1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  dpcsup.c
26  *
27  * Abstract: All DPC processing routines for the cyclone board occur here.
28  *
29  *
30  */
31 
32 #include <linux/config.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blk.h>
42 #include <asm/semaphore.h>
43 #include "scsi.h"
44 #include "hosts.h"
45 
46 #include "aacraid.h"
47 
48 /**
49  *	aac_response_normal	-	Handle command replies
50  *	@q: Queue to read from
51  *
52  *	This DPC routine will be run when the adapter interrupts us to let us
53  *	know there is a response on our normal priority queue. We will pull off
54  *	all QE there are and wake up all the waiters before exiting. We will
55  *	take a spinlock out on the queue before operating on it.
56  */
57 
aac_response_normal(struct aac_queue * q)58 unsigned int aac_response_normal(struct aac_queue * q)
59 {
60 	struct aac_dev * dev = q->dev;
61 	struct aac_entry *entry;
62 	struct hw_fib * hwfib;
63 	struct fib * fib;
64 	int consumed = 0;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(q->lock, flags);
68 
69 	/*
70 	 *	Keep pulling response QEs off the response queue and waking
71 	 *	up the waiters until there are no more QEs. We then return
72 	 *	back to the system. If no response was requesed we just
73 	 *	deallocate the Fib here and continue.
74 	 */
75 	while(aac_consumer_get(dev, q, &entry))
76 	{
77 		int fast;
78 		u32 index;
79 		index = le32_to_cpu(entry->addr);
80 		fast = index & 0x01;
81 		fib = &dev->fibs[index >> 1];
82 		hwfib = fib->hw_fib;
83 
84 		aac_consumer_free(dev, q, HostNormRespQueue);
85 		/*
86 		 *	Remove this fib from the Outstanding I/O queue.
87 		 *	But only if it has not already been timed out.
88 		 *
89 		 *	If the fib has been timed out already, then just
90 		 *	continue. The caller has already been notified that
91 		 *	the fib timed out.
92 		 */
93 		if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
94 			list_del(&fib->queue);
95 			dev->queues->queue[AdapNormCmdQueue].numpending--;
96 		} else {
97 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
98 			continue;
99 		}
100 		spin_unlock_irqrestore(q->lock, flags);
101 
102 		if (fast) {
103 			/*
104 			 *	Doctor the fib
105 			 */
106 			*(u32 *)hwfib->data = cpu_to_le32(ST_OK);
107 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
108 		}
109 
110 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
111 
112 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
113 		{
114 			u32 *pstatus = (u32 *)hwfib->data;
115 			if (*pstatus & cpu_to_le32(0xffff0000))
116 				*pstatus = cpu_to_le32(ST_OK);
117 		}
118 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
119 		{
120 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
121 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
122 			else
123 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
124 			/*
125 			 *	NOTE:  we cannot touch the fib after this
126 			 *	    call, because it may have been deallocated.
127 			 */
128 			fib->callback(fib->callback_data, fib);
129 		} else {
130 			unsigned long flagv;
131 			spin_lock_irqsave(&fib->event_lock, flagv);
132 			fib->done = 1;
133 			up(&fib->event_wait);
134 			spin_unlock_irqrestore(&fib->event_lock, flagv);
135 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
136 		}
137 		consumed++;
138 		spin_lock_irqsave(q->lock, flags);
139 	}
140 
141 	if (consumed > aac_config.peak_fibs)
142 		aac_config.peak_fibs = consumed;
143 	if (consumed == 0)
144 		aac_config.zero_fibs++;
145 
146 	spin_unlock_irqrestore(q->lock, flags);
147 	return 0;
148 }
149 
150 
151 /**
152  *	aac_command_normal	-	handle commands
153  *	@q: queue to process
154  *
155  *	This DPC routine will be queued when the adapter interrupts us to
156  *	let us know there is a command on our normal priority queue. We will
157  *	pull off all QE there are and wake up all the waiters before exiting.
158  *	We will take a spinlock out on the queue before operating on it.
159  */
160 
aac_command_normal(struct aac_queue * q)161 unsigned int aac_command_normal(struct aac_queue *q)
162 {
163 	struct aac_dev * dev = q->dev;
164 	struct aac_entry *entry;
165 	unsigned long flags;
166 
167 	spin_lock_irqsave(q->lock, flags);
168 
169 	/*
170 	 *	Keep pulling response QEs off the response queue and waking
171 	 *	up the waiters until there are no more QEs. We then return
172 	 *	back to the system.
173 	 */
174 	dprintk((KERN_INFO
175 	  "dev=%p, dev->comm_phys=%x, dev->comm_addr=%p, dev->comm_size=%u\n",
176 	  dev, (u32)dev->comm_phys, dev->comm_addr, (unsigned)dev->comm_size));
177 
178 	while(aac_consumer_get(dev, q, &entry))
179 	{
180 		struct fib fibctx;
181 		struct hw_fib * hw_fib;
182 		u32 index;
183 		struct fib *fib = &fibctx;
184 
185 		index = le32_to_cpu(entry->addr / sizeof(struct hw_fib));
186 		hw_fib = &dev->aif_base_va[index];
187 
188 		/*
189 		 *	Allocate a FIB at all costs. For non queued stuff
190 		 *	we can just use the stack so we are happy. We need
191 		 *	a fib object in order to manage the linked lists
192 		 */
193 		if (dev->aif_thread)
194 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC))==NULL)
195 				fib = &fibctx;
196 
197 		memset(fib, 0, sizeof(struct fib));
198 		INIT_LIST_HEAD(&fib->fiblink);
199 		fib->type = FSAFS_NTC_FIB_CONTEXT;
200 		fib->size = sizeof(struct fib);
201 		fib->hw_fib = hw_fib;
202 		fib->data = hw_fib->data;
203 		fib->dev = dev;
204 
205 		if (dev->aif_thread && fib != &fibctx)
206 		{
207 			list_add_tail(&fib->fiblink, &q->cmdq);
208 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
209 		        wake_up_interruptible(&q->cmdready);
210 		} else {
211 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
212 			spin_unlock_irqrestore(q->lock, flags);
213 			/*
214 			 *	Set the status of this FIB
215 			 */
216 			*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
217 			fib_adapter_complete(fib, sizeof(u32));
218 			spin_lock_irqsave(q->lock, flags);
219 		}
220 	}
221 	spin_unlock_irqrestore(q->lock, flags);
222 	return 0;
223 }
224