1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * aachba.c
15 *
16 * Abstract: Contains Interfaces to manage IOs.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/module.h>
29
30 #include <asm/unaligned.h>
31
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_host.h>
36
37 #include "aacraid.h"
38
39 /* values for inqd_pdt: Peripheral device type in plain English */
40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
41 #define INQD_PDT_PROC 0x03 /* Processor device */
42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
46
47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
49
50 /*
51 * Sense codes
52 */
53
54 #define SENCODE_NO_SENSE 0x00
55 #define SENCODE_END_OF_DATA 0x00
56 #define SENCODE_BECOMING_READY 0x04
57 #define SENCODE_INIT_CMD_REQUIRED 0x04
58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
60 #define SENCODE_INVALID_COMMAND 0x20
61 #define SENCODE_LBA_OUT_OF_RANGE 0x21
62 #define SENCODE_INVALID_CDB_FIELD 0x24
63 #define SENCODE_LUN_NOT_SUPPORTED 0x25
64 #define SENCODE_INVALID_PARAM_FIELD 0x26
65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
66 #define SENCODE_PARAM_VALUE_INVALID 0x26
67 #define SENCODE_RESET_OCCURRED 0x29
68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
75 #define SENCODE_OVERLAPPED_COMMAND 0x4E
76
77 /*
78 * Additional sense codes
79 */
80
81 #define ASENCODE_NO_SENSE 0x00
82 #define ASENCODE_END_OF_DATA 0x05
83 #define ASENCODE_BECOMING_READY 0x01
84 #define ASENCODE_INIT_CMD_REQUIRED 0x02
85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
86 #define ASENCODE_INVALID_COMMAND 0x00
87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
88 #define ASENCODE_INVALID_CDB_FIELD 0x00
89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
90 #define ASENCODE_INVALID_PARAM_FIELD 0x00
91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
92 #define ASENCODE_PARAM_VALUE_INVALID 0x02
93 #define ASENCODE_RESET_OCCURRED 0x00
94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
101 #define ASENCODE_OVERLAPPED_COMMAND 0x00
102
103 #define BYTE0(x) (unsigned char)(x)
104 #define BYTE1(x) (unsigned char)((x) >> 8)
105 #define BYTE2(x) (unsigned char)((x) >> 16)
106 #define BYTE3(x) (unsigned char)((x) >> 24)
107
108 /* MODE_SENSE data format */
109 typedef struct {
110 struct {
111 u8 data_length;
112 u8 med_type;
113 u8 dev_par;
114 u8 bd_length;
115 } __attribute__((packed)) hd;
116 struct {
117 u8 dens_code;
118 u8 block_count[3];
119 u8 reserved;
120 u8 block_length[3];
121 } __attribute__((packed)) bd;
122 u8 mpc_buf[3];
123 } __attribute__((packed)) aac_modep_data;
124
125 /* MODE_SENSE_10 data format */
126 typedef struct {
127 struct {
128 u8 data_length[2];
129 u8 med_type;
130 u8 dev_par;
131 u8 rsrvd[2];
132 u8 bd_length[2];
133 } __attribute__((packed)) hd;
134 struct {
135 u8 dens_code;
136 u8 block_count[3];
137 u8 reserved;
138 u8 block_length[3];
139 } __attribute__((packed)) bd;
140 u8 mpc_buf[3];
141 } __attribute__((packed)) aac_modep10_data;
142
143 /*------------------------------------------------------------------------------
144 * S T R U C T S / T Y P E D E F S
145 *----------------------------------------------------------------------------*/
146 /* SCSI inquiry data */
147 struct inquiry_data {
148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
149 u8 inqd_dtq; /* RMB | Device Type Qualifier */
150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
152 u8 inqd_len; /* Additional length (n-4) */
153 u8 inqd_pad1[2];/* Reserved - must be zero */
154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
155 u8 inqd_vid[8]; /* Vendor ID */
156 u8 inqd_pid[16];/* Product ID */
157 u8 inqd_prl[4]; /* Product Revision Level */
158 };
159
160 /* Added for VPD 0x83 */
161 struct tvpd_id_descriptor_type_1 {
162 u8 codeset:4; /* VPD_CODE_SET */
163 u8 reserved:4;
164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
165 u8 reserved2:4;
166 u8 reserved3;
167 u8 identifierlength;
168 u8 venid[8];
169 u8 productid[16];
170 u8 serialnumber[8]; /* SN in ASCII */
171
172 };
173
174 struct tvpd_id_descriptor_type_2 {
175 u8 codeset:4; /* VPD_CODE_SET */
176 u8 reserved:4;
177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
178 u8 reserved2:4;
179 u8 reserved3;
180 u8 identifierlength;
181 struct teu64id {
182 u32 Serial;
183 /* The serial number supposed to be 40 bits,
184 * bit we only support 32, so make the last byte zero. */
185 u8 reserved;
186 u8 venid[3];
187 } eu64id;
188
189 };
190
191 struct tvpd_id_descriptor_type_3 {
192 u8 codeset : 4; /* VPD_CODE_SET */
193 u8 reserved : 4;
194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
195 u8 reserved2 : 4;
196 u8 reserved3;
197 u8 identifierlength;
198 u8 Identifier[16];
199 };
200
201 struct tvpd_page83 {
202 u8 DeviceType:5;
203 u8 DeviceTypeQualifier:3;
204 u8 PageCode;
205 u8 reserved;
206 u8 PageLength;
207 struct tvpd_id_descriptor_type_1 type1;
208 struct tvpd_id_descriptor_type_2 type2;
209 struct tvpd_id_descriptor_type_3 type3;
210 };
211
212 /*
213 * M O D U L E G L O B A L S
214 */
215
216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
220 struct aac_raw_io2 *rio2, int sg_max);
221 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
222 struct aac_hba_cmd_req *hbacmd,
223 int sg_max, u64 sg_address);
224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
225 int pages, int nseg, int nseg_new);
226 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd);
227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
229 #ifdef AAC_DETAILED_STATUS_INFO
230 static char *aac_get_status_string(u32 status);
231 #endif
232
233 /*
234 * Non dasd selection is handled entirely in aachba now
235 */
236
237 static int nondasd = -1;
238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
239 static int dacmode = -1;
240 int aac_msi;
241 int aac_commit = -1;
242 int startup_timeout = 180;
243 int aif_timeout = 120;
244 int aac_sync_mode; /* Only Sync. transfer - disabled */
245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
246
247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
249 " 0=off, 1=on");
250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
252 " 0=off, 1=on");
253 module_param(nondasd, int, S_IRUGO|S_IWUSR);
254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
255 " 0=off, 1=on");
256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
260 "\tbit 2 - Disable only if Battery is protecting Cache");
261 module_param(dacmode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
263 " 0=off, 1=on");
264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
266 " adapter for foreign arrays.\n"
267 "This is typically needed in systems that do not have a BIOS."
268 " 0=off, 1=on");
269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(msi, "IRQ handling."
271 " 0=PIC(default), 1=MSI, 2=MSI-X)");
272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
274 " adapter to have its kernel up and\n"
275 "running. This is typically adjusted for large systems that do not"
276 " have a BIOS.");
277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
279 " applications to pick up AIFs before\n"
280 "deregistering them. This is typically adjusted for heavily burdened"
281 " systems.");
282
283 int aac_fib_dump;
284 module_param(aac_fib_dump, int, 0644);
285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
286
287 int numacb = -1;
288 module_param(numacb, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
290 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
291 " to use suggestion from Firmware.");
292
293 static int acbsize = -1;
294 module_param(acbsize, int, S_IRUGO|S_IWUSR);
295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
297 " suggestion from Firmware.");
298
299 int update_interval = 30 * 60;
300 module_param(update_interval, int, S_IRUGO|S_IWUSR);
301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
302 " updates issued to adapter.");
303
304 int check_interval = 60;
305 module_param(check_interval, int, S_IRUGO|S_IWUSR);
306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
307 " checks.");
308
309 int aac_check_reset = 1;
310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
312 " adapter. a value of -1 forces the reset to adapters programmed to"
313 " ignore it.");
314
315 int expose_physicals = -1;
316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
318 " -1=protect 0=off, 1=on");
319
320 int aac_reset_devices;
321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
323
324 static int aac_wwn = 1;
325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
327 "\t0 - Disable\n"
328 "\t1 - Array Meta Data Signature (default)\n"
329 "\t2 - Adapter Serial Number");
330
331
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
333 struct fib *fibptr) {
334 struct scsi_device *device;
335
336 if (unlikely(!scsicmd)) {
337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
338 aac_fib_complete(fibptr);
339 return 0;
340 }
341 aac_priv(scsicmd)->owner = AAC_OWNER_MIDLEVEL;
342 device = scsicmd->device;
343 if (unlikely(!device)) {
344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
345 aac_fib_complete(fibptr);
346 return 0;
347 }
348 return 1;
349 }
350
351 /**
352 * aac_get_config_status - check the adapter configuration
353 * @dev: aac driver data
354 * @commit_flag: force sending CT_COMMIT_CONFIG
355 *
356 * Query config status, and commit the configuration if needed.
357 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)358 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
359 {
360 int status = 0;
361 struct fib * fibptr;
362
363 if (!(fibptr = aac_fib_alloc(dev)))
364 return -ENOMEM;
365
366 aac_fib_init(fibptr);
367 {
368 struct aac_get_config_status *dinfo;
369 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
370
371 dinfo->command = cpu_to_le32(VM_ContainerConfig);
372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
374 }
375
376 status = aac_fib_send(ContainerCommand,
377 fibptr,
378 sizeof (struct aac_get_config_status),
379 FsaNormal,
380 1, 1,
381 NULL, NULL);
382 if (status < 0) {
383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
384 } else {
385 struct aac_get_config_status_resp *reply
386 = (struct aac_get_config_status_resp *) fib_data(fibptr);
387 dprintk((KERN_WARNING
388 "aac_get_config_status: response=%d status=%d action=%d\n",
389 le32_to_cpu(reply->response),
390 le32_to_cpu(reply->status),
391 le32_to_cpu(reply->data.action)));
392 if ((le32_to_cpu(reply->response) != ST_OK) ||
393 (le32_to_cpu(reply->status) != CT_OK) ||
394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
396 status = -EINVAL;
397 }
398 }
399 /* Do not set XferState to zero unless receives a response from F/W */
400 if (status >= 0)
401 aac_fib_complete(fibptr);
402
403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
404 if (status >= 0) {
405 if ((aac_commit == 1) || commit_flag) {
406 struct aac_commit_config * dinfo;
407 aac_fib_init(fibptr);
408 dinfo = (struct aac_commit_config *) fib_data(fibptr);
409
410 dinfo->command = cpu_to_le32(VM_ContainerConfig);
411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
412
413 status = aac_fib_send(ContainerCommand,
414 fibptr,
415 sizeof (struct aac_commit_config),
416 FsaNormal,
417 1, 1,
418 NULL, NULL);
419 /* Do not set XferState to zero unless
420 * receives a response from F/W */
421 if (status >= 0)
422 aac_fib_complete(fibptr);
423 } else if (aac_commit == 0) {
424 printk(KERN_WARNING
425 "aac_get_config_status: Foreign device configurations are being ignored\n");
426 }
427 }
428 /* FIB should be freed only after getting the response from the F/W */
429 if (status != -ERESTARTSYS)
430 aac_fib_free(fibptr);
431 return status;
432 }
433
aac_expose_phy_device(struct scsi_cmnd * scsicmd)434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
435 {
436 char inq_data;
437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
439 inq_data &= 0xdf;
440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
441 }
442 }
443
444 /**
445 * aac_get_containers - list containers
446 * @dev: aac driver data
447 *
448 * Make a list of all containers on this controller
449 */
aac_get_containers(struct aac_dev * dev)450 int aac_get_containers(struct aac_dev *dev)
451 {
452 struct fsa_dev_info *fsa_dev_ptr;
453 u32 index;
454 int status = 0;
455 struct fib * fibptr;
456 struct aac_get_container_count *dinfo;
457 struct aac_get_container_count_resp *dresp;
458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
459
460 if (!(fibptr = aac_fib_alloc(dev)))
461 return -ENOMEM;
462
463 aac_fib_init(fibptr);
464 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
465 dinfo->command = cpu_to_le32(VM_ContainerConfig);
466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
467
468 status = aac_fib_send(ContainerCommand,
469 fibptr,
470 sizeof (struct aac_get_container_count),
471 FsaNormal,
472 1, 1,
473 NULL, NULL);
474 if (status >= 0) {
475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
477 if (fibptr->dev->supplement_adapter_info.supported_options2 &
478 AAC_OPTION_SUPPORTED_240_VOLUMES) {
479 maximum_num_containers =
480 le32_to_cpu(dresp->MaxSimpleVolumes);
481 }
482 aac_fib_complete(fibptr);
483 }
484 /* FIB should be freed only after getting the response from the F/W */
485 if (status != -ERESTARTSYS)
486 aac_fib_free(fibptr);
487
488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
490 if (dev->fsa_dev == NULL ||
491 dev->maximum_num_containers != maximum_num_containers) {
492
493 fsa_dev_ptr = dev->fsa_dev;
494
495 dev->fsa_dev = kcalloc(maximum_num_containers,
496 sizeof(*fsa_dev_ptr), GFP_KERNEL);
497
498 kfree(fsa_dev_ptr);
499 fsa_dev_ptr = NULL;
500
501
502 if (!dev->fsa_dev)
503 return -ENOMEM;
504
505 dev->maximum_num_containers = maximum_num_containers;
506 }
507 for (index = 0; index < dev->maximum_num_containers; index++) {
508 dev->fsa_dev[index].devname[0] = '\0';
509 dev->fsa_dev[index].valid = 0;
510
511 status = aac_probe_container(dev, index);
512
513 if (status < 0) {
514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
515 break;
516 }
517 }
518 return status;
519 }
520
aac_scsi_done(struct scsi_cmnd * scmd)521 static void aac_scsi_done(struct scsi_cmnd *scmd)
522 {
523 if (scmd->device->request_queue) {
524 /* SCSI command has been submitted by the SCSI mid-layer. */
525 scsi_done(scmd);
526 } else {
527 /* SCSI command has been submitted by aac_probe_container(). */
528 aac_probe_container_scsi_done(scmd);
529 }
530 }
531
get_container_name_callback(void * context,struct fib * fibptr)532 static void get_container_name_callback(void *context, struct fib * fibptr)
533 {
534 struct aac_get_name_resp * get_name_reply;
535 struct scsi_cmnd * scsicmd;
536
537 scsicmd = (struct scsi_cmnd *) context;
538
539 if (!aac_valid_context(scsicmd, fibptr))
540 return;
541
542 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
543 BUG_ON(fibptr == NULL);
544
545 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
546 /* Failure is irrelevant, using default value instead */
547 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
548 && (get_name_reply->data[0] != '\0')) {
549 char *sp = get_name_reply->data;
550 int data_size = sizeof_field(struct aac_get_name_resp, data);
551
552 sp[data_size - 1] = '\0';
553 while (*sp == ' ')
554 ++sp;
555 if (*sp) {
556 struct inquiry_data inq;
557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
558 int count = sizeof(d);
559 char *dp = d;
560 do {
561 *dp++ = (*sp) ? *sp++ : ' ';
562 } while (--count > 0);
563
564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
565 memcpy(inq.inqd_pid, d, sizeof(d));
566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
567 }
568 }
569
570 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
571
572 aac_fib_complete(fibptr);
573 aac_scsi_done(scsicmd);
574 }
575
576 /*
577 * aac_get_container_name - get container name, none blocking.
578 */
aac_get_container_name(struct scsi_cmnd * scsicmd)579 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
580 {
581 int status;
582 int data_size;
583 struct aac_get_name *dinfo;
584 struct fib * cmd_fibcontext;
585 struct aac_dev * dev;
586
587 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
588
589 data_size = sizeof_field(struct aac_get_name_resp, data);
590
591 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
592
593 aac_fib_init(cmd_fibcontext);
594 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
595 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
596
597 dinfo->command = cpu_to_le32(VM_ContainerConfig);
598 dinfo->type = cpu_to_le32(CT_READ_NAME);
599 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
600 dinfo->count = cpu_to_le32(data_size - 1);
601
602 status = aac_fib_send(ContainerCommand,
603 cmd_fibcontext,
604 sizeof(struct aac_get_name_resp),
605 FsaNormal,
606 0, 1,
607 (fib_callback)get_container_name_callback,
608 (void *) scsicmd);
609
610 /*
611 * Check that the command queued to the controller
612 */
613 if (status == -EINPROGRESS)
614 return 0;
615
616 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
617 aac_fib_complete(cmd_fibcontext);
618 return -1;
619 }
620
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)621 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
622 {
623 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
624
625 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
626 return aac_scsi_cmd(scsicmd);
627
628 scsicmd->result = DID_NO_CONNECT << 16;
629 aac_scsi_done(scsicmd);
630 return 0;
631 }
632
_aac_probe_container2(void * context,struct fib * fibptr)633 static void _aac_probe_container2(void * context, struct fib * fibptr)
634 {
635 struct fsa_dev_info *fsa_dev_ptr;
636 int (*callback)(struct scsi_cmnd *);
637 struct scsi_cmnd *scsicmd = context;
638 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd);
639 int i;
640
641
642 if (!aac_valid_context(scsicmd, fibptr))
643 return;
644
645 cmd_priv->status = 0;
646 fsa_dev_ptr = fibptr->dev->fsa_dev;
647 if (fsa_dev_ptr) {
648 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
649 __le32 sup_options2;
650
651 fsa_dev_ptr += scmd_id(scsicmd);
652 sup_options2 =
653 fibptr->dev->supplement_adapter_info.supported_options2;
654
655 if ((le32_to_cpu(dresp->status) == ST_OK) &&
656 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
657 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
658 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
659 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
660 fsa_dev_ptr->block_size = 0x200;
661 } else {
662 fsa_dev_ptr->block_size =
663 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
664 }
665 for (i = 0; i < 16; i++)
666 fsa_dev_ptr->identifier[i] =
667 dresp->mnt[0].fileinfo.bdevinfo
668 .identifier[i];
669 fsa_dev_ptr->valid = 1;
670 /* sense_key holds the current state of the spin-up */
671 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
672 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
673 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
674 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
675 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
676 fsa_dev_ptr->size
677 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
678 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
679 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
680 }
681 if ((fsa_dev_ptr->valid & 1) == 0)
682 fsa_dev_ptr->valid = 0;
683 cmd_priv->status = le32_to_cpu(dresp->count);
684 }
685 aac_fib_complete(fibptr);
686 aac_fib_free(fibptr);
687 callback = cmd_priv->callback;
688 cmd_priv->callback = NULL;
689 (*callback)(scsicmd);
690 return;
691 }
692
_aac_probe_container1(void * context,struct fib * fibptr)693 static void _aac_probe_container1(void * context, struct fib * fibptr)
694 {
695 struct scsi_cmnd * scsicmd;
696 struct aac_mount * dresp;
697 struct aac_query_mount *dinfo;
698 int status;
699
700 dresp = (struct aac_mount *) fib_data(fibptr);
701 if (!aac_supports_2T(fibptr->dev)) {
702 dresp->mnt[0].capacityhigh = 0;
703 if ((le32_to_cpu(dresp->status) == ST_OK) &&
704 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
705 _aac_probe_container2(context, fibptr);
706 return;
707 }
708 }
709 scsicmd = (struct scsi_cmnd *) context;
710
711 if (!aac_valid_context(scsicmd, fibptr))
712 return;
713
714 aac_fib_init(fibptr);
715
716 dinfo = (struct aac_query_mount *)fib_data(fibptr);
717
718 if (fibptr->dev->supplement_adapter_info.supported_options2 &
719 AAC_OPTION_VARIABLE_BLOCK_SIZE)
720 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
721 else
722 dinfo->command = cpu_to_le32(VM_NameServe64);
723
724 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
725 dinfo->type = cpu_to_le32(FT_FILESYS);
726 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
727
728 status = aac_fib_send(ContainerCommand,
729 fibptr,
730 sizeof(struct aac_query_mount),
731 FsaNormal,
732 0, 1,
733 _aac_probe_container2,
734 (void *) scsicmd);
735 /*
736 * Check that the command queued to the controller
737 */
738 if (status < 0 && status != -EINPROGRESS) {
739 /* Inherit results from VM_NameServe, if any */
740 dresp->status = cpu_to_le32(ST_OK);
741 _aac_probe_container2(context, fibptr);
742 }
743 }
744
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))745 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
746 {
747 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd);
748 struct fib * fibptr;
749 int status = -ENOMEM;
750
751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 struct aac_query_mount *dinfo;
753
754 aac_fib_init(fibptr);
755
756 dinfo = (struct aac_query_mount *)fib_data(fibptr);
757
758 if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 else
762 dinfo->command = cpu_to_le32(VM_NameServe);
763
764 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 dinfo->type = cpu_to_le32(FT_FILESYS);
766 cmd_priv->callback = callback;
767 cmd_priv->owner = AAC_OWNER_FIRMWARE;
768
769 status = aac_fib_send(ContainerCommand,
770 fibptr,
771 sizeof(struct aac_query_mount),
772 FsaNormal,
773 0, 1,
774 _aac_probe_container1,
775 (void *) scsicmd);
776 /*
777 * Check that the command queued to the controller
778 */
779 if (status == -EINPROGRESS)
780 return 0;
781
782 if (status < 0) {
783 cmd_priv->callback = NULL;
784 aac_fib_complete(fibptr);
785 aac_fib_free(fibptr);
786 }
787 }
788 if (status < 0) {
789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 if (fsa_dev_ptr) {
791 fsa_dev_ptr += scmd_id(scsicmd);
792 if ((fsa_dev_ptr->valid & 1) == 0) {
793 fsa_dev_ptr->valid = 0;
794 return (*callback)(scsicmd);
795 }
796 }
797 }
798 return status;
799 }
800
801 /**
802 * aac_probe_container_callback1 - query a logical volume
803 * @scsicmd: the scsi command block
804 *
805 * Queries the controller about the given volume. The volume information
806 * is updated in the struct fsa_dev_info structure rather than returned.
807 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)808 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
809 {
810 scsicmd->device = NULL;
811 return 0;
812 }
813
aac_probe_container_scsi_done(struct scsi_cmnd * scsi_cmnd)814 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd)
815 {
816 aac_probe_container_callback1(scsi_cmnd);
817 }
818
aac_probe_container(struct aac_dev * dev,int cid)819 int aac_probe_container(struct aac_dev *dev, int cid)
820 {
821 struct scsi_cmnd *scsicmd = kzalloc(sizeof(*scsicmd), GFP_KERNEL);
822 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd);
823 struct scsi_device *scsidev = kzalloc(sizeof(*scsidev), GFP_KERNEL);
824 int status;
825
826 if (!scsicmd || !scsidev) {
827 kfree(scsicmd);
828 kfree(scsidev);
829 return -ENOMEM;
830 }
831
832 scsicmd->device = scsidev;
833 scsidev->sdev_state = 0;
834 scsidev->id = cid;
835 scsidev->host = dev->scsi_host_ptr;
836
837 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
838 while (scsicmd->device == scsidev)
839 schedule();
840 kfree(scsidev);
841 status = cmd_priv->status;
842 kfree(scsicmd);
843 return status;
844 }
845
846 /* Local Structure to set SCSI inquiry data strings */
847 struct scsi_inq {
848 char vid[8]; /* Vendor ID */
849 char pid[16]; /* Product ID */
850 char prl[4]; /* Product Revision Level */
851 };
852
853 /**
854 * inqstrcpy - string merge
855 * @a: string to copy from
856 * @b: string to copy to
857 *
858 * Copy a String from one location to another
859 * without copying \0
860 */
861
inqstrcpy(char * a,char * b)862 static void inqstrcpy(char *a, char *b)
863 {
864
865 while (*a != (char)0)
866 *b++ = *a++;
867 }
868
869 static char *container_types[] = {
870 "None",
871 "Volume",
872 "Mirror",
873 "Stripe",
874 "RAID5",
875 "SSRW",
876 "SSRO",
877 "Morph",
878 "Legacy",
879 "RAID4",
880 "RAID10",
881 "RAID00",
882 "V-MIRRORS",
883 "PSEUDO R4",
884 "RAID50",
885 "RAID5D",
886 "RAID5D0",
887 "RAID1E",
888 "RAID6",
889 "RAID60",
890 "Unknown"
891 };
892
get_container_type(unsigned tindex)893 char * get_container_type(unsigned tindex)
894 {
895 if (tindex >= ARRAY_SIZE(container_types))
896 tindex = ARRAY_SIZE(container_types) - 1;
897 return container_types[tindex];
898 }
899
900 /* Function: setinqstr
901 *
902 * Arguments: [1] pointer to void [1] int
903 *
904 * Purpose: Sets SCSI inquiry data strings for vendor, product
905 * and revision level. Allows strings to be set in platform dependent
906 * files instead of in OS dependent driver source.
907 */
908
setinqstr(struct aac_dev * dev,void * data,int tindex)909 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
910 {
911 struct scsi_inq *str;
912 struct aac_supplement_adapter_info *sup_adap_info;
913
914 sup_adap_info = &dev->supplement_adapter_info;
915 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
916 memset(str, ' ', sizeof(*str));
917
918 if (sup_adap_info->adapter_type_text[0]) {
919 int c;
920 char *cp;
921 char *cname = kmemdup(sup_adap_info->adapter_type_text,
922 sizeof(sup_adap_info->adapter_type_text),
923 GFP_ATOMIC);
924 if (!cname)
925 return;
926
927 cp = cname;
928 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
929 inqstrcpy("SMC", str->vid);
930 else {
931 c = sizeof(str->vid);
932 while (*cp && *cp != ' ' && --c)
933 ++cp;
934 c = *cp;
935 *cp = '\0';
936 inqstrcpy(cname, str->vid);
937 *cp = c;
938 while (*cp && *cp != ' ')
939 ++cp;
940 }
941 while (*cp == ' ')
942 ++cp;
943 /* last six chars reserved for vol type */
944 if (strlen(cp) > sizeof(str->pid))
945 cp[sizeof(str->pid)] = '\0';
946 inqstrcpy (cp, str->pid);
947
948 kfree(cname);
949 } else {
950 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
951
952 inqstrcpy (mp->vname, str->vid);
953 /* last six chars reserved for vol type */
954 inqstrcpy (mp->model, str->pid);
955 }
956
957 if (tindex < ARRAY_SIZE(container_types)){
958 char *findit = str->pid;
959
960 for ( ; *findit != ' '; findit++); /* walk till we find a space */
961 /* RAID is superfluous in the context of a RAID device */
962 if (memcmp(findit-4, "RAID", 4) == 0)
963 *(findit -= 4) = ' ';
964 if (((findit - str->pid) + strlen(container_types[tindex]))
965 < (sizeof(str->pid) + sizeof(str->prl)))
966 inqstrcpy (container_types[tindex], findit + 1);
967 }
968 inqstrcpy ("V1.0", str->prl);
969 }
970
build_vpd83_type3(struct tvpd_page83 * vpdpage83data,struct aac_dev * dev,struct scsi_cmnd * scsicmd)971 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
972 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
973 {
974 int container;
975
976 vpdpage83data->type3.codeset = 1;
977 vpdpage83data->type3.identifiertype = 3;
978 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
979 - 4;
980
981 for (container = 0; container < dev->maximum_num_containers;
982 container++) {
983
984 if (scmd_id(scsicmd) == container) {
985 memcpy(vpdpage83data->type3.Identifier,
986 dev->fsa_dev[container].identifier,
987 16);
988 break;
989 }
990 }
991 }
992
get_container_serial_callback(void * context,struct fib * fibptr)993 static void get_container_serial_callback(void *context, struct fib * fibptr)
994 {
995 struct aac_get_serial_resp * get_serial_reply;
996 struct scsi_cmnd * scsicmd;
997
998 BUG_ON(fibptr == NULL);
999
1000 scsicmd = (struct scsi_cmnd *) context;
1001 if (!aac_valid_context(scsicmd, fibptr))
1002 return;
1003
1004 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1005 /* Failure is irrelevant, using default value instead */
1006 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1007 /*Check to see if it's for VPD 0x83 or 0x80 */
1008 if (scsicmd->cmnd[2] == 0x83) {
1009 /* vpd page 0x83 - Device Identification Page */
1010 struct aac_dev *dev;
1011 int i;
1012 struct tvpd_page83 vpdpage83data;
1013
1014 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1015
1016 memset(((u8 *)&vpdpage83data), 0,
1017 sizeof(vpdpage83data));
1018
1019 /* DIRECT_ACCESS_DEVIC */
1020 vpdpage83data.DeviceType = 0;
1021 /* DEVICE_CONNECTED */
1022 vpdpage83data.DeviceTypeQualifier = 0;
1023 /* VPD_DEVICE_IDENTIFIERS */
1024 vpdpage83data.PageCode = 0x83;
1025 vpdpage83data.reserved = 0;
1026 vpdpage83data.PageLength =
1027 sizeof(vpdpage83data.type1) +
1028 sizeof(vpdpage83data.type2);
1029
1030 /* VPD 83 Type 3 is not supported for ARC */
1031 if (dev->sa_firmware)
1032 vpdpage83data.PageLength +=
1033 sizeof(vpdpage83data.type3);
1034
1035 /* T10 Vendor Identifier Field Format */
1036 /* VpdcodesetAscii */
1037 vpdpage83data.type1.codeset = 2;
1038 /* VpdIdentifierTypeVendorId */
1039 vpdpage83data.type1.identifiertype = 1;
1040 vpdpage83data.type1.identifierlength =
1041 sizeof(vpdpage83data.type1) - 4;
1042
1043 /* "ADAPTEC " for adaptec */
1044 memcpy(vpdpage83data.type1.venid,
1045 "ADAPTEC ",
1046 sizeof(vpdpage83data.type1.venid));
1047 memcpy(vpdpage83data.type1.productid,
1048 "ARRAY ",
1049 sizeof(
1050 vpdpage83data.type1.productid));
1051
1052 /* Convert to ascii based serial number.
1053 * The LSB is the the end.
1054 */
1055 for (i = 0; i < 8; i++) {
1056 u8 temp =
1057 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1058 if (temp > 0x9) {
1059 vpdpage83data.type1.serialnumber[i] =
1060 'A' + (temp - 0xA);
1061 } else {
1062 vpdpage83data.type1.serialnumber[i] =
1063 '0' + temp;
1064 }
1065 }
1066
1067 /* VpdCodeSetBinary */
1068 vpdpage83data.type2.codeset = 1;
1069 /* VpdidentifiertypeEUI64 */
1070 vpdpage83data.type2.identifiertype = 2;
1071 vpdpage83data.type2.identifierlength =
1072 sizeof(vpdpage83data.type2) - 4;
1073
1074 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1075 vpdpage83data.type2.eu64id.venid[1] = 0;
1076 vpdpage83data.type2.eu64id.venid[2] = 0;
1077
1078 vpdpage83data.type2.eu64id.Serial =
1079 get_serial_reply->uid;
1080 vpdpage83data.type2.eu64id.reserved = 0;
1081
1082 /*
1083 * VpdIdentifierTypeFCPHName
1084 * VPD 0x83 Type 3 not supported for ARC
1085 */
1086 if (dev->sa_firmware) {
1087 build_vpd83_type3(&vpdpage83data,
1088 dev, scsicmd);
1089 }
1090
1091 /* Move the inquiry data to the response buffer. */
1092 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1093 sizeof(vpdpage83data));
1094 } else {
1095 /* It must be for VPD 0x80 */
1096 char sp[13];
1097 /* EVPD bit set */
1098 sp[0] = INQD_PDT_DA;
1099 sp[1] = scsicmd->cmnd[2];
1100 sp[2] = 0;
1101 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1102 le32_to_cpu(get_serial_reply->uid));
1103 scsi_sg_copy_from_buffer(scsicmd, sp,
1104 sizeof(sp));
1105 }
1106 }
1107
1108 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
1109
1110 aac_fib_complete(fibptr);
1111 aac_scsi_done(scsicmd);
1112 }
1113
1114 /*
1115 * aac_get_container_serial - get container serial, none blocking.
1116 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)1117 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1118 {
1119 int status;
1120 struct aac_get_serial *dinfo;
1121 struct fib * cmd_fibcontext;
1122 struct aac_dev * dev;
1123
1124 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1125
1126 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1127
1128 aac_fib_init(cmd_fibcontext);
1129 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1130
1131 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1132 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1133 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1134 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
1135
1136 status = aac_fib_send(ContainerCommand,
1137 cmd_fibcontext,
1138 sizeof(struct aac_get_serial_resp),
1139 FsaNormal,
1140 0, 1,
1141 (fib_callback) get_container_serial_callback,
1142 (void *) scsicmd);
1143
1144 /*
1145 * Check that the command queued to the controller
1146 */
1147 if (status == -EINPROGRESS)
1148 return 0;
1149
1150 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1151 aac_fib_complete(cmd_fibcontext);
1152 return -1;
1153 }
1154
1155 /* Function: setinqserial
1156 *
1157 * Arguments: [1] pointer to void [1] int
1158 *
1159 * Purpose: Sets SCSI Unit Serial number.
1160 * This is a fake. We should read a proper
1161 * serial number from the container. <SuSE>But
1162 * without docs it's quite hard to do it :-)
1163 * So this will have to do in the meantime.</SuSE>
1164 */
1165
setinqserial(struct aac_dev * dev,void * data,int cid)1166 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1167 {
1168 /*
1169 * This breaks array migration.
1170 */
1171 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1172 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1173 }
1174
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)1175 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1176 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1177 {
1178 u8 *sense_buf = (u8 *)sense_data;
1179 /* Sense data valid, err code 70h */
1180 sense_buf[0] = 0x70; /* No info field */
1181 sense_buf[1] = 0; /* Segment number, always zero */
1182
1183 sense_buf[2] = sense_key; /* Sense key */
1184
1185 sense_buf[12] = sense_code; /* Additional sense code */
1186 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1187
1188 if (sense_key == ILLEGAL_REQUEST) {
1189 sense_buf[7] = 10; /* Additional sense length */
1190
1191 sense_buf[15] = bit_pointer;
1192 /* Illegal parameter is in the parameter block */
1193 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1194 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1195 /* Illegal parameter is in the CDB block */
1196 sense_buf[16] = field_pointer >> 8; /* MSB */
1197 sense_buf[17] = field_pointer; /* LSB */
1198 } else
1199 sense_buf[7] = 6; /* Additional sense length */
1200 }
1201
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1202 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1203 {
1204 if (lba & 0xffffffff00000000LL) {
1205 int cid = scmd_id(cmd);
1206 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1207 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
1208 set_sense(&dev->fsa_dev[cid].sense_data,
1209 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1210 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1211 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1212 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1213 SCSI_SENSE_BUFFERSIZE));
1214 aac_scsi_done(cmd);
1215 return 1;
1216 }
1217 return 0;
1218 }
1219
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1220 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1221 {
1222 return 0;
1223 }
1224
1225 static void io_callback(void *context, struct fib * fibptr);
1226
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1227 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1228 {
1229 struct aac_dev *dev = fib->dev;
1230 u16 fibsize, command;
1231 long ret;
1232
1233 aac_fib_init(fib);
1234 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1235 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1236 !dev->sync_mode) {
1237 struct aac_raw_io2 *readcmd2;
1238 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1239 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1240 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1241 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1242 readcmd2->byteCount = cpu_to_le32(count *
1243 dev->fsa_dev[scmd_id(cmd)].block_size);
1244 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1245 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1246 ret = aac_build_sgraw2(cmd, readcmd2,
1247 dev->scsi_host_ptr->sg_tablesize);
1248 if (ret < 0)
1249 return ret;
1250 command = ContainerRawIo2;
1251 fibsize = struct_size(readcmd2, sge,
1252 le32_to_cpu(readcmd2->sgeCnt));
1253 } else {
1254 struct aac_raw_io *readcmd;
1255 readcmd = (struct aac_raw_io *) fib_data(fib);
1256 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1257 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1258 readcmd->count = cpu_to_le32(count *
1259 dev->fsa_dev[scmd_id(cmd)].block_size);
1260 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1261 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1262 readcmd->bpTotal = 0;
1263 readcmd->bpComplete = 0;
1264 ret = aac_build_sgraw(cmd, &readcmd->sg);
1265 if (ret < 0)
1266 return ret;
1267 command = ContainerRawIo;
1268 fibsize = sizeof(struct aac_raw_io) +
1269 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1270 }
1271
1272 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1273 /*
1274 * Now send the Fib to the adapter
1275 */
1276 return aac_fib_send(command,
1277 fib,
1278 fibsize,
1279 FsaNormal,
1280 0, 1,
1281 (fib_callback) io_callback,
1282 (void *) cmd);
1283 }
1284
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1285 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1286 {
1287 u16 fibsize;
1288 struct aac_read64 *readcmd;
1289 long ret;
1290
1291 aac_fib_init(fib);
1292 readcmd = (struct aac_read64 *) fib_data(fib);
1293 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1294 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1295 readcmd->sector_count = cpu_to_le16(count);
1296 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1297 readcmd->pad = 0;
1298 readcmd->flags = 0;
1299
1300 ret = aac_build_sg64(cmd, &readcmd->sg);
1301 if (ret < 0)
1302 return ret;
1303 fibsize = sizeof(struct aac_read64) +
1304 ((le32_to_cpu(readcmd->sg.count) - 1) *
1305 sizeof (struct sgentry64));
1306 BUG_ON (fibsize > (fib->dev->max_fib_size -
1307 sizeof(struct aac_fibhdr)));
1308 /*
1309 * Now send the Fib to the adapter
1310 */
1311 return aac_fib_send(ContainerCommand64,
1312 fib,
1313 fibsize,
1314 FsaNormal,
1315 0, 1,
1316 (fib_callback) io_callback,
1317 (void *) cmd);
1318 }
1319
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1320 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1321 {
1322 u16 fibsize;
1323 struct aac_read *readcmd;
1324 struct aac_dev *dev = fib->dev;
1325 long ret;
1326
1327 aac_fib_init(fib);
1328 readcmd = (struct aac_read *) fib_data(fib);
1329 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1330 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1331 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1332 readcmd->count = cpu_to_le32(count *
1333 dev->fsa_dev[scmd_id(cmd)].block_size);
1334
1335 ret = aac_build_sg(cmd, &readcmd->sg);
1336 if (ret < 0)
1337 return ret;
1338 fibsize = sizeof(struct aac_read) +
1339 ((le32_to_cpu(readcmd->sg.count) - 1) *
1340 sizeof (struct sgentry));
1341 BUG_ON (fibsize > (fib->dev->max_fib_size -
1342 sizeof(struct aac_fibhdr)));
1343 /*
1344 * Now send the Fib to the adapter
1345 */
1346 return aac_fib_send(ContainerCommand,
1347 fib,
1348 fibsize,
1349 FsaNormal,
1350 0, 1,
1351 (fib_callback) io_callback,
1352 (void *) cmd);
1353 }
1354
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1355 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1356 {
1357 struct aac_dev *dev = fib->dev;
1358 u16 fibsize, command;
1359 long ret;
1360
1361 aac_fib_init(fib);
1362 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1363 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1364 !dev->sync_mode) {
1365 struct aac_raw_io2 *writecmd2;
1366 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1367 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1368 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1369 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1370 writecmd2->byteCount = cpu_to_le32(count *
1371 dev->fsa_dev[scmd_id(cmd)].block_size);
1372 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1373 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1374 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1375 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1376 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1377 ret = aac_build_sgraw2(cmd, writecmd2,
1378 dev->scsi_host_ptr->sg_tablesize);
1379 if (ret < 0)
1380 return ret;
1381 command = ContainerRawIo2;
1382 fibsize = struct_size(writecmd2, sge,
1383 le32_to_cpu(writecmd2->sgeCnt));
1384 } else {
1385 struct aac_raw_io *writecmd;
1386 writecmd = (struct aac_raw_io *) fib_data(fib);
1387 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1388 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1389 writecmd->count = cpu_to_le32(count *
1390 dev->fsa_dev[scmd_id(cmd)].block_size);
1391 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1392 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1393 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1394 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1395 cpu_to_le16(RIO_TYPE_WRITE);
1396 writecmd->bpTotal = 0;
1397 writecmd->bpComplete = 0;
1398 ret = aac_build_sgraw(cmd, &writecmd->sg);
1399 if (ret < 0)
1400 return ret;
1401 command = ContainerRawIo;
1402 fibsize = sizeof(struct aac_raw_io) +
1403 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1404 }
1405
1406 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1407 /*
1408 * Now send the Fib to the adapter
1409 */
1410 return aac_fib_send(command,
1411 fib,
1412 fibsize,
1413 FsaNormal,
1414 0, 1,
1415 (fib_callback) io_callback,
1416 (void *) cmd);
1417 }
1418
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1419 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1420 {
1421 u16 fibsize;
1422 struct aac_write64 *writecmd;
1423 long ret;
1424
1425 aac_fib_init(fib);
1426 writecmd = (struct aac_write64 *) fib_data(fib);
1427 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1428 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1429 writecmd->sector_count = cpu_to_le16(count);
1430 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1431 writecmd->pad = 0;
1432 writecmd->flags = 0;
1433
1434 ret = aac_build_sg64(cmd, &writecmd->sg);
1435 if (ret < 0)
1436 return ret;
1437 fibsize = sizeof(struct aac_write64) +
1438 ((le32_to_cpu(writecmd->sg.count) - 1) *
1439 sizeof (struct sgentry64));
1440 BUG_ON (fibsize > (fib->dev->max_fib_size -
1441 sizeof(struct aac_fibhdr)));
1442 /*
1443 * Now send the Fib to the adapter
1444 */
1445 return aac_fib_send(ContainerCommand64,
1446 fib,
1447 fibsize,
1448 FsaNormal,
1449 0, 1,
1450 (fib_callback) io_callback,
1451 (void *) cmd);
1452 }
1453
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1454 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1455 {
1456 u16 fibsize;
1457 struct aac_write *writecmd;
1458 struct aac_dev *dev = fib->dev;
1459 long ret;
1460
1461 aac_fib_init(fib);
1462 writecmd = (struct aac_write *) fib_data(fib);
1463 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1464 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1465 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1466 writecmd->count = cpu_to_le32(count *
1467 dev->fsa_dev[scmd_id(cmd)].block_size);
1468 writecmd->sg.count = cpu_to_le32(1);
1469 /* ->stable is not used - it did mean which type of write */
1470
1471 ret = aac_build_sg(cmd, &writecmd->sg);
1472 if (ret < 0)
1473 return ret;
1474 fibsize = sizeof(struct aac_write) +
1475 ((le32_to_cpu(writecmd->sg.count) - 1) *
1476 sizeof (struct sgentry));
1477 BUG_ON (fibsize > (fib->dev->max_fib_size -
1478 sizeof(struct aac_fibhdr)));
1479 /*
1480 * Now send the Fib to the adapter
1481 */
1482 return aac_fib_send(ContainerCommand,
1483 fib,
1484 fibsize,
1485 FsaNormal,
1486 0, 1,
1487 (fib_callback) io_callback,
1488 (void *) cmd);
1489 }
1490
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1491 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1492 {
1493 struct aac_srb * srbcmd;
1494 u32 flag;
1495 u32 timeout;
1496 struct aac_dev *dev = fib->dev;
1497
1498 aac_fib_init(fib);
1499 switch(cmd->sc_data_direction){
1500 case DMA_TO_DEVICE:
1501 flag = SRB_DataOut;
1502 break;
1503 case DMA_BIDIRECTIONAL:
1504 flag = SRB_DataIn | SRB_DataOut;
1505 break;
1506 case DMA_FROM_DEVICE:
1507 flag = SRB_DataIn;
1508 break;
1509 case DMA_NONE:
1510 default: /* shuts up some versions of gcc */
1511 flag = SRB_NoDataXfer;
1512 break;
1513 }
1514
1515 srbcmd = (struct aac_srb*) fib_data(fib);
1516 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1517 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1518 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1519 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1520 srbcmd->flags = cpu_to_le32(flag);
1521 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ;
1522 if (timeout == 0)
1523 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT);
1524 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1525 srbcmd->retry_limit = 0; /* Obsolete parameter */
1526 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1527 return srbcmd;
1528 }
1529
aac_construct_hbacmd(struct fib * fib,struct scsi_cmnd * cmd)1530 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1531 struct scsi_cmnd *cmd)
1532 {
1533 struct aac_hba_cmd_req *hbacmd;
1534 struct aac_dev *dev;
1535 int bus, target;
1536 u64 address;
1537
1538 dev = (struct aac_dev *)cmd->device->host->hostdata;
1539
1540 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1541 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1542 /* iu_type is a parameter of aac_hba_send */
1543 switch (cmd->sc_data_direction) {
1544 case DMA_TO_DEVICE:
1545 hbacmd->byte1 = 2;
1546 break;
1547 case DMA_FROM_DEVICE:
1548 case DMA_BIDIRECTIONAL:
1549 hbacmd->byte1 = 1;
1550 break;
1551 case DMA_NONE:
1552 default:
1553 break;
1554 }
1555 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1556
1557 bus = aac_logical_to_phys(scmd_channel(cmd));
1558 target = scmd_id(cmd);
1559 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1560
1561 /* we fill in reply_qid later in aac_src_deliver_message */
1562 /* we fill in iu_type, request_id later in aac_hba_send */
1563 /* we fill in emb_data_desc_count later in aac_build_sghba */
1564
1565 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1566 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1567
1568 address = (u64)fib->hw_error_pa;
1569 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1570 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1571 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1572
1573 return hbacmd;
1574 }
1575
1576 static void aac_srb_callback(void *context, struct fib * fibptr);
1577
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1578 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1579 {
1580 u16 fibsize;
1581 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1582 long ret;
1583
1584 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1585 if (ret < 0)
1586 return ret;
1587 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1588
1589 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1590 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1591 /*
1592 * Build Scatter/Gather list
1593 */
1594 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1595 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1596 sizeof (struct sgentry64));
1597 BUG_ON (fibsize > (fib->dev->max_fib_size -
1598 sizeof(struct aac_fibhdr)));
1599
1600 /*
1601 * Now send the Fib to the adapter
1602 */
1603 return aac_fib_send(ScsiPortCommand64, fib,
1604 fibsize, FsaNormal, 0, 1,
1605 (fib_callback) aac_srb_callback,
1606 (void *) cmd);
1607 }
1608
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1609 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1610 {
1611 u16 fibsize;
1612 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1613 long ret;
1614
1615 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1616 if (ret < 0)
1617 return ret;
1618 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1619
1620 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1621 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1622 /*
1623 * Build Scatter/Gather list
1624 */
1625 fibsize = sizeof (struct aac_srb) +
1626 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1627 sizeof (struct sgentry));
1628 BUG_ON (fibsize > (fib->dev->max_fib_size -
1629 sizeof(struct aac_fibhdr)));
1630
1631 /*
1632 * Now send the Fib to the adapter
1633 */
1634 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1635 (fib_callback) aac_srb_callback, (void *) cmd);
1636 }
1637
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1638 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1639 {
1640 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1641 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1642 return FAILED;
1643 return aac_scsi_32(fib, cmd);
1644 }
1645
aac_adapter_hba(struct fib * fib,struct scsi_cmnd * cmd)1646 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1647 {
1648 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1649 struct aac_dev *dev;
1650 long ret;
1651
1652 dev = (struct aac_dev *)cmd->device->host->hostdata;
1653
1654 ret = aac_build_sghba(cmd, hbacmd,
1655 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1656 if (ret < 0)
1657 return ret;
1658
1659 /*
1660 * Now send the HBA command to the adapter
1661 */
1662 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1663 sizeof(struct aac_hba_sgl);
1664
1665 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1666 (fib_callback) aac_hba_callback,
1667 (void *) cmd);
1668 }
1669
aac_send_safw_bmic_cmd(struct aac_dev * dev,struct aac_srb_unit * srbu,void * xfer_buf,int xfer_len)1670 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1671 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1672 {
1673 struct fib *fibptr;
1674 dma_addr_t addr;
1675 int rcode;
1676 int fibsize;
1677 struct aac_srb *srb;
1678 struct aac_srb_reply *srb_reply;
1679 struct sgmap64 *sg64;
1680 u32 vbus;
1681 u32 vid;
1682
1683 if (!dev->sa_firmware)
1684 return 0;
1685
1686 /* allocate FIB */
1687 fibptr = aac_fib_alloc(dev);
1688 if (!fibptr)
1689 return -ENOMEM;
1690
1691 aac_fib_init(fibptr);
1692 fibptr->hw_fib_va->header.XferState &=
1693 ~cpu_to_le32(FastResponseCapable);
1694
1695 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1696 sizeof(struct sgentry64);
1697
1698 /* allocate DMA buffer for response */
1699 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1700 DMA_BIDIRECTIONAL);
1701 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1702 rcode = -ENOMEM;
1703 goto fib_error;
1704 }
1705
1706 srb = fib_data(fibptr);
1707 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1708
1709 vbus = (u32)le16_to_cpu(
1710 dev->supplement_adapter_info.virt_device_bus);
1711 vid = (u32)le16_to_cpu(
1712 dev->supplement_adapter_info.virt_device_target);
1713
1714 /* set the common request fields */
1715 srb->channel = cpu_to_le32(vbus);
1716 srb->id = cpu_to_le32(vid);
1717 srb->lun = 0;
1718 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1719 srb->timeout = 0;
1720 srb->retry_limit = 0;
1721 srb->cdb_size = cpu_to_le32(16);
1722 srb->count = cpu_to_le32(xfer_len);
1723
1724 sg64 = (struct sgmap64 *)&srb->sg;
1725 sg64->count = cpu_to_le32(1);
1726 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1727 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1728 sg64->sg[0].count = cpu_to_le32(xfer_len);
1729
1730 /*
1731 * Copy the updated data for other dumping or other usage if needed
1732 */
1733 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1734
1735 /* issue request to the controller */
1736 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1737 1, 1, NULL, NULL);
1738
1739 if (rcode == -ERESTARTSYS)
1740 rcode = -ERESTART;
1741
1742 if (unlikely(rcode < 0))
1743 goto bmic_error;
1744
1745 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1746 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1747
1748 bmic_error:
1749 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1750 fib_error:
1751 aac_fib_complete(fibptr);
1752 aac_fib_free(fibptr);
1753 return rcode;
1754 }
1755
aac_set_safw_target_qd(struct aac_dev * dev,int bus,int target)1756 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1757 {
1758
1759 struct aac_ciss_identify_pd *identify_resp;
1760
1761 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1762 return;
1763
1764 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1765 if (identify_resp == NULL) {
1766 dev->hba_map[bus][target].qd_limit = 32;
1767 return;
1768 }
1769
1770 if (identify_resp->current_queue_depth_limit <= 0 ||
1771 identify_resp->current_queue_depth_limit > 255)
1772 dev->hba_map[bus][target].qd_limit = 32;
1773 else
1774 dev->hba_map[bus][target].qd_limit =
1775 identify_resp->current_queue_depth_limit;
1776 }
1777
aac_issue_safw_bmic_identify(struct aac_dev * dev,struct aac_ciss_identify_pd ** identify_resp,u32 bus,u32 target)1778 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1779 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1780 {
1781 int rcode = -ENOMEM;
1782 int datasize;
1783 struct aac_srb_unit srbu;
1784 struct aac_srb *srbcmd;
1785 struct aac_ciss_identify_pd *identify_reply;
1786
1787 datasize = sizeof(struct aac_ciss_identify_pd);
1788 identify_reply = kmalloc(datasize, GFP_KERNEL);
1789 if (!identify_reply)
1790 goto out;
1791
1792 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1793
1794 srbcmd = &srbu.srb;
1795 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1796 srbcmd->cdb[0] = 0x26;
1797 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1798 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1799
1800 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1801 if (unlikely(rcode < 0))
1802 goto mem_free_all;
1803
1804 *identify_resp = identify_reply;
1805
1806 out:
1807 return rcode;
1808 mem_free_all:
1809 kfree(identify_reply);
1810 goto out;
1811 }
1812
aac_free_safw_ciss_luns(struct aac_dev * dev)1813 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1814 {
1815 kfree(dev->safw_phys_luns);
1816 dev->safw_phys_luns = NULL;
1817 }
1818
1819 /**
1820 * aac_get_safw_ciss_luns() - Process topology change
1821 * @dev: aac_dev structure
1822 *
1823 * Execute a CISS REPORT PHYS LUNS and process the results into
1824 * the current hba_map.
1825 */
aac_get_safw_ciss_luns(struct aac_dev * dev)1826 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1827 {
1828 int rcode = -ENOMEM;
1829 int datasize;
1830 struct aac_srb *srbcmd;
1831 struct aac_srb_unit srbu;
1832 struct aac_ciss_phys_luns_resp *phys_luns;
1833
1834 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1835 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1836 phys_luns = kmalloc(datasize, GFP_KERNEL);
1837 if (phys_luns == NULL)
1838 goto out;
1839
1840 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1841
1842 srbcmd = &srbu.srb;
1843 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1844 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1845 srbcmd->cdb[1] = 2; /* extended reporting */
1846 srbcmd->cdb[8] = (u8)(datasize >> 8);
1847 srbcmd->cdb[9] = (u8)(datasize);
1848
1849 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1850 if (unlikely(rcode < 0))
1851 goto mem_free_all;
1852
1853 if (phys_luns->resp_flag != 2) {
1854 rcode = -ENOMSG;
1855 goto mem_free_all;
1856 }
1857
1858 dev->safw_phys_luns = phys_luns;
1859
1860 out:
1861 return rcode;
1862 mem_free_all:
1863 kfree(phys_luns);
1864 goto out;
1865 }
1866
aac_get_safw_phys_lun_count(struct aac_dev * dev)1867 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1868 {
1869 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1870 }
1871
aac_get_safw_phys_bus(struct aac_dev * dev,int lun)1872 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1873 {
1874 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1875 }
1876
aac_get_safw_phys_target(struct aac_dev * dev,int lun)1877 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1878 {
1879 return dev->safw_phys_luns->lun[lun].level2[0];
1880 }
1881
aac_get_safw_phys_expose_flag(struct aac_dev * dev,int lun)1882 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1883 {
1884 return dev->safw_phys_luns->lun[lun].bus >> 6;
1885 }
1886
aac_get_safw_phys_attribs(struct aac_dev * dev,int lun)1887 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1888 {
1889 return dev->safw_phys_luns->lun[lun].node_ident[9];
1890 }
1891
aac_get_safw_phys_nexus(struct aac_dev * dev,int lun)1892 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1893 {
1894 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1895 }
1896
aac_free_safw_identify_resp(struct aac_dev * dev,int bus,int target)1897 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1898 int bus, int target)
1899 {
1900 kfree(dev->hba_map[bus][target].safw_identify_resp);
1901 dev->hba_map[bus][target].safw_identify_resp = NULL;
1902 }
1903
aac_free_safw_all_identify_resp(struct aac_dev * dev,int lun_count)1904 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1905 int lun_count)
1906 {
1907 int luns;
1908 int i;
1909 u32 bus;
1910 u32 target;
1911
1912 luns = aac_get_safw_phys_lun_count(dev);
1913
1914 if (luns < lun_count)
1915 lun_count = luns;
1916 else if (lun_count < 0)
1917 lun_count = luns;
1918
1919 for (i = 0; i < lun_count; i++) {
1920 bus = aac_get_safw_phys_bus(dev, i);
1921 target = aac_get_safw_phys_target(dev, i);
1922
1923 aac_free_safw_identify_resp(dev, bus, target);
1924 }
1925 }
1926
aac_get_safw_attr_all_targets(struct aac_dev * dev)1927 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1928 {
1929 int i;
1930 int rcode = 0;
1931 u32 lun_count;
1932 u32 bus;
1933 u32 target;
1934 struct aac_ciss_identify_pd *identify_resp = NULL;
1935
1936 lun_count = aac_get_safw_phys_lun_count(dev);
1937
1938 for (i = 0; i < lun_count; ++i) {
1939
1940 bus = aac_get_safw_phys_bus(dev, i);
1941 target = aac_get_safw_phys_target(dev, i);
1942
1943 rcode = aac_issue_safw_bmic_identify(dev,
1944 &identify_resp, bus, target);
1945
1946 if (unlikely(rcode < 0))
1947 goto free_identify_resp;
1948
1949 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1950 }
1951
1952 out:
1953 return rcode;
1954 free_identify_resp:
1955 aac_free_safw_all_identify_resp(dev, i);
1956 goto out;
1957 }
1958
1959 /**
1960 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1961 * @dev: aac_dev structure
1962 *
1963 * Update our hba map with the information gathered from the FW
1964 */
aac_set_safw_attr_all_targets(struct aac_dev * dev)1965 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1966 {
1967 /* ok and extended reporting */
1968 u32 lun_count, nexus;
1969 u32 i, bus, target;
1970 u8 expose_flag, attribs;
1971
1972 lun_count = aac_get_safw_phys_lun_count(dev);
1973
1974 dev->scan_counter++;
1975
1976 for (i = 0; i < lun_count; ++i) {
1977
1978 bus = aac_get_safw_phys_bus(dev, i);
1979 target = aac_get_safw_phys_target(dev, i);
1980 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1981 attribs = aac_get_safw_phys_attribs(dev, i);
1982 nexus = aac_get_safw_phys_nexus(dev, i);
1983
1984 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1985 continue;
1986
1987 if (expose_flag != 0) {
1988 dev->hba_map[bus][target].devtype =
1989 AAC_DEVTYPE_RAID_MEMBER;
1990 continue;
1991 }
1992
1993 if (nexus != 0 && (attribs & 8)) {
1994 dev->hba_map[bus][target].devtype =
1995 AAC_DEVTYPE_NATIVE_RAW;
1996 dev->hba_map[bus][target].rmw_nexus =
1997 nexus;
1998 } else
1999 dev->hba_map[bus][target].devtype =
2000 AAC_DEVTYPE_ARC_RAW;
2001
2002 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2003
2004 aac_set_safw_target_qd(dev, bus, target);
2005 }
2006 }
2007
aac_setup_safw_targets(struct aac_dev * dev)2008 static int aac_setup_safw_targets(struct aac_dev *dev)
2009 {
2010 int rcode = 0;
2011
2012 rcode = aac_get_containers(dev);
2013 if (unlikely(rcode < 0))
2014 goto out;
2015
2016 rcode = aac_get_safw_ciss_luns(dev);
2017 if (unlikely(rcode < 0))
2018 goto out;
2019
2020 rcode = aac_get_safw_attr_all_targets(dev);
2021 if (unlikely(rcode < 0))
2022 goto free_ciss_luns;
2023
2024 aac_set_safw_attr_all_targets(dev);
2025
2026 aac_free_safw_all_identify_resp(dev, -1);
2027 free_ciss_luns:
2028 aac_free_safw_ciss_luns(dev);
2029 out:
2030 return rcode;
2031 }
2032
aac_setup_safw_adapter(struct aac_dev * dev)2033 int aac_setup_safw_adapter(struct aac_dev *dev)
2034 {
2035 return aac_setup_safw_targets(dev);
2036 }
2037
aac_get_adapter_info(struct aac_dev * dev)2038 int aac_get_adapter_info(struct aac_dev* dev)
2039 {
2040 struct fib* fibptr;
2041 int rcode;
2042 u32 tmp, bus, target;
2043 struct aac_adapter_info *info;
2044 struct aac_bus_info *command;
2045 struct aac_bus_info_response *bus_info;
2046
2047 if (!(fibptr = aac_fib_alloc(dev)))
2048 return -ENOMEM;
2049
2050 aac_fib_init(fibptr);
2051 info = (struct aac_adapter_info *) fib_data(fibptr);
2052 memset(info,0,sizeof(*info));
2053
2054 rcode = aac_fib_send(RequestAdapterInfo,
2055 fibptr,
2056 sizeof(*info),
2057 FsaNormal,
2058 -1, 1, /* First `interrupt' command uses special wait */
2059 NULL,
2060 NULL);
2061
2062 if (rcode < 0) {
2063 /* FIB should be freed only after
2064 * getting the response from the F/W */
2065 if (rcode != -ERESTARTSYS) {
2066 aac_fib_complete(fibptr);
2067 aac_fib_free(fibptr);
2068 }
2069 return rcode;
2070 }
2071 memcpy(&dev->adapter_info, info, sizeof(*info));
2072
2073 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2074 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2075 struct aac_supplement_adapter_info * sinfo;
2076
2077 aac_fib_init(fibptr);
2078
2079 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2080
2081 memset(sinfo,0,sizeof(*sinfo));
2082
2083 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2084 fibptr,
2085 sizeof(*sinfo),
2086 FsaNormal,
2087 1, 1,
2088 NULL,
2089 NULL);
2090
2091 if (rcode >= 0)
2092 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2093 if (rcode == -ERESTARTSYS) {
2094 fibptr = aac_fib_alloc(dev);
2095 if (!fibptr)
2096 return -ENOMEM;
2097 }
2098
2099 }
2100
2101 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2102 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2103 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2104 dev->hba_map[bus][target].devtype = 0;
2105 dev->hba_map[bus][target].qd_limit = 0;
2106 }
2107 }
2108
2109 /*
2110 * GetBusInfo
2111 */
2112
2113 aac_fib_init(fibptr);
2114
2115 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2116
2117 memset(bus_info, 0, sizeof(*bus_info));
2118
2119 command = (struct aac_bus_info *)bus_info;
2120
2121 command->Command = cpu_to_le32(VM_Ioctl);
2122 command->ObjType = cpu_to_le32(FT_DRIVE);
2123 command->MethodId = cpu_to_le32(1);
2124 command->CtlCmd = cpu_to_le32(GetBusInfo);
2125
2126 rcode = aac_fib_send(ContainerCommand,
2127 fibptr,
2128 sizeof (*bus_info),
2129 FsaNormal,
2130 1, 1,
2131 NULL, NULL);
2132
2133 /* reasoned default */
2134 dev->maximum_num_physicals = 16;
2135 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2136 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2137 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2138 }
2139
2140 if (!dev->in_reset) {
2141 char buffer[16];
2142 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2143 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2144 dev->name,
2145 dev->id,
2146 tmp>>24,
2147 (tmp>>16)&0xff,
2148 tmp&0xff,
2149 le32_to_cpu(dev->adapter_info.kernelbuild),
2150 (int)sizeof(dev->supplement_adapter_info.build_date),
2151 dev->supplement_adapter_info.build_date);
2152 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2153 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2154 dev->name, dev->id,
2155 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2156 le32_to_cpu(dev->adapter_info.monitorbuild));
2157 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2158 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2159 dev->name, dev->id,
2160 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2161 le32_to_cpu(dev->adapter_info.biosbuild));
2162 buffer[0] = '\0';
2163 if (aac_get_serial_number(
2164 shost_to_class(dev->scsi_host_ptr), buffer))
2165 printk(KERN_INFO "%s%d: serial %s",
2166 dev->name, dev->id, buffer);
2167 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2168 printk(KERN_INFO "%s%d: TSID %.*s\n",
2169 dev->name, dev->id,
2170 (int)sizeof(dev->supplement_adapter_info
2171 .vpd_info.tsid),
2172 dev->supplement_adapter_info.vpd_info.tsid);
2173 }
2174 if (!aac_check_reset || ((aac_check_reset == 1) &&
2175 (dev->supplement_adapter_info.supported_options2 &
2176 AAC_OPTION_IGNORE_RESET))) {
2177 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2178 dev->name, dev->id);
2179 }
2180 }
2181
2182 dev->cache_protected = 0;
2183 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2184 AAC_FEATURE_JBOD) != 0);
2185 dev->nondasd_support = 0;
2186 dev->raid_scsi_mode = 0;
2187 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2188 dev->nondasd_support = 1;
2189
2190 /*
2191 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2192 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2193 * force nondasd support on. If we decide to allow the non-dasd flag
2194 * additional changes changes will have to be made to support
2195 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2196 * changed to support the new dev->raid_scsi_mode flag instead of
2197 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2198 * function aac_detect will have to be modified where it sets up the
2199 * max number of channels based on the aac->nondasd_support flag only.
2200 */
2201 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2202 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2203 dev->nondasd_support = 1;
2204 dev->raid_scsi_mode = 1;
2205 }
2206 if (dev->raid_scsi_mode != 0)
2207 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2208 dev->name, dev->id);
2209
2210 if (nondasd != -1)
2211 dev->nondasd_support = (nondasd!=0);
2212 if (dev->nondasd_support && !dev->in_reset)
2213 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2214
2215 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2216 dev->needs_dac = 1;
2217 dev->dac_support = 0;
2218 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2219 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2220 if (!dev->in_reset)
2221 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2222 dev->name, dev->id);
2223 dev->dac_support = 1;
2224 }
2225
2226 if(dacmode != -1) {
2227 dev->dac_support = (dacmode!=0);
2228 }
2229
2230 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2231 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2232 & AAC_QUIRK_SCSI_32)) {
2233 dev->nondasd_support = 0;
2234 dev->jbod = 0;
2235 expose_physicals = 0;
2236 }
2237
2238 if (dev->dac_support) {
2239 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) {
2240 if (!dev->in_reset)
2241 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2242 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) {
2243 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2244 dev->dac_support = 0;
2245 } else {
2246 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2247 rcode = -ENOMEM;
2248 }
2249 }
2250 /*
2251 * Deal with configuring for the individualized limits of each packet
2252 * interface.
2253 */
2254 dev->a_ops.adapter_scsi = (dev->dac_support)
2255 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2256 ? aac_scsi_32_64
2257 : aac_scsi_64)
2258 : aac_scsi_32;
2259 if (dev->raw_io_interface) {
2260 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2261 ? aac_bounds_64
2262 : aac_bounds_32;
2263 dev->a_ops.adapter_read = aac_read_raw_io;
2264 dev->a_ops.adapter_write = aac_write_raw_io;
2265 } else {
2266 dev->a_ops.adapter_bounds = aac_bounds_32;
2267 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2268 sizeof(struct aac_fibhdr) -
2269 sizeof(struct aac_write) + sizeof(struct sgentry)) /
2270 sizeof(struct sgentry);
2271 if (dev->dac_support) {
2272 dev->a_ops.adapter_read = aac_read_block64;
2273 dev->a_ops.adapter_write = aac_write_block64;
2274 /*
2275 * 38 scatter gather elements
2276 */
2277 dev->scsi_host_ptr->sg_tablesize =
2278 (dev->max_fib_size -
2279 sizeof(struct aac_fibhdr) -
2280 sizeof(struct aac_write64) +
2281 sizeof(struct sgentry64)) /
2282 sizeof(struct sgentry64);
2283 } else {
2284 dev->a_ops.adapter_read = aac_read_block;
2285 dev->a_ops.adapter_write = aac_write_block;
2286 }
2287 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2288 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2289 /*
2290 * Worst case size that could cause sg overflow when
2291 * we break up SG elements that are larger than 64KB.
2292 * Would be nice if we could tell the SCSI layer what
2293 * the maximum SG element size can be. Worst case is
2294 * (sg_tablesize-1) 4KB elements with one 64KB
2295 * element.
2296 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2297 */
2298 dev->scsi_host_ptr->max_sectors =
2299 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2300 }
2301 }
2302 if (!dev->sync_mode && dev->sa_firmware &&
2303 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2304 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2305 HBA_MAX_SG_SEPARATE;
2306
2307 /* FIB should be freed only after getting the response from the F/W */
2308 if (rcode != -ERESTARTSYS) {
2309 aac_fib_complete(fibptr);
2310 aac_fib_free(fibptr);
2311 }
2312
2313 return rcode;
2314 }
2315
2316
io_callback(void * context,struct fib * fibptr)2317 static void io_callback(void *context, struct fib * fibptr)
2318 {
2319 struct aac_dev *dev;
2320 struct aac_read_reply *readreply;
2321 struct scsi_cmnd *scsicmd;
2322 u32 cid;
2323
2324 scsicmd = (struct scsi_cmnd *) context;
2325
2326 if (!aac_valid_context(scsicmd, fibptr))
2327 return;
2328
2329 dev = fibptr->dev;
2330 cid = scmd_id(scsicmd);
2331
2332 if (nblank(dprintk(x))) {
2333 u64 lba;
2334 switch (scsicmd->cmnd[0]) {
2335 case WRITE_6:
2336 case READ_6:
2337 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2338 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2339 break;
2340 case WRITE_16:
2341 case READ_16:
2342 lba = ((u64)scsicmd->cmnd[2] << 56) |
2343 ((u64)scsicmd->cmnd[3] << 48) |
2344 ((u64)scsicmd->cmnd[4] << 40) |
2345 ((u64)scsicmd->cmnd[5] << 32) |
2346 ((u64)scsicmd->cmnd[6] << 24) |
2347 (scsicmd->cmnd[7] << 16) |
2348 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2349 break;
2350 case WRITE_12:
2351 case READ_12:
2352 lba = ((u64)scsicmd->cmnd[2] << 24) |
2353 (scsicmd->cmnd[3] << 16) |
2354 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2355 break;
2356 default:
2357 lba = ((u64)scsicmd->cmnd[2] << 24) |
2358 (scsicmd->cmnd[3] << 16) |
2359 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2360 break;
2361 }
2362 printk(KERN_DEBUG
2363 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2364 smp_processor_id(), (unsigned long long)lba, jiffies);
2365 }
2366
2367 BUG_ON(fibptr == NULL);
2368
2369 scsi_dma_unmap(scsicmd);
2370
2371 readreply = (struct aac_read_reply *)fib_data(fibptr);
2372 switch (le32_to_cpu(readreply->status)) {
2373 case ST_OK:
2374 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2375 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2376 break;
2377 case ST_NOT_READY:
2378 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2379 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2380 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2381 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2382 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2383 SCSI_SENSE_BUFFERSIZE));
2384 break;
2385 case ST_MEDERR:
2386 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2387 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2388 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2389 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2390 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2391 SCSI_SENSE_BUFFERSIZE));
2392 break;
2393 default:
2394 #ifdef AAC_DETAILED_STATUS_INFO
2395 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2396 le32_to_cpu(readreply->status));
2397 #endif
2398 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2399 set_sense(&dev->fsa_dev[cid].sense_data,
2400 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2401 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2402 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2403 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2404 SCSI_SENSE_BUFFERSIZE));
2405 break;
2406 }
2407 aac_fib_complete(fibptr);
2408
2409 aac_scsi_done(scsicmd);
2410 }
2411
aac_read(struct scsi_cmnd * scsicmd)2412 static int aac_read(struct scsi_cmnd * scsicmd)
2413 {
2414 u64 lba;
2415 u32 count;
2416 int status;
2417 struct aac_dev *dev;
2418 struct fib * cmd_fibcontext;
2419 int cid;
2420
2421 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2422 /*
2423 * Get block address and transfer length
2424 */
2425 switch (scsicmd->cmnd[0]) {
2426 case READ_6:
2427 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2428
2429 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2430 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2431 count = scsicmd->cmnd[4];
2432
2433 if (count == 0)
2434 count = 256;
2435 break;
2436 case READ_16:
2437 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2438
2439 lba = ((u64)scsicmd->cmnd[2] << 56) |
2440 ((u64)scsicmd->cmnd[3] << 48) |
2441 ((u64)scsicmd->cmnd[4] << 40) |
2442 ((u64)scsicmd->cmnd[5] << 32) |
2443 ((u64)scsicmd->cmnd[6] << 24) |
2444 (scsicmd->cmnd[7] << 16) |
2445 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2446 count = (scsicmd->cmnd[10] << 24) |
2447 (scsicmd->cmnd[11] << 16) |
2448 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2449 break;
2450 case READ_12:
2451 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2452
2453 lba = ((u64)scsicmd->cmnd[2] << 24) |
2454 (scsicmd->cmnd[3] << 16) |
2455 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2456 count = (scsicmd->cmnd[6] << 24) |
2457 (scsicmd->cmnd[7] << 16) |
2458 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2459 break;
2460 default:
2461 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2462
2463 lba = ((u64)scsicmd->cmnd[2] << 24) |
2464 (scsicmd->cmnd[3] << 16) |
2465 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2466 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2467 break;
2468 }
2469
2470 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2471 cid = scmd_id(scsicmd);
2472 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2473 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2474 set_sense(&dev->fsa_dev[cid].sense_data,
2475 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2476 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2477 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2478 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2479 SCSI_SENSE_BUFFERSIZE));
2480 aac_scsi_done(scsicmd);
2481 return 0;
2482 }
2483
2484 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2485 smp_processor_id(), (unsigned long long)lba, jiffies));
2486 if (aac_adapter_bounds(dev,scsicmd,lba))
2487 return 0;
2488 /*
2489 * Alocate and initialize a Fib
2490 */
2491 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2492 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2493 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2494
2495 /*
2496 * Check that the command queued to the controller
2497 */
2498 if (status == -EINPROGRESS)
2499 return 0;
2500
2501 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2502 /*
2503 * For some reason, the Fib didn't queue, return QUEUE_FULL
2504 */
2505 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2506 aac_scsi_done(scsicmd);
2507 aac_fib_complete(cmd_fibcontext);
2508 aac_fib_free(cmd_fibcontext);
2509 return 0;
2510 }
2511
aac_write(struct scsi_cmnd * scsicmd)2512 static int aac_write(struct scsi_cmnd * scsicmd)
2513 {
2514 u64 lba;
2515 u32 count;
2516 int fua;
2517 int status;
2518 struct aac_dev *dev;
2519 struct fib * cmd_fibcontext;
2520 int cid;
2521
2522 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2523 /*
2524 * Get block address and transfer length
2525 */
2526 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2527 {
2528 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2529 count = scsicmd->cmnd[4];
2530 if (count == 0)
2531 count = 256;
2532 fua = 0;
2533 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2534 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2535
2536 lba = ((u64)scsicmd->cmnd[2] << 56) |
2537 ((u64)scsicmd->cmnd[3] << 48) |
2538 ((u64)scsicmd->cmnd[4] << 40) |
2539 ((u64)scsicmd->cmnd[5] << 32) |
2540 ((u64)scsicmd->cmnd[6] << 24) |
2541 (scsicmd->cmnd[7] << 16) |
2542 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2543 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2544 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2545 fua = scsicmd->cmnd[1] & 0x8;
2546 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2547 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2548
2549 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2550 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2551 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2552 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2553 fua = scsicmd->cmnd[1] & 0x8;
2554 } else {
2555 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2556 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2557 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2558 fua = scsicmd->cmnd[1] & 0x8;
2559 }
2560
2561 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2562 cid = scmd_id(scsicmd);
2563 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2564 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2565 set_sense(&dev->fsa_dev[cid].sense_data,
2566 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2567 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2568 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2569 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2570 SCSI_SENSE_BUFFERSIZE));
2571 aac_scsi_done(scsicmd);
2572 return 0;
2573 }
2574
2575 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2576 smp_processor_id(), (unsigned long long)lba, jiffies));
2577 if (aac_adapter_bounds(dev,scsicmd,lba))
2578 return 0;
2579 /*
2580 * Allocate and initialize a Fib then setup a BlockWrite command
2581 */
2582 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2583 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2584 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2585
2586 /*
2587 * Check that the command queued to the controller
2588 */
2589 if (status == -EINPROGRESS)
2590 return 0;
2591
2592 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2593 /*
2594 * For some reason, the Fib didn't queue, return QUEUE_FULL
2595 */
2596 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2597 aac_scsi_done(scsicmd);
2598
2599 aac_fib_complete(cmd_fibcontext);
2600 aac_fib_free(cmd_fibcontext);
2601 return 0;
2602 }
2603
synchronize_callback(void * context,struct fib * fibptr)2604 static void synchronize_callback(void *context, struct fib *fibptr)
2605 {
2606 struct aac_synchronize_reply *synchronizereply;
2607 struct scsi_cmnd *cmd = context;
2608
2609 if (!aac_valid_context(cmd, fibptr))
2610 return;
2611
2612 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2613 smp_processor_id(), jiffies));
2614 BUG_ON(fibptr == NULL);
2615
2616
2617 synchronizereply = fib_data(fibptr);
2618 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2619 cmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2620 else {
2621 struct scsi_device *sdev = cmd->device;
2622 struct aac_dev *dev = fibptr->dev;
2623 u32 cid = sdev_id(sdev);
2624 printk(KERN_WARNING
2625 "synchronize_callback: synchronize failed, status = %d\n",
2626 le32_to_cpu(synchronizereply->status));
2627 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2628 set_sense(&dev->fsa_dev[cid].sense_data,
2629 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2630 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2631 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2632 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2633 SCSI_SENSE_BUFFERSIZE));
2634 }
2635
2636 aac_fib_complete(fibptr);
2637 aac_fib_free(fibptr);
2638 aac_scsi_done(cmd);
2639 }
2640
aac_synchronize(struct scsi_cmnd * scsicmd)2641 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2642 {
2643 int status;
2644 struct fib *cmd_fibcontext;
2645 struct aac_synchronize *synchronizecmd;
2646 struct scsi_device *sdev = scsicmd->device;
2647 struct aac_dev *aac;
2648
2649 aac = (struct aac_dev *)sdev->host->hostdata;
2650 if (aac->in_reset)
2651 return SCSI_MLQUEUE_HOST_BUSY;
2652
2653 /*
2654 * Allocate and initialize a Fib
2655 */
2656 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2657
2658 aac_fib_init(cmd_fibcontext);
2659
2660 synchronizecmd = fib_data(cmd_fibcontext);
2661 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2662 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2663 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2664 synchronizecmd->count =
2665 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2666 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2667
2668 /*
2669 * Now send the Fib to the adapter
2670 */
2671 status = aac_fib_send(ContainerCommand,
2672 cmd_fibcontext,
2673 sizeof(struct aac_synchronize),
2674 FsaNormal,
2675 0, 1,
2676 (fib_callback)synchronize_callback,
2677 (void *)scsicmd);
2678
2679 /*
2680 * Check that the command queued to the controller
2681 */
2682 if (status == -EINPROGRESS)
2683 return 0;
2684
2685 printk(KERN_WARNING
2686 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2687 aac_fib_complete(cmd_fibcontext);
2688 aac_fib_free(cmd_fibcontext);
2689 return SCSI_MLQUEUE_HOST_BUSY;
2690 }
2691
aac_start_stop_callback(void * context,struct fib * fibptr)2692 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2693 {
2694 struct scsi_cmnd *scsicmd = context;
2695
2696 if (!aac_valid_context(scsicmd, fibptr))
2697 return;
2698
2699 BUG_ON(fibptr == NULL);
2700
2701 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2702
2703 aac_fib_complete(fibptr);
2704 aac_fib_free(fibptr);
2705 aac_scsi_done(scsicmd);
2706 }
2707
aac_start_stop(struct scsi_cmnd * scsicmd)2708 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2709 {
2710 int status;
2711 struct fib *cmd_fibcontext;
2712 struct aac_power_management *pmcmd;
2713 struct scsi_device *sdev = scsicmd->device;
2714 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2715
2716 if (!(aac->supplement_adapter_info.supported_options2 &
2717 AAC_OPTION_POWER_MANAGEMENT)) {
2718 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2719 aac_scsi_done(scsicmd);
2720 return 0;
2721 }
2722
2723 if (aac->in_reset)
2724 return SCSI_MLQUEUE_HOST_BUSY;
2725
2726 /*
2727 * Allocate and initialize a Fib
2728 */
2729 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2730
2731 aac_fib_init(cmd_fibcontext);
2732
2733 pmcmd = fib_data(cmd_fibcontext);
2734 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2735 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2736 /* Eject bit ignored, not relevant */
2737 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2738 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2739 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2740 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2741 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2742 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2743
2744 /*
2745 * Now send the Fib to the adapter
2746 */
2747 status = aac_fib_send(ContainerCommand,
2748 cmd_fibcontext,
2749 sizeof(struct aac_power_management),
2750 FsaNormal,
2751 0, 1,
2752 (fib_callback)aac_start_stop_callback,
2753 (void *)scsicmd);
2754
2755 /*
2756 * Check that the command queued to the controller
2757 */
2758 if (status == -EINPROGRESS)
2759 return 0;
2760
2761 aac_fib_complete(cmd_fibcontext);
2762 aac_fib_free(cmd_fibcontext);
2763 return SCSI_MLQUEUE_HOST_BUSY;
2764 }
2765
2766 /**
2767 * aac_scsi_cmd() - Process SCSI command
2768 * @scsicmd: SCSI command block
2769 *
2770 * Emulate a SCSI command and queue the required request for the
2771 * aacraid firmware.
2772 */
2773
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2774 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2775 {
2776 u32 cid, bus;
2777 struct Scsi_Host *host = scsicmd->device->host;
2778 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2779 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2780
2781 if (fsa_dev_ptr == NULL)
2782 return -1;
2783 /*
2784 * If the bus, id or lun is out of range, return fail
2785 * Test does not apply to ID 16, the pseudo id for the controller
2786 * itself.
2787 */
2788 cid = scmd_id(scsicmd);
2789 if (cid != host->this_id) {
2790 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2791 if((cid >= dev->maximum_num_containers) ||
2792 (scsicmd->device->lun != 0)) {
2793 scsicmd->result = DID_NO_CONNECT << 16;
2794 goto scsi_done_ret;
2795 }
2796
2797 /*
2798 * If the target container doesn't exist, it may have
2799 * been newly created
2800 */
2801 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2802 (fsa_dev_ptr[cid].sense_data.sense_key ==
2803 NOT_READY)) {
2804 switch (scsicmd->cmnd[0]) {
2805 case SERVICE_ACTION_IN_16:
2806 if (!(dev->raw_io_interface) ||
2807 !(dev->raw_io_64) ||
2808 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2809 break;
2810 fallthrough;
2811 case INQUIRY:
2812 case READ_CAPACITY:
2813 case TEST_UNIT_READY:
2814 if (dev->in_reset)
2815 return -1;
2816 return _aac_probe_container(scsicmd,
2817 aac_probe_container_callback2);
2818 default:
2819 break;
2820 }
2821 }
2822 } else { /* check for physical non-dasd devices */
2823 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2824
2825 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2826 dev->hba_map[bus][cid].devtype
2827 == AAC_DEVTYPE_NATIVE_RAW) {
2828 if (dev->in_reset)
2829 return -1;
2830 return aac_send_hba_fib(scsicmd);
2831 } else if (dev->nondasd_support || expose_physicals ||
2832 dev->jbod) {
2833 if (dev->in_reset)
2834 return -1;
2835 return aac_send_srb_fib(scsicmd);
2836 } else {
2837 scsicmd->result = DID_NO_CONNECT << 16;
2838 goto scsi_done_ret;
2839 }
2840 }
2841 }
2842 /*
2843 * else Command for the controller itself
2844 */
2845 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2846 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2847 {
2848 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2849 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2850 set_sense(&dev->fsa_dev[cid].sense_data,
2851 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2852 ASENCODE_INVALID_COMMAND, 0, 0);
2853 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2854 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2855 SCSI_SENSE_BUFFERSIZE));
2856 goto scsi_done_ret;
2857 }
2858
2859 switch (scsicmd->cmnd[0]) {
2860 case READ_6:
2861 case READ_10:
2862 case READ_12:
2863 case READ_16:
2864 if (dev->in_reset)
2865 return -1;
2866 return aac_read(scsicmd);
2867
2868 case WRITE_6:
2869 case WRITE_10:
2870 case WRITE_12:
2871 case WRITE_16:
2872 if (dev->in_reset)
2873 return -1;
2874 return aac_write(scsicmd);
2875
2876 case SYNCHRONIZE_CACHE:
2877 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2878 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2879 break;
2880 }
2881 /* Issue FIB to tell Firmware to flush it's cache */
2882 if ((aac_cache & 6) != 2)
2883 return aac_synchronize(scsicmd);
2884 fallthrough;
2885 case INQUIRY:
2886 {
2887 struct inquiry_data inq_data;
2888
2889 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2890 memset(&inq_data, 0, sizeof (struct inquiry_data));
2891
2892 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2893 char *arr = (char *)&inq_data;
2894
2895 /* EVPD bit set */
2896 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2897 INQD_PDT_PROC : INQD_PDT_DA;
2898 if (scsicmd->cmnd[2] == 0) {
2899 /* supported vital product data pages */
2900 arr[3] = 3;
2901 arr[4] = 0x0;
2902 arr[5] = 0x80;
2903 arr[6] = 0x83;
2904 arr[1] = scsicmd->cmnd[2];
2905 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2906 sizeof(inq_data));
2907 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2908 } else if (scsicmd->cmnd[2] == 0x80) {
2909 /* unit serial number page */
2910 arr[3] = setinqserial(dev, &arr[4],
2911 scmd_id(scsicmd));
2912 arr[1] = scsicmd->cmnd[2];
2913 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2914 sizeof(inq_data));
2915 if (aac_wwn != 2)
2916 return aac_get_container_serial(
2917 scsicmd);
2918 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2919 } else if (scsicmd->cmnd[2] == 0x83) {
2920 /* vpd page 0x83 - Device Identification Page */
2921 char *sno = (char *)&inq_data;
2922 sno[3] = setinqserial(dev, &sno[4],
2923 scmd_id(scsicmd));
2924 if (aac_wwn != 2)
2925 return aac_get_container_serial(
2926 scsicmd);
2927 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2928 } else {
2929 /* vpd page not implemented */
2930 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2931 set_sense(&dev->fsa_dev[cid].sense_data,
2932 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2933 ASENCODE_NO_SENSE, 7, 2);
2934 memcpy(scsicmd->sense_buffer,
2935 &dev->fsa_dev[cid].sense_data,
2936 min_t(size_t,
2937 sizeof(dev->fsa_dev[cid].sense_data),
2938 SCSI_SENSE_BUFFERSIZE));
2939 }
2940 break;
2941 }
2942 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2943 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2944 inq_data.inqd_len = 31;
2945 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2946 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2947 /*
2948 * Set the Vendor, Product, and Revision Level
2949 * see: <vendor>.c i.e. aac.c
2950 */
2951 if (cid == host->this_id) {
2952 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2953 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2954 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2955 sizeof(inq_data));
2956 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2957 break;
2958 }
2959 if (dev->in_reset)
2960 return -1;
2961 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2962 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2963 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2964 return aac_get_container_name(scsicmd);
2965 }
2966 case SERVICE_ACTION_IN_16:
2967 if (!(dev->raw_io_interface) ||
2968 !(dev->raw_io_64) ||
2969 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2970 break;
2971 {
2972 u64 capacity;
2973 char cp[13];
2974 unsigned int alloc_len;
2975
2976 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2977 capacity = fsa_dev_ptr[cid].size - 1;
2978 cp[0] = (capacity >> 56) & 0xff;
2979 cp[1] = (capacity >> 48) & 0xff;
2980 cp[2] = (capacity >> 40) & 0xff;
2981 cp[3] = (capacity >> 32) & 0xff;
2982 cp[4] = (capacity >> 24) & 0xff;
2983 cp[5] = (capacity >> 16) & 0xff;
2984 cp[6] = (capacity >> 8) & 0xff;
2985 cp[7] = (capacity >> 0) & 0xff;
2986 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2987 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2988 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2989 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2990 cp[12] = 0;
2991
2992 alloc_len = ((scsicmd->cmnd[10] << 24)
2993 + (scsicmd->cmnd[11] << 16)
2994 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2995
2996 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2997 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2998 if (alloc_len < scsi_bufflen(scsicmd))
2999 scsi_set_resid(scsicmd,
3000 scsi_bufflen(scsicmd) - alloc_len);
3001
3002 /* Do not cache partition table for arrays */
3003 scsicmd->device->removable = 1;
3004
3005 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3006 break;
3007 }
3008
3009 case READ_CAPACITY:
3010 {
3011 u32 capacity;
3012 char cp[8];
3013
3014 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3015 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3016 capacity = fsa_dev_ptr[cid].size - 1;
3017 else
3018 capacity = (u32)-1;
3019
3020 cp[0] = (capacity >> 24) & 0xff;
3021 cp[1] = (capacity >> 16) & 0xff;
3022 cp[2] = (capacity >> 8) & 0xff;
3023 cp[3] = (capacity >> 0) & 0xff;
3024 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3025 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3026 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3027 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3028 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3029 /* Do not cache partition table for arrays */
3030 scsicmd->device->removable = 1;
3031 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3032 break;
3033 }
3034
3035 case MODE_SENSE:
3036 {
3037 int mode_buf_length = 4;
3038 u32 capacity;
3039 aac_modep_data mpd;
3040
3041 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3042 capacity = fsa_dev_ptr[cid].size - 1;
3043 else
3044 capacity = (u32)-1;
3045
3046 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3047 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3048
3049 /* Mode data length */
3050 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3051 /* Medium type - default */
3052 mpd.hd.med_type = 0;
3053 /* Device-specific param,
3054 bit 8: 0/1 = write enabled/protected
3055 bit 4: 0/1 = FUA enabled */
3056 mpd.hd.dev_par = 0;
3057
3058 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3059 mpd.hd.dev_par = 0x10;
3060 if (scsicmd->cmnd[1] & 0x8)
3061 mpd.hd.bd_length = 0; /* Block descriptor length */
3062 else {
3063 mpd.hd.bd_length = sizeof(mpd.bd);
3064 mpd.hd.data_length += mpd.hd.bd_length;
3065 mpd.bd.block_length[0] =
3066 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3067 mpd.bd.block_length[1] =
3068 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3069 mpd.bd.block_length[2] =
3070 fsa_dev_ptr[cid].block_size & 0xff;
3071
3072 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3073 if (scsicmd->cmnd[2] == 0x1C) {
3074 /* page length */
3075 mpd.mpc_buf[1] = 0xa;
3076 /* Mode data length */
3077 mpd.hd.data_length = 23;
3078 } else {
3079 /* Mode data length */
3080 mpd.hd.data_length = 15;
3081 }
3082
3083 if (capacity > 0xffffff) {
3084 mpd.bd.block_count[0] = 0xff;
3085 mpd.bd.block_count[1] = 0xff;
3086 mpd.bd.block_count[2] = 0xff;
3087 } else {
3088 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3089 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3090 mpd.bd.block_count[2] = capacity & 0xff;
3091 }
3092 }
3093 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3094 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3095 mpd.hd.data_length += 3;
3096 mpd.mpc_buf[0] = 8;
3097 mpd.mpc_buf[1] = 1;
3098 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3099 ? 0 : 0x04; /* WCE */
3100 mode_buf_length = sizeof(mpd);
3101 }
3102
3103 if (mode_buf_length > scsicmd->cmnd[4])
3104 mode_buf_length = scsicmd->cmnd[4];
3105 else
3106 mode_buf_length = sizeof(mpd);
3107 scsi_sg_copy_from_buffer(scsicmd,
3108 (char *)&mpd,
3109 mode_buf_length);
3110 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3111 break;
3112 }
3113 case MODE_SENSE_10:
3114 {
3115 u32 capacity;
3116 int mode_buf_length = 8;
3117 aac_modep10_data mpd10;
3118
3119 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3120 capacity = fsa_dev_ptr[cid].size - 1;
3121 else
3122 capacity = (u32)-1;
3123
3124 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3125 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3126 /* Mode data length (MSB) */
3127 mpd10.hd.data_length[0] = 0;
3128 /* Mode data length (LSB) */
3129 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3130 /* Medium type - default */
3131 mpd10.hd.med_type = 0;
3132 /* Device-specific param,
3133 bit 8: 0/1 = write enabled/protected
3134 bit 4: 0/1 = FUA enabled */
3135 mpd10.hd.dev_par = 0;
3136
3137 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3138 mpd10.hd.dev_par = 0x10;
3139 mpd10.hd.rsrvd[0] = 0; /* reserved */
3140 mpd10.hd.rsrvd[1] = 0; /* reserved */
3141 if (scsicmd->cmnd[1] & 0x8) {
3142 /* Block descriptor length (MSB) */
3143 mpd10.hd.bd_length[0] = 0;
3144 /* Block descriptor length (LSB) */
3145 mpd10.hd.bd_length[1] = 0;
3146 } else {
3147 mpd10.hd.bd_length[0] = 0;
3148 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3149
3150 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3151
3152 mpd10.bd.block_length[0] =
3153 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3154 mpd10.bd.block_length[1] =
3155 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3156 mpd10.bd.block_length[2] =
3157 fsa_dev_ptr[cid].block_size & 0xff;
3158
3159 if (capacity > 0xffffff) {
3160 mpd10.bd.block_count[0] = 0xff;
3161 mpd10.bd.block_count[1] = 0xff;
3162 mpd10.bd.block_count[2] = 0xff;
3163 } else {
3164 mpd10.bd.block_count[0] =
3165 (capacity >> 16) & 0xff;
3166 mpd10.bd.block_count[1] =
3167 (capacity >> 8) & 0xff;
3168 mpd10.bd.block_count[2] =
3169 capacity & 0xff;
3170 }
3171 }
3172 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3173 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3174 mpd10.hd.data_length[1] += 3;
3175 mpd10.mpc_buf[0] = 8;
3176 mpd10.mpc_buf[1] = 1;
3177 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3178 ? 0 : 0x04; /* WCE */
3179 mode_buf_length = sizeof(mpd10);
3180 if (mode_buf_length > scsicmd->cmnd[8])
3181 mode_buf_length = scsicmd->cmnd[8];
3182 }
3183 scsi_sg_copy_from_buffer(scsicmd,
3184 (char *)&mpd10,
3185 mode_buf_length);
3186
3187 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3188 break;
3189 }
3190 case REQUEST_SENSE:
3191 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3192 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3193 sizeof(struct sense_data));
3194 memset(&dev->fsa_dev[cid].sense_data, 0,
3195 sizeof(struct sense_data));
3196 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3197 break;
3198
3199 case ALLOW_MEDIUM_REMOVAL:
3200 dprintk((KERN_DEBUG "LOCK command.\n"));
3201 if (scsicmd->cmnd[4])
3202 fsa_dev_ptr[cid].locked = 1;
3203 else
3204 fsa_dev_ptr[cid].locked = 0;
3205
3206 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3207 break;
3208 /*
3209 * These commands are all No-Ops
3210 */
3211 case TEST_UNIT_READY:
3212 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3213 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3214 set_sense(&dev->fsa_dev[cid].sense_data,
3215 NOT_READY, SENCODE_BECOMING_READY,
3216 ASENCODE_BECOMING_READY, 0, 0);
3217 memcpy(scsicmd->sense_buffer,
3218 &dev->fsa_dev[cid].sense_data,
3219 min_t(size_t,
3220 sizeof(dev->fsa_dev[cid].sense_data),
3221 SCSI_SENSE_BUFFERSIZE));
3222 break;
3223 }
3224 fallthrough;
3225 case RESERVE:
3226 case RELEASE:
3227 case REZERO_UNIT:
3228 case REASSIGN_BLOCKS:
3229 case SEEK_10:
3230 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3231 break;
3232
3233 case START_STOP:
3234 return aac_start_stop(scsicmd);
3235
3236 default:
3237 /*
3238 * Unhandled commands
3239 */
3240 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3241 scsicmd->cmnd[0]));
3242 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3243 set_sense(&dev->fsa_dev[cid].sense_data,
3244 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3245 ASENCODE_INVALID_COMMAND, 0, 0);
3246 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3247 min_t(size_t,
3248 sizeof(dev->fsa_dev[cid].sense_data),
3249 SCSI_SENSE_BUFFERSIZE));
3250 }
3251
3252 scsi_done_ret:
3253
3254 aac_scsi_done(scsicmd);
3255 return 0;
3256 }
3257
query_disk(struct aac_dev * dev,void __user * arg)3258 static int query_disk(struct aac_dev *dev, void __user *arg)
3259 {
3260 struct aac_query_disk qd;
3261 struct fsa_dev_info *fsa_dev_ptr;
3262
3263 fsa_dev_ptr = dev->fsa_dev;
3264 if (!fsa_dev_ptr)
3265 return -EBUSY;
3266 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3267 return -EFAULT;
3268 if (qd.cnum == -1) {
3269 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3270 return -EINVAL;
3271 qd.cnum = qd.id;
3272 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3273 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3274 return -EINVAL;
3275 qd.instance = dev->scsi_host_ptr->host_no;
3276 qd.bus = 0;
3277 qd.id = CONTAINER_TO_ID(qd.cnum);
3278 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3279 }
3280 else return -EINVAL;
3281
3282 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3283 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3284 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3285
3286 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3287 qd.unmapped = 1;
3288 else
3289 qd.unmapped = 0;
3290
3291 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3292 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3293
3294 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3295 return -EFAULT;
3296 return 0;
3297 }
3298
force_delete_disk(struct aac_dev * dev,void __user * arg)3299 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3300 {
3301 struct aac_delete_disk dd;
3302 struct fsa_dev_info *fsa_dev_ptr;
3303
3304 fsa_dev_ptr = dev->fsa_dev;
3305 if (!fsa_dev_ptr)
3306 return -EBUSY;
3307
3308 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3309 return -EFAULT;
3310
3311 if (dd.cnum >= dev->maximum_num_containers)
3312 return -EINVAL;
3313 /*
3314 * Mark this container as being deleted.
3315 */
3316 fsa_dev_ptr[dd.cnum].deleted = 1;
3317 /*
3318 * Mark the container as no longer valid
3319 */
3320 fsa_dev_ptr[dd.cnum].valid = 0;
3321 return 0;
3322 }
3323
delete_disk(struct aac_dev * dev,void __user * arg)3324 static int delete_disk(struct aac_dev *dev, void __user *arg)
3325 {
3326 struct aac_delete_disk dd;
3327 struct fsa_dev_info *fsa_dev_ptr;
3328
3329 fsa_dev_ptr = dev->fsa_dev;
3330 if (!fsa_dev_ptr)
3331 return -EBUSY;
3332
3333 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3334 return -EFAULT;
3335
3336 if (dd.cnum >= dev->maximum_num_containers)
3337 return -EINVAL;
3338 /*
3339 * If the container is locked, it can not be deleted by the API.
3340 */
3341 if (fsa_dev_ptr[dd.cnum].locked)
3342 return -EBUSY;
3343 else {
3344 /*
3345 * Mark the container as no longer being valid.
3346 */
3347 fsa_dev_ptr[dd.cnum].valid = 0;
3348 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3349 return 0;
3350 }
3351 }
3352
aac_dev_ioctl(struct aac_dev * dev,unsigned int cmd,void __user * arg)3353 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3354 {
3355 switch (cmd) {
3356 case FSACTL_QUERY_DISK:
3357 return query_disk(dev, arg);
3358 case FSACTL_DELETE_DISK:
3359 return delete_disk(dev, arg);
3360 case FSACTL_FORCE_DELETE_DISK:
3361 return force_delete_disk(dev, arg);
3362 case FSACTL_GET_CONTAINERS:
3363 return aac_get_containers(dev);
3364 default:
3365 return -ENOTTY;
3366 }
3367 }
3368
3369 /**
3370 * aac_srb_callback
3371 * @context: the context set in the fib - here it is scsi cmd
3372 * @fibptr: pointer to the fib
3373 *
3374 * Handles the completion of a scsi command to a non dasd device
3375 */
aac_srb_callback(void * context,struct fib * fibptr)3376 static void aac_srb_callback(void *context, struct fib * fibptr)
3377 {
3378 struct aac_srb_reply *srbreply;
3379 struct scsi_cmnd *scsicmd;
3380
3381 scsicmd = (struct scsi_cmnd *) context;
3382
3383 if (!aac_valid_context(scsicmd, fibptr))
3384 return;
3385
3386 BUG_ON(fibptr == NULL);
3387
3388 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3389
3390 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3391
3392 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3393 /* fast response */
3394 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3395 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3396 } else {
3397 /*
3398 * Calculate resid for sg
3399 */
3400 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3401 - le32_to_cpu(srbreply->data_xfer_length));
3402 }
3403
3404
3405 scsi_dma_unmap(scsicmd);
3406
3407 /* expose physical device if expose_physicald flag is on */
3408 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3409 && expose_physicals > 0)
3410 aac_expose_phy_device(scsicmd);
3411
3412 /*
3413 * First check the fib status
3414 */
3415
3416 if (le32_to_cpu(srbreply->status) != ST_OK) {
3417 int len;
3418
3419 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3420 le32_to_cpu(srbreply->status));
3421 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3422 SCSI_SENSE_BUFFERSIZE);
3423 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION;
3424 memcpy(scsicmd->sense_buffer,
3425 srbreply->sense_data, len);
3426 }
3427
3428 /*
3429 * Next check the srb status
3430 */
3431 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3432 case SRB_STATUS_ERROR_RECOVERY:
3433 case SRB_STATUS_PENDING:
3434 case SRB_STATUS_SUCCESS:
3435 scsicmd->result = DID_OK << 16;
3436 break;
3437 case SRB_STATUS_DATA_OVERRUN:
3438 switch (scsicmd->cmnd[0]) {
3439 case READ_6:
3440 case WRITE_6:
3441 case READ_10:
3442 case WRITE_10:
3443 case READ_12:
3444 case WRITE_12:
3445 case READ_16:
3446 case WRITE_16:
3447 if (le32_to_cpu(srbreply->data_xfer_length)
3448 < scsicmd->underflow)
3449 pr_warn("aacraid: SCSI CMD underflow\n");
3450 else
3451 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3452 scsicmd->result = DID_ERROR << 16;
3453 break;
3454 case INQUIRY:
3455 scsicmd->result = DID_OK << 16;
3456 break;
3457 default:
3458 scsicmd->result = DID_OK << 16;
3459 break;
3460 }
3461 break;
3462 case SRB_STATUS_ABORTED:
3463 scsicmd->result = DID_ABORT << 16;
3464 break;
3465 case SRB_STATUS_ABORT_FAILED:
3466 /*
3467 * Not sure about this one - but assuming the
3468 * hba was trying to abort for some reason
3469 */
3470 scsicmd->result = DID_ERROR << 16;
3471 break;
3472 case SRB_STATUS_PARITY_ERROR:
3473 scsicmd->result = DID_PARITY << 16;
3474 break;
3475 case SRB_STATUS_NO_DEVICE:
3476 case SRB_STATUS_INVALID_PATH_ID:
3477 case SRB_STATUS_INVALID_TARGET_ID:
3478 case SRB_STATUS_INVALID_LUN:
3479 case SRB_STATUS_SELECTION_TIMEOUT:
3480 scsicmd->result = DID_NO_CONNECT << 16;
3481 break;
3482
3483 case SRB_STATUS_COMMAND_TIMEOUT:
3484 case SRB_STATUS_TIMEOUT:
3485 scsicmd->result = DID_TIME_OUT << 16;
3486 break;
3487
3488 case SRB_STATUS_BUSY:
3489 scsicmd->result = DID_BUS_BUSY << 16;
3490 break;
3491
3492 case SRB_STATUS_BUS_RESET:
3493 scsicmd->result = DID_RESET << 16;
3494 break;
3495
3496 case SRB_STATUS_MESSAGE_REJECTED:
3497 scsicmd->result = DID_ERROR << 16;
3498 break;
3499 case SRB_STATUS_REQUEST_FLUSHED:
3500 case SRB_STATUS_ERROR:
3501 case SRB_STATUS_INVALID_REQUEST:
3502 case SRB_STATUS_REQUEST_SENSE_FAILED:
3503 case SRB_STATUS_NO_HBA:
3504 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3505 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3506 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3507 case SRB_STATUS_DELAYED_RETRY:
3508 case SRB_STATUS_BAD_FUNCTION:
3509 case SRB_STATUS_NOT_STARTED:
3510 case SRB_STATUS_NOT_IN_USE:
3511 case SRB_STATUS_FORCE_ABORT:
3512 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3513 default:
3514 #ifdef AAC_DETAILED_STATUS_INFO
3515 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3516 le32_to_cpu(srbreply->srb_status) & 0x3F,
3517 aac_get_status_string(
3518 le32_to_cpu(srbreply->srb_status) & 0x3F),
3519 scsicmd->cmnd[0],
3520 le32_to_cpu(srbreply->scsi_status));
3521 #endif
3522 /*
3523 * When the CC bit is SET by the host in ATA pass thru CDB,
3524 * driver is supposed to return DID_OK
3525 *
3526 * When the CC bit is RESET by the host, driver should
3527 * return DID_ERROR
3528 */
3529 if ((scsicmd->cmnd[0] == ATA_12)
3530 || (scsicmd->cmnd[0] == ATA_16)) {
3531
3532 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3533 scsicmd->result = DID_OK << 16;
3534 } else {
3535 scsicmd->result = DID_ERROR << 16;
3536 }
3537 } else {
3538 scsicmd->result = DID_ERROR << 16;
3539 }
3540 break;
3541 }
3542 if (le32_to_cpu(srbreply->scsi_status)
3543 == SAM_STAT_CHECK_CONDITION) {
3544 int len;
3545
3546 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3547 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3548 SCSI_SENSE_BUFFERSIZE);
3549 #ifdef AAC_DETAILED_STATUS_INFO
3550 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3551 le32_to_cpu(srbreply->status), len);
3552 #endif
3553 memcpy(scsicmd->sense_buffer,
3554 srbreply->sense_data, len);
3555 }
3556
3557 /*
3558 * OR in the scsi status (already shifted up a bit)
3559 */
3560 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3561
3562 aac_fib_complete(fibptr);
3563 aac_scsi_done(scsicmd);
3564 }
3565
hba_resp_task_complete(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3566 static void hba_resp_task_complete(struct aac_dev *dev,
3567 struct scsi_cmnd *scsicmd,
3568 struct aac_hba_resp *err) {
3569
3570 scsicmd->result = err->status;
3571 /* set residual count */
3572 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3573
3574 switch (err->status) {
3575 case SAM_STAT_GOOD:
3576 scsicmd->result |= DID_OK << 16;
3577 break;
3578 case SAM_STAT_CHECK_CONDITION:
3579 {
3580 int len;
3581
3582 len = min_t(u8, err->sense_response_data_len,
3583 SCSI_SENSE_BUFFERSIZE);
3584 if (len)
3585 memcpy(scsicmd->sense_buffer,
3586 err->sense_response_buf, len);
3587 scsicmd->result |= DID_OK << 16;
3588 break;
3589 }
3590 case SAM_STAT_BUSY:
3591 scsicmd->result |= DID_BUS_BUSY << 16;
3592 break;
3593 case SAM_STAT_TASK_ABORTED:
3594 scsicmd->result |= DID_ABORT << 16;
3595 break;
3596 case SAM_STAT_RESERVATION_CONFLICT:
3597 case SAM_STAT_TASK_SET_FULL:
3598 default:
3599 scsicmd->result |= DID_ERROR << 16;
3600 break;
3601 }
3602 }
3603
hba_resp_task_failure(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3604 static void hba_resp_task_failure(struct aac_dev *dev,
3605 struct scsi_cmnd *scsicmd,
3606 struct aac_hba_resp *err)
3607 {
3608 switch (err->status) {
3609 case HBA_RESP_STAT_HBAMODE_DISABLED:
3610 {
3611 u32 bus, cid;
3612
3613 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3614 cid = scmd_id(scsicmd);
3615 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3616 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3617 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3618 }
3619 scsicmd->result = DID_NO_CONNECT << 16;
3620 break;
3621 }
3622 case HBA_RESP_STAT_IO_ERROR:
3623 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3624 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY;
3625 break;
3626 case HBA_RESP_STAT_IO_ABORTED:
3627 scsicmd->result = DID_ABORT << 16;
3628 break;
3629 case HBA_RESP_STAT_INVALID_DEVICE:
3630 scsicmd->result = DID_NO_CONNECT << 16;
3631 break;
3632 case HBA_RESP_STAT_UNDERRUN:
3633 /* UNDERRUN is OK */
3634 scsicmd->result = DID_OK << 16;
3635 break;
3636 case HBA_RESP_STAT_OVERRUN:
3637 default:
3638 scsicmd->result = DID_ERROR << 16;
3639 break;
3640 }
3641 }
3642
3643 /**
3644 * aac_hba_callback
3645 * @context: the context set in the fib - here it is scsi cmd
3646 * @fibptr: pointer to the fib
3647 *
3648 * Handles the completion of a native HBA scsi command
3649 */
aac_hba_callback(void * context,struct fib * fibptr)3650 void aac_hba_callback(void *context, struct fib *fibptr)
3651 {
3652 struct aac_dev *dev;
3653 struct scsi_cmnd *scsicmd;
3654
3655 struct aac_hba_resp *err =
3656 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3657
3658 scsicmd = (struct scsi_cmnd *) context;
3659
3660 if (!aac_valid_context(scsicmd, fibptr))
3661 return;
3662
3663 WARN_ON(fibptr == NULL);
3664 dev = fibptr->dev;
3665
3666 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3667 scsi_dma_unmap(scsicmd);
3668
3669 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3670 /* fast response */
3671 scsicmd->result = DID_OK << 16;
3672 goto out;
3673 }
3674
3675 switch (err->service_response) {
3676 case HBA_RESP_SVCRES_TASK_COMPLETE:
3677 hba_resp_task_complete(dev, scsicmd, err);
3678 break;
3679 case HBA_RESP_SVCRES_FAILURE:
3680 hba_resp_task_failure(dev, scsicmd, err);
3681 break;
3682 case HBA_RESP_SVCRES_TMF_REJECTED:
3683 scsicmd->result = DID_ERROR << 16;
3684 break;
3685 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3686 scsicmd->result = DID_NO_CONNECT << 16;
3687 break;
3688 case HBA_RESP_SVCRES_TMF_COMPLETE:
3689 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3690 scsicmd->result = DID_OK << 16;
3691 break;
3692 default:
3693 scsicmd->result = DID_ERROR << 16;
3694 break;
3695 }
3696
3697 out:
3698 aac_fib_complete(fibptr);
3699
3700 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3701 aac_priv(scsicmd)->sent_command = 1;
3702 else
3703 aac_scsi_done(scsicmd);
3704 }
3705
3706 /**
3707 * aac_send_srb_fib
3708 * @scsicmd: the scsi command block
3709 *
3710 * This routine will form a FIB and fill in the aac_srb from the
3711 * scsicmd passed in.
3712 */
aac_send_srb_fib(struct scsi_cmnd * scsicmd)3713 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3714 {
3715 struct fib* cmd_fibcontext;
3716 struct aac_dev* dev;
3717 int status;
3718
3719 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3720 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3721 scsicmd->device->lun > 7) {
3722 scsicmd->result = DID_NO_CONNECT << 16;
3723 aac_scsi_done(scsicmd);
3724 return 0;
3725 }
3726
3727 /*
3728 * Allocate and initialize a Fib then setup a BlockWrite command
3729 */
3730 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3731 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
3732 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3733
3734 /*
3735 * Check that the command queued to the controller
3736 */
3737 if (status == -EINPROGRESS)
3738 return 0;
3739
3740 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3741 aac_fib_complete(cmd_fibcontext);
3742 aac_fib_free(cmd_fibcontext);
3743
3744 return -1;
3745 }
3746
3747 /**
3748 * aac_send_hba_fib
3749 * @scsicmd: the scsi command block
3750 *
3751 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3752 * scsicmd passed in.
3753 */
aac_send_hba_fib(struct scsi_cmnd * scsicmd)3754 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3755 {
3756 struct fib *cmd_fibcontext;
3757 struct aac_dev *dev;
3758 int status;
3759
3760 dev = shost_priv(scsicmd->device->host);
3761 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3762 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3763 scsicmd->result = DID_NO_CONNECT << 16;
3764 aac_scsi_done(scsicmd);
3765 return 0;
3766 }
3767
3768 /*
3769 * Allocate and initialize a Fib then setup a BlockWrite command
3770 */
3771 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3772 if (!cmd_fibcontext)
3773 return -1;
3774
3775 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
3776 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3777
3778 /*
3779 * Check that the command queued to the controller
3780 */
3781 if (status == -EINPROGRESS)
3782 return 0;
3783
3784 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3785 status);
3786 aac_fib_complete(cmd_fibcontext);
3787 aac_fib_free(cmd_fibcontext);
3788
3789 return -1;
3790 }
3791
3792
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)3793 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3794 {
3795 unsigned long byte_count = 0;
3796 int nseg;
3797 struct scatterlist *sg;
3798 int i;
3799
3800 // Get rid of old data
3801 psg->count = 0;
3802 psg->sg[0].addr = 0;
3803 psg->sg[0].count = 0;
3804
3805 nseg = scsi_dma_map(scsicmd);
3806 if (nseg <= 0)
3807 return nseg;
3808
3809 psg->count = cpu_to_le32(nseg);
3810
3811 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3812 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3813 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3814 byte_count += sg_dma_len(sg);
3815 }
3816 /* hba wants the size to be exact */
3817 if (byte_count > scsi_bufflen(scsicmd)) {
3818 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3819 (byte_count - scsi_bufflen(scsicmd));
3820 psg->sg[i-1].count = cpu_to_le32(temp);
3821 byte_count = scsi_bufflen(scsicmd);
3822 }
3823 /* Check for command underflow */
3824 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3825 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3826 byte_count, scsicmd->underflow);
3827 }
3828
3829 return byte_count;
3830 }
3831
3832
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)3833 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3834 {
3835 unsigned long byte_count = 0;
3836 u64 addr;
3837 int nseg;
3838 struct scatterlist *sg;
3839 int i;
3840
3841 // Get rid of old data
3842 psg->count = 0;
3843 psg->sg[0].addr[0] = 0;
3844 psg->sg[0].addr[1] = 0;
3845 psg->sg[0].count = 0;
3846
3847 nseg = scsi_dma_map(scsicmd);
3848 if (nseg <= 0)
3849 return nseg;
3850
3851 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3852 int count = sg_dma_len(sg);
3853 addr = sg_dma_address(sg);
3854 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3855 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3856 psg->sg[i].count = cpu_to_le32(count);
3857 byte_count += count;
3858 }
3859 psg->count = cpu_to_le32(nseg);
3860 /* hba wants the size to be exact */
3861 if (byte_count > scsi_bufflen(scsicmd)) {
3862 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3863 (byte_count - scsi_bufflen(scsicmd));
3864 psg->sg[i-1].count = cpu_to_le32(temp);
3865 byte_count = scsi_bufflen(scsicmd);
3866 }
3867 /* Check for command underflow */
3868 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3869 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3870 byte_count, scsicmd->underflow);
3871 }
3872
3873 return byte_count;
3874 }
3875
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)3876 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3877 {
3878 unsigned long byte_count = 0;
3879 int nseg;
3880 struct scatterlist *sg;
3881 int i;
3882
3883 // Get rid of old data
3884 psg->count = 0;
3885 psg->sg[0].next = 0;
3886 psg->sg[0].prev = 0;
3887 psg->sg[0].addr[0] = 0;
3888 psg->sg[0].addr[1] = 0;
3889 psg->sg[0].count = 0;
3890 psg->sg[0].flags = 0;
3891
3892 nseg = scsi_dma_map(scsicmd);
3893 if (nseg <= 0)
3894 return nseg;
3895
3896 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3897 int count = sg_dma_len(sg);
3898 u64 addr = sg_dma_address(sg);
3899 psg->sg[i].next = 0;
3900 psg->sg[i].prev = 0;
3901 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3902 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3903 psg->sg[i].count = cpu_to_le32(count);
3904 psg->sg[i].flags = 0;
3905 byte_count += count;
3906 }
3907 psg->count = cpu_to_le32(nseg);
3908 /* hba wants the size to be exact */
3909 if (byte_count > scsi_bufflen(scsicmd)) {
3910 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3911 (byte_count - scsi_bufflen(scsicmd));
3912 psg->sg[i-1].count = cpu_to_le32(temp);
3913 byte_count = scsi_bufflen(scsicmd);
3914 }
3915 /* Check for command underflow */
3916 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3917 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3918 byte_count, scsicmd->underflow);
3919 }
3920
3921 return byte_count;
3922 }
3923
aac_build_sgraw2(struct scsi_cmnd * scsicmd,struct aac_raw_io2 * rio2,int sg_max)3924 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3925 struct aac_raw_io2 *rio2, int sg_max)
3926 {
3927 unsigned long byte_count = 0;
3928 int nseg;
3929 struct scatterlist *sg;
3930 int i, conformable = 0;
3931 u32 min_size = PAGE_SIZE, cur_size;
3932
3933 nseg = scsi_dma_map(scsicmd);
3934 if (nseg <= 0)
3935 return nseg;
3936
3937 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3938 int count = sg_dma_len(sg);
3939 u64 addr = sg_dma_address(sg);
3940
3941 BUG_ON(i >= sg_max);
3942 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3943 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3944 cur_size = cpu_to_le32(count);
3945 rio2->sge[i].length = cur_size;
3946 rio2->sge[i].flags = 0;
3947 if (i == 0) {
3948 conformable = 1;
3949 rio2->sgeFirstSize = cur_size;
3950 } else if (i == 1) {
3951 rio2->sgeNominalSize = cur_size;
3952 min_size = cur_size;
3953 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3954 conformable = 0;
3955 if (cur_size < min_size)
3956 min_size = cur_size;
3957 }
3958 byte_count += count;
3959 }
3960
3961 /* hba wants the size to be exact */
3962 if (byte_count > scsi_bufflen(scsicmd)) {
3963 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3964 (byte_count - scsi_bufflen(scsicmd));
3965 rio2->sge[i-1].length = cpu_to_le32(temp);
3966 byte_count = scsi_bufflen(scsicmd);
3967 }
3968
3969 rio2->sgeCnt = cpu_to_le32(nseg);
3970 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3971 /* not conformable: evaluate required sg elements */
3972 if (!conformable) {
3973 int j, nseg_new = nseg, err_found;
3974 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3975 err_found = 0;
3976 nseg_new = 2;
3977 for (j = 1; j < nseg - 1; ++j) {
3978 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3979 err_found = 1;
3980 break;
3981 }
3982 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3983 }
3984 if (!err_found)
3985 break;
3986 }
3987 if (i > 0 && nseg_new <= sg_max) {
3988 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3989
3990 if (ret < 0)
3991 return ret;
3992 }
3993 } else
3994 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3995
3996 /* Check for command underflow */
3997 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3998 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3999 byte_count, scsicmd->underflow);
4000 }
4001
4002 return byte_count;
4003 }
4004
aac_convert_sgraw2(struct aac_raw_io2 * rio2,int pages,int nseg,int nseg_new)4005 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4006 {
4007 struct sge_ieee1212 *sge;
4008 int i, j, pos;
4009 u32 addr_low;
4010
4011 if (aac_convert_sgl == 0)
4012 return 0;
4013
4014 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC);
4015 if (sge == NULL)
4016 return -ENOMEM;
4017
4018 for (i = 1, pos = 1; i < nseg-1; ++i) {
4019 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4020 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4021 sge[pos].addrLow = addr_low;
4022 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4023 if (addr_low < rio2->sge[i].addrLow)
4024 sge[pos].addrHigh++;
4025 sge[pos].length = pages * PAGE_SIZE;
4026 sge[pos].flags = 0;
4027 pos++;
4028 }
4029 }
4030 sge[pos] = rio2->sge[nseg-1];
4031 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4032
4033 kfree(sge);
4034 rio2->sgeCnt = cpu_to_le32(nseg_new);
4035 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4036 rio2->sgeNominalSize = pages * PAGE_SIZE;
4037 return 0;
4038 }
4039
aac_build_sghba(struct scsi_cmnd * scsicmd,struct aac_hba_cmd_req * hbacmd,int sg_max,u64 sg_address)4040 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4041 struct aac_hba_cmd_req *hbacmd,
4042 int sg_max,
4043 u64 sg_address)
4044 {
4045 unsigned long byte_count = 0;
4046 int nseg;
4047 struct scatterlist *sg;
4048 int i;
4049 u32 cur_size;
4050 struct aac_hba_sgl *sge;
4051
4052 nseg = scsi_dma_map(scsicmd);
4053 if (nseg <= 0) {
4054 byte_count = nseg;
4055 goto out;
4056 }
4057
4058 if (nseg > HBA_MAX_SG_EMBEDDED)
4059 sge = &hbacmd->sge[2];
4060 else
4061 sge = &hbacmd->sge[0];
4062
4063 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4064 int count = sg_dma_len(sg);
4065 u64 addr = sg_dma_address(sg);
4066
4067 WARN_ON(i >= sg_max);
4068 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4069 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4070 cur_size = cpu_to_le32(count);
4071 sge->len = cur_size;
4072 sge->flags = 0;
4073 byte_count += count;
4074 sge++;
4075 }
4076
4077 sge--;
4078 /* hba wants the size to be exact */
4079 if (byte_count > scsi_bufflen(scsicmd)) {
4080 u32 temp;
4081
4082 temp = le32_to_cpu(sge->len) - byte_count
4083 - scsi_bufflen(scsicmd);
4084 sge->len = cpu_to_le32(temp);
4085 byte_count = scsi_bufflen(scsicmd);
4086 }
4087
4088 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4089 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4090 sge->flags = cpu_to_le32(0x40000000);
4091 } else {
4092 /* not embedded */
4093 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4094 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4095 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4096 hbacmd->sge[0].addr_lo =
4097 cpu_to_le32((u32)(sg_address & 0xffffffff));
4098 }
4099
4100 /* Check for command underflow */
4101 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4102 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4103 byte_count, scsicmd->underflow);
4104 }
4105 out:
4106 return byte_count;
4107 }
4108
4109 #ifdef AAC_DETAILED_STATUS_INFO
4110
4111 struct aac_srb_status_info {
4112 u32 status;
4113 char *str;
4114 };
4115
4116
4117 static struct aac_srb_status_info srb_status_info[] = {
4118 { SRB_STATUS_PENDING, "Pending Status"},
4119 { SRB_STATUS_SUCCESS, "Success"},
4120 { SRB_STATUS_ABORTED, "Aborted Command"},
4121 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4122 { SRB_STATUS_ERROR, "Error Event"},
4123 { SRB_STATUS_BUSY, "Device Busy"},
4124 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4125 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4126 { SRB_STATUS_NO_DEVICE, "No Device"},
4127 { SRB_STATUS_TIMEOUT, "Timeout"},
4128 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4129 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4130 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4131 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4132 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4133 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4134 { SRB_STATUS_NO_HBA, "No HBA"},
4135 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4136 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4137 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4138 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4139 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4140 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4141 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4142 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4143 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4144 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4145 { SRB_STATUS_NOT_STARTED, "Not Started"},
4146 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4147 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4148 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4149 { 0xff, "Unknown Error"}
4150 };
4151
aac_get_status_string(u32 status)4152 char *aac_get_status_string(u32 status)
4153 {
4154 int i;
4155
4156 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4157 if (srb_status_info[i].status == status)
4158 return srb_status_info[i].str;
4159
4160 return "Bad Status Code";
4161 }
4162
4163 #endif
4164