;
1222 	int jafo = 0;
1223 
1224 	/*
1225 	 * Assumptions:
1226 	 *	- host is locked, unless called by the aacraid thread.
1227 	 *	  (a matter of convenience, due to legacy issues surrounding
1228 	 *	  eh_host_adapter_reset).
1229 	 *	- in_reset is asserted, so no new i/o is getting to the
1230 	 *	  card.
1231 	 *	- The card is dead, or will be very shortly ;-/ so no new
1232 	 *	  commands are completing in the interrupt service.
1233 	 */
1234 	host = aac->scsi_host_ptr;
1235 	scsi_block_requests(host);
1236 	aac_adapter_disable_int(aac);
1237 	if (aac->thread->pid != current->pid) {
1238 		spin_unlock_irq(host->host_lock);
1239 		kthread_stop(aac->thread);
1240 		jafo = 1;
1241 	}
1242 
1243 	/*
1244 	 *	If a positive health, means in a known DEAD PANIC
1245 	 * state and the adapter could be reset to `try again'.
1246 	 */
1247 	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1248 
1249 	if (retval)
1250 		goto out;
1251 
1252 	/*
1253 	 *	Loop through the fibs, close the synchronous FIBS
1254 	 */
1255 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1256 		struct fib *fib = &aac->fibs[index];
1257 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1258 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1259 			unsigned long flagv;
1260 			spin_lock_irqsave(&fib->event_lock, flagv);
1261 			up(&fib->event_wait);
1262 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1263 			schedule();
1264 			retval = 0;
1265 		}
1266 	}
1267 	/* Give some extra time for ioctls to complete. */
1268 	if (retval == 0)
1269 		ssleep(2);
1270 	index = aac->cardtype;
1271 
1272 	/*
1273 	 * Re-initialize the adapter, first free resources, then carefully
1274 	 * apply the initialization sequence to come back again. Only risk
1275 	 * is a change in Firmware dropping cache, it is assumed the caller
1276 	 * will ensure that i/o is queisced and the card is flushed in that
1277 	 * case.
1278 	 */
1279 	aac_fib_map_free(aac);
1280 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1281 	aac->comm_addr = NULL;
1282 	aac->comm_phys = 0;
1283 	kfree(aac->queues);
1284 	aac->queues = NULL;
1285 	free_irq(aac->pdev->irq, aac);
1286 	kfree(aac->fsa_dev);
1287 	aac->fsa_dev = NULL;
1288 	quirks = aac_get_driver_ident(index)->quirks;
1289 	if (quirks & AAC_QUIRK_31BIT) {
1290 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1291 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1292 			goto out;
1293 	} else {
1294 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1295 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1296 			goto out;
1297 	}
1298 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1299 		goto out;
1300 	if (quirks & AAC_QUIRK_31BIT)
1301 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1302 			goto out;
1303 	if (jafo) {
1304 		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1305 		if (IS_ERR(aac->thread)) {
1306 			retval = PTR_ERR(aac->thread);
1307 			goto out;
1308 		}
1309 	}
1310 	(void)aac_get_adapter_info(aac);
1311 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1312 		host->sg_tablesize = 34;
1313 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1314 	}
1315 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1316 		host->sg_tablesize = 17;
1317 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1318 	}
1319 	aac_get_config_status(aac, 1);
1320 	aac_get_containers(aac);
1321 	/*
1322 	 * This is where the assumption that the Adapter is quiesced
1323 	 * is important.
1324 	 */
1325 	command_list = NULL;
1326 	__shost_for_each_device(dev, host) {
1327 		unsigned long flags;
1328 		spin_lock_irqsave(&dev->list_lock, flags);
1329 		list_for_each_entry(command, &dev->cmd_list, list)
1330 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1331 				command->SCp.buffer = (struct scatterlist *)command_list;
1332 				command_list = command;
1333 			}
1334 		spin_unlock_irqrestore(&dev->list_lock, flags);
1335 	}
1336 	while ((command = command_list)) {
1337 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1338 		command->SCp.buffer = NULL;
1339 		command->result = DID_OK << 16
1340 		  | COMMAND_COMPLETE << 8
1341 		  | SAM_STAT_TASK_SET_FULL;
1342 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1343 		command->scsi_done(command);
1344 	}
1345 	retval = 0;
1346 
1347 out:
1348 	aac->in_reset = 0;
1349 	scsi_unblock_requests(host);
1350 	if (jafo) {
1351 		spin_lock_irq(host->host_lock);
1352 	}
1353 	return retval;
1354 }
1355 
aac_reset_adapter(struct aac_dev * aac,int forced)1356 int aac_reset_adapter(struct aac_dev * aac, int forced)
1357 {
1358 	unsigned long flagv = 0;
1359 	int retval;
1360 	struct Scsi_Host * host;
1361 
1362 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1363 		return -EBUSY;
1364 
1365 	if (aac->in_reset) {
1366 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1367 		return -EBUSY;
1368 	}
1369 	aac->in_reset = 1;
1370 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1371 
1372 	/*
1373 	 * Wait for all commands to complete to this specific
1374 	 * target (block maximum 60 seconds). Although not necessary,
1375 	 * it does make us a good storage citizen.
1376 	 */
1377 	host = aac->scsi_host_ptr;
1378 	scsi_block_requests(host);
1379 	if (forced < 2) for (retval = 60; retval; --retval) {
1380 		struct scsi_device * dev;
1381 		struct scsi_cmnd * command;
1382 		int active = 0;
1383 
1384 		__shost_for_each_device(dev, host) {
1385 			spin_lock_irqsave(&dev->list_lock, flagv);
1386 			list_for_each_entry(command, &dev->cmd_list, list) {
1387 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1388 					active++;
1389 					break;
1390 				}
1391 			}
1392 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1393 			if (active)
1394 				break;
1395 
1396 		}
1397 		/*
1398 		 * We can exit If all the commands are complete
1399 		 */
1400 		if (active == 0)
1401 			break;
1402 		ssleep(1);
1403 	}
1404 
1405 	/* Quiesce build, flush cache, write through mode */
1406 	if (forced < 2)
1407 		aac_send_shutdown(aac);
1408 	spin_lock_irqsave(host->host_lock, flagv);
1409 	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1410 	spin_unlock_irqrestore(host->host_lock, flagv);
1411 
1412 	if ((forced < 2) && (retval == -ENODEV)) {
1413 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1414 		struct fib * fibctx = aac_fib_alloc(aac);
1415 		if (fibctx) {
1416 			struct aac_pause *cmd;
1417 			int status;
1418 
1419 			aac_fib_init(fibctx);
1420 
1421 			cmd = (struct aac_pause *) fib_data(fibctx);
1422 
1423 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1424 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1425 			cmd->timeout = cpu_to_le32(1);
1426 			cmd->min = cpu_to_le32(1);
1427 			cmd->noRescan = cpu_to_le32(1);
1428 			cmd->count = cpu_to_le32(0);
1429 
1430 			status = aac_fib_send(ContainerCommand,
1431 			  fibctx,
1432 			  sizeof(struct aac_pause),
1433 			  FsaNormal,
1434 			  -2 /* Timeout silently */, 1,
1435 			  NULL, NULL);
1436 
1437 			if (status >= 0)
1438 				aac_fib_complete(fibctx);
1439 			/* FIB should be freed only after getting
1440 			 * the response from the F/W */
1441 			if (status != -ERESTARTSYS)
1442 				aac_fib_free(fibctx);
1443 		}
1444 	}
1445 
1446 	return retval;
1447 }
1448 
aac_check_health(struct aac_dev * aac)1449 int aac_check_health(struct aac_dev * aac)
1450 {
1451 	int BlinkLED;
1452 	unsigned long time_now, flagv = 0;
1453 	struct list_head * entry;
1454 	struct Scsi_Host * host;
1455 
1456 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1457 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1458 		return 0;
1459 
1460 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1461 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1462 		return 0; /* OK */
1463 	}
1464 
1465 	aac->in_reset = 1;
1466 
1467 	/* Fake up an AIF:
1468 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1469 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1470 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1471 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1472 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1473 	 *	aac.aifcmd.data[3] = BlinkLED
1474 	 */
1475 
1476 	time_now = jiffies/HZ;
1477 	entry = aac->fib_list.next;
1478 
1479 	/*
1480 	 * For each Context that is on the
1481 	 * fibctxList, make a copy of the
1482 	 * fib, and then set the event to wake up the
1483 	 * thread that is waiting for it.
1484 	 */
1485 	while (entry != &aac->fib_list) {
1486 		/*
1487 		 * Extract the fibctx
1488 		 */
1489 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1490 		struct hw_fib * hw_fib;
1491 		struct fib * fib;
1492 		/*
1493 		 * Check if the queue is getting
1494 		 * backlogged
1495 		 */
1496 		if (fibctx->count > 20) {
1497 			/*
1498 			 * It's *not* jiffies folks,
1499 			 * but jiffies / HZ, so do not
1500 			 * panic ...
1501 			 */
1502 			u32 time_last = fibctx->jiffies;
1503 			/*
1504 			 * Has it been > 2 minutes
1505 			 * since the last read off
1506 			 * the queue?
1507 			 */
1508 			if ((time_now - time_last) > aif_timeout) {
1509 				entry = entry->next;
1510 				aac_close_fib_context(aac, fibctx);
1511 				continue;
1512 			}
1513 		}
1514 		/*
1515 		 * Warning: no sleep allowed while
1516 		 * holding spinlock
1517 		 */
1518 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1519 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1520 		if (fib && hw_fib) {
1521 			struct aac_aifcmd * aif;
1522 
1523 			fib->hw_fib_va = hw_fib;
1524 			fib->dev = aac;
1525 			aac_fib_init(fib);
1526 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1527 			fib->size = sizeof (struct fib);
1528 			fib->data = hw_fib->data;
1529 			aif = (struct aac_aifcmd *)hw_fib->data;
1530 			aif->command = cpu_to_le32(AifCmdEventNotify);
1531 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1532 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1533 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1534 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1535 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1536 
1537 			/*
1538 			 * Put the FIB onto the
1539 			 * fibctx's fibs
1540 			 */
1541 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1542 			fibctx->count++;
1543 			/*
1544 			 * Set the event to wake up the
1545 			 * thread that will waiting.
1546 			 */
1547 			up(&fibctx->wait_sem);
1548 		} else {
1549 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1550 			kfree(fib);
1551 			kfree(hw_fib);
1552 		}
1553 		entry = entry->next;
1554 	}
1555 
1556 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1557 
1558 	if (BlinkLED < 0) {
1559 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1560 		goto out;
1561 	}
1562 
1563 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1564 
1565 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1566 		(aac->supplement_adapter_info.SupportedOptions2 &
1567 			AAC_OPTION_IGNORE_RESET)))
1568 		goto out;
1569 	host = aac->scsi_host_ptr;
1570 	if (aac->thread->pid != current->pid)
1571 		spin_lock_irqsave(host->host_lock, flagv);
1572 	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1573 	if (aac->thread->pid != current->pid)
1574 		spin_unlock_irqrestore(host->host_lock, flagv);
1575 	return BlinkLED;
1576 
1577 out:
1578 	aac->in_reset = 0;
1579 	return BlinkLED;
1580 }
1581 
1582 
1583 /**
1584  *	aac_command_thread	-	command processing thread
1585  *	@dev: Adapter to monitor
1586  *
1587  *	Waits on the commandready event in it's queue. When the event gets set
1588  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1589  *	until the queue is empty. When the queue is empty it will wait for
1590  *	more FIBs.
1591  */
1592 
aac_command_thread(void * data)1593 int aac_command_thread(void *data)
1594 {
1595 	struct aac_dev *dev = data;
1596 	struct hw_fib *hw_fib, *hw_newfib;
1597 	struct fib *fib, *newfib;
1598 	struct aac_fib_context *fibctx;
1599 	unsigned long flags;
1600 	DECLARE_WAITQUEUE(wait, current);
1601 	unsigned long next_jiffies = jiffies + HZ;
1602 	unsigned long next_check_jiffies = next_jiffies;
1603 	long difference = HZ;
1604 
1605 	/*
1606 	 *	We can only have one thread per adapter for AIF's.
1607 	 */
1608 	if (dev->aif_thread)
1609 		return -EINVAL;
1610 
1611 	/*
1612 	 *	Let the DPC know it has a place to send the AIF's to.
1613 	 */
1614 	dev->aif_thread = 1;
1615 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1616 	set_current_state(TASK_INTERRUPTIBLE);
1617 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1618 	while (1) {
1619 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1620 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1621 			struct list_head *entry;
1622 			struct aac_aifcmd * aifcmd;
1623 
1624 			set_current_state(TASK_RUNNING);
1625 
1626 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1627 			list_del(entry);
1628 
1629 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1630 			fib = list_entry(entry, struct fib, fiblink);
1631 			/*
1632 			 *	We will process the FIB here or pass it to a
1633 			 *	worker thread that is TBD. We Really can't
1634 			 *	do anything at this point since we don't have
1635 			 *	anything defined for this thread to do.
1636 			 */
1637 			hw_fib = fib->hw_fib_va;
1638 			memset(fib, 0, sizeof(struct fib));
1639 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1640 			fib->size = sizeof(struct fib);
1641 			fib->hw_fib_va = hw_fib;
1642 			fib->data = hw_fib->data;
1643 			fib->dev = dev;
1644 			/*
1645 			 *	We only handle AifRequest fibs from the adapter.
1646 			 */
1647 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1648 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1649 				/* Handle Driver Notify Events */
1650 				aac_handle_aif(dev, fib);
1651 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1652 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1653 			} else {
1654 				/* The u32 here is important and intended. We are using
1655 				   32bit wrapping time to fit the adapter field */
1656 
1657 				u32 time_now, time_last;
1658 				unsigned long flagv;
1659 				unsigned num;
1660 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1661 				struct fib ** fib_pool, ** fib_p;
1662 
1663 				/* Sniff events */
1664 				if ((aifcmd->command ==
1665 				     cpu_to_le32(AifCmdEventNotify)) ||
1666 				    (aifcmd->command ==
1667 				     cpu_to_le32(AifCmdJobProgress))) {
1668 					aac_handle_aif(dev, fib);
1669 				}
1670 
1671 				time_now = jiffies/HZ;
1672 
1673 				/*
1674 				 * Warning: no sleep allowed while
1675 				 * holding spinlock. We take the estimate
1676 				 * and pre-allocate a set of fibs outside the
1677 				 * lock.
1678 				 */
1679 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1680 				    / sizeof(struct hw_fib); /* some extra */
1681 				spin_lock_irqsave(&dev->fib_lock, flagv);
1682 				entry = dev->fib_list.next;
1683 				while (entry != &dev->fib_list) {
1684 					entry = entry->next;
1685 					++num;
1686 				}
1687 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1688 				hw_fib_pool = NULL;
1689 				fib_pool = NULL;
1690 				if (num
1691 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1692 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1693 					hw_fib_p = hw_fib_pool;
1694 					fib_p = fib_pool;
1695 					while (hw_fib_p < &hw_fib_pool[num]) {
1696 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1697 							--hw_fib_p;
1698 							break;
1699 						}
1700 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1701 							kfree(*(--hw_fib_p));
1702 							break;
1703 						}
1704 					}
1705 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1706 						kfree(fib_pool);
1707 						fib_pool = NULL;
1708 						kfree(hw_fib_pool);
1709 						hw_fib_pool = NULL;
1710 					}
1711 				} else {
1712 					kfree(hw_fib_pool);
1713 					hw_fib_pool = NULL;
1714 				}
1715 				spin_lock_irqsave(&dev->fib_lock, flagv);
1716 				entry = dev->fib_list.next;
1717 				/*
1718 				 * For each Context that is on the
1719 				 * fibctxList, make a copy of the
1720 				 * fib, and then set the event to wake up the
1721 				 * thread that is waiting for it.
1722 				 */
1723 				hw_fib_p = hw_fib_pool;
1724 				fib_p = fib_pool;
1725 				while (entry != &dev->fib_list) {
1726 					/*
1727 					 * Extract the fibctx
1728 					 */
1729 					fibctx = list_entry(entry, struct aac_fib_context, next);
1730 					/*
1731 					 * Check if the queue is getting
1732 					 * backlogged
1733 					 */
1734 					if (fibctx->count > 20)
1735 					{
1736 						/*
1737 						 * It's *not* jiffies folks,
1738 						 * but jiffies / HZ so do not
1739 						 * panic ...
1740 						 */
1741 						time_last = fibctx->jiffies;
1742 						/*
1743 						 * Has it been > 2 minutes
1744 						 * since the last read off
1745 						 * the queue?
1746 						 */
1747 						if ((time_now - time_last) > aif_timeout) {
1748 							entry = entry->next;
1749 							aac_close_fib_context(dev, fibctx);
1750 							continue;
1751 						}
1752 					}
1753 					/*
1754 					 * Warning: no sleep allowed while
1755 					 * holding spinlock
1756 					 */
1757 					if (hw_fib_p < &hw_fib_pool[num]) {
1758 						hw_newfib = *hw_fib_p;
1759 						*(hw_fib_p++) = NULL;
1760 						newfib = *fib_p;
1761 						*(fib_p++) = NULL;
1762 						/*
1763 						 * Make the copy of the FIB
1764 						 */
1765 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1766 						memcpy(newfib, fib, sizeof(struct fib));
1767 						newfib->hw_fib_va = hw_newfib;
1768 						/*
1769 						 * Put the FIB onto the
1770 						 * fibctx's fibs
1771 						 */
1772 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1773 						fibctx->count++;
1774 						/*
1775 						 * Set the event to wake up the
1776 						 * thread that is waiting.
1777 						 */
1778 						up(&fibctx->wait_sem);
1779 					} else {
1780 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1781 					}
1782 					entry = entry->next;
1783 				}
1784 				/*
1785 				 *	Set the status of this FIB
1786 				 */
1787 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1788 				aac_fib_adapter_complete(fib, sizeof(u32));
1789 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1790 				/* Free up the remaining resources */
1791 				hw_fib_p = hw_fib_pool;
1792 				fib_p = fib_pool;
1793 				while (hw_fib_p < &hw_fib_pool[num]) {
1794 					kfree(*hw_fib_p);
1795 					kfree(*fib_p);
1796 					++fib_p;
1797 					++hw_fib_p;
1798 				}
1799 				kfree(hw_fib_pool);
1800 				kfree(fib_pool);
1801 			}
1802 			kfree(fib);
1803 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1804 		}
1805 		/*
1806 		 *	There are no more AIF's
1807 		 */
1808 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1809 
1810 		/*
1811 		 *	Background activity
1812 		 */
1813 		if ((time_before(next_check_jiffies,next_jiffies))
1814 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1815 			next_check_jiffies = next_jiffies;
1816 			if (aac_check_health(dev) == 0) {
1817 				difference = ((long)(unsigned)check_interval)
1818 					   * HZ;
1819 				next_check_jiffies = jiffies + difference;
1820 			} else if (!dev->queues)
1821 				break;
1822 		}
1823 		if (!time_before(next_check_jiffies,next_jiffies)
1824 		 && ((difference = next_jiffies - jiffies) <= 0)) {
1825 			struct timeval now;
1826 			int ret;
1827 
1828 			/* Don't even try to talk to adapter if its sick */
1829 			ret = aac_check_health(dev);
1830 			if (!ret && !dev->queues)
1831 				break;
1832 			next_check_jiffies = jiffies
1833 					   + ((long)(unsigned)check_interval)
1834 					   * HZ;
1835 			do_gettimeofday(&now);
1836 
1837 			/* Synchronize our watches */
1838 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1839 			 && (now.tv_usec > (1000000 / HZ)))
1840 				difference = (((1000000 - now.tv_usec) * HZ)
1841 				  + 500000) / 1000000;
1842 			else if (ret == 0) {
1843 				struct fib *fibptr;
1844 
1845 				if ((fibptr = aac_fib_alloc(dev))) {
1846 					int status;
1847 					__le32 *info;
1848 
1849 					aac_fib_init(fibptr);
1850 
1851 					info = (__le32 *) fib_data(fibptr);
1852 					if (now.tv_usec > 500000)
1853 						++now.tv_sec;
1854 
1855 					*info = cpu_to_le32(now.tv_sec);
1856 
1857 					status = aac_fib_send(SendHostTime,
1858 						fibptr,
1859 						sizeof(*info),
1860 						FsaNormal,
1861 						1, 1,
1862 						NULL,
1863 						NULL);
1864 					/* Do not set XferState to zero unless
1865 					 * receives a response from F/W */
1866 					if (status >= 0)
1867 						aac_fib_complete(fibptr);
1868 					/* FIB should be freed only after
1869 					 * getting the response from the F/W */
1870 					if (status != -ERESTARTSYS)
1871 						aac_fib_free(fibptr);
1872 				}
1873 				difference = (long)(unsigned)update_interval*HZ;
1874 			} else {
1875 				/* retry shortly */
1876 				difference = 10 * HZ;
1877 			}
1878 			next_jiffies = jiffies + difference;
1879 			if (time_before(next_check_jiffies,next_jiffies))
1880 				difference = next_check_jiffies - jiffies;
1881 		}
1882 		if (difference <= 0)
1883 			difference = 1;
1884 		set_current_state(TASK_INTERRUPTIBLE);
1885 		schedule_timeout(difference);
1886 
1887 		if (kthread_should_stop())
1888 			break;
1889 	}
1890 	if (dev->queues)
1891 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1892 	dev->aif_thread = 0;
1893 	return 0;
1894 }
1895