1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
udf_sb_lvidiu(struct udf_sb_info * sbi)97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 
122 static struct kmem_cache *udf_inode_cachep;
123 
udf_alloc_inode(struct super_block * sb)124 static struct inode *udf_alloc_inode(struct super_block *sb)
125 {
126 	struct udf_inode_info *ei;
127 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
128 	if (!ei)
129 		return NULL;
130 
131 	ei->i_unique = 0;
132 	ei->i_lenExtents = 0;
133 	ei->i_next_alloc_block = 0;
134 	ei->i_next_alloc_goal = 0;
135 	ei->i_strat4096 = 0;
136 	init_rwsem(&ei->i_data_sem);
137 
138 	return &ei->vfs_inode;
139 }
140 
udf_i_callback(struct rcu_head * head)141 static void udf_i_callback(struct rcu_head *head)
142 {
143 	struct inode *inode = container_of(head, struct inode, i_rcu);
144 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
145 }
146 
udf_destroy_inode(struct inode * inode)147 static void udf_destroy_inode(struct inode *inode)
148 {
149 	call_rcu(&inode->i_rcu, udf_i_callback);
150 }
151 
init_once(void * foo)152 static void init_once(void *foo)
153 {
154 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
155 
156 	ei->i_ext.i_data = NULL;
157 	inode_init_once(&ei->vfs_inode);
158 }
159 
init_inodecache(void)160 static int init_inodecache(void)
161 {
162 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
163 					     sizeof(struct udf_inode_info),
164 					     0, (SLAB_RECLAIM_ACCOUNT |
165 						 SLAB_MEM_SPREAD),
166 					     init_once);
167 	if (!udf_inode_cachep)
168 		return -ENOMEM;
169 	return 0;
170 }
171 
destroy_inodecache(void)172 static void destroy_inodecache(void)
173 {
174 	kmem_cache_destroy(udf_inode_cachep);
175 }
176 
177 /* Superblock operations */
178 static const struct super_operations udf_sb_ops = {
179 	.alloc_inode	= udf_alloc_inode,
180 	.destroy_inode	= udf_destroy_inode,
181 	.write_inode	= udf_write_inode,
182 	.evict_inode	= udf_evict_inode,
183 	.put_super	= udf_put_super,
184 	.sync_fs	= udf_sync_fs,
185 	.statfs		= udf_statfs,
186 	.remount_fs	= udf_remount_fs,
187 	.show_options	= udf_show_options,
188 };
189 
190 struct udf_options {
191 	unsigned char novrs;
192 	unsigned int blocksize;
193 	unsigned int session;
194 	unsigned int lastblock;
195 	unsigned int anchor;
196 	unsigned int volume;
197 	unsigned short partition;
198 	unsigned int fileset;
199 	unsigned int rootdir;
200 	unsigned int flags;
201 	umode_t umask;
202 	gid_t gid;
203 	uid_t uid;
204 	umode_t fmode;
205 	umode_t dmode;
206 	struct nls_table *nls_map;
207 };
208 
init_udf_fs(void)209 static int __init init_udf_fs(void)
210 {
211 	int err;
212 
213 	err = init_inodecache();
214 	if (err)
215 		goto out1;
216 	err = register_filesystem(&udf_fstype);
217 	if (err)
218 		goto out;
219 
220 	return 0;
221 
222 out:
223 	destroy_inodecache();
224 
225 out1:
226 	return err;
227 }
228 
exit_udf_fs(void)229 static void __exit exit_udf_fs(void)
230 {
231 	unregister_filesystem(&udf_fstype);
232 	destroy_inodecache();
233 }
234 
235 module_init(init_udf_fs)
module_exit(exit_udf_fs)236 module_exit(exit_udf_fs)
237 
238 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
239 {
240 	struct udf_sb_info *sbi = UDF_SB(sb);
241 
242 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
243 				  GFP_KERNEL);
244 	if (!sbi->s_partmaps) {
245 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
246 			count);
247 		sbi->s_partitions = 0;
248 		return -ENOMEM;
249 	}
250 
251 	sbi->s_partitions = count;
252 	return 0;
253 }
254 
udf_show_options(struct seq_file * seq,struct dentry * root)255 static int udf_show_options(struct seq_file *seq, struct dentry *root)
256 {
257 	struct super_block *sb = root->d_sb;
258 	struct udf_sb_info *sbi = UDF_SB(sb);
259 
260 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
261 		seq_puts(seq, ",nostrict");
262 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
263 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
264 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
265 		seq_puts(seq, ",unhide");
266 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
267 		seq_puts(seq, ",undelete");
268 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
269 		seq_puts(seq, ",noadinicb");
270 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
271 		seq_puts(seq, ",shortad");
272 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
273 		seq_puts(seq, ",uid=forget");
274 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
275 		seq_puts(seq, ",uid=ignore");
276 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
277 		seq_puts(seq, ",gid=forget");
278 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
279 		seq_puts(seq, ",gid=ignore");
280 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
281 		seq_printf(seq, ",uid=%u", sbi->s_uid);
282 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
283 		seq_printf(seq, ",gid=%u", sbi->s_gid);
284 	if (sbi->s_umask != 0)
285 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
286 	if (sbi->s_fmode != UDF_INVALID_MODE)
287 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
288 	if (sbi->s_dmode != UDF_INVALID_MODE)
289 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
290 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
291 		seq_printf(seq, ",session=%u", sbi->s_session);
292 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
293 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
294 	if (sbi->s_anchor != 0)
295 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
296 	/*
297 	 * volume, partition, fileset and rootdir seem to be ignored
298 	 * currently
299 	 */
300 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
301 		seq_puts(seq, ",utf8");
302 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
303 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
304 
305 	return 0;
306 }
307 
308 /*
309  * udf_parse_options
310  *
311  * PURPOSE
312  *	Parse mount options.
313  *
314  * DESCRIPTION
315  *	The following mount options are supported:
316  *
317  *	gid=		Set the default group.
318  *	umask=		Set the default umask.
319  *	mode=		Set the default file permissions.
320  *	dmode=		Set the default directory permissions.
321  *	uid=		Set the default user.
322  *	bs=		Set the block size.
323  *	unhide		Show otherwise hidden files.
324  *	undelete	Show deleted files in lists.
325  *	adinicb		Embed data in the inode (default)
326  *	noadinicb	Don't embed data in the inode
327  *	shortad		Use short ad's
328  *	longad		Use long ad's (default)
329  *	nostrict	Unset strict conformance
330  *	iocharset=	Set the NLS character set
331  *
332  *	The remaining are for debugging and disaster recovery:
333  *
334  *	novrs		Skip volume sequence recognition
335  *
336  *	The following expect a offset from 0.
337  *
338  *	session=	Set the CDROM session (default= last session)
339  *	anchor=		Override standard anchor location. (default= 256)
340  *	volume=		Override the VolumeDesc location. (unused)
341  *	partition=	Override the PartitionDesc location. (unused)
342  *	lastblock=	Set the last block of the filesystem/
343  *
344  *	The following expect a offset from the partition root.
345  *
346  *	fileset=	Override the fileset block location. (unused)
347  *	rootdir=	Override the root directory location. (unused)
348  *		WARNING: overriding the rootdir to a non-directory may
349  *		yield highly unpredictable results.
350  *
351  * PRE-CONDITIONS
352  *	options		Pointer to mount options string.
353  *	uopts		Pointer to mount options variable.
354  *
355  * POST-CONDITIONS
356  *	<return>	1	Mount options parsed okay.
357  *	<return>	0	Error parsing mount options.
358  *
359  * HISTORY
360  *	July 1, 1997 - Andrew E. Mileski
361  *	Written, tested, and released.
362  */
363 
364 enum {
365 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
366 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
367 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
368 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
369 	Opt_rootdir, Opt_utf8, Opt_iocharset,
370 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
371 	Opt_fmode, Opt_dmode
372 };
373 
374 static const match_table_t tokens = {
375 	{Opt_novrs,	"novrs"},
376 	{Opt_nostrict,	"nostrict"},
377 	{Opt_bs,	"bs=%u"},
378 	{Opt_unhide,	"unhide"},
379 	{Opt_undelete,	"undelete"},
380 	{Opt_noadinicb,	"noadinicb"},
381 	{Opt_adinicb,	"adinicb"},
382 	{Opt_shortad,	"shortad"},
383 	{Opt_longad,	"longad"},
384 	{Opt_uforget,	"uid=forget"},
385 	{Opt_uignore,	"uid=ignore"},
386 	{Opt_gforget,	"gid=forget"},
387 	{Opt_gignore,	"gid=ignore"},
388 	{Opt_gid,	"gid=%u"},
389 	{Opt_uid,	"uid=%u"},
390 	{Opt_umask,	"umask=%o"},
391 	{Opt_session,	"session=%u"},
392 	{Opt_lastblock,	"lastblock=%u"},
393 	{Opt_anchor,	"anchor=%u"},
394 	{Opt_volume,	"volume=%u"},
395 	{Opt_partition,	"partition=%u"},
396 	{Opt_fileset,	"fileset=%u"},
397 	{Opt_rootdir,	"rootdir=%u"},
398 	{Opt_utf8,	"utf8"},
399 	{Opt_iocharset,	"iocharset=%s"},
400 	{Opt_fmode,     "mode=%o"},
401 	{Opt_dmode,     "dmode=%o"},
402 	{Opt_err,	NULL}
403 };
404 
udf_parse_options(char * options,struct udf_options * uopt,bool remount)405 static int udf_parse_options(char *options, struct udf_options *uopt,
406 			     bool remount)
407 {
408 	char *p;
409 	int option;
410 
411 	uopt->novrs = 0;
412 	uopt->partition = 0xFFFF;
413 	uopt->session = 0xFFFFFFFF;
414 	uopt->lastblock = 0;
415 	uopt->anchor = 0;
416 	uopt->volume = 0xFFFFFFFF;
417 	uopt->rootdir = 0xFFFFFFFF;
418 	uopt->fileset = 0xFFFFFFFF;
419 	uopt->nls_map = NULL;
420 
421 	if (!options)
422 		return 1;
423 
424 	while ((p = strsep(&options, ",")) != NULL) {
425 		substring_t args[MAX_OPT_ARGS];
426 		int token;
427 		if (!*p)
428 			continue;
429 
430 		token = match_token(p, tokens, args);
431 		switch (token) {
432 		case Opt_novrs:
433 			uopt->novrs = 1;
434 			break;
435 		case Opt_bs:
436 			if (match_int(&args[0], &option))
437 				return 0;
438 			uopt->blocksize = option;
439 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
440 			break;
441 		case Opt_unhide:
442 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
443 			break;
444 		case Opt_undelete:
445 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
446 			break;
447 		case Opt_noadinicb:
448 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
449 			break;
450 		case Opt_adinicb:
451 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
452 			break;
453 		case Opt_shortad:
454 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
455 			break;
456 		case Opt_longad:
457 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
458 			break;
459 		case Opt_gid:
460 			if (match_int(args, &option))
461 				return 0;
462 			uopt->gid = option;
463 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
464 			break;
465 		case Opt_uid:
466 			if (match_int(args, &option))
467 				return 0;
468 			uopt->uid = option;
469 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
470 			break;
471 		case Opt_umask:
472 			if (match_octal(args, &option))
473 				return 0;
474 			uopt->umask = option;
475 			break;
476 		case Opt_nostrict:
477 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
478 			break;
479 		case Opt_session:
480 			if (match_int(args, &option))
481 				return 0;
482 			uopt->session = option;
483 			if (!remount)
484 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
485 			break;
486 		case Opt_lastblock:
487 			if (match_int(args, &option))
488 				return 0;
489 			uopt->lastblock = option;
490 			if (!remount)
491 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
492 			break;
493 		case Opt_anchor:
494 			if (match_int(args, &option))
495 				return 0;
496 			uopt->anchor = option;
497 			break;
498 		case Opt_volume:
499 			if (match_int(args, &option))
500 				return 0;
501 			uopt->volume = option;
502 			break;
503 		case Opt_partition:
504 			if (match_int(args, &option))
505 				return 0;
506 			uopt->partition = option;
507 			break;
508 		case Opt_fileset:
509 			if (match_int(args, &option))
510 				return 0;
511 			uopt->fileset = option;
512 			break;
513 		case Opt_rootdir:
514 			if (match_int(args, &option))
515 				return 0;
516 			uopt->rootdir = option;
517 			break;
518 		case Opt_utf8:
519 			uopt->flags |= (1 << UDF_FLAG_UTF8);
520 			break;
521 #ifdef CONFIG_UDF_NLS
522 		case Opt_iocharset:
523 			uopt->nls_map = load_nls(args[0].from);
524 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
525 			break;
526 #endif
527 		case Opt_uignore:
528 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
529 			break;
530 		case Opt_uforget:
531 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
532 			break;
533 		case Opt_gignore:
534 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
535 			break;
536 		case Opt_gforget:
537 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
538 			break;
539 		case Opt_fmode:
540 			if (match_octal(args, &option))
541 				return 0;
542 			uopt->fmode = option & 0777;
543 			break;
544 		case Opt_dmode:
545 			if (match_octal(args, &option))
546 				return 0;
547 			uopt->dmode = option & 0777;
548 			break;
549 		default:
550 			pr_err("bad mount option \"%s\" or missing value\n", p);
551 			return 0;
552 		}
553 	}
554 	return 1;
555 }
556 
udf_remount_fs(struct super_block * sb,int * flags,char * options)557 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
558 {
559 	struct udf_options uopt;
560 	struct udf_sb_info *sbi = UDF_SB(sb);
561 	int error = 0;
562 
563 	uopt.flags = sbi->s_flags;
564 	uopt.uid   = sbi->s_uid;
565 	uopt.gid   = sbi->s_gid;
566 	uopt.umask = sbi->s_umask;
567 	uopt.fmode = sbi->s_fmode;
568 	uopt.dmode = sbi->s_dmode;
569 
570 	if (!udf_parse_options(options, &uopt, true))
571 		return -EINVAL;
572 
573 	write_lock(&sbi->s_cred_lock);
574 	sbi->s_flags = uopt.flags;
575 	sbi->s_uid   = uopt.uid;
576 	sbi->s_gid   = uopt.gid;
577 	sbi->s_umask = uopt.umask;
578 	sbi->s_fmode = uopt.fmode;
579 	sbi->s_dmode = uopt.dmode;
580 	write_unlock(&sbi->s_cred_lock);
581 
582 	if (sbi->s_lvid_bh) {
583 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
584 		if (write_rev > UDF_MAX_WRITE_VERSION)
585 			*flags |= MS_RDONLY;
586 	}
587 
588 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
589 		goto out_unlock;
590 
591 	if (*flags & MS_RDONLY)
592 		udf_close_lvid(sb);
593 	else
594 		udf_open_lvid(sb);
595 
596 out_unlock:
597 	return error;
598 }
599 
600 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
601 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
udf_check_vsd(struct super_block * sb)602 static loff_t udf_check_vsd(struct super_block *sb)
603 {
604 	struct volStructDesc *vsd = NULL;
605 	loff_t sector = 32768;
606 	int sectorsize;
607 	struct buffer_head *bh = NULL;
608 	int nsr02 = 0;
609 	int nsr03 = 0;
610 	struct udf_sb_info *sbi;
611 
612 	sbi = UDF_SB(sb);
613 	if (sb->s_blocksize < sizeof(struct volStructDesc))
614 		sectorsize = sizeof(struct volStructDesc);
615 	else
616 		sectorsize = sb->s_blocksize;
617 
618 	sector += (sbi->s_session << sb->s_blocksize_bits);
619 
620 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
621 		  (unsigned int)(sector >> sb->s_blocksize_bits),
622 		  sb->s_blocksize);
623 	/* Process the sequence (if applicable) */
624 	for (; !nsr02 && !nsr03; sector += sectorsize) {
625 		/* Read a block */
626 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
627 		if (!bh)
628 			break;
629 
630 		/* Look for ISO  descriptors */
631 		vsd = (struct volStructDesc *)(bh->b_data +
632 					      (sector & (sb->s_blocksize - 1)));
633 
634 		if (vsd->stdIdent[0] == 0) {
635 			brelse(bh);
636 			break;
637 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
638 				    VSD_STD_ID_LEN)) {
639 			switch (vsd->structType) {
640 			case 0:
641 				udf_debug("ISO9660 Boot Record found\n");
642 				break;
643 			case 1:
644 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
645 				break;
646 			case 2:
647 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
648 				break;
649 			case 3:
650 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
651 				break;
652 			case 255:
653 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
654 				break;
655 			default:
656 				udf_debug("ISO9660 VRS (%u) found\n",
657 					  vsd->structType);
658 				break;
659 			}
660 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
661 				    VSD_STD_ID_LEN))
662 			; /* nothing */
663 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
664 				    VSD_STD_ID_LEN)) {
665 			brelse(bh);
666 			break;
667 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
668 				    VSD_STD_ID_LEN))
669 			nsr02 = sector;
670 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
671 				    VSD_STD_ID_LEN))
672 			nsr03 = sector;
673 		brelse(bh);
674 	}
675 
676 	if (nsr03)
677 		return nsr03;
678 	else if (nsr02)
679 		return nsr02;
680 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
681 		return -1;
682 	else
683 		return 0;
684 }
685 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)686 static int udf_find_fileset(struct super_block *sb,
687 			    struct kernel_lb_addr *fileset,
688 			    struct kernel_lb_addr *root)
689 {
690 	struct buffer_head *bh = NULL;
691 	long lastblock;
692 	uint16_t ident;
693 	struct udf_sb_info *sbi;
694 
695 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
696 	    fileset->partitionReferenceNum != 0xFFFF) {
697 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
698 
699 		if (!bh) {
700 			return 1;
701 		} else if (ident != TAG_IDENT_FSD) {
702 			brelse(bh);
703 			return 1;
704 		}
705 
706 	}
707 
708 	sbi = UDF_SB(sb);
709 	if (!bh) {
710 		/* Search backwards through the partitions */
711 		struct kernel_lb_addr newfileset;
712 
713 /* --> cvg: FIXME - is it reasonable? */
714 		return 1;
715 
716 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
717 		     (newfileset.partitionReferenceNum != 0xFFFF &&
718 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
719 		      fileset->partitionReferenceNum == 0xFFFF);
720 		     newfileset.partitionReferenceNum--) {
721 			lastblock = sbi->s_partmaps
722 					[newfileset.partitionReferenceNum]
723 						.s_partition_len;
724 			newfileset.logicalBlockNum = 0;
725 
726 			do {
727 				bh = udf_read_ptagged(sb, &newfileset, 0,
728 						      &ident);
729 				if (!bh) {
730 					newfileset.logicalBlockNum++;
731 					continue;
732 				}
733 
734 				switch (ident) {
735 				case TAG_IDENT_SBD:
736 				{
737 					struct spaceBitmapDesc *sp;
738 					sp = (struct spaceBitmapDesc *)
739 								bh->b_data;
740 					newfileset.logicalBlockNum += 1 +
741 						((le32_to_cpu(sp->numOfBytes) +
742 						  sizeof(struct spaceBitmapDesc)
743 						  - 1) >> sb->s_blocksize_bits);
744 					brelse(bh);
745 					break;
746 				}
747 				case TAG_IDENT_FSD:
748 					*fileset = newfileset;
749 					break;
750 				default:
751 					newfileset.logicalBlockNum++;
752 					brelse(bh);
753 					bh = NULL;
754 					break;
755 				}
756 			} while (newfileset.logicalBlockNum < lastblock &&
757 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
758 				 fileset->partitionReferenceNum == 0xFFFF);
759 		}
760 	}
761 
762 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
763 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
764 		udf_debug("Fileset at block=%d, partition=%d\n",
765 			  fileset->logicalBlockNum,
766 			  fileset->partitionReferenceNum);
767 
768 		sbi->s_partition = fileset->partitionReferenceNum;
769 		udf_load_fileset(sb, bh, root);
770 		brelse(bh);
771 		return 0;
772 	}
773 	return 1;
774 }
775 
udf_load_pvoldesc(struct super_block * sb,sector_t block)776 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
777 {
778 	struct primaryVolDesc *pvoldesc;
779 	struct ustr *instr, *outstr;
780 	struct buffer_head *bh;
781 	uint16_t ident;
782 	int ret = 1;
783 
784 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
785 	if (!instr)
786 		return 1;
787 
788 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
789 	if (!outstr)
790 		goto out1;
791 
792 	bh = udf_read_tagged(sb, block, block, &ident);
793 	if (!bh)
794 		goto out2;
795 
796 	BUG_ON(ident != TAG_IDENT_PVD);
797 
798 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
799 
800 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
801 			      pvoldesc->recordingDateAndTime)) {
802 #ifdef UDFFS_DEBUG
803 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
804 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
805 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
806 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
807 #endif
808 	}
809 
810 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
811 		if (udf_CS0toUTF8(outstr, instr)) {
812 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
813 				outstr->u_len > 31 ? 31 : outstr->u_len);
814 			udf_debug("volIdent[] = '%s'\n",
815 				  UDF_SB(sb)->s_volume_ident);
816 		}
817 
818 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
819 		if (udf_CS0toUTF8(outstr, instr))
820 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
821 
822 	brelse(bh);
823 	ret = 0;
824 out2:
825 	kfree(outstr);
826 out1:
827 	kfree(instr);
828 	return ret;
829 }
830 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_num)831 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
832 					u32 meta_file_loc, u32 partition_num)
833 {
834 	struct kernel_lb_addr addr;
835 	struct inode *metadata_fe;
836 
837 	addr.logicalBlockNum = meta_file_loc;
838 	addr.partitionReferenceNum = partition_num;
839 
840 	metadata_fe = udf_iget(sb, &addr);
841 
842 	if (metadata_fe == NULL)
843 		udf_warn(sb, "metadata inode efe not found\n");
844 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
845 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
846 		iput(metadata_fe);
847 		metadata_fe = NULL;
848 	}
849 
850 	return metadata_fe;
851 }
852 
udf_load_metadata_files(struct super_block * sb,int partition)853 static int udf_load_metadata_files(struct super_block *sb, int partition)
854 {
855 	struct udf_sb_info *sbi = UDF_SB(sb);
856 	struct udf_part_map *map;
857 	struct udf_meta_data *mdata;
858 	struct kernel_lb_addr addr;
859 
860 	map = &sbi->s_partmaps[partition];
861 	mdata = &map->s_type_specific.s_metadata;
862 
863 	/* metadata address */
864 	udf_debug("Metadata file location: block = %d part = %d\n",
865 		  mdata->s_meta_file_loc, map->s_partition_num);
866 
867 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
868 		mdata->s_meta_file_loc, map->s_partition_num);
869 
870 	if (mdata->s_metadata_fe == NULL) {
871 		/* mirror file entry */
872 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
873 			  mdata->s_mirror_file_loc, map->s_partition_num);
874 
875 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
876 			mdata->s_mirror_file_loc, map->s_partition_num);
877 
878 		if (mdata->s_mirror_fe == NULL) {
879 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
880 			goto error_exit;
881 		}
882 	}
883 
884 	/*
885 	 * bitmap file entry
886 	 * Note:
887 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
888 	*/
889 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
890 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
891 		addr.partitionReferenceNum = map->s_partition_num;
892 
893 		udf_debug("Bitmap file location: block = %d part = %d\n",
894 			  addr.logicalBlockNum, addr.partitionReferenceNum);
895 
896 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
897 
898 		if (mdata->s_bitmap_fe == NULL) {
899 			if (sb->s_flags & MS_RDONLY)
900 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
901 			else {
902 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
903 				goto error_exit;
904 			}
905 		}
906 	}
907 
908 	udf_debug("udf_load_metadata_files Ok\n");
909 
910 	return 0;
911 
912 error_exit:
913 	return 1;
914 }
915 
udf_load_fileset(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * root)916 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
917 			     struct kernel_lb_addr *root)
918 {
919 	struct fileSetDesc *fset;
920 
921 	fset = (struct fileSetDesc *)bh->b_data;
922 
923 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
924 
925 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
926 
927 	udf_debug("Rootdir at block=%d, partition=%d\n",
928 		  root->logicalBlockNum, root->partitionReferenceNum);
929 }
930 
udf_compute_nr_groups(struct super_block * sb,u32 partition)931 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
932 {
933 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
934 	return DIV_ROUND_UP(map->s_partition_len +
935 			    (sizeof(struct spaceBitmapDesc) << 3),
936 			    sb->s_blocksize * 8);
937 }
938 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)939 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
940 {
941 	struct udf_bitmap *bitmap;
942 	int nr_groups;
943 	int size;
944 
945 	nr_groups = udf_compute_nr_groups(sb, index);
946 	size = sizeof(struct udf_bitmap) +
947 		(sizeof(struct buffer_head *) * nr_groups);
948 
949 	if (size <= PAGE_SIZE)
950 		bitmap = kzalloc(size, GFP_KERNEL);
951 	else
952 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
953 
954 	if (bitmap == NULL)
955 		return NULL;
956 
957 	bitmap->s_block_bitmap = (struct buffer_head **)(bitmap + 1);
958 	bitmap->s_nr_groups = nr_groups;
959 	return bitmap;
960 }
961 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)962 static int udf_fill_partdesc_info(struct super_block *sb,
963 		struct partitionDesc *p, int p_index)
964 {
965 	struct udf_part_map *map;
966 	struct udf_sb_info *sbi = UDF_SB(sb);
967 	struct partitionHeaderDesc *phd;
968 
969 	map = &sbi->s_partmaps[p_index];
970 
971 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
972 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
973 
974 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
975 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
976 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
977 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
978 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
979 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
980 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
981 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
982 
983 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
984 		  p_index, map->s_partition_type,
985 		  map->s_partition_root, map->s_partition_len);
986 
987 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
988 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
989 		return 0;
990 
991 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
992 	if (phd->unallocSpaceTable.extLength) {
993 		struct kernel_lb_addr loc = {
994 			.logicalBlockNum = le32_to_cpu(
995 				phd->unallocSpaceTable.extPosition),
996 			.partitionReferenceNum = p_index,
997 		};
998 
999 		map->s_uspace.s_table = udf_iget(sb, &loc);
1000 		if (!map->s_uspace.s_table) {
1001 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1002 				  p_index);
1003 			return 1;
1004 		}
1005 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1006 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1007 			  p_index, map->s_uspace.s_table->i_ino);
1008 	}
1009 
1010 	if (phd->unallocSpaceBitmap.extLength) {
1011 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1012 		if (!bitmap)
1013 			return 1;
1014 		map->s_uspace.s_bitmap = bitmap;
1015 		bitmap->s_extLength = le32_to_cpu(
1016 				phd->unallocSpaceBitmap.extLength);
1017 		bitmap->s_extPosition = le32_to_cpu(
1018 				phd->unallocSpaceBitmap.extPosition);
1019 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1020 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1021 			  p_index, bitmap->s_extPosition);
1022 	}
1023 
1024 	if (phd->partitionIntegrityTable.extLength)
1025 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1026 
1027 	if (phd->freedSpaceTable.extLength) {
1028 		struct kernel_lb_addr loc = {
1029 			.logicalBlockNum = le32_to_cpu(
1030 				phd->freedSpaceTable.extPosition),
1031 			.partitionReferenceNum = p_index,
1032 		};
1033 
1034 		map->s_fspace.s_table = udf_iget(sb, &loc);
1035 		if (!map->s_fspace.s_table) {
1036 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1037 				  p_index);
1038 			return 1;
1039 		}
1040 
1041 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1042 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1043 			  p_index, map->s_fspace.s_table->i_ino);
1044 	}
1045 
1046 	if (phd->freedSpaceBitmap.extLength) {
1047 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1048 		if (!bitmap)
1049 			return 1;
1050 		map->s_fspace.s_bitmap = bitmap;
1051 		bitmap->s_extLength = le32_to_cpu(
1052 				phd->freedSpaceBitmap.extLength);
1053 		bitmap->s_extPosition = le32_to_cpu(
1054 				phd->freedSpaceBitmap.extPosition);
1055 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1056 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1057 			  p_index, bitmap->s_extPosition);
1058 	}
1059 	return 0;
1060 }
1061 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1062 static void udf_find_vat_block(struct super_block *sb, int p_index,
1063 			       int type1_index, sector_t start_block)
1064 {
1065 	struct udf_sb_info *sbi = UDF_SB(sb);
1066 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1067 	sector_t vat_block;
1068 	struct kernel_lb_addr ino;
1069 
1070 	/*
1071 	 * VAT file entry is in the last recorded block. Some broken disks have
1072 	 * it a few blocks before so try a bit harder...
1073 	 */
1074 	ino.partitionReferenceNum = type1_index;
1075 	for (vat_block = start_block;
1076 	     vat_block >= map->s_partition_root &&
1077 	     vat_block >= start_block - 3 &&
1078 	     !sbi->s_vat_inode; vat_block--) {
1079 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1080 		sbi->s_vat_inode = udf_iget(sb, &ino);
1081 	}
1082 }
1083 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1084 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1085 {
1086 	struct udf_sb_info *sbi = UDF_SB(sb);
1087 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1088 	struct buffer_head *bh = NULL;
1089 	struct udf_inode_info *vati;
1090 	uint32_t pos;
1091 	struct virtualAllocationTable20 *vat20;
1092 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1093 
1094 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1095 	if (!sbi->s_vat_inode &&
1096 	    sbi->s_last_block != blocks - 1) {
1097 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1098 			  (unsigned long)sbi->s_last_block,
1099 			  (unsigned long)blocks - 1);
1100 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1101 	}
1102 	if (!sbi->s_vat_inode)
1103 		return 1;
1104 
1105 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1106 		map->s_type_specific.s_virtual.s_start_offset = 0;
1107 		map->s_type_specific.s_virtual.s_num_entries =
1108 			(sbi->s_vat_inode->i_size - 36) >> 2;
1109 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1110 		vati = UDF_I(sbi->s_vat_inode);
1111 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1112 			pos = udf_block_map(sbi->s_vat_inode, 0);
1113 			bh = sb_bread(sb, pos);
1114 			if (!bh)
1115 				return 1;
1116 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1117 		} else {
1118 			vat20 = (struct virtualAllocationTable20 *)
1119 							vati->i_ext.i_data;
1120 		}
1121 
1122 		map->s_type_specific.s_virtual.s_start_offset =
1123 			le16_to_cpu(vat20->lengthHeader);
1124 		map->s_type_specific.s_virtual.s_num_entries =
1125 			(sbi->s_vat_inode->i_size -
1126 				map->s_type_specific.s_virtual.
1127 					s_start_offset) >> 2;
1128 		brelse(bh);
1129 	}
1130 	return 0;
1131 }
1132 
udf_load_partdesc(struct super_block * sb,sector_t block)1133 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1134 {
1135 	struct buffer_head *bh;
1136 	struct partitionDesc *p;
1137 	struct udf_part_map *map;
1138 	struct udf_sb_info *sbi = UDF_SB(sb);
1139 	int i, type1_idx;
1140 	uint16_t partitionNumber;
1141 	uint16_t ident;
1142 	int ret = 0;
1143 
1144 	bh = udf_read_tagged(sb, block, block, &ident);
1145 	if (!bh)
1146 		return 1;
1147 	if (ident != TAG_IDENT_PD)
1148 		goto out_bh;
1149 
1150 	p = (struct partitionDesc *)bh->b_data;
1151 	partitionNumber = le16_to_cpu(p->partitionNumber);
1152 
1153 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1154 	for (i = 0; i < sbi->s_partitions; i++) {
1155 		map = &sbi->s_partmaps[i];
1156 		udf_debug("Searching map: (%d == %d)\n",
1157 			  map->s_partition_num, partitionNumber);
1158 		if (map->s_partition_num == partitionNumber &&
1159 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1160 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1161 			break;
1162 	}
1163 
1164 	if (i >= sbi->s_partitions) {
1165 		udf_debug("Partition (%d) not found in partition map\n",
1166 			  partitionNumber);
1167 		goto out_bh;
1168 	}
1169 
1170 	ret = udf_fill_partdesc_info(sb, p, i);
1171 
1172 	/*
1173 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1174 	 * PHYSICAL partitions are already set up
1175 	 */
1176 	type1_idx = i;
1177 	for (i = 0; i < sbi->s_partitions; i++) {
1178 		map = &sbi->s_partmaps[i];
1179 
1180 		if (map->s_partition_num == partitionNumber &&
1181 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1182 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1183 		     map->s_partition_type == UDF_METADATA_MAP25))
1184 			break;
1185 	}
1186 
1187 	if (i >= sbi->s_partitions)
1188 		goto out_bh;
1189 
1190 	ret = udf_fill_partdesc_info(sb, p, i);
1191 	if (ret)
1192 		goto out_bh;
1193 
1194 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1195 		ret = udf_load_metadata_files(sb, i);
1196 		if (ret) {
1197 			udf_err(sb, "error loading MetaData partition map %d\n",
1198 				i);
1199 			goto out_bh;
1200 		}
1201 	} else {
1202 		ret = udf_load_vat(sb, i, type1_idx);
1203 		if (ret)
1204 			goto out_bh;
1205 		/*
1206 		 * Mark filesystem read-only if we have a partition with
1207 		 * virtual map since we don't handle writing to it (we
1208 		 * overwrite blocks instead of relocating them).
1209 		 */
1210 		sb->s_flags |= MS_RDONLY;
1211 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1212 	}
1213 out_bh:
1214 	/* In case loading failed, we handle cleanup in udf_fill_super */
1215 	brelse(bh);
1216 	return ret;
1217 }
1218 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1219 static int udf_load_sparable_map(struct super_block *sb,
1220 				 struct udf_part_map *map,
1221 				 struct sparablePartitionMap *spm)
1222 {
1223 	uint32_t loc;
1224 	uint16_t ident;
1225 	struct sparingTable *st;
1226 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1227 	int i;
1228 	struct buffer_head *bh;
1229 
1230 	map->s_partition_type = UDF_SPARABLE_MAP15;
1231 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1232 	if (!is_power_of_2(sdata->s_packet_len)) {
1233 		udf_err(sb, "error loading logical volume descriptor: "
1234 			"Invalid packet length %u\n",
1235 			(unsigned)sdata->s_packet_len);
1236 		return -EIO;
1237 	}
1238 	if (spm->numSparingTables > 4) {
1239 		udf_err(sb, "error loading logical volume descriptor: "
1240 			"Too many sparing tables (%d)\n",
1241 			(int)spm->numSparingTables);
1242 		return -EIO;
1243 	}
1244 
1245 	for (i = 0; i < spm->numSparingTables; i++) {
1246 		loc = le32_to_cpu(spm->locSparingTable[i]);
1247 		bh = udf_read_tagged(sb, loc, loc, &ident);
1248 		if (!bh)
1249 			continue;
1250 
1251 		st = (struct sparingTable *)bh->b_data;
1252 		if (ident != 0 ||
1253 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1254 			    strlen(UDF_ID_SPARING)) ||
1255 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1256 							sb->s_blocksize) {
1257 			brelse(bh);
1258 			continue;
1259 		}
1260 
1261 		sdata->s_spar_map[i] = bh;
1262 	}
1263 	map->s_partition_func = udf_get_pblock_spar15;
1264 	return 0;
1265 }
1266 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1267 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1268 			       struct kernel_lb_addr *fileset)
1269 {
1270 	struct logicalVolDesc *lvd;
1271 	int i, offset;
1272 	uint8_t type;
1273 	struct udf_sb_info *sbi = UDF_SB(sb);
1274 	struct genericPartitionMap *gpm;
1275 	uint16_t ident;
1276 	struct buffer_head *bh;
1277 	unsigned int table_len;
1278 	int ret = 0;
1279 
1280 	bh = udf_read_tagged(sb, block, block, &ident);
1281 	if (!bh)
1282 		return 1;
1283 	BUG_ON(ident != TAG_IDENT_LVD);
1284 	lvd = (struct logicalVolDesc *)bh->b_data;
1285 	table_len = le32_to_cpu(lvd->mapTableLength);
1286 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1287 		udf_err(sb, "error loading logical volume descriptor: "
1288 			"Partition table too long (%u > %lu)\n", table_len,
1289 			sb->s_blocksize - sizeof(*lvd));
1290 		ret = 1;
1291 		goto out_bh;
1292 	}
1293 
1294 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1295 	if (ret)
1296 		goto out_bh;
1297 
1298 	for (i = 0, offset = 0;
1299 	     i < sbi->s_partitions && offset < table_len;
1300 	     i++, offset += gpm->partitionMapLength) {
1301 		struct udf_part_map *map = &sbi->s_partmaps[i];
1302 		gpm = (struct genericPartitionMap *)
1303 				&(lvd->partitionMaps[offset]);
1304 		type = gpm->partitionMapType;
1305 		if (type == 1) {
1306 			struct genericPartitionMap1 *gpm1 =
1307 				(struct genericPartitionMap1 *)gpm;
1308 			map->s_partition_type = UDF_TYPE1_MAP15;
1309 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1310 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1311 			map->s_partition_func = NULL;
1312 		} else if (type == 2) {
1313 			struct udfPartitionMap2 *upm2 =
1314 						(struct udfPartitionMap2 *)gpm;
1315 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1316 						strlen(UDF_ID_VIRTUAL))) {
1317 				u16 suf =
1318 					le16_to_cpu(((__le16 *)upm2->partIdent.
1319 							identSuffix)[0]);
1320 				if (suf < 0x0200) {
1321 					map->s_partition_type =
1322 							UDF_VIRTUAL_MAP15;
1323 					map->s_partition_func =
1324 							udf_get_pblock_virt15;
1325 				} else {
1326 					map->s_partition_type =
1327 							UDF_VIRTUAL_MAP20;
1328 					map->s_partition_func =
1329 							udf_get_pblock_virt20;
1330 				}
1331 			} else if (!strncmp(upm2->partIdent.ident,
1332 						UDF_ID_SPARABLE,
1333 						strlen(UDF_ID_SPARABLE))) {
1334 				if (udf_load_sparable_map(sb, map,
1335 				    (struct sparablePartitionMap *)gpm) < 0) {
1336 					ret = 1;
1337 					goto out_bh;
1338 				}
1339 			} else if (!strncmp(upm2->partIdent.ident,
1340 						UDF_ID_METADATA,
1341 						strlen(UDF_ID_METADATA))) {
1342 				struct udf_meta_data *mdata =
1343 					&map->s_type_specific.s_metadata;
1344 				struct metadataPartitionMap *mdm =
1345 						(struct metadataPartitionMap *)
1346 						&(lvd->partitionMaps[offset]);
1347 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1348 					  i, type, UDF_ID_METADATA);
1349 
1350 				map->s_partition_type = UDF_METADATA_MAP25;
1351 				map->s_partition_func = udf_get_pblock_meta25;
1352 
1353 				mdata->s_meta_file_loc   =
1354 					le32_to_cpu(mdm->metadataFileLoc);
1355 				mdata->s_mirror_file_loc =
1356 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1357 				mdata->s_bitmap_file_loc =
1358 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1359 				mdata->s_alloc_unit_size =
1360 					le32_to_cpu(mdm->allocUnitSize);
1361 				mdata->s_align_unit_size =
1362 					le16_to_cpu(mdm->alignUnitSize);
1363 				if (mdm->flags & 0x01)
1364 					mdata->s_flags |= MF_DUPLICATE_MD;
1365 
1366 				udf_debug("Metadata Ident suffix=0x%x\n",
1367 					  le16_to_cpu(*(__le16 *)
1368 						      mdm->partIdent.identSuffix));
1369 				udf_debug("Metadata part num=%d\n",
1370 					  le16_to_cpu(mdm->partitionNum));
1371 				udf_debug("Metadata part alloc unit size=%d\n",
1372 					  le32_to_cpu(mdm->allocUnitSize));
1373 				udf_debug("Metadata file loc=%d\n",
1374 					  le32_to_cpu(mdm->metadataFileLoc));
1375 				udf_debug("Mirror file loc=%d\n",
1376 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1377 				udf_debug("Bitmap file loc=%d\n",
1378 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1379 				udf_debug("Flags: %d %d\n",
1380 					  mdata->s_flags, mdm->flags);
1381 			} else {
1382 				udf_debug("Unknown ident: %s\n",
1383 					  upm2->partIdent.ident);
1384 				continue;
1385 			}
1386 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1387 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1388 		}
1389 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1390 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1391 	}
1392 
1393 	if (fileset) {
1394 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1395 
1396 		*fileset = lelb_to_cpu(la->extLocation);
1397 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1398 			  fileset->logicalBlockNum,
1399 			  fileset->partitionReferenceNum);
1400 	}
1401 	if (lvd->integritySeqExt.extLength)
1402 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1403 
1404 out_bh:
1405 	brelse(bh);
1406 	return ret;
1407 }
1408 
1409 /*
1410  * udf_load_logicalvolint
1411  *
1412  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1413 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1414 {
1415 	struct buffer_head *bh = NULL;
1416 	uint16_t ident;
1417 	struct udf_sb_info *sbi = UDF_SB(sb);
1418 	struct logicalVolIntegrityDesc *lvid;
1419 
1420 	while (loc.extLength > 0 &&
1421 	       (bh = udf_read_tagged(sb, loc.extLocation,
1422 				     loc.extLocation, &ident)) &&
1423 	       ident == TAG_IDENT_LVID) {
1424 		sbi->s_lvid_bh = bh;
1425 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1426 
1427 		if (lvid->nextIntegrityExt.extLength)
1428 			udf_load_logicalvolint(sb,
1429 				leea_to_cpu(lvid->nextIntegrityExt));
1430 
1431 		if (sbi->s_lvid_bh != bh)
1432 			brelse(bh);
1433 		loc.extLength -= sb->s_blocksize;
1434 		loc.extLocation++;
1435 	}
1436 	if (sbi->s_lvid_bh != bh)
1437 		brelse(bh);
1438 }
1439 
1440 /*
1441  * udf_process_sequence
1442  *
1443  * PURPOSE
1444  *	Process a main/reserve volume descriptor sequence.
1445  *
1446  * PRE-CONDITIONS
1447  *	sb			Pointer to _locked_ superblock.
1448  *	block			First block of first extent of the sequence.
1449  *	lastblock		Lastblock of first extent of the sequence.
1450  *
1451  * HISTORY
1452  *	July 1, 1997 - Andrew E. Mileski
1453  *	Written, tested, and released.
1454  */
udf_process_sequence(struct super_block * sb,long block,long lastblock,struct kernel_lb_addr * fileset)1455 static noinline int udf_process_sequence(struct super_block *sb, long block,
1456 				long lastblock, struct kernel_lb_addr *fileset)
1457 {
1458 	struct buffer_head *bh = NULL;
1459 	struct udf_vds_record vds[VDS_POS_LENGTH];
1460 	struct udf_vds_record *curr;
1461 	struct generic_desc *gd;
1462 	struct volDescPtr *vdp;
1463 	int done = 0;
1464 	uint32_t vdsn;
1465 	uint16_t ident;
1466 	long next_s = 0, next_e = 0;
1467 
1468 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1469 
1470 	/*
1471 	 * Read the main descriptor sequence and find which descriptors
1472 	 * are in it.
1473 	 */
1474 	for (; (!done && block <= lastblock); block++) {
1475 
1476 		bh = udf_read_tagged(sb, block, block, &ident);
1477 		if (!bh) {
1478 			udf_err(sb,
1479 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1480 				(unsigned long long)block);
1481 			return 1;
1482 		}
1483 
1484 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1485 		gd = (struct generic_desc *)bh->b_data;
1486 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1487 		switch (ident) {
1488 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1489 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1490 			if (vdsn >= curr->volDescSeqNum) {
1491 				curr->volDescSeqNum = vdsn;
1492 				curr->block = block;
1493 			}
1494 			break;
1495 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1496 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1497 			if (vdsn >= curr->volDescSeqNum) {
1498 				curr->volDescSeqNum = vdsn;
1499 				curr->block = block;
1500 
1501 				vdp = (struct volDescPtr *)bh->b_data;
1502 				next_s = le32_to_cpu(
1503 					vdp->nextVolDescSeqExt.extLocation);
1504 				next_e = le32_to_cpu(
1505 					vdp->nextVolDescSeqExt.extLength);
1506 				next_e = next_e >> sb->s_blocksize_bits;
1507 				next_e += next_s;
1508 			}
1509 			break;
1510 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1511 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1512 			if (vdsn >= curr->volDescSeqNum) {
1513 				curr->volDescSeqNum = vdsn;
1514 				curr->block = block;
1515 			}
1516 			break;
1517 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1518 			curr = &vds[VDS_POS_PARTITION_DESC];
1519 			if (!curr->block)
1520 				curr->block = block;
1521 			break;
1522 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1523 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1524 			if (vdsn >= curr->volDescSeqNum) {
1525 				curr->volDescSeqNum = vdsn;
1526 				curr->block = block;
1527 			}
1528 			break;
1529 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1530 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1531 			if (vdsn >= curr->volDescSeqNum) {
1532 				curr->volDescSeqNum = vdsn;
1533 				curr->block = block;
1534 			}
1535 			break;
1536 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1537 			vds[VDS_POS_TERMINATING_DESC].block = block;
1538 			if (next_e) {
1539 				block = next_s;
1540 				lastblock = next_e;
1541 				next_s = next_e = 0;
1542 			} else
1543 				done = 1;
1544 			break;
1545 		}
1546 		brelse(bh);
1547 	}
1548 	/*
1549 	 * Now read interesting descriptors again and process them
1550 	 * in a suitable order
1551 	 */
1552 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1553 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1554 		return 1;
1555 	}
1556 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1557 		return 1;
1558 
1559 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1560 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1561 		return 1;
1562 
1563 	if (vds[VDS_POS_PARTITION_DESC].block) {
1564 		/*
1565 		 * We rescan the whole descriptor sequence to find
1566 		 * partition descriptor blocks and process them.
1567 		 */
1568 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1569 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1570 		     block++)
1571 			if (udf_load_partdesc(sb, block))
1572 				return 1;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1578 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1579 			     struct kernel_lb_addr *fileset)
1580 {
1581 	struct anchorVolDescPtr *anchor;
1582 	long main_s, main_e, reserve_s, reserve_e;
1583 
1584 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1585 
1586 	/* Locate the main sequence */
1587 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1588 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1589 	main_e = main_e >> sb->s_blocksize_bits;
1590 	main_e += main_s;
1591 
1592 	/* Locate the reserve sequence */
1593 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1594 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1595 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1596 	reserve_e += reserve_s;
1597 
1598 	/* Process the main & reserve sequences */
1599 	/* responsible for finding the PartitionDesc(s) */
1600 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1601 		return 1;
1602 	return !udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1603 }
1604 
1605 /*
1606  * Check whether there is an anchor block in the given block and
1607  * load Volume Descriptor Sequence if so.
1608  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1609 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1610 				  struct kernel_lb_addr *fileset)
1611 {
1612 	struct buffer_head *bh;
1613 	uint16_t ident;
1614 	int ret;
1615 
1616 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1617 	    udf_fixed_to_variable(block) >=
1618 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1619 		return 0;
1620 
1621 	bh = udf_read_tagged(sb, block, block, &ident);
1622 	if (!bh)
1623 		return 0;
1624 	if (ident != TAG_IDENT_AVDP) {
1625 		brelse(bh);
1626 		return 0;
1627 	}
1628 	ret = udf_load_sequence(sb, bh, fileset);
1629 	brelse(bh);
1630 	return ret;
1631 }
1632 
1633 /* Search for an anchor volume descriptor pointer */
udf_scan_anchors(struct super_block * sb,sector_t lastblock,struct kernel_lb_addr * fileset)1634 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1635 				 struct kernel_lb_addr *fileset)
1636 {
1637 	sector_t last[6];
1638 	int i;
1639 	struct udf_sb_info *sbi = UDF_SB(sb);
1640 	int last_count = 0;
1641 
1642 	/* First try user provided anchor */
1643 	if (sbi->s_anchor) {
1644 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1645 			return lastblock;
1646 	}
1647 	/*
1648 	 * according to spec, anchor is in either:
1649 	 *     block 256
1650 	 *     lastblock-256
1651 	 *     lastblock
1652 	 *  however, if the disc isn't closed, it could be 512.
1653 	 */
1654 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1655 		return lastblock;
1656 	/*
1657 	 * The trouble is which block is the last one. Drives often misreport
1658 	 * this so we try various possibilities.
1659 	 */
1660 	last[last_count++] = lastblock;
1661 	if (lastblock >= 1)
1662 		last[last_count++] = lastblock - 1;
1663 	last[last_count++] = lastblock + 1;
1664 	if (lastblock >= 2)
1665 		last[last_count++] = lastblock - 2;
1666 	if (lastblock >= 150)
1667 		last[last_count++] = lastblock - 150;
1668 	if (lastblock >= 152)
1669 		last[last_count++] = lastblock - 152;
1670 
1671 	for (i = 0; i < last_count; i++) {
1672 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1673 				sb->s_blocksize_bits)
1674 			continue;
1675 		if (udf_check_anchor_block(sb, last[i], fileset))
1676 			return last[i];
1677 		if (last[i] < 256)
1678 			continue;
1679 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1680 			return last[i];
1681 	}
1682 
1683 	/* Finally try block 512 in case media is open */
1684 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1685 		return last[0];
1686 	return 0;
1687 }
1688 
1689 /*
1690  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1691  * area specified by it. The function expects sbi->s_lastblock to be the last
1692  * block on the media.
1693  *
1694  * Return 1 if ok, 0 if not found.
1695  *
1696  */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1697 static int udf_find_anchor(struct super_block *sb,
1698 			   struct kernel_lb_addr *fileset)
1699 {
1700 	sector_t lastblock;
1701 	struct udf_sb_info *sbi = UDF_SB(sb);
1702 
1703 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1704 	if (lastblock)
1705 		goto out;
1706 
1707 	/* No anchor found? Try VARCONV conversion of block numbers */
1708 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1709 	/* Firstly, we try to not convert number of the last block */
1710 	lastblock = udf_scan_anchors(sb,
1711 				udf_variable_to_fixed(sbi->s_last_block),
1712 				fileset);
1713 	if (lastblock)
1714 		goto out;
1715 
1716 	/* Secondly, we try with converted number of the last block */
1717 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1718 	if (!lastblock) {
1719 		/* VARCONV didn't help. Clear it. */
1720 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1721 		return 0;
1722 	}
1723 out:
1724 	sbi->s_last_block = lastblock;
1725 	return 1;
1726 }
1727 
1728 /*
1729  * Check Volume Structure Descriptor, find Anchor block and load Volume
1730  * Descriptor Sequence
1731  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1732 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1733 			int silent, struct kernel_lb_addr *fileset)
1734 {
1735 	struct udf_sb_info *sbi = UDF_SB(sb);
1736 	loff_t nsr_off;
1737 
1738 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1739 		if (!silent)
1740 			udf_warn(sb, "Bad block size\n");
1741 		return 0;
1742 	}
1743 	sbi->s_last_block = uopt->lastblock;
1744 	if (!uopt->novrs) {
1745 		/* Check that it is NSR02 compliant */
1746 		nsr_off = udf_check_vsd(sb);
1747 		if (!nsr_off) {
1748 			if (!silent)
1749 				udf_warn(sb, "No VRS found\n");
1750 			return 0;
1751 		}
1752 		if (nsr_off == -1)
1753 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1754 		if (!sbi->s_last_block)
1755 			sbi->s_last_block = udf_get_last_block(sb);
1756 	} else {
1757 		udf_debug("Validity check skipped because of novrs option\n");
1758 	}
1759 
1760 	/* Look for anchor block and load Volume Descriptor Sequence */
1761 	sbi->s_anchor = uopt->anchor;
1762 	if (!udf_find_anchor(sb, fileset)) {
1763 		if (!silent)
1764 			udf_warn(sb, "No anchor found\n");
1765 		return 0;
1766 	}
1767 	return 1;
1768 }
1769 
udf_open_lvid(struct super_block * sb)1770 static void udf_open_lvid(struct super_block *sb)
1771 {
1772 	struct udf_sb_info *sbi = UDF_SB(sb);
1773 	struct buffer_head *bh = sbi->s_lvid_bh;
1774 	struct logicalVolIntegrityDesc *lvid;
1775 	struct logicalVolIntegrityDescImpUse *lvidiu;
1776 
1777 	if (!bh)
1778 		return;
1779 
1780 	mutex_lock(&sbi->s_alloc_mutex);
1781 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1782 	lvidiu = udf_sb_lvidiu(sbi);
1783 
1784 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1787 				CURRENT_TIME);
1788 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1789 
1790 	lvid->descTag.descCRC = cpu_to_le16(
1791 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1792 			le16_to_cpu(lvid->descTag.descCRCLength)));
1793 
1794 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1795 	mark_buffer_dirty(bh);
1796 	sbi->s_lvid_dirty = 0;
1797 	mutex_unlock(&sbi->s_alloc_mutex);
1798 }
1799 
udf_close_lvid(struct super_block * sb)1800 static void udf_close_lvid(struct super_block *sb)
1801 {
1802 	struct udf_sb_info *sbi = UDF_SB(sb);
1803 	struct buffer_head *bh = sbi->s_lvid_bh;
1804 	struct logicalVolIntegrityDesc *lvid;
1805 	struct logicalVolIntegrityDescImpUse *lvidiu;
1806 
1807 	if (!bh)
1808 		return;
1809 
1810 	mutex_lock(&sbi->s_alloc_mutex);
1811 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1812 	lvidiu = udf_sb_lvidiu(sbi);
1813 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1814 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1815 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1816 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1817 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1818 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1819 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1820 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1821 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1822 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1823 
1824 	lvid->descTag.descCRC = cpu_to_le16(
1825 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1826 				le16_to_cpu(lvid->descTag.descCRCLength)));
1827 
1828 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1829 	/*
1830 	 * We set buffer uptodate unconditionally here to avoid spurious
1831 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1832 	 * the buffer as !uptodate
1833 	 */
1834 	set_buffer_uptodate(bh);
1835 	mark_buffer_dirty(bh);
1836 	sbi->s_lvid_dirty = 0;
1837 	mutex_unlock(&sbi->s_alloc_mutex);
1838 }
1839 
lvid_get_unique_id(struct super_block * sb)1840 u64 lvid_get_unique_id(struct super_block *sb)
1841 {
1842 	struct buffer_head *bh;
1843 	struct udf_sb_info *sbi = UDF_SB(sb);
1844 	struct logicalVolIntegrityDesc *lvid;
1845 	struct logicalVolHeaderDesc *lvhd;
1846 	u64 uniqueID;
1847 	u64 ret;
1848 
1849 	bh = sbi->s_lvid_bh;
1850 	if (!bh)
1851 		return 0;
1852 
1853 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1854 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1855 
1856 	mutex_lock(&sbi->s_alloc_mutex);
1857 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1858 	if (!(++uniqueID & 0xFFFFFFFF))
1859 		uniqueID += 16;
1860 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1861 	mutex_unlock(&sbi->s_alloc_mutex);
1862 	mark_buffer_dirty(bh);
1863 
1864 	return ret;
1865 }
1866 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)1867 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
1868 {
1869 	int i;
1870 	int nr_groups = bitmap->s_nr_groups;
1871 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
1872 						nr_groups);
1873 
1874 	for (i = 0; i < nr_groups; i++)
1875 		if (bitmap->s_block_bitmap[i])
1876 			brelse(bitmap->s_block_bitmap[i]);
1877 
1878 	if (size <= PAGE_SIZE)
1879 		kfree(bitmap);
1880 	else
1881 		vfree(bitmap);
1882 }
1883 
udf_free_partition(struct udf_part_map * map)1884 static void udf_free_partition(struct udf_part_map *map)
1885 {
1886 	int i;
1887 	struct udf_meta_data *mdata;
1888 
1889 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
1890 		iput(map->s_uspace.s_table);
1891 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
1892 		iput(map->s_fspace.s_table);
1893 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
1894 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
1895 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
1896 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
1897 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
1898 		for (i = 0; i < 4; i++)
1899 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
1900 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
1901 		mdata = &map->s_type_specific.s_metadata;
1902 		iput(mdata->s_metadata_fe);
1903 		mdata->s_metadata_fe = NULL;
1904 
1905 		iput(mdata->s_mirror_fe);
1906 		mdata->s_mirror_fe = NULL;
1907 
1908 		iput(mdata->s_bitmap_fe);
1909 		mdata->s_bitmap_fe = NULL;
1910 	}
1911 }
1912 
udf_fill_super(struct super_block * sb,void * options,int silent)1913 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1914 {
1915 	int i;
1916 	int ret;
1917 	struct inode *inode = NULL;
1918 	struct udf_options uopt;
1919 	struct kernel_lb_addr rootdir, fileset;
1920 	struct udf_sb_info *sbi;
1921 
1922 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1923 	uopt.uid = -1;
1924 	uopt.gid = -1;
1925 	uopt.umask = 0;
1926 	uopt.fmode = UDF_INVALID_MODE;
1927 	uopt.dmode = UDF_INVALID_MODE;
1928 
1929 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1930 	if (!sbi)
1931 		return -ENOMEM;
1932 
1933 	sb->s_fs_info = sbi;
1934 
1935 	mutex_init(&sbi->s_alloc_mutex);
1936 
1937 	if (!udf_parse_options((char *)options, &uopt, false))
1938 		goto error_out;
1939 
1940 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1941 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1942 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1943 		goto error_out;
1944 	}
1945 #ifdef CONFIG_UDF_NLS
1946 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1947 		uopt.nls_map = load_nls_default();
1948 		if (!uopt.nls_map)
1949 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1950 		else
1951 			udf_debug("Using default NLS map\n");
1952 	}
1953 #endif
1954 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1955 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1956 
1957 	fileset.logicalBlockNum = 0xFFFFFFFF;
1958 	fileset.partitionReferenceNum = 0xFFFF;
1959 
1960 	sbi->s_flags = uopt.flags;
1961 	sbi->s_uid = uopt.uid;
1962 	sbi->s_gid = uopt.gid;
1963 	sbi->s_umask = uopt.umask;
1964 	sbi->s_fmode = uopt.fmode;
1965 	sbi->s_dmode = uopt.dmode;
1966 	sbi->s_nls_map = uopt.nls_map;
1967 	rwlock_init(&sbi->s_cred_lock);
1968 
1969 	if (uopt.session == 0xFFFFFFFF)
1970 		sbi->s_session = udf_get_last_session(sb);
1971 	else
1972 		sbi->s_session = uopt.session;
1973 
1974 	udf_debug("Multi-session=%d\n", sbi->s_session);
1975 
1976 	/* Fill in the rest of the superblock */
1977 	sb->s_op = &udf_sb_ops;
1978 	sb->s_export_op = &udf_export_ops;
1979 
1980 	sb->s_dirt = 0;
1981 	sb->s_magic = UDF_SUPER_MAGIC;
1982 	sb->s_time_gran = 1000;
1983 
1984 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
1985 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1986 	} else {
1987 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
1988 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1989 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
1990 			if (!silent)
1991 				pr_notice("Rescanning with blocksize %d\n",
1992 					  UDF_DEFAULT_BLOCKSIZE);
1993 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
1994 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
1995 		}
1996 	}
1997 	if (!ret) {
1998 		udf_warn(sb, "No partition found (1)\n");
1999 		goto error_out;
2000 	}
2001 
2002 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2003 
2004 	if (sbi->s_lvid_bh) {
2005 		struct logicalVolIntegrityDescImpUse *lvidiu =
2006 							udf_sb_lvidiu(sbi);
2007 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2008 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2009 		/* uint16_t maxUDFWriteRev =
2010 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2011 
2012 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2013 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2014 				le16_to_cpu(lvidiu->minUDFReadRev),
2015 				UDF_MAX_READ_VERSION);
2016 			goto error_out;
2017 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2018 			sb->s_flags |= MS_RDONLY;
2019 
2020 		sbi->s_udfrev = minUDFWriteRev;
2021 
2022 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2023 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2024 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2025 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2026 	}
2027 
2028 	if (!sbi->s_partitions) {
2029 		udf_warn(sb, "No partition found (2)\n");
2030 		goto error_out;
2031 	}
2032 
2033 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2034 			UDF_PART_FLAG_READ_ONLY) {
2035 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2036 		sb->s_flags |= MS_RDONLY;
2037 	}
2038 
2039 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2040 		udf_warn(sb, "No fileset found\n");
2041 		goto error_out;
2042 	}
2043 
2044 	if (!silent) {
2045 		struct timestamp ts;
2046 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2047 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2048 			 sbi->s_volume_ident,
2049 			 le16_to_cpu(ts.year), ts.month, ts.day,
2050 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2051 	}
2052 	if (!(sb->s_flags & MS_RDONLY))
2053 		udf_open_lvid(sb);
2054 
2055 	/* Assign the root inode */
2056 	/* assign inodes by physical block number */
2057 	/* perhaps it's not extensible enough, but for now ... */
2058 	inode = udf_iget(sb, &rootdir);
2059 	if (!inode) {
2060 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2061 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2062 		goto error_out;
2063 	}
2064 
2065 	/* Allocate a dentry for the root inode */
2066 	sb->s_root = d_make_root(inode);
2067 	if (!sb->s_root) {
2068 		udf_err(sb, "Couldn't allocate root dentry\n");
2069 		goto error_out;
2070 	}
2071 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2072 	sb->s_max_links = UDF_MAX_LINKS;
2073 	return 0;
2074 
2075 error_out:
2076 	if (sbi->s_vat_inode)
2077 		iput(sbi->s_vat_inode);
2078 	if (sbi->s_partitions)
2079 		for (i = 0; i < sbi->s_partitions; i++)
2080 			udf_free_partition(&sbi->s_partmaps[i]);
2081 #ifdef CONFIG_UDF_NLS
2082 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2083 		unload_nls(sbi->s_nls_map);
2084 #endif
2085 	if (!(sb->s_flags & MS_RDONLY))
2086 		udf_close_lvid(sb);
2087 	brelse(sbi->s_lvid_bh);
2088 
2089 	kfree(sbi->s_partmaps);
2090 	kfree(sbi);
2091 	sb->s_fs_info = NULL;
2092 
2093 	return -EINVAL;
2094 }
2095 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2096 void _udf_err(struct super_block *sb, const char *function,
2097 	      const char *fmt, ...)
2098 {
2099 	struct va_format vaf;
2100 	va_list args;
2101 
2102 	/* mark sb error */
2103 	if (!(sb->s_flags & MS_RDONLY))
2104 		sb->s_dirt = 1;
2105 
2106 	va_start(args, fmt);
2107 
2108 	vaf.fmt = fmt;
2109 	vaf.va = &args;
2110 
2111 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2112 
2113 	va_end(args);
2114 }
2115 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2116 void _udf_warn(struct super_block *sb, const char *function,
2117 	       const char *fmt, ...)
2118 {
2119 	struct va_format vaf;
2120 	va_list args;
2121 
2122 	va_start(args, fmt);
2123 
2124 	vaf.fmt = fmt;
2125 	vaf.va = &args;
2126 
2127 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2128 
2129 	va_end(args);
2130 }
2131 
udf_put_super(struct super_block * sb)2132 static void udf_put_super(struct super_block *sb)
2133 {
2134 	int i;
2135 	struct udf_sb_info *sbi;
2136 
2137 	sbi = UDF_SB(sb);
2138 
2139 	if (sbi->s_vat_inode)
2140 		iput(sbi->s_vat_inode);
2141 	if (sbi->s_partitions)
2142 		for (i = 0; i < sbi->s_partitions; i++)
2143 			udf_free_partition(&sbi->s_partmaps[i]);
2144 #ifdef CONFIG_UDF_NLS
2145 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2146 		unload_nls(sbi->s_nls_map);
2147 #endif
2148 	if (!(sb->s_flags & MS_RDONLY))
2149 		udf_close_lvid(sb);
2150 	brelse(sbi->s_lvid_bh);
2151 	kfree(sbi->s_partmaps);
2152 	kfree(sb->s_fs_info);
2153 	sb->s_fs_info = NULL;
2154 }
2155 
udf_sync_fs(struct super_block * sb,int wait)2156 static int udf_sync_fs(struct super_block *sb, int wait)
2157 {
2158 	struct udf_sb_info *sbi = UDF_SB(sb);
2159 
2160 	mutex_lock(&sbi->s_alloc_mutex);
2161 	if (sbi->s_lvid_dirty) {
2162 		/*
2163 		 * Blockdevice will be synced later so we don't have to submit
2164 		 * the buffer for IO
2165 		 */
2166 		mark_buffer_dirty(sbi->s_lvid_bh);
2167 		sb->s_dirt = 0;
2168 		sbi->s_lvid_dirty = 0;
2169 	}
2170 	mutex_unlock(&sbi->s_alloc_mutex);
2171 
2172 	return 0;
2173 }
2174 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2175 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2176 {
2177 	struct super_block *sb = dentry->d_sb;
2178 	struct udf_sb_info *sbi = UDF_SB(sb);
2179 	struct logicalVolIntegrityDescImpUse *lvidiu;
2180 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2181 
2182 	if (sbi->s_lvid_bh != NULL)
2183 		lvidiu = udf_sb_lvidiu(sbi);
2184 	else
2185 		lvidiu = NULL;
2186 
2187 	buf->f_type = UDF_SUPER_MAGIC;
2188 	buf->f_bsize = sb->s_blocksize;
2189 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2190 	buf->f_bfree = udf_count_free(sb);
2191 	buf->f_bavail = buf->f_bfree;
2192 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2193 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2194 			+ buf->f_bfree;
2195 	buf->f_ffree = buf->f_bfree;
2196 	buf->f_namelen = UDF_NAME_LEN - 2;
2197 	buf->f_fsid.val[0] = (u32)id;
2198 	buf->f_fsid.val[1] = (u32)(id >> 32);
2199 
2200 	return 0;
2201 }
2202 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2203 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2204 					  struct udf_bitmap *bitmap)
2205 {
2206 	struct buffer_head *bh = NULL;
2207 	unsigned int accum = 0;
2208 	int index;
2209 	int block = 0, newblock;
2210 	struct kernel_lb_addr loc;
2211 	uint32_t bytes;
2212 	uint8_t *ptr;
2213 	uint16_t ident;
2214 	struct spaceBitmapDesc *bm;
2215 
2216 	loc.logicalBlockNum = bitmap->s_extPosition;
2217 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2218 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2219 
2220 	if (!bh) {
2221 		udf_err(sb, "udf_count_free failed\n");
2222 		goto out;
2223 	} else if (ident != TAG_IDENT_SBD) {
2224 		brelse(bh);
2225 		udf_err(sb, "udf_count_free failed\n");
2226 		goto out;
2227 	}
2228 
2229 	bm = (struct spaceBitmapDesc *)bh->b_data;
2230 	bytes = le32_to_cpu(bm->numOfBytes);
2231 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2232 	ptr = (uint8_t *)bh->b_data;
2233 
2234 	while (bytes > 0) {
2235 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2236 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2237 					cur_bytes * 8);
2238 		bytes -= cur_bytes;
2239 		if (bytes) {
2240 			brelse(bh);
2241 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2242 			bh = udf_tread(sb, newblock);
2243 			if (!bh) {
2244 				udf_debug("read failed\n");
2245 				goto out;
2246 			}
2247 			index = 0;
2248 			ptr = (uint8_t *)bh->b_data;
2249 		}
2250 	}
2251 	brelse(bh);
2252 out:
2253 	return accum;
2254 }
2255 
udf_count_free_table(struct super_block * sb,struct inode * table)2256 static unsigned int udf_count_free_table(struct super_block *sb,
2257 					 struct inode *table)
2258 {
2259 	unsigned int accum = 0;
2260 	uint32_t elen;
2261 	struct kernel_lb_addr eloc;
2262 	int8_t etype;
2263 	struct extent_position epos;
2264 
2265 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2266 	epos.block = UDF_I(table)->i_location;
2267 	epos.offset = sizeof(struct unallocSpaceEntry);
2268 	epos.bh = NULL;
2269 
2270 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2271 		accum += (elen >> table->i_sb->s_blocksize_bits);
2272 
2273 	brelse(epos.bh);
2274 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2275 
2276 	return accum;
2277 }
2278 
udf_count_free(struct super_block * sb)2279 static unsigned int udf_count_free(struct super_block *sb)
2280 {
2281 	unsigned int accum = 0;
2282 	struct udf_sb_info *sbi;
2283 	struct udf_part_map *map;
2284 
2285 	sbi = UDF_SB(sb);
2286 	if (sbi->s_lvid_bh) {
2287 		struct logicalVolIntegrityDesc *lvid =
2288 			(struct logicalVolIntegrityDesc *)
2289 			sbi->s_lvid_bh->b_data;
2290 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2291 			accum = le32_to_cpu(
2292 					lvid->freeSpaceTable[sbi->s_partition]);
2293 			if (accum == 0xFFFFFFFF)
2294 				accum = 0;
2295 		}
2296 	}
2297 
2298 	if (accum)
2299 		return accum;
2300 
2301 	map = &sbi->s_partmaps[sbi->s_partition];
2302 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2303 		accum += udf_count_free_bitmap(sb,
2304 					       map->s_uspace.s_bitmap);
2305 	}
2306 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2307 		accum += udf_count_free_bitmap(sb,
2308 					       map->s_fspace.s_bitmap);
2309 	}
2310 	if (accum)
2311 		return accum;
2312 
2313 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2314 		accum += udf_count_free_table(sb,
2315 					      map->s_uspace.s_table);
2316 	}
2317 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2318 		accum += udf_count_free_table(sb,
2319 					      map->s_fspace.s_table);
2320 	}
2321 
2322 	return accum;
2323 }
2324