1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
get_pageblock_migratetype(struct page * page)52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
104 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
105 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
106 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
107 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
108 	NR_DIRTIED,		/* page dirtyings since bootup */
109 	NR_WRITTEN,		/* page writings since bootup */
110 #ifdef CONFIG_NUMA
111 	NUMA_HIT,		/* allocated in intended node */
112 	NUMA_MISS,		/* allocated in non intended node */
113 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
114 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
115 	NUMA_LOCAL,		/* allocation from local node */
116 	NUMA_OTHER,		/* allocation from other node */
117 #endif
118 	NR_ANON_TRANSPARENT_HUGEPAGES,
119 	NR_VM_ZONE_STAT_ITEMS };
120 
121 /*
122  * We do arithmetic on the LRU lists in various places in the code,
123  * so it is important to keep the active lists LRU_ACTIVE higher in
124  * the array than the corresponding inactive lists, and to keep
125  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126  *
127  * This has to be kept in sync with the statistics in zone_stat_item
128  * above and the descriptions in vmstat_text in mm/vmstat.c
129  */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133 
134 enum lru_list {
135 	LRU_INACTIVE_ANON = LRU_BASE,
136 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139 	LRU_UNEVICTABLE,
140 	NR_LRU_LISTS
141 };
142 
143 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
144 
145 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
146 
is_file_lru(enum lru_list lru)147 static inline int is_file_lru(enum lru_list lru)
148 {
149 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
150 }
151 
is_active_lru(enum lru_list lru)152 static inline int is_active_lru(enum lru_list lru)
153 {
154 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
155 }
156 
is_unevictable_lru(enum lru_list lru)157 static inline int is_unevictable_lru(enum lru_list lru)
158 {
159 	return (lru == LRU_UNEVICTABLE);
160 }
161 
162 struct lruvec {
163 	struct list_head lists[NR_LRU_LISTS];
164 };
165 
166 /* Mask used at gathering information at once (see memcontrol.c) */
167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
171 
172 /* Isolate inactive pages */
173 #define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
174 /* Isolate active pages */
175 #define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
176 /* Isolate clean file */
177 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
178 /* Isolate unmapped file */
179 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
180 /* Isolate for asynchronous migration */
181 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x10)
182 
183 /* LRU Isolation modes. */
184 typedef unsigned __bitwise__ isolate_mode_t;
185 
186 enum zone_watermarks {
187 	WMARK_MIN,
188 	WMARK_LOW,
189 	WMARK_HIGH,
190 	NR_WMARK
191 };
192 
193 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
196 
197 struct per_cpu_pages {
198 	int count;		/* number of pages in the list */
199 	int high;		/* high watermark, emptying needed */
200 	int batch;		/* chunk size for buddy add/remove */
201 
202 	/* Lists of pages, one per migrate type stored on the pcp-lists */
203 	struct list_head lists[MIGRATE_PCPTYPES];
204 };
205 
206 struct per_cpu_pageset {
207 	struct per_cpu_pages pcp;
208 #ifdef CONFIG_NUMA
209 	s8 expire;
210 #endif
211 #ifdef CONFIG_SMP
212 	s8 stat_threshold;
213 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
214 #endif
215 };
216 
217 #endif /* !__GENERATING_BOUNDS.H */
218 
219 enum zone_type {
220 #ifdef CONFIG_ZONE_DMA
221 	/*
222 	 * ZONE_DMA is used when there are devices that are not able
223 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224 	 * carve out the portion of memory that is needed for these devices.
225 	 * The range is arch specific.
226 	 *
227 	 * Some examples
228 	 *
229 	 * Architecture		Limit
230 	 * ---------------------------
231 	 * parisc, ia64, sparc	<4G
232 	 * s390			<2G
233 	 * arm			Various
234 	 * alpha		Unlimited or 0-16MB.
235 	 *
236 	 * i386, x86_64 and multiple other arches
237 	 * 			<16M.
238 	 */
239 	ZONE_DMA,
240 #endif
241 #ifdef CONFIG_ZONE_DMA32
242 	/*
243 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
244 	 * only able to do DMA to the lower 16M but also 32 bit devices that
245 	 * can only do DMA areas below 4G.
246 	 */
247 	ZONE_DMA32,
248 #endif
249 	/*
250 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251 	 * performed on pages in ZONE_NORMAL if the DMA devices support
252 	 * transfers to all addressable memory.
253 	 */
254 	ZONE_NORMAL,
255 #ifdef CONFIG_HIGHMEM
256 	/*
257 	 * A memory area that is only addressable by the kernel through
258 	 * mapping portions into its own address space. This is for example
259 	 * used by i386 to allow the kernel to address the memory beyond
260 	 * 900MB. The kernel will set up special mappings (page
261 	 * table entries on i386) for each page that the kernel needs to
262 	 * access.
263 	 */
264 	ZONE_HIGHMEM,
265 #endif
266 	ZONE_MOVABLE,
267 	__MAX_NR_ZONES
268 };
269 
270 #ifndef __GENERATING_BOUNDS_H
271 
272 /*
273  * When a memory allocation must conform to specific limitations (such
274  * as being suitable for DMA) the caller will pass in hints to the
275  * allocator in the gfp_mask, in the zone modifier bits.  These bits
276  * are used to select a priority ordered list of memory zones which
277  * match the requested limits. See gfp_zone() in include/linux/gfp.h
278  */
279 
280 #if MAX_NR_ZONES < 2
281 #define ZONES_SHIFT 0
282 #elif MAX_NR_ZONES <= 2
283 #define ZONES_SHIFT 1
284 #elif MAX_NR_ZONES <= 4
285 #define ZONES_SHIFT 2
286 #else
287 #error ZONES_SHIFT -- too many zones configured adjust calculation
288 #endif
289 
290 struct zone_reclaim_stat {
291 	/*
292 	 * The pageout code in vmscan.c keeps track of how many of the
293 	 * mem/swap backed and file backed pages are refeferenced.
294 	 * The higher the rotated/scanned ratio, the more valuable
295 	 * that cache is.
296 	 *
297 	 * The anon LRU stats live in [0], file LRU stats in [1]
298 	 */
299 	unsigned long		recent_rotated[2];
300 	unsigned long		recent_scanned[2];
301 };
302 
303 struct zone {
304 	/* Fields commonly accessed by the page allocator */
305 
306 	/* zone watermarks, access with *_wmark_pages(zone) macros */
307 	unsigned long watermark[NR_WMARK];
308 
309 	/*
310 	 * When free pages are below this point, additional steps are taken
311 	 * when reading the number of free pages to avoid per-cpu counter
312 	 * drift allowing watermarks to be breached
313 	 */
314 	unsigned long percpu_drift_mark;
315 
316 	/*
317 	 * We don't know if the memory that we're going to allocate will be freeable
318 	 * or/and it will be released eventually, so to avoid totally wasting several
319 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320 	 * to run OOM on the lower zones despite there's tons of freeable ram
321 	 * on the higher zones). This array is recalculated at runtime if the
322 	 * sysctl_lowmem_reserve_ratio sysctl changes.
323 	 */
324 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
325 
326 	/*
327 	 * This is a per-zone reserve of pages that should not be
328 	 * considered dirtyable memory.
329 	 */
330 	unsigned long		dirty_balance_reserve;
331 
332 #ifdef CONFIG_NUMA
333 	int node;
334 	/*
335 	 * zone reclaim becomes active if more unmapped pages exist.
336 	 */
337 	unsigned long		min_unmapped_pages;
338 	unsigned long		min_slab_pages;
339 #endif
340 	struct per_cpu_pageset __percpu *pageset;
341 	/*
342 	 * free areas of different sizes
343 	 */
344 	spinlock_t		lock;
345 	int                     all_unreclaimable; /* All pages pinned */
346 #ifdef CONFIG_MEMORY_HOTPLUG
347 	/* see spanned/present_pages for more description */
348 	seqlock_t		span_seqlock;
349 #endif
350 	struct free_area	free_area[MAX_ORDER];
351 
352 #ifndef CONFIG_SPARSEMEM
353 	/*
354 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355 	 * In SPARSEMEM, this map is stored in struct mem_section
356 	 */
357 	unsigned long		*pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 
360 #ifdef CONFIG_COMPACTION
361 	/*
362 	 * On compaction failure, 1<<compact_defer_shift compactions
363 	 * are skipped before trying again. The number attempted since
364 	 * last failure is tracked with compact_considered.
365 	 */
366 	unsigned int		compact_considered;
367 	unsigned int		compact_defer_shift;
368 	int			compact_order_failed;
369 #endif
370 
371 	ZONE_PADDING(_pad1_)
372 
373 	/* Fields commonly accessed by the page reclaim scanner */
374 	spinlock_t		lru_lock;
375 	struct lruvec		lruvec;
376 
377 	struct zone_reclaim_stat reclaim_stat;
378 
379 	unsigned long		pages_scanned;	   /* since last reclaim */
380 	unsigned long		flags;		   /* zone flags, see below */
381 
382 	/* Zone statistics */
383 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
384 
385 	/*
386 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
387 	 * this zone's LRU.  Maintained by the pageout code.
388 	 */
389 	unsigned int inactive_ratio;
390 
391 
392 	ZONE_PADDING(_pad2_)
393 	/* Rarely used or read-mostly fields */
394 
395 	/*
396 	 * wait_table		-- the array holding the hash table
397 	 * wait_table_hash_nr_entries	-- the size of the hash table array
398 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
399 	 *
400 	 * The purpose of all these is to keep track of the people
401 	 * waiting for a page to become available and make them
402 	 * runnable again when possible. The trouble is that this
403 	 * consumes a lot of space, especially when so few things
404 	 * wait on pages at a given time. So instead of using
405 	 * per-page waitqueues, we use a waitqueue hash table.
406 	 *
407 	 * The bucket discipline is to sleep on the same queue when
408 	 * colliding and wake all in that wait queue when removing.
409 	 * When something wakes, it must check to be sure its page is
410 	 * truly available, a la thundering herd. The cost of a
411 	 * collision is great, but given the expected load of the
412 	 * table, they should be so rare as to be outweighed by the
413 	 * benefits from the saved space.
414 	 *
415 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
416 	 * primary users of these fields, and in mm/page_alloc.c
417 	 * free_area_init_core() performs the initialization of them.
418 	 */
419 	wait_queue_head_t	* wait_table;
420 	unsigned long		wait_table_hash_nr_entries;
421 	unsigned long		wait_table_bits;
422 
423 	/*
424 	 * Discontig memory support fields.
425 	 */
426 	struct pglist_data	*zone_pgdat;
427 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
428 	unsigned long		zone_start_pfn;
429 
430 	/*
431 	 * zone_start_pfn, spanned_pages and present_pages are all
432 	 * protected by span_seqlock.  It is a seqlock because it has
433 	 * to be read outside of zone->lock, and it is done in the main
434 	 * allocator path.  But, it is written quite infrequently.
435 	 *
436 	 * The lock is declared along with zone->lock because it is
437 	 * frequently read in proximity to zone->lock.  It's good to
438 	 * give them a chance of being in the same cacheline.
439 	 */
440 	unsigned long		spanned_pages;	/* total size, including holes */
441 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
442 
443 	/*
444 	 * rarely used fields:
445 	 */
446 	const char		*name;
447 } ____cacheline_internodealigned_in_smp;
448 
449 typedef enum {
450 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
451 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
452 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
453 					 * a congested BDI
454 					 */
455 } zone_flags_t;
456 
zone_set_flag(struct zone * zone,zone_flags_t flag)457 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
458 {
459 	set_bit(flag, &zone->flags);
460 }
461 
zone_test_and_set_flag(struct zone * zone,zone_flags_t flag)462 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
463 {
464 	return test_and_set_bit(flag, &zone->flags);
465 }
466 
zone_clear_flag(struct zone * zone,zone_flags_t flag)467 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
468 {
469 	clear_bit(flag, &zone->flags);
470 }
471 
zone_is_reclaim_congested(const struct zone * zone)472 static inline int zone_is_reclaim_congested(const struct zone *zone)
473 {
474 	return test_bit(ZONE_CONGESTED, &zone->flags);
475 }
476 
zone_is_reclaim_locked(const struct zone * zone)477 static inline int zone_is_reclaim_locked(const struct zone *zone)
478 {
479 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
480 }
481 
zone_is_oom_locked(const struct zone * zone)482 static inline int zone_is_oom_locked(const struct zone *zone)
483 {
484 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
485 }
486 
487 /*
488  * The "priority" of VM scanning is how much of the queues we will scan in one
489  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
490  * queues ("queue_length >> 12") during an aging round.
491  */
492 #define DEF_PRIORITY 12
493 
494 /* Maximum number of zones on a zonelist */
495 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
496 
497 #ifdef CONFIG_NUMA
498 
499 /*
500  * The NUMA zonelists are doubled because we need zonelists that restrict the
501  * allocations to a single node for GFP_THISNODE.
502  *
503  * [0]	: Zonelist with fallback
504  * [1]	: No fallback (GFP_THISNODE)
505  */
506 #define MAX_ZONELISTS 2
507 
508 
509 /*
510  * We cache key information from each zonelist for smaller cache
511  * footprint when scanning for free pages in get_page_from_freelist().
512  *
513  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
514  *    up short of free memory since the last time (last_fullzone_zap)
515  *    we zero'd fullzones.
516  * 2) The array z_to_n[] maps each zone in the zonelist to its node
517  *    id, so that we can efficiently evaluate whether that node is
518  *    set in the current tasks mems_allowed.
519  *
520  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
521  * indexed by a zones offset in the zonelist zones[] array.
522  *
523  * The get_page_from_freelist() routine does two scans.  During the
524  * first scan, we skip zones whose corresponding bit in 'fullzones'
525  * is set or whose corresponding node in current->mems_allowed (which
526  * comes from cpusets) is not set.  During the second scan, we bypass
527  * this zonelist_cache, to ensure we look methodically at each zone.
528  *
529  * Once per second, we zero out (zap) fullzones, forcing us to
530  * reconsider nodes that might have regained more free memory.
531  * The field last_full_zap is the time we last zapped fullzones.
532  *
533  * This mechanism reduces the amount of time we waste repeatedly
534  * reexaming zones for free memory when they just came up low on
535  * memory momentarilly ago.
536  *
537  * The zonelist_cache struct members logically belong in struct
538  * zonelist.  However, the mempolicy zonelists constructed for
539  * MPOL_BIND are intentionally variable length (and usually much
540  * shorter).  A general purpose mechanism for handling structs with
541  * multiple variable length members is more mechanism than we want
542  * here.  We resort to some special case hackery instead.
543  *
544  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
545  * part because they are shorter), so we put the fixed length stuff
546  * at the front of the zonelist struct, ending in a variable length
547  * zones[], as is needed by MPOL_BIND.
548  *
549  * Then we put the optional zonelist cache on the end of the zonelist
550  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
551  * the fixed length portion at the front of the struct.  This pointer
552  * both enables us to find the zonelist cache, and in the case of
553  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
554  * to know that the zonelist cache is not there.
555  *
556  * The end result is that struct zonelists come in two flavors:
557  *  1) The full, fixed length version, shown below, and
558  *  2) The custom zonelists for MPOL_BIND.
559  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
560  *
561  * Even though there may be multiple CPU cores on a node modifying
562  * fullzones or last_full_zap in the same zonelist_cache at the same
563  * time, we don't lock it.  This is just hint data - if it is wrong now
564  * and then, the allocator will still function, perhaps a bit slower.
565  */
566 
567 
568 struct zonelist_cache {
569 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
570 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
571 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
572 };
573 #else
574 #define MAX_ZONELISTS 1
575 struct zonelist_cache;
576 #endif
577 
578 /*
579  * This struct contains information about a zone in a zonelist. It is stored
580  * here to avoid dereferences into large structures and lookups of tables
581  */
582 struct zoneref {
583 	struct zone *zone;	/* Pointer to actual zone */
584 	int zone_idx;		/* zone_idx(zoneref->zone) */
585 };
586 
587 /*
588  * One allocation request operates on a zonelist. A zonelist
589  * is a list of zones, the first one is the 'goal' of the
590  * allocation, the other zones are fallback zones, in decreasing
591  * priority.
592  *
593  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
594  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
595  * *
596  * To speed the reading of the zonelist, the zonerefs contain the zone index
597  * of the entry being read. Helper functions to access information given
598  * a struct zoneref are
599  *
600  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
601  * zonelist_zone_idx()	- Return the index of the zone for an entry
602  * zonelist_node_idx()	- Return the index of the node for an entry
603  */
604 struct zonelist {
605 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
606 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
607 #ifdef CONFIG_NUMA
608 	struct zonelist_cache zlcache;			     // optional ...
609 #endif
610 };
611 
612 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
613 struct node_active_region {
614 	unsigned long start_pfn;
615 	unsigned long end_pfn;
616 	int nid;
617 };
618 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
619 
620 #ifndef CONFIG_DISCONTIGMEM
621 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
622 extern struct page *mem_map;
623 #endif
624 
625 /*
626  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
627  * (mostly NUMA machines?) to denote a higher-level memory zone than the
628  * zone denotes.
629  *
630  * On NUMA machines, each NUMA node would have a pg_data_t to describe
631  * it's memory layout.
632  *
633  * Memory statistics and page replacement data structures are maintained on a
634  * per-zone basis.
635  */
636 struct bootmem_data;
637 typedef struct pglist_data {
638 	struct zone node_zones[MAX_NR_ZONES];
639 	struct zonelist node_zonelists[MAX_ZONELISTS];
640 	int nr_zones;
641 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
642 	struct page *node_mem_map;
643 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
644 	struct page_cgroup *node_page_cgroup;
645 #endif
646 #endif
647 #ifndef CONFIG_NO_BOOTMEM
648 	struct bootmem_data *bdata;
649 #endif
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 	/*
652 	 * Must be held any time you expect node_start_pfn, node_present_pages
653 	 * or node_spanned_pages stay constant.  Holding this will also
654 	 * guarantee that any pfn_valid() stays that way.
655 	 *
656 	 * Nests above zone->lock and zone->size_seqlock.
657 	 */
658 	spinlock_t node_size_lock;
659 #endif
660 	unsigned long node_start_pfn;
661 	unsigned long node_present_pages; /* total number of physical pages */
662 	unsigned long node_spanned_pages; /* total size of physical page
663 					     range, including holes */
664 	int node_id;
665 	wait_queue_head_t kswapd_wait;
666 	struct task_struct *kswapd;	/* Protected by lock_memory_hotplug() */
667 	int kswapd_max_order;
668 	enum zone_type classzone_idx;
669 } pg_data_t;
670 
671 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
672 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
673 #ifdef CONFIG_FLAT_NODE_MEM_MAP
674 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
675 #else
676 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
677 #endif
678 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
679 
680 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
681 
682 #define node_end_pfn(nid) ({\
683 	pg_data_t *__pgdat = NODE_DATA(nid);\
684 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
685 })
686 
687 #include <linux/memory_hotplug.h>
688 
689 extern struct mutex zonelists_mutex;
690 void build_all_zonelists(void *data);
691 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
692 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
693 		int classzone_idx, int alloc_flags);
694 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
695 		int classzone_idx, int alloc_flags);
696 enum memmap_context {
697 	MEMMAP_EARLY,
698 	MEMMAP_HOTPLUG,
699 };
700 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
701 				     unsigned long size,
702 				     enum memmap_context context);
703 
704 #ifdef CONFIG_HAVE_MEMORY_PRESENT
705 void memory_present(int nid, unsigned long start, unsigned long end);
706 #else
memory_present(int nid,unsigned long start,unsigned long end)707 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
708 #endif
709 
710 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
711 int local_memory_node(int node_id);
712 #else
local_memory_node(int node_id)713 static inline int local_memory_node(int node_id) { return node_id; };
714 #endif
715 
716 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
717 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
718 #endif
719 
720 /*
721  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
722  */
723 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
724 
populated_zone(struct zone * zone)725 static inline int populated_zone(struct zone *zone)
726 {
727 	return (!!zone->present_pages);
728 }
729 
730 extern int movable_zone;
731 
zone_movable_is_highmem(void)732 static inline int zone_movable_is_highmem(void)
733 {
734 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
735 	return movable_zone == ZONE_HIGHMEM;
736 #else
737 	return 0;
738 #endif
739 }
740 
is_highmem_idx(enum zone_type idx)741 static inline int is_highmem_idx(enum zone_type idx)
742 {
743 #ifdef CONFIG_HIGHMEM
744 	return (idx == ZONE_HIGHMEM ||
745 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
746 #else
747 	return 0;
748 #endif
749 }
750 
is_normal_idx(enum zone_type idx)751 static inline int is_normal_idx(enum zone_type idx)
752 {
753 	return (idx == ZONE_NORMAL);
754 }
755 
756 /**
757  * is_highmem - helper function to quickly check if a struct zone is a
758  *              highmem zone or not.  This is an attempt to keep references
759  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
760  * @zone - pointer to struct zone variable
761  */
is_highmem(struct zone * zone)762 static inline int is_highmem(struct zone *zone)
763 {
764 #ifdef CONFIG_HIGHMEM
765 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
766 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
767 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
768 		zone_movable_is_highmem());
769 #else
770 	return 0;
771 #endif
772 }
773 
is_normal(struct zone * zone)774 static inline int is_normal(struct zone *zone)
775 {
776 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
777 }
778 
is_dma32(struct zone * zone)779 static inline int is_dma32(struct zone *zone)
780 {
781 #ifdef CONFIG_ZONE_DMA32
782 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
783 #else
784 	return 0;
785 #endif
786 }
787 
is_dma(struct zone * zone)788 static inline int is_dma(struct zone *zone)
789 {
790 #ifdef CONFIG_ZONE_DMA
791 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
792 #else
793 	return 0;
794 #endif
795 }
796 
797 /* These two functions are used to setup the per zone pages min values */
798 struct ctl_table;
799 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
800 					void __user *, size_t *, loff_t *);
801 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
802 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
803 					void __user *, size_t *, loff_t *);
804 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
805 					void __user *, size_t *, loff_t *);
806 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
807 			void __user *, size_t *, loff_t *);
808 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
809 			void __user *, size_t *, loff_t *);
810 
811 extern int numa_zonelist_order_handler(struct ctl_table *, int,
812 			void __user *, size_t *, loff_t *);
813 extern char numa_zonelist_order[];
814 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
815 
816 #ifndef CONFIG_NEED_MULTIPLE_NODES
817 
818 extern struct pglist_data contig_page_data;
819 #define NODE_DATA(nid)		(&contig_page_data)
820 #define NODE_MEM_MAP(nid)	mem_map
821 
822 #else /* CONFIG_NEED_MULTIPLE_NODES */
823 
824 #include <asm/mmzone.h>
825 
826 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
827 
828 extern struct pglist_data *first_online_pgdat(void);
829 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
830 extern struct zone *next_zone(struct zone *zone);
831 
832 /**
833  * for_each_online_pgdat - helper macro to iterate over all online nodes
834  * @pgdat - pointer to a pg_data_t variable
835  */
836 #define for_each_online_pgdat(pgdat)			\
837 	for (pgdat = first_online_pgdat();		\
838 	     pgdat;					\
839 	     pgdat = next_online_pgdat(pgdat))
840 /**
841  * for_each_zone - helper macro to iterate over all memory zones
842  * @zone - pointer to struct zone variable
843  *
844  * The user only needs to declare the zone variable, for_each_zone
845  * fills it in.
846  */
847 #define for_each_zone(zone)			        \
848 	for (zone = (first_online_pgdat())->node_zones; \
849 	     zone;					\
850 	     zone = next_zone(zone))
851 
852 #define for_each_populated_zone(zone)		        \
853 	for (zone = (first_online_pgdat())->node_zones; \
854 	     zone;					\
855 	     zone = next_zone(zone))			\
856 		if (!populated_zone(zone))		\
857 			; /* do nothing */		\
858 		else
859 
zonelist_zone(struct zoneref * zoneref)860 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
861 {
862 	return zoneref->zone;
863 }
864 
zonelist_zone_idx(struct zoneref * zoneref)865 static inline int zonelist_zone_idx(struct zoneref *zoneref)
866 {
867 	return zoneref->zone_idx;
868 }
869 
zonelist_node_idx(struct zoneref * zoneref)870 static inline int zonelist_node_idx(struct zoneref *zoneref)
871 {
872 #ifdef CONFIG_NUMA
873 	/* zone_to_nid not available in this context */
874 	return zoneref->zone->node;
875 #else
876 	return 0;
877 #endif /* CONFIG_NUMA */
878 }
879 
880 /**
881  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
882  * @z - The cursor used as a starting point for the search
883  * @highest_zoneidx - The zone index of the highest zone to return
884  * @nodes - An optional nodemask to filter the zonelist with
885  * @zone - The first suitable zone found is returned via this parameter
886  *
887  * This function returns the next zone at or below a given zone index that is
888  * within the allowed nodemask using a cursor as the starting point for the
889  * search. The zoneref returned is a cursor that represents the current zone
890  * being examined. It should be advanced by one before calling
891  * next_zones_zonelist again.
892  */
893 struct zoneref *next_zones_zonelist(struct zoneref *z,
894 					enum zone_type highest_zoneidx,
895 					nodemask_t *nodes,
896 					struct zone **zone);
897 
898 /**
899  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
900  * @zonelist - The zonelist to search for a suitable zone
901  * @highest_zoneidx - The zone index of the highest zone to return
902  * @nodes - An optional nodemask to filter the zonelist with
903  * @zone - The first suitable zone found is returned via this parameter
904  *
905  * This function returns the first zone at or below a given zone index that is
906  * within the allowed nodemask. The zoneref returned is a cursor that can be
907  * used to iterate the zonelist with next_zones_zonelist by advancing it by
908  * one before calling.
909  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes,struct zone ** zone)910 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
911 					enum zone_type highest_zoneidx,
912 					nodemask_t *nodes,
913 					struct zone **zone)
914 {
915 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
916 								zone);
917 }
918 
919 /**
920  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
921  * @zone - The current zone in the iterator
922  * @z - The current pointer within zonelist->zones being iterated
923  * @zlist - The zonelist being iterated
924  * @highidx - The zone index of the highest zone to return
925  * @nodemask - Nodemask allowed by the allocator
926  *
927  * This iterator iterates though all zones at or below a given zone index and
928  * within a given nodemask
929  */
930 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
931 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
932 		zone;							\
933 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
934 
935 /**
936  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
937  * @zone - The current zone in the iterator
938  * @z - The current pointer within zonelist->zones being iterated
939  * @zlist - The zonelist being iterated
940  * @highidx - The zone index of the highest zone to return
941  *
942  * This iterator iterates though all zones at or below a given zone index.
943  */
944 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
945 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
946 
947 #ifdef CONFIG_SPARSEMEM
948 #include <asm/sparsemem.h>
949 #endif
950 
951 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
952 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)953 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
954 {
955 	return 0;
956 }
957 #endif
958 
959 #ifdef CONFIG_FLATMEM
960 #define pfn_to_nid(pfn)		(0)
961 #endif
962 
963 #ifdef CONFIG_SPARSEMEM
964 
965 /*
966  * SECTION_SHIFT    		#bits space required to store a section #
967  *
968  * PA_SECTION_SHIFT		physical address to/from section number
969  * PFN_SECTION_SHIFT		pfn to/from section number
970  */
971 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
972 
973 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
974 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
975 
976 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
977 
978 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
979 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
980 
981 #define SECTION_BLOCKFLAGS_BITS \
982 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
983 
984 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
985 #error Allocator MAX_ORDER exceeds SECTION_SIZE
986 #endif
987 
988 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
989 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
990 
991 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
992 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
993 
994 struct page;
995 struct page_cgroup;
996 struct mem_section {
997 	/*
998 	 * This is, logically, a pointer to an array of struct
999 	 * pages.  However, it is stored with some other magic.
1000 	 * (see sparse.c::sparse_init_one_section())
1001 	 *
1002 	 * Additionally during early boot we encode node id of
1003 	 * the location of the section here to guide allocation.
1004 	 * (see sparse.c::memory_present())
1005 	 *
1006 	 * Making it a UL at least makes someone do a cast
1007 	 * before using it wrong.
1008 	 */
1009 	unsigned long section_mem_map;
1010 
1011 	/* See declaration of similar field in struct zone */
1012 	unsigned long *pageblock_flags;
1013 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1014 	/*
1015 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1016 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1017 	 */
1018 	struct page_cgroup *page_cgroup;
1019 	unsigned long pad;
1020 #endif
1021 };
1022 
1023 #ifdef CONFIG_SPARSEMEM_EXTREME
1024 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1025 #else
1026 #define SECTIONS_PER_ROOT	1
1027 #endif
1028 
1029 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1030 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1031 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1032 
1033 #ifdef CONFIG_SPARSEMEM_EXTREME
1034 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1035 #else
1036 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1037 #endif
1038 
__nr_to_section(unsigned long nr)1039 static inline struct mem_section *__nr_to_section(unsigned long nr)
1040 {
1041 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1042 		return NULL;
1043 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1044 }
1045 extern int __section_nr(struct mem_section* ms);
1046 extern unsigned long usemap_size(void);
1047 
1048 /*
1049  * We use the lower bits of the mem_map pointer to store
1050  * a little bit of information.  There should be at least
1051  * 3 bits here due to 32-bit alignment.
1052  */
1053 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1054 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1055 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1056 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1057 #define SECTION_NID_SHIFT	2
1058 
__section_mem_map_addr(struct mem_section * section)1059 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1060 {
1061 	unsigned long map = section->section_mem_map;
1062 	map &= SECTION_MAP_MASK;
1063 	return (struct page *)map;
1064 }
1065 
present_section(struct mem_section * section)1066 static inline int present_section(struct mem_section *section)
1067 {
1068 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1069 }
1070 
present_section_nr(unsigned long nr)1071 static inline int present_section_nr(unsigned long nr)
1072 {
1073 	return present_section(__nr_to_section(nr));
1074 }
1075 
valid_section(struct mem_section * section)1076 static inline int valid_section(struct mem_section *section)
1077 {
1078 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1079 }
1080 
valid_section_nr(unsigned long nr)1081 static inline int valid_section_nr(unsigned long nr)
1082 {
1083 	return valid_section(__nr_to_section(nr));
1084 }
1085 
__pfn_to_section(unsigned long pfn)1086 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1087 {
1088 	return __nr_to_section(pfn_to_section_nr(pfn));
1089 }
1090 
1091 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1092 static inline int pfn_valid(unsigned long pfn)
1093 {
1094 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1095 		return 0;
1096 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1097 }
1098 #endif
1099 
pfn_present(unsigned long pfn)1100 static inline int pfn_present(unsigned long pfn)
1101 {
1102 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1103 		return 0;
1104 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1105 }
1106 
1107 /*
1108  * These are _only_ used during initialisation, therefore they
1109  * can use __initdata ...  They could have names to indicate
1110  * this restriction.
1111  */
1112 #ifdef CONFIG_NUMA
1113 #define pfn_to_nid(pfn)							\
1114 ({									\
1115 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1116 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1117 })
1118 #else
1119 #define pfn_to_nid(pfn)		(0)
1120 #endif
1121 
1122 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1123 void sparse_init(void);
1124 #else
1125 #define sparse_init()	do {} while (0)
1126 #define sparse_index_init(_sec, _nid)  do {} while (0)
1127 #endif /* CONFIG_SPARSEMEM */
1128 
1129 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1130 bool early_pfn_in_nid(unsigned long pfn, int nid);
1131 #else
1132 #define early_pfn_in_nid(pfn, nid)	(1)
1133 #endif
1134 
1135 #ifndef early_pfn_valid
1136 #define early_pfn_valid(pfn)	(1)
1137 #endif
1138 
1139 void memory_present(int nid, unsigned long start, unsigned long end);
1140 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1141 
1142 /*
1143  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1144  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1145  * pfn_valid_within() should be used in this case; we optimise this away
1146  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1147  */
1148 #ifdef CONFIG_HOLES_IN_ZONE
1149 #define pfn_valid_within(pfn) pfn_valid(pfn)
1150 #else
1151 #define pfn_valid_within(pfn) (1)
1152 #endif
1153 
1154 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1155 /*
1156  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1157  * associated with it or not. In FLATMEM, it is expected that holes always
1158  * have valid memmap as long as there is valid PFNs either side of the hole.
1159  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1160  * entire section.
1161  *
1162  * However, an ARM, and maybe other embedded architectures in the future
1163  * free memmap backing holes to save memory on the assumption the memmap is
1164  * never used. The page_zone linkages are then broken even though pfn_valid()
1165  * returns true. A walker of the full memmap must then do this additional
1166  * check to ensure the memmap they are looking at is sane by making sure
1167  * the zone and PFN linkages are still valid. This is expensive, but walkers
1168  * of the full memmap are extremely rare.
1169  */
1170 int memmap_valid_within(unsigned long pfn,
1171 					struct page *page, struct zone *zone);
1172 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1173 static inline int memmap_valid_within(unsigned long pfn,
1174 					struct page *page, struct zone *zone)
1175 {
1176 	return 1;
1177 }
1178 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1179 
1180 #endif /* !__GENERATING_BOUNDS.H */
1181 #endif /* !__ASSEMBLY__ */
1182 #endif /* _LINUX_MMZONE_H */
1183