1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
vm_get_page_prot(unsigned long vm_flags)80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
unlink_file_vma(struct vm_area_struct * vma)212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
remove_vma(struct vm_area_struct * vma)227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
238 }
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
SYSCALL_DEFINE1(brk,unsigned long,brk)246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256 /*
257 * CONFIG_COMPAT_BRK can still be overridden by setting
258 * randomize_va_space to 2, which will still cause mm->start_brk
259 * to be arbitrarily shifted
260 */
261 if (current->brk_randomized)
262 min_brk = mm->start_brk;
263 else
264 min_brk = mm->end_data;
265 #else
266 min_brk = mm->start_brk;
267 #endif
268 if (brk < min_brk)
269 goto out;
270
271 /*
272 * Check against rlimit here. If this check is done later after the test
273 * of oldbrk with newbrk then it can escape the test and let the data
274 * segment grow beyond its set limit the in case where the limit is
275 * not page aligned -Ram Gupta
276 */
277 rlim = rlimit(RLIMIT_DATA);
278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 (mm->end_data - mm->start_data) > rlim)
280 goto out;
281
282 newbrk = PAGE_ALIGN(brk);
283 oldbrk = PAGE_ALIGN(mm->brk);
284 if (oldbrk == newbrk)
285 goto set_brk;
286
287 /* Always allow shrinking brk. */
288 if (brk <= mm->brk) {
289 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 goto set_brk;
291 goto out;
292 }
293
294 /* Check against existing mmap mappings. */
295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 goto out;
297
298 /* Ok, looks good - let it rip. */
299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 goto out;
301 set_brk:
302 mm->brk = brk;
303 out:
304 retval = mm->brk;
305 up_write(&mm->mmap_sem);
306 return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
browse_rb(struct rb_root * root)310 static int browse_rb(struct rb_root *root)
311 {
312 int i = 0, j;
313 struct rb_node *nd, *pn = NULL;
314 unsigned long prev = 0, pend = 0;
315
316 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 struct vm_area_struct *vma;
318 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 if (vma->vm_start < prev)
320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 if (vma->vm_start < pend)
322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 if (vma->vm_start > vma->vm_end)
324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
329 }
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd)) {
332 j++;
333 }
334 if (i != j)
335 printk("backwards %d, forwards %d\n", j, i), i = 0;
336 return i;
337 }
338
validate_mm(struct mm_struct * mm)339 void validate_mm(struct mm_struct *mm)
340 {
341 int bug = 0;
342 int i = 0;
343 struct vm_area_struct *tmp = mm->mmap;
344 while (tmp) {
345 tmp = tmp->vm_next;
346 i++;
347 }
348 if (i != mm->map_count)
349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 i = browse_rb(&mm->mm_rb);
351 if (i != mm->map_count)
352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
find_vma_prepare(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 struct rb_node ** rb_parent)
363 {
364 struct vm_area_struct * vma;
365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367 __rb_link = &mm->mm_rb.rb_node;
368 rb_prev = __rb_parent = NULL;
369 vma = NULL;
370
371 while (*__rb_link) {
372 struct vm_area_struct *vma_tmp;
373
374 __rb_parent = *__rb_link;
375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377 if (vma_tmp->vm_end > addr) {
378 vma = vma_tmp;
379 if (vma_tmp->vm_start <= addr)
380 break;
381 __rb_link = &__rb_parent->rb_left;
382 } else {
383 rb_prev = __rb_parent;
384 __rb_link = &__rb_parent->rb_right;
385 }
386 }
387
388 *pprev = NULL;
389 if (rb_prev)
390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 *rb_link = __rb_link;
392 *rb_parent = __rb_parent;
393 return vma;
394 }
395
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)396 static unsigned long count_vma_pages_range(struct mm_struct *mm,
397 unsigned long addr, unsigned long end)
398 {
399 unsigned long nr_pages = 0;
400 struct vm_area_struct *vma;
401
402 /* Find first overlaping mapping */
403 vma = find_vma_intersection(mm, addr, end);
404 if (!vma)
405 return 0;
406
407 nr_pages = (min(end, vma->vm_end) -
408 max(addr, vma->vm_start)) >> PAGE_SHIFT;
409
410 /* Iterate over the rest of the overlaps */
411 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
412 unsigned long overlap_len;
413
414 if (vma->vm_start > end)
415 break;
416
417 overlap_len = min(end, vma->vm_end) - vma->vm_start;
418 nr_pages += overlap_len >> PAGE_SHIFT;
419 }
420
421 return nr_pages;
422 }
423
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)424 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
425 struct rb_node **rb_link, struct rb_node *rb_parent)
426 {
427 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
428 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
429 }
430
__vma_link_file(struct vm_area_struct * vma)431 static void __vma_link_file(struct vm_area_struct *vma)
432 {
433 struct file *file;
434
435 file = vma->vm_file;
436 if (file) {
437 struct address_space *mapping = file->f_mapping;
438
439 if (vma->vm_flags & VM_DENYWRITE)
440 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
441 if (vma->vm_flags & VM_SHARED)
442 mapping->i_mmap_writable++;
443
444 flush_dcache_mmap_lock(mapping);
445 if (unlikely(vma->vm_flags & VM_NONLINEAR))
446 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
447 else
448 vma_prio_tree_insert(vma, &mapping->i_mmap);
449 flush_dcache_mmap_unlock(mapping);
450 }
451 }
452
453 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)454 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
455 struct vm_area_struct *prev, struct rb_node **rb_link,
456 struct rb_node *rb_parent)
457 {
458 __vma_link_list(mm, vma, prev, rb_parent);
459 __vma_link_rb(mm, vma, rb_link, rb_parent);
460 }
461
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)462 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
463 struct vm_area_struct *prev, struct rb_node **rb_link,
464 struct rb_node *rb_parent)
465 {
466 struct address_space *mapping = NULL;
467
468 if (vma->vm_file)
469 mapping = vma->vm_file->f_mapping;
470
471 if (mapping)
472 mutex_lock(&mapping->i_mmap_mutex);
473
474 __vma_link(mm, vma, prev, rb_link, rb_parent);
475 __vma_link_file(vma);
476
477 if (mapping)
478 mutex_unlock(&mapping->i_mmap_mutex);
479
480 mm->map_count++;
481 validate_mm(mm);
482 }
483
484 /*
485 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
486 * mm's list and rbtree. It has already been inserted into the prio_tree.
487 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)488 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
489 {
490 struct vm_area_struct *__vma, *prev;
491 struct rb_node **rb_link, *rb_parent;
492
493 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
494 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
495 __vma_link(mm, vma, prev, rb_link, rb_parent);
496 mm->map_count++;
497 }
498
499 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)500 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
501 struct vm_area_struct *prev)
502 {
503 struct vm_area_struct *next = vma->vm_next;
504
505 prev->vm_next = next;
506 if (next)
507 next->vm_prev = prev;
508 rb_erase(&vma->vm_rb, &mm->mm_rb);
509 if (mm->mmap_cache == vma)
510 mm->mmap_cache = prev;
511 }
512
513 /*
514 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
515 * is already present in an i_mmap tree without adjusting the tree.
516 * The following helper function should be used when such adjustments
517 * are necessary. The "insert" vma (if any) is to be inserted
518 * before we drop the necessary locks.
519 */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)520 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
521 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
522 {
523 struct mm_struct *mm = vma->vm_mm;
524 struct vm_area_struct *next = vma->vm_next;
525 struct vm_area_struct *importer = NULL;
526 struct address_space *mapping = NULL;
527 struct prio_tree_root *root = NULL;
528 struct anon_vma *anon_vma = NULL;
529 struct file *file = vma->vm_file;
530 long adjust_next = 0;
531 int remove_next = 0;
532
533 if (next && !insert) {
534 struct vm_area_struct *exporter = NULL;
535
536 if (end >= next->vm_end) {
537 /*
538 * vma expands, overlapping all the next, and
539 * perhaps the one after too (mprotect case 6).
540 */
541 again: remove_next = 1 + (end > next->vm_end);
542 end = next->vm_end;
543 exporter = next;
544 importer = vma;
545 } else if (end > next->vm_start) {
546 /*
547 * vma expands, overlapping part of the next:
548 * mprotect case 5 shifting the boundary up.
549 */
550 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
551 exporter = next;
552 importer = vma;
553 } else if (end < vma->vm_end) {
554 /*
555 * vma shrinks, and !insert tells it's not
556 * split_vma inserting another: so it must be
557 * mprotect case 4 shifting the boundary down.
558 */
559 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
560 exporter = vma;
561 importer = next;
562 }
563
564 /*
565 * Easily overlooked: when mprotect shifts the boundary,
566 * make sure the expanding vma has anon_vma set if the
567 * shrinking vma had, to cover any anon pages imported.
568 */
569 if (exporter && exporter->anon_vma && !importer->anon_vma) {
570 if (anon_vma_clone(importer, exporter))
571 return -ENOMEM;
572 importer->anon_vma = exporter->anon_vma;
573 }
574 }
575
576 if (file) {
577 mapping = file->f_mapping;
578 if (!(vma->vm_flags & VM_NONLINEAR))
579 root = &mapping->i_mmap;
580 mutex_lock(&mapping->i_mmap_mutex);
581 if (insert) {
582 /*
583 * Put into prio_tree now, so instantiated pages
584 * are visible to arm/parisc __flush_dcache_page
585 * throughout; but we cannot insert into address
586 * space until vma start or end is updated.
587 */
588 __vma_link_file(insert);
589 }
590 }
591
592 vma_adjust_trans_huge(vma, start, end, adjust_next);
593
594 /*
595 * When changing only vma->vm_end, we don't really need anon_vma
596 * lock. This is a fairly rare case by itself, but the anon_vma
597 * lock may be shared between many sibling processes. Skipping
598 * the lock for brk adjustments makes a difference sometimes.
599 */
600 if (vma->anon_vma && (importer || start != vma->vm_start)) {
601 anon_vma = vma->anon_vma;
602 anon_vma_lock(anon_vma);
603 }
604
605 if (root) {
606 flush_dcache_mmap_lock(mapping);
607 vma_prio_tree_remove(vma, root);
608 if (adjust_next)
609 vma_prio_tree_remove(next, root);
610 }
611
612 vma->vm_start = start;
613 vma->vm_end = end;
614 vma->vm_pgoff = pgoff;
615 if (adjust_next) {
616 next->vm_start += adjust_next << PAGE_SHIFT;
617 next->vm_pgoff += adjust_next;
618 }
619
620 if (root) {
621 if (adjust_next)
622 vma_prio_tree_insert(next, root);
623 vma_prio_tree_insert(vma, root);
624 flush_dcache_mmap_unlock(mapping);
625 }
626
627 if (remove_next) {
628 /*
629 * vma_merge has merged next into vma, and needs
630 * us to remove next before dropping the locks.
631 */
632 __vma_unlink(mm, next, vma);
633 if (file)
634 __remove_shared_vm_struct(next, file, mapping);
635 } else if (insert) {
636 /*
637 * split_vma has split insert from vma, and needs
638 * us to insert it before dropping the locks
639 * (it may either follow vma or precede it).
640 */
641 __insert_vm_struct(mm, insert);
642 }
643
644 if (anon_vma)
645 anon_vma_unlock(anon_vma);
646 if (mapping)
647 mutex_unlock(&mapping->i_mmap_mutex);
648
649 if (remove_next) {
650 if (file) {
651 fput(file);
652 if (next->vm_flags & VM_EXECUTABLE)
653 removed_exe_file_vma(mm);
654 }
655 if (next->anon_vma)
656 anon_vma_merge(vma, next);
657 mm->map_count--;
658 mpol_put(vma_policy(next));
659 kmem_cache_free(vm_area_cachep, next);
660 /*
661 * In mprotect's case 6 (see comments on vma_merge),
662 * we must remove another next too. It would clutter
663 * up the code too much to do both in one go.
664 */
665 if (remove_next == 2) {
666 next = vma->vm_next;
667 goto again;
668 }
669 }
670
671 validate_mm(mm);
672
673 return 0;
674 }
675
676 /*
677 * If the vma has a ->close operation then the driver probably needs to release
678 * per-vma resources, so we don't attempt to merge those.
679 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags)680 static inline int is_mergeable_vma(struct vm_area_struct *vma,
681 struct file *file, unsigned long vm_flags)
682 {
683 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
684 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
685 return 0;
686 if (vma->vm_file != file)
687 return 0;
688 if (vma->vm_ops && vma->vm_ops->close)
689 return 0;
690 return 1;
691 }
692
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)693 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
694 struct anon_vma *anon_vma2,
695 struct vm_area_struct *vma)
696 {
697 /*
698 * The list_is_singular() test is to avoid merging VMA cloned from
699 * parents. This can improve scalability caused by anon_vma lock.
700 */
701 if ((!anon_vma1 || !anon_vma2) && (!vma ||
702 list_is_singular(&vma->anon_vma_chain)))
703 return 1;
704 return anon_vma1 == anon_vma2;
705 }
706
707 /*
708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709 * in front of (at a lower virtual address and file offset than) the vma.
710 *
711 * We cannot merge two vmas if they have differently assigned (non-NULL)
712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713 *
714 * We don't check here for the merged mmap wrapping around the end of pagecache
715 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
716 * wrap, nor mmaps which cover the final page at index -1UL.
717 */
718 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)719 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
721 {
722 if (is_mergeable_vma(vma, file, vm_flags) &&
723 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
724 if (vma->vm_pgoff == vm_pgoff)
725 return 1;
726 }
727 return 0;
728 }
729
730 /*
731 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
732 * beyond (at a higher virtual address and file offset than) the vma.
733 *
734 * We cannot merge two vmas if they have differently assigned (non-NULL)
735 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
736 */
737 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)738 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
739 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
740 {
741 if (is_mergeable_vma(vma, file, vm_flags) &&
742 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
743 pgoff_t vm_pglen;
744 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
745 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
746 return 1;
747 }
748 return 0;
749 }
750
751 /*
752 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
753 * whether that can be merged with its predecessor or its successor.
754 * Or both (it neatly fills a hole).
755 *
756 * In most cases - when called for mmap, brk or mremap - [addr,end) is
757 * certain not to be mapped by the time vma_merge is called; but when
758 * called for mprotect, it is certain to be already mapped (either at
759 * an offset within prev, or at the start of next), and the flags of
760 * this area are about to be changed to vm_flags - and the no-change
761 * case has already been eliminated.
762 *
763 * The following mprotect cases have to be considered, where AAAA is
764 * the area passed down from mprotect_fixup, never extending beyond one
765 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
766 *
767 * AAAA AAAA AAAA AAAA
768 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
769 * cannot merge might become might become might become
770 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
771 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
772 * mremap move: PPPPNNNNNNNN 8
773 * AAAA
774 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
775 * might become case 1 below case 2 below case 3 below
776 *
777 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
778 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
779 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy)780 struct vm_area_struct *vma_merge(struct mm_struct *mm,
781 struct vm_area_struct *prev, unsigned long addr,
782 unsigned long end, unsigned long vm_flags,
783 struct anon_vma *anon_vma, struct file *file,
784 pgoff_t pgoff, struct mempolicy *policy)
785 {
786 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
787 struct vm_area_struct *area, *next;
788 int err;
789
790 /*
791 * We later require that vma->vm_flags == vm_flags,
792 * so this tests vma->vm_flags & VM_SPECIAL, too.
793 */
794 if (vm_flags & VM_SPECIAL)
795 return NULL;
796
797 if (prev)
798 next = prev->vm_next;
799 else
800 next = mm->mmap;
801 area = next;
802 if (next && next->vm_end == end) /* cases 6, 7, 8 */
803 next = next->vm_next;
804
805 /*
806 * Can it merge with the predecessor?
807 */
808 if (prev && prev->vm_end == addr &&
809 mpol_equal(vma_policy(prev), policy) &&
810 can_vma_merge_after(prev, vm_flags,
811 anon_vma, file, pgoff)) {
812 /*
813 * OK, it can. Can we now merge in the successor as well?
814 */
815 if (next && end == next->vm_start &&
816 mpol_equal(policy, vma_policy(next)) &&
817 can_vma_merge_before(next, vm_flags,
818 anon_vma, file, pgoff+pglen) &&
819 is_mergeable_anon_vma(prev->anon_vma,
820 next->anon_vma, NULL)) {
821 /* cases 1, 6 */
822 err = vma_adjust(prev, prev->vm_start,
823 next->vm_end, prev->vm_pgoff, NULL);
824 } else /* cases 2, 5, 7 */
825 err = vma_adjust(prev, prev->vm_start,
826 end, prev->vm_pgoff, NULL);
827 if (err)
828 return NULL;
829 khugepaged_enter_vma_merge(prev);
830 return prev;
831 }
832
833 /*
834 * Can this new request be merged in front of next?
835 */
836 if (next && end == next->vm_start &&
837 mpol_equal(policy, vma_policy(next)) &&
838 can_vma_merge_before(next, vm_flags,
839 anon_vma, file, pgoff+pglen)) {
840 if (prev && addr < prev->vm_end) /* case 4 */
841 err = vma_adjust(prev, prev->vm_start,
842 addr, prev->vm_pgoff, NULL);
843 else /* cases 3, 8 */
844 err = vma_adjust(area, addr, next->vm_end,
845 next->vm_pgoff - pglen, NULL);
846 if (err)
847 return NULL;
848 khugepaged_enter_vma_merge(area);
849 return area;
850 }
851
852 return NULL;
853 }
854
855 /*
856 * Rough compatbility check to quickly see if it's even worth looking
857 * at sharing an anon_vma.
858 *
859 * They need to have the same vm_file, and the flags can only differ
860 * in things that mprotect may change.
861 *
862 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
863 * we can merge the two vma's. For example, we refuse to merge a vma if
864 * there is a vm_ops->close() function, because that indicates that the
865 * driver is doing some kind of reference counting. But that doesn't
866 * really matter for the anon_vma sharing case.
867 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)868 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
869 {
870 return a->vm_end == b->vm_start &&
871 mpol_equal(vma_policy(a), vma_policy(b)) &&
872 a->vm_file == b->vm_file &&
873 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
874 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
875 }
876
877 /*
878 * Do some basic sanity checking to see if we can re-use the anon_vma
879 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
880 * the same as 'old', the other will be the new one that is trying
881 * to share the anon_vma.
882 *
883 * NOTE! This runs with mm_sem held for reading, so it is possible that
884 * the anon_vma of 'old' is concurrently in the process of being set up
885 * by another page fault trying to merge _that_. But that's ok: if it
886 * is being set up, that automatically means that it will be a singleton
887 * acceptable for merging, so we can do all of this optimistically. But
888 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
889 *
890 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
891 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
892 * is to return an anon_vma that is "complex" due to having gone through
893 * a fork).
894 *
895 * We also make sure that the two vma's are compatible (adjacent,
896 * and with the same memory policies). That's all stable, even with just
897 * a read lock on the mm_sem.
898 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)899 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
900 {
901 if (anon_vma_compatible(a, b)) {
902 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
903
904 if (anon_vma && list_is_singular(&old->anon_vma_chain))
905 return anon_vma;
906 }
907 return NULL;
908 }
909
910 /*
911 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
912 * neighbouring vmas for a suitable anon_vma, before it goes off
913 * to allocate a new anon_vma. It checks because a repetitive
914 * sequence of mprotects and faults may otherwise lead to distinct
915 * anon_vmas being allocated, preventing vma merge in subsequent
916 * mprotect.
917 */
find_mergeable_anon_vma(struct vm_area_struct * vma)918 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
919 {
920 struct anon_vma *anon_vma;
921 struct vm_area_struct *near;
922
923 near = vma->vm_next;
924 if (!near)
925 goto try_prev;
926
927 anon_vma = reusable_anon_vma(near, vma, near);
928 if (anon_vma)
929 return anon_vma;
930 try_prev:
931 near = vma->vm_prev;
932 if (!near)
933 goto none;
934
935 anon_vma = reusable_anon_vma(near, near, vma);
936 if (anon_vma)
937 return anon_vma;
938 none:
939 /*
940 * There's no absolute need to look only at touching neighbours:
941 * we could search further afield for "compatible" anon_vmas.
942 * But it would probably just be a waste of time searching,
943 * or lead to too many vmas hanging off the same anon_vma.
944 * We're trying to allow mprotect remerging later on,
945 * not trying to minimize memory used for anon_vmas.
946 */
947 return NULL;
948 }
949
950 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)951 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
952 struct file *file, long pages)
953 {
954 const unsigned long stack_flags
955 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
956
957 if (file) {
958 mm->shared_vm += pages;
959 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
960 mm->exec_vm += pages;
961 } else if (flags & stack_flags)
962 mm->stack_vm += pages;
963 if (flags & (VM_RESERVED|VM_IO))
964 mm->reserved_vm += pages;
965 }
966 #endif /* CONFIG_PROC_FS */
967
968 /*
969 * If a hint addr is less than mmap_min_addr change hint to be as
970 * low as possible but still greater than mmap_min_addr
971 */
round_hint_to_min(unsigned long hint)972 static inline unsigned long round_hint_to_min(unsigned long hint)
973 {
974 hint &= PAGE_MASK;
975 if (((void *)hint != NULL) &&
976 (hint < mmap_min_addr))
977 return PAGE_ALIGN(mmap_min_addr);
978 return hint;
979 }
980
981 /*
982 * The caller must hold down_write(¤t->mm->mmap_sem).
983 */
984
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)985 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
986 unsigned long len, unsigned long prot,
987 unsigned long flags, unsigned long pgoff)
988 {
989 struct mm_struct * mm = current->mm;
990 struct inode *inode;
991 vm_flags_t vm_flags;
992 int error;
993 unsigned long reqprot = prot;
994
995 /*
996 * Does the application expect PROT_READ to imply PROT_EXEC?
997 *
998 * (the exception is when the underlying filesystem is noexec
999 * mounted, in which case we dont add PROT_EXEC.)
1000 */
1001 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1002 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1003 prot |= PROT_EXEC;
1004
1005 if (!len)
1006 return -EINVAL;
1007
1008 if (!(flags & MAP_FIXED))
1009 addr = round_hint_to_min(addr);
1010
1011 /* Careful about overflows.. */
1012 len = PAGE_ALIGN(len);
1013 if (!len)
1014 return -ENOMEM;
1015
1016 /* offset overflow? */
1017 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1018 return -EOVERFLOW;
1019
1020 /* Too many mappings? */
1021 if (mm->map_count > sysctl_max_map_count)
1022 return -ENOMEM;
1023
1024 /* Obtain the address to map to. we verify (or select) it and ensure
1025 * that it represents a valid section of the address space.
1026 */
1027 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1028 if (addr & ~PAGE_MASK)
1029 return addr;
1030
1031 /* Do simple checking here so the lower-level routines won't have
1032 * to. we assume access permissions have been handled by the open
1033 * of the memory object, so we don't do any here.
1034 */
1035 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1036 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1037
1038 if (flags & MAP_LOCKED)
1039 if (!can_do_mlock())
1040 return -EPERM;
1041
1042 /* mlock MCL_FUTURE? */
1043 if (vm_flags & VM_LOCKED) {
1044 unsigned long locked, lock_limit;
1045 locked = len >> PAGE_SHIFT;
1046 locked += mm->locked_vm;
1047 lock_limit = rlimit(RLIMIT_MEMLOCK);
1048 lock_limit >>= PAGE_SHIFT;
1049 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1050 return -EAGAIN;
1051 }
1052
1053 inode = file ? file->f_path.dentry->d_inode : NULL;
1054
1055 if (file) {
1056 switch (flags & MAP_TYPE) {
1057 case MAP_SHARED:
1058 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1059 return -EACCES;
1060
1061 /*
1062 * Make sure we don't allow writing to an append-only
1063 * file..
1064 */
1065 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1066 return -EACCES;
1067
1068 /*
1069 * Make sure there are no mandatory locks on the file.
1070 */
1071 if (locks_verify_locked(inode))
1072 return -EAGAIN;
1073
1074 vm_flags |= VM_SHARED | VM_MAYSHARE;
1075 if (!(file->f_mode & FMODE_WRITE))
1076 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1077
1078 /* fall through */
1079 case MAP_PRIVATE:
1080 if (!(file->f_mode & FMODE_READ))
1081 return -EACCES;
1082 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1083 if (vm_flags & VM_EXEC)
1084 return -EPERM;
1085 vm_flags &= ~VM_MAYEXEC;
1086 }
1087
1088 if (!file->f_op || !file->f_op->mmap)
1089 return -ENODEV;
1090 break;
1091
1092 default:
1093 return -EINVAL;
1094 }
1095 } else {
1096 switch (flags & MAP_TYPE) {
1097 case MAP_SHARED:
1098 /*
1099 * Ignore pgoff.
1100 */
1101 pgoff = 0;
1102 vm_flags |= VM_SHARED | VM_MAYSHARE;
1103 break;
1104 case MAP_PRIVATE:
1105 /*
1106 * Set pgoff according to addr for anon_vma.
1107 */
1108 pgoff = addr >> PAGE_SHIFT;
1109 break;
1110 default:
1111 return -EINVAL;
1112 }
1113 }
1114
1115 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1116 if (error)
1117 return error;
1118
1119 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1120 }
1121
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)1122 unsigned long do_mmap(struct file *file, unsigned long addr,
1123 unsigned long len, unsigned long prot,
1124 unsigned long flag, unsigned long offset)
1125 {
1126 if (unlikely(offset + PAGE_ALIGN(len) < offset))
1127 return -EINVAL;
1128 if (unlikely(offset & ~PAGE_MASK))
1129 return -EINVAL;
1130 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1131 }
1132 EXPORT_SYMBOL(do_mmap);
1133
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)1134 unsigned long vm_mmap(struct file *file, unsigned long addr,
1135 unsigned long len, unsigned long prot,
1136 unsigned long flag, unsigned long offset)
1137 {
1138 unsigned long ret;
1139 struct mm_struct *mm = current->mm;
1140
1141 down_write(&mm->mmap_sem);
1142 ret = do_mmap(file, addr, len, prot, flag, offset);
1143 up_write(&mm->mmap_sem);
1144 return ret;
1145 }
1146 EXPORT_SYMBOL(vm_mmap);
1147
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1148 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1149 unsigned long, prot, unsigned long, flags,
1150 unsigned long, fd, unsigned long, pgoff)
1151 {
1152 struct file *file = NULL;
1153 unsigned long retval = -EBADF;
1154
1155 if (!(flags & MAP_ANONYMOUS)) {
1156 audit_mmap_fd(fd, flags);
1157 if (unlikely(flags & MAP_HUGETLB))
1158 return -EINVAL;
1159 file = fget(fd);
1160 if (!file)
1161 goto out;
1162 if (is_file_hugepages(file))
1163 len = ALIGN(len, huge_page_size(hstate_file(file)));
1164 } else if (flags & MAP_HUGETLB) {
1165 struct user_struct *user = NULL;
1166
1167 len = ALIGN(len, huge_page_size(&default_hstate));
1168 /*
1169 * VM_NORESERVE is used because the reservations will be
1170 * taken when vm_ops->mmap() is called
1171 * A dummy user value is used because we are not locking
1172 * memory so no accounting is necessary
1173 */
1174 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1175 VM_NORESERVE, &user,
1176 HUGETLB_ANONHUGE_INODE);
1177 if (IS_ERR(file))
1178 return PTR_ERR(file);
1179 }
1180
1181 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1182
1183 down_write(¤t->mm->mmap_sem);
1184 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1185 up_write(¤t->mm->mmap_sem);
1186
1187 if (file)
1188 fput(file);
1189 out:
1190 return retval;
1191 }
1192
1193 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1194 struct mmap_arg_struct {
1195 unsigned long addr;
1196 unsigned long len;
1197 unsigned long prot;
1198 unsigned long flags;
1199 unsigned long fd;
1200 unsigned long offset;
1201 };
1202
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1203 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1204 {
1205 struct mmap_arg_struct a;
1206
1207 if (copy_from_user(&a, arg, sizeof(a)))
1208 return -EFAULT;
1209 if (a.offset & ~PAGE_MASK)
1210 return -EINVAL;
1211
1212 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1213 a.offset >> PAGE_SHIFT);
1214 }
1215 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1216
1217 /*
1218 * Some shared mappigns will want the pages marked read-only
1219 * to track write events. If so, we'll downgrade vm_page_prot
1220 * to the private version (using protection_map[] without the
1221 * VM_SHARED bit).
1222 */
vma_wants_writenotify(struct vm_area_struct * vma)1223 int vma_wants_writenotify(struct vm_area_struct *vma)
1224 {
1225 vm_flags_t vm_flags = vma->vm_flags;
1226
1227 /* If it was private or non-writable, the write bit is already clear */
1228 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1229 return 0;
1230
1231 /* The backer wishes to know when pages are first written to? */
1232 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1233 return 1;
1234
1235 /* The open routine did something to the protections already? */
1236 if (pgprot_val(vma->vm_page_prot) !=
1237 pgprot_val(vm_get_page_prot(vm_flags)))
1238 return 0;
1239
1240 /* Specialty mapping? */
1241 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1242 return 0;
1243
1244 /* Can the mapping track the dirty pages? */
1245 return vma->vm_file && vma->vm_file->f_mapping &&
1246 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1247 }
1248
1249 /*
1250 * We account for memory if it's a private writeable mapping,
1251 * not hugepages and VM_NORESERVE wasn't set.
1252 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1253 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1254 {
1255 /*
1256 * hugetlb has its own accounting separate from the core VM
1257 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1258 */
1259 if (file && is_file_hugepages(file))
1260 return 0;
1261
1262 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1263 }
1264
mmap_region(struct file * file,unsigned long addr,unsigned long len,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff)1265 unsigned long mmap_region(struct file *file, unsigned long addr,
1266 unsigned long len, unsigned long flags,
1267 vm_flags_t vm_flags, unsigned long pgoff)
1268 {
1269 struct mm_struct *mm = current->mm;
1270 struct vm_area_struct *vma, *prev;
1271 int correct_wcount = 0;
1272 int error;
1273 struct rb_node **rb_link, *rb_parent;
1274 unsigned long charged = 0;
1275 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1276
1277 /* Check against address space limit. */
1278 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1279 unsigned long nr_pages;
1280
1281 /*
1282 * MAP_FIXED may remove pages of mappings that intersects with
1283 * requested mapping. Account for the pages it would unmap.
1284 */
1285 if (!(vm_flags & MAP_FIXED))
1286 return -ENOMEM;
1287
1288 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1289
1290 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1291 return -ENOMEM;
1292 }
1293
1294 /* Clear old maps */
1295 error = -ENOMEM;
1296 munmap_back:
1297 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1298 if (vma && vma->vm_start < addr + len) {
1299 if (do_munmap(mm, addr, len))
1300 return -ENOMEM;
1301 goto munmap_back;
1302 }
1303
1304 /*
1305 * Set 'VM_NORESERVE' if we should not account for the
1306 * memory use of this mapping.
1307 */
1308 if ((flags & MAP_NORESERVE)) {
1309 /* We honor MAP_NORESERVE if allowed to overcommit */
1310 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1311 vm_flags |= VM_NORESERVE;
1312
1313 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1314 if (file && is_file_hugepages(file))
1315 vm_flags |= VM_NORESERVE;
1316 }
1317
1318 /*
1319 * Private writable mapping: check memory availability
1320 */
1321 if (accountable_mapping(file, vm_flags)) {
1322 charged = len >> PAGE_SHIFT;
1323 if (security_vm_enough_memory_mm(mm, charged))
1324 return -ENOMEM;
1325 vm_flags |= VM_ACCOUNT;
1326 }
1327
1328 /*
1329 * Can we just expand an old mapping?
1330 */
1331 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1332 if (vma)
1333 goto out;
1334
1335 /*
1336 * Determine the object being mapped and call the appropriate
1337 * specific mapper. the address has already been validated, but
1338 * not unmapped, but the maps are removed from the list.
1339 */
1340 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1341 if (!vma) {
1342 error = -ENOMEM;
1343 goto unacct_error;
1344 }
1345
1346 vma->vm_mm = mm;
1347 vma->vm_start = addr;
1348 vma->vm_end = addr + len;
1349 vma->vm_flags = vm_flags;
1350 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1351 vma->vm_pgoff = pgoff;
1352 INIT_LIST_HEAD(&vma->anon_vma_chain);
1353
1354 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1355
1356 if (file) {
1357 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1358 goto free_vma;
1359 if (vm_flags & VM_DENYWRITE) {
1360 error = deny_write_access(file);
1361 if (error)
1362 goto free_vma;
1363 correct_wcount = 1;
1364 }
1365 vma->vm_file = file;
1366 get_file(file);
1367 error = file->f_op->mmap(file, vma);
1368 if (error)
1369 goto unmap_and_free_vma;
1370 if (vm_flags & VM_EXECUTABLE)
1371 added_exe_file_vma(mm);
1372
1373 /* Can addr have changed??
1374 *
1375 * Answer: Yes, several device drivers can do it in their
1376 * f_op->mmap method. -DaveM
1377 */
1378 addr = vma->vm_start;
1379 pgoff = vma->vm_pgoff;
1380 vm_flags = vma->vm_flags;
1381 } else if (vm_flags & VM_SHARED) {
1382 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1383 goto free_vma;
1384 error = shmem_zero_setup(vma);
1385 if (error)
1386 goto free_vma;
1387 }
1388
1389 if (vma_wants_writenotify(vma)) {
1390 pgprot_t pprot = vma->vm_page_prot;
1391
1392 /* Can vma->vm_page_prot have changed??
1393 *
1394 * Answer: Yes, drivers may have changed it in their
1395 * f_op->mmap method.
1396 *
1397 * Ensures that vmas marked as uncached stay that way.
1398 */
1399 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1400 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1401 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1402 }
1403
1404 vma_link(mm, vma, prev, rb_link, rb_parent);
1405 file = vma->vm_file;
1406
1407 /* Once vma denies write, undo our temporary denial count */
1408 if (correct_wcount)
1409 atomic_inc(&inode->i_writecount);
1410 out:
1411 perf_event_mmap(vma);
1412
1413 mm->total_vm += len >> PAGE_SHIFT;
1414 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1415 if (vm_flags & VM_LOCKED) {
1416 if (!mlock_vma_pages_range(vma, addr, addr + len))
1417 mm->locked_vm += (len >> PAGE_SHIFT);
1418 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1419 make_pages_present(addr, addr + len);
1420 return addr;
1421
1422 unmap_and_free_vma:
1423 if (correct_wcount)
1424 atomic_inc(&inode->i_writecount);
1425 vma->vm_file = NULL;
1426 fput(file);
1427
1428 /* Undo any partial mapping done by a device driver. */
1429 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1430 charged = 0;
1431 free_vma:
1432 kmem_cache_free(vm_area_cachep, vma);
1433 unacct_error:
1434 if (charged)
1435 vm_unacct_memory(charged);
1436 return error;
1437 }
1438
1439 /* Get an address range which is currently unmapped.
1440 * For shmat() with addr=0.
1441 *
1442 * Ugly calling convention alert:
1443 * Return value with the low bits set means error value,
1444 * ie
1445 * if (ret & ~PAGE_MASK)
1446 * error = ret;
1447 *
1448 * This function "knows" that -ENOMEM has the bits set.
1449 */
1450 #ifndef HAVE_ARCH_UNMAPPED_AREA
1451 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1452 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1453 unsigned long len, unsigned long pgoff, unsigned long flags)
1454 {
1455 struct mm_struct *mm = current->mm;
1456 struct vm_area_struct *vma;
1457 unsigned long start_addr;
1458
1459 if (len > TASK_SIZE)
1460 return -ENOMEM;
1461
1462 if (flags & MAP_FIXED)
1463 return addr;
1464
1465 if (addr) {
1466 addr = PAGE_ALIGN(addr);
1467 vma = find_vma(mm, addr);
1468 if (TASK_SIZE - len >= addr &&
1469 (!vma || addr + len <= vma->vm_start))
1470 return addr;
1471 }
1472 if (len > mm->cached_hole_size) {
1473 start_addr = addr = mm->free_area_cache;
1474 } else {
1475 start_addr = addr = TASK_UNMAPPED_BASE;
1476 mm->cached_hole_size = 0;
1477 }
1478
1479 full_search:
1480 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1481 /* At this point: (!vma || addr < vma->vm_end). */
1482 if (TASK_SIZE - len < addr) {
1483 /*
1484 * Start a new search - just in case we missed
1485 * some holes.
1486 */
1487 if (start_addr != TASK_UNMAPPED_BASE) {
1488 addr = TASK_UNMAPPED_BASE;
1489 start_addr = addr;
1490 mm->cached_hole_size = 0;
1491 goto full_search;
1492 }
1493 return -ENOMEM;
1494 }
1495 if (!vma || addr + len <= vma->vm_start) {
1496 /*
1497 * Remember the place where we stopped the search:
1498 */
1499 mm->free_area_cache = addr + len;
1500 return addr;
1501 }
1502 if (addr + mm->cached_hole_size < vma->vm_start)
1503 mm->cached_hole_size = vma->vm_start - addr;
1504 addr = vma->vm_end;
1505 }
1506 }
1507 #endif
1508
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1509 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1510 {
1511 /*
1512 * Is this a new hole at the lowest possible address?
1513 */
1514 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1515 mm->free_area_cache = addr;
1516 }
1517
1518 /*
1519 * This mmap-allocator allocates new areas top-down from below the
1520 * stack's low limit (the base):
1521 */
1522 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1523 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1524 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1525 const unsigned long len, const unsigned long pgoff,
1526 const unsigned long flags)
1527 {
1528 struct vm_area_struct *vma;
1529 struct mm_struct *mm = current->mm;
1530 unsigned long addr = addr0, start_addr;
1531
1532 /* requested length too big for entire address space */
1533 if (len > TASK_SIZE)
1534 return -ENOMEM;
1535
1536 if (flags & MAP_FIXED)
1537 return addr;
1538
1539 /* requesting a specific address */
1540 if (addr) {
1541 addr = PAGE_ALIGN(addr);
1542 vma = find_vma(mm, addr);
1543 if (TASK_SIZE - len >= addr &&
1544 (!vma || addr + len <= vma->vm_start))
1545 return addr;
1546 }
1547
1548 /* check if free_area_cache is useful for us */
1549 if (len <= mm->cached_hole_size) {
1550 mm->cached_hole_size = 0;
1551 mm->free_area_cache = mm->mmap_base;
1552 }
1553
1554 try_again:
1555 /* either no address requested or can't fit in requested address hole */
1556 start_addr = addr = mm->free_area_cache;
1557
1558 if (addr < len)
1559 goto fail;
1560
1561 addr -= len;
1562 do {
1563 /*
1564 * Lookup failure means no vma is above this address,
1565 * else if new region fits below vma->vm_start,
1566 * return with success:
1567 */
1568 vma = find_vma(mm, addr);
1569 if (!vma || addr+len <= vma->vm_start)
1570 /* remember the address as a hint for next time */
1571 return (mm->free_area_cache = addr);
1572
1573 /* remember the largest hole we saw so far */
1574 if (addr + mm->cached_hole_size < vma->vm_start)
1575 mm->cached_hole_size = vma->vm_start - addr;
1576
1577 /* try just below the current vma->vm_start */
1578 addr = vma->vm_start-len;
1579 } while (len < vma->vm_start);
1580
1581 fail:
1582 /*
1583 * if hint left us with no space for the requested
1584 * mapping then try again:
1585 *
1586 * Note: this is different with the case of bottomup
1587 * which does the fully line-search, but we use find_vma
1588 * here that causes some holes skipped.
1589 */
1590 if (start_addr != mm->mmap_base) {
1591 mm->free_area_cache = mm->mmap_base;
1592 mm->cached_hole_size = 0;
1593 goto try_again;
1594 }
1595
1596 /*
1597 * A failed mmap() very likely causes application failure,
1598 * so fall back to the bottom-up function here. This scenario
1599 * can happen with large stack limits and large mmap()
1600 * allocations.
1601 */
1602 mm->cached_hole_size = ~0UL;
1603 mm->free_area_cache = TASK_UNMAPPED_BASE;
1604 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1605 /*
1606 * Restore the topdown base:
1607 */
1608 mm->free_area_cache = mm->mmap_base;
1609 mm->cached_hole_size = ~0UL;
1610
1611 return addr;
1612 }
1613 #endif
1614
arch_unmap_area_topdown(struct mm_struct * mm,unsigned long addr)1615 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1616 {
1617 /*
1618 * Is this a new hole at the highest possible address?
1619 */
1620 if (addr > mm->free_area_cache)
1621 mm->free_area_cache = addr;
1622
1623 /* dont allow allocations above current base */
1624 if (mm->free_area_cache > mm->mmap_base)
1625 mm->free_area_cache = mm->mmap_base;
1626 }
1627
1628 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1629 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1630 unsigned long pgoff, unsigned long flags)
1631 {
1632 unsigned long (*get_area)(struct file *, unsigned long,
1633 unsigned long, unsigned long, unsigned long);
1634
1635 unsigned long error = arch_mmap_check(addr, len, flags);
1636 if (error)
1637 return error;
1638
1639 /* Careful about overflows.. */
1640 if (len > TASK_SIZE)
1641 return -ENOMEM;
1642
1643 get_area = current->mm->get_unmapped_area;
1644 if (file && file->f_op && file->f_op->get_unmapped_area)
1645 get_area = file->f_op->get_unmapped_area;
1646 addr = get_area(file, addr, len, pgoff, flags);
1647 if (IS_ERR_VALUE(addr))
1648 return addr;
1649
1650 if (addr > TASK_SIZE - len)
1651 return -ENOMEM;
1652 if (addr & ~PAGE_MASK)
1653 return -EINVAL;
1654
1655 return arch_rebalance_pgtables(addr, len);
1656 }
1657
1658 EXPORT_SYMBOL(get_unmapped_area);
1659
1660 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)1661 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1662 {
1663 struct vm_area_struct *vma = NULL;
1664
1665 if (mm) {
1666 /* Check the cache first. */
1667 /* (Cache hit rate is typically around 35%.) */
1668 vma = ACCESS_ONCE(mm->mmap_cache);
1669 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1670 struct rb_node * rb_node;
1671
1672 rb_node = mm->mm_rb.rb_node;
1673 vma = NULL;
1674
1675 while (rb_node) {
1676 struct vm_area_struct * vma_tmp;
1677
1678 vma_tmp = rb_entry(rb_node,
1679 struct vm_area_struct, vm_rb);
1680
1681 if (vma_tmp->vm_end > addr) {
1682 vma = vma_tmp;
1683 if (vma_tmp->vm_start <= addr)
1684 break;
1685 rb_node = rb_node->rb_left;
1686 } else
1687 rb_node = rb_node->rb_right;
1688 }
1689 if (vma)
1690 mm->mmap_cache = vma;
1691 }
1692 }
1693 return vma;
1694 }
1695
1696 EXPORT_SYMBOL(find_vma);
1697
1698 /*
1699 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1700 */
1701 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1702 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1703 struct vm_area_struct **pprev)
1704 {
1705 struct vm_area_struct *vma;
1706
1707 vma = find_vma(mm, addr);
1708 if (vma) {
1709 *pprev = vma->vm_prev;
1710 } else {
1711 struct rb_node *rb_node = mm->mm_rb.rb_node;
1712 *pprev = NULL;
1713 while (rb_node) {
1714 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1715 rb_node = rb_node->rb_right;
1716 }
1717 }
1718 return vma;
1719 }
1720
1721 /*
1722 * Verify that the stack growth is acceptable and
1723 * update accounting. This is shared with both the
1724 * grow-up and grow-down cases.
1725 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1726 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1727 {
1728 struct mm_struct *mm = vma->vm_mm;
1729 struct rlimit *rlim = current->signal->rlim;
1730 unsigned long new_start;
1731
1732 /* address space limit tests */
1733 if (!may_expand_vm(mm, grow))
1734 return -ENOMEM;
1735
1736 /* Stack limit test */
1737 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1738 return -ENOMEM;
1739
1740 /* mlock limit tests */
1741 if (vma->vm_flags & VM_LOCKED) {
1742 unsigned long locked;
1743 unsigned long limit;
1744 locked = mm->locked_vm + grow;
1745 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1746 limit >>= PAGE_SHIFT;
1747 if (locked > limit && !capable(CAP_IPC_LOCK))
1748 return -ENOMEM;
1749 }
1750
1751 /* Check to ensure the stack will not grow into a hugetlb-only region */
1752 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1753 vma->vm_end - size;
1754 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1755 return -EFAULT;
1756
1757 /*
1758 * Overcommit.. This must be the final test, as it will
1759 * update security statistics.
1760 */
1761 if (security_vm_enough_memory_mm(mm, grow))
1762 return -ENOMEM;
1763
1764 /* Ok, everything looks good - let it rip */
1765 mm->total_vm += grow;
1766 if (vma->vm_flags & VM_LOCKED)
1767 mm->locked_vm += grow;
1768 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1769 return 0;
1770 }
1771
1772 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1773 /*
1774 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1775 * vma is the last one with address > vma->vm_end. Have to extend vma.
1776 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1777 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1778 {
1779 int error;
1780
1781 if (!(vma->vm_flags & VM_GROWSUP))
1782 return -EFAULT;
1783
1784 /*
1785 * We must make sure the anon_vma is allocated
1786 * so that the anon_vma locking is not a noop.
1787 */
1788 if (unlikely(anon_vma_prepare(vma)))
1789 return -ENOMEM;
1790 vma_lock_anon_vma(vma);
1791
1792 /*
1793 * vma->vm_start/vm_end cannot change under us because the caller
1794 * is required to hold the mmap_sem in read mode. We need the
1795 * anon_vma lock to serialize against concurrent expand_stacks.
1796 * Also guard against wrapping around to address 0.
1797 */
1798 if (address < PAGE_ALIGN(address+4))
1799 address = PAGE_ALIGN(address+4);
1800 else {
1801 vma_unlock_anon_vma(vma);
1802 return -ENOMEM;
1803 }
1804 error = 0;
1805
1806 /* Somebody else might have raced and expanded it already */
1807 if (address > vma->vm_end) {
1808 unsigned long size, grow;
1809
1810 size = address - vma->vm_start;
1811 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1812
1813 error = -ENOMEM;
1814 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1815 error = acct_stack_growth(vma, size, grow);
1816 if (!error) {
1817 vma->vm_end = address;
1818 perf_event_mmap(vma);
1819 }
1820 }
1821 }
1822 vma_unlock_anon_vma(vma);
1823 khugepaged_enter_vma_merge(vma);
1824 return error;
1825 }
1826 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1827
1828 /*
1829 * vma is the first one with address < vma->vm_start. Have to extend vma.
1830 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1831 int expand_downwards(struct vm_area_struct *vma,
1832 unsigned long address)
1833 {
1834 int error;
1835
1836 /*
1837 * We must make sure the anon_vma is allocated
1838 * so that the anon_vma locking is not a noop.
1839 */
1840 if (unlikely(anon_vma_prepare(vma)))
1841 return -ENOMEM;
1842
1843 address &= PAGE_MASK;
1844 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1845 if (error)
1846 return error;
1847
1848 vma_lock_anon_vma(vma);
1849
1850 /*
1851 * vma->vm_start/vm_end cannot change under us because the caller
1852 * is required to hold the mmap_sem in read mode. We need the
1853 * anon_vma lock to serialize against concurrent expand_stacks.
1854 */
1855
1856 /* Somebody else might have raced and expanded it already */
1857 if (address < vma->vm_start) {
1858 unsigned long size, grow;
1859
1860 size = vma->vm_end - address;
1861 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1862
1863 error = -ENOMEM;
1864 if (grow <= vma->vm_pgoff) {
1865 error = acct_stack_growth(vma, size, grow);
1866 if (!error) {
1867 vma->vm_start = address;
1868 vma->vm_pgoff -= grow;
1869 perf_event_mmap(vma);
1870 }
1871 }
1872 }
1873 vma_unlock_anon_vma(vma);
1874 khugepaged_enter_vma_merge(vma);
1875 return error;
1876 }
1877
1878 /*
1879 * Note how expand_stack() refuses to expand the stack all the way to
1880 * abut the next virtual mapping, *unless* that mapping itself is also
1881 * a stack mapping. We want to leave room for a guard page, after all
1882 * (the guard page itself is not added here, that is done by the
1883 * actual page faulting logic)
1884 *
1885 * This matches the behavior of the guard page logic (see mm/memory.c:
1886 * check_stack_guard_page()), which only allows the guard page to be
1887 * removed under these circumstances.
1888 */
1889 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)1890 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1891 {
1892 struct vm_area_struct *next;
1893
1894 address &= PAGE_MASK;
1895 next = vma->vm_next;
1896 if (next && next->vm_start == address + PAGE_SIZE) {
1897 if (!(next->vm_flags & VM_GROWSUP))
1898 return -ENOMEM;
1899 }
1900 return expand_upwards(vma, address);
1901 }
1902
1903 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1904 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1905 {
1906 struct vm_area_struct *vma, *prev;
1907
1908 addr &= PAGE_MASK;
1909 vma = find_vma_prev(mm, addr, &prev);
1910 if (vma && (vma->vm_start <= addr))
1911 return vma;
1912 if (!prev || expand_stack(prev, addr))
1913 return NULL;
1914 if (prev->vm_flags & VM_LOCKED) {
1915 mlock_vma_pages_range(prev, addr, prev->vm_end);
1916 }
1917 return prev;
1918 }
1919 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)1920 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1921 {
1922 struct vm_area_struct *prev;
1923
1924 address &= PAGE_MASK;
1925 prev = vma->vm_prev;
1926 if (prev && prev->vm_end == address) {
1927 if (!(prev->vm_flags & VM_GROWSDOWN))
1928 return -ENOMEM;
1929 }
1930 return expand_downwards(vma, address);
1931 }
1932
1933 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1934 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1935 {
1936 struct vm_area_struct * vma;
1937 unsigned long start;
1938
1939 addr &= PAGE_MASK;
1940 vma = find_vma(mm,addr);
1941 if (!vma)
1942 return NULL;
1943 if (vma->vm_start <= addr)
1944 return vma;
1945 if (!(vma->vm_flags & VM_GROWSDOWN))
1946 return NULL;
1947 start = vma->vm_start;
1948 if (expand_stack(vma, addr))
1949 return NULL;
1950 if (vma->vm_flags & VM_LOCKED) {
1951 mlock_vma_pages_range(vma, addr, start);
1952 }
1953 return vma;
1954 }
1955 #endif
1956
1957 /*
1958 * Ok - we have the memory areas we should free on the vma list,
1959 * so release them, and do the vma updates.
1960 *
1961 * Called with the mm semaphore held.
1962 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)1963 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1964 {
1965 /* Update high watermark before we lower total_vm */
1966 update_hiwater_vm(mm);
1967 do {
1968 long nrpages = vma_pages(vma);
1969
1970 mm->total_vm -= nrpages;
1971 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1972 vma = remove_vma(vma);
1973 } while (vma);
1974 validate_mm(mm);
1975 }
1976
1977 /*
1978 * Get rid of page table information in the indicated region.
1979 *
1980 * Called with the mm semaphore held.
1981 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)1982 static void unmap_region(struct mm_struct *mm,
1983 struct vm_area_struct *vma, struct vm_area_struct *prev,
1984 unsigned long start, unsigned long end)
1985 {
1986 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1987 struct mmu_gather tlb;
1988 unsigned long nr_accounted = 0;
1989
1990 lru_add_drain();
1991 tlb_gather_mmu(&tlb, mm, 0);
1992 update_hiwater_rss(mm);
1993 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1994 vm_unacct_memory(nr_accounted);
1995 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1996 next ? next->vm_start : USER_PGTABLES_CEILING);
1997 tlb_finish_mmu(&tlb, start, end);
1998 }
1999
2000 /*
2001 * Create a list of vma's touched by the unmap, removing them from the mm's
2002 * vma list as we go..
2003 */
2004 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2005 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2006 struct vm_area_struct *prev, unsigned long end)
2007 {
2008 struct vm_area_struct **insertion_point;
2009 struct vm_area_struct *tail_vma = NULL;
2010 unsigned long addr;
2011
2012 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2013 vma->vm_prev = NULL;
2014 do {
2015 rb_erase(&vma->vm_rb, &mm->mm_rb);
2016 mm->map_count--;
2017 tail_vma = vma;
2018 vma = vma->vm_next;
2019 } while (vma && vma->vm_start < end);
2020 *insertion_point = vma;
2021 if (vma)
2022 vma->vm_prev = prev;
2023 tail_vma->vm_next = NULL;
2024 if (mm->unmap_area == arch_unmap_area)
2025 addr = prev ? prev->vm_end : mm->mmap_base;
2026 else
2027 addr = vma ? vma->vm_start : mm->mmap_base;
2028 mm->unmap_area(mm, addr);
2029 mm->mmap_cache = NULL; /* Kill the cache. */
2030 }
2031
2032 /*
2033 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2034 * munmap path where it doesn't make sense to fail.
2035 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2036 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2037 unsigned long addr, int new_below)
2038 {
2039 struct mempolicy *pol;
2040 struct vm_area_struct *new;
2041 int err = -ENOMEM;
2042
2043 if (is_vm_hugetlb_page(vma) && (addr &
2044 ~(huge_page_mask(hstate_vma(vma)))))
2045 return -EINVAL;
2046
2047 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2048 if (!new)
2049 goto out_err;
2050
2051 /* most fields are the same, copy all, and then fixup */
2052 *new = *vma;
2053
2054 INIT_LIST_HEAD(&new->anon_vma_chain);
2055
2056 if (new_below)
2057 new->vm_end = addr;
2058 else {
2059 new->vm_start = addr;
2060 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2061 }
2062
2063 pol = mpol_dup(vma_policy(vma));
2064 if (IS_ERR(pol)) {
2065 err = PTR_ERR(pol);
2066 goto out_free_vma;
2067 }
2068 vma_set_policy(new, pol);
2069
2070 if (anon_vma_clone(new, vma))
2071 goto out_free_mpol;
2072
2073 if (new->vm_file) {
2074 get_file(new->vm_file);
2075 if (vma->vm_flags & VM_EXECUTABLE)
2076 added_exe_file_vma(mm);
2077 }
2078
2079 if (new->vm_ops && new->vm_ops->open)
2080 new->vm_ops->open(new);
2081
2082 if (new_below)
2083 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2084 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2085 else
2086 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2087
2088 /* Success. */
2089 if (!err)
2090 return 0;
2091
2092 /* Clean everything up if vma_adjust failed. */
2093 if (new->vm_ops && new->vm_ops->close)
2094 new->vm_ops->close(new);
2095 if (new->vm_file) {
2096 if (vma->vm_flags & VM_EXECUTABLE)
2097 removed_exe_file_vma(mm);
2098 fput(new->vm_file);
2099 }
2100 unlink_anon_vmas(new);
2101 out_free_mpol:
2102 mpol_put(pol);
2103 out_free_vma:
2104 kmem_cache_free(vm_area_cachep, new);
2105 out_err:
2106 return err;
2107 }
2108
2109 /*
2110 * Split a vma into two pieces at address 'addr', a new vma is allocated
2111 * either for the first part or the tail.
2112 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2113 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2114 unsigned long addr, int new_below)
2115 {
2116 if (mm->map_count >= sysctl_max_map_count)
2117 return -ENOMEM;
2118
2119 return __split_vma(mm, vma, addr, new_below);
2120 }
2121
2122 /* Munmap is split into 2 main parts -- this part which finds
2123 * what needs doing, and the areas themselves, which do the
2124 * work. This now handles partial unmappings.
2125 * Jeremy Fitzhardinge <jeremy@goop.org>
2126 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2127 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2128 {
2129 unsigned long end;
2130 struct vm_area_struct *vma, *prev, *last;
2131
2132 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2133 return -EINVAL;
2134
2135 if ((len = PAGE_ALIGN(len)) == 0)
2136 return -EINVAL;
2137
2138 /* Find the first overlapping VMA */
2139 vma = find_vma(mm, start);
2140 if (!vma)
2141 return 0;
2142 prev = vma->vm_prev;
2143 /* we have start < vma->vm_end */
2144
2145 /* if it doesn't overlap, we have nothing.. */
2146 end = start + len;
2147 if (vma->vm_start >= end)
2148 return 0;
2149
2150 /*
2151 * If we need to split any vma, do it now to save pain later.
2152 *
2153 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2154 * unmapped vm_area_struct will remain in use: so lower split_vma
2155 * places tmp vma above, and higher split_vma places tmp vma below.
2156 */
2157 if (start > vma->vm_start) {
2158 int error;
2159
2160 /*
2161 * Make sure that map_count on return from munmap() will
2162 * not exceed its limit; but let map_count go just above
2163 * its limit temporarily, to help free resources as expected.
2164 */
2165 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2166 return -ENOMEM;
2167
2168 error = __split_vma(mm, vma, start, 0);
2169 if (error)
2170 return error;
2171 prev = vma;
2172 }
2173
2174 /* Does it split the last one? */
2175 last = find_vma(mm, end);
2176 if (last && end > last->vm_start) {
2177 int error = __split_vma(mm, last, end, 1);
2178 if (error)
2179 return error;
2180 }
2181 vma = prev? prev->vm_next: mm->mmap;
2182
2183 /*
2184 * unlock any mlock()ed ranges before detaching vmas
2185 */
2186 if (mm->locked_vm) {
2187 struct vm_area_struct *tmp = vma;
2188 while (tmp && tmp->vm_start < end) {
2189 if (tmp->vm_flags & VM_LOCKED) {
2190 mm->locked_vm -= vma_pages(tmp);
2191 munlock_vma_pages_all(tmp);
2192 }
2193 tmp = tmp->vm_next;
2194 }
2195 }
2196
2197 /*
2198 * Remove the vma's, and unmap the actual pages
2199 */
2200 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2201 unmap_region(mm, vma, prev, start, end);
2202
2203 /* Fix up all other VM information */
2204 remove_vma_list(mm, vma);
2205
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(do_munmap);
2209
vm_munmap(unsigned long start,size_t len)2210 int vm_munmap(unsigned long start, size_t len)
2211 {
2212 int ret;
2213 struct mm_struct *mm = current->mm;
2214
2215 down_write(&mm->mmap_sem);
2216 ret = do_munmap(mm, start, len);
2217 up_write(&mm->mmap_sem);
2218 return ret;
2219 }
2220 EXPORT_SYMBOL(vm_munmap);
2221
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2222 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2223 {
2224 profile_munmap(addr);
2225 return vm_munmap(addr, len);
2226 }
2227
verify_mm_writelocked(struct mm_struct * mm)2228 static inline void verify_mm_writelocked(struct mm_struct *mm)
2229 {
2230 #ifdef CONFIG_DEBUG_VM
2231 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2232 WARN_ON(1);
2233 up_read(&mm->mmap_sem);
2234 }
2235 #endif
2236 }
2237
2238 /*
2239 * this is really a simplified "do_mmap". it only handles
2240 * anonymous maps. eventually we may be able to do some
2241 * brk-specific accounting here.
2242 */
do_brk(unsigned long addr,unsigned long len)2243 static unsigned long do_brk(unsigned long addr, unsigned long len)
2244 {
2245 struct mm_struct * mm = current->mm;
2246 struct vm_area_struct * vma, * prev;
2247 unsigned long flags;
2248 struct rb_node ** rb_link, * rb_parent;
2249 pgoff_t pgoff = addr >> PAGE_SHIFT;
2250 int error;
2251
2252 len = PAGE_ALIGN(len);
2253 if (!len)
2254 return addr;
2255
2256 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2257 if (error)
2258 return error;
2259
2260 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2261
2262 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2263 if (error & ~PAGE_MASK)
2264 return error;
2265
2266 /*
2267 * mlock MCL_FUTURE?
2268 */
2269 if (mm->def_flags & VM_LOCKED) {
2270 unsigned long locked, lock_limit;
2271 locked = len >> PAGE_SHIFT;
2272 locked += mm->locked_vm;
2273 lock_limit = rlimit(RLIMIT_MEMLOCK);
2274 lock_limit >>= PAGE_SHIFT;
2275 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2276 return -EAGAIN;
2277 }
2278
2279 /*
2280 * mm->mmap_sem is required to protect against another thread
2281 * changing the mappings in case we sleep.
2282 */
2283 verify_mm_writelocked(mm);
2284
2285 /*
2286 * Clear old maps. this also does some error checking for us
2287 */
2288 munmap_back:
2289 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2290 if (vma && vma->vm_start < addr + len) {
2291 if (do_munmap(mm, addr, len))
2292 return -ENOMEM;
2293 goto munmap_back;
2294 }
2295
2296 /* Check against address space limits *after* clearing old maps... */
2297 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2298 return -ENOMEM;
2299
2300 if (mm->map_count > sysctl_max_map_count)
2301 return -ENOMEM;
2302
2303 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2304 return -ENOMEM;
2305
2306 /* Can we just expand an old private anonymous mapping? */
2307 vma = vma_merge(mm, prev, addr, addr + len, flags,
2308 NULL, NULL, pgoff, NULL);
2309 if (vma)
2310 goto out;
2311
2312 /*
2313 * create a vma struct for an anonymous mapping
2314 */
2315 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2316 if (!vma) {
2317 vm_unacct_memory(len >> PAGE_SHIFT);
2318 return -ENOMEM;
2319 }
2320
2321 INIT_LIST_HEAD(&vma->anon_vma_chain);
2322 vma->vm_mm = mm;
2323 vma->vm_start = addr;
2324 vma->vm_end = addr + len;
2325 vma->vm_pgoff = pgoff;
2326 vma->vm_flags = flags;
2327 vma->vm_page_prot = vm_get_page_prot(flags);
2328 vma_link(mm, vma, prev, rb_link, rb_parent);
2329 out:
2330 perf_event_mmap(vma);
2331 mm->total_vm += len >> PAGE_SHIFT;
2332 if (flags & VM_LOCKED) {
2333 if (!mlock_vma_pages_range(vma, addr, addr + len))
2334 mm->locked_vm += (len >> PAGE_SHIFT);
2335 }
2336 return addr;
2337 }
2338
vm_brk(unsigned long addr,unsigned long len)2339 unsigned long vm_brk(unsigned long addr, unsigned long len)
2340 {
2341 struct mm_struct *mm = current->mm;
2342 unsigned long ret;
2343
2344 down_write(&mm->mmap_sem);
2345 ret = do_brk(addr, len);
2346 up_write(&mm->mmap_sem);
2347 return ret;
2348 }
2349 EXPORT_SYMBOL(vm_brk);
2350
2351 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2352 void exit_mmap(struct mm_struct *mm)
2353 {
2354 struct mmu_gather tlb;
2355 struct vm_area_struct *vma;
2356 unsigned long nr_accounted = 0;
2357
2358 /* mm's last user has gone, and its about to be pulled down */
2359 mmu_notifier_release(mm);
2360
2361 if (mm->locked_vm) {
2362 vma = mm->mmap;
2363 while (vma) {
2364 if (vma->vm_flags & VM_LOCKED)
2365 munlock_vma_pages_all(vma);
2366 vma = vma->vm_next;
2367 }
2368 }
2369
2370 arch_exit_mmap(mm);
2371
2372 vma = mm->mmap;
2373 if (!vma) /* Can happen if dup_mmap() received an OOM */
2374 return;
2375
2376 lru_add_drain();
2377 flush_cache_mm(mm);
2378 tlb_gather_mmu(&tlb, mm, 1);
2379 /* update_hiwater_rss(mm) here? but nobody should be looking */
2380 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2381 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2382 vm_unacct_memory(nr_accounted);
2383
2384 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2385 tlb_finish_mmu(&tlb, 0, -1);
2386
2387 /*
2388 * Walk the list again, actually closing and freeing it,
2389 * with preemption enabled, without holding any MM locks.
2390 */
2391 while (vma)
2392 vma = remove_vma(vma);
2393
2394 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2395 }
2396
2397 /* Insert vm structure into process list sorted by address
2398 * and into the inode's i_mmap tree. If vm_file is non-NULL
2399 * then i_mmap_mutex is taken here.
2400 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2401 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2402 {
2403 struct vm_area_struct * __vma, * prev;
2404 struct rb_node ** rb_link, * rb_parent;
2405
2406 /*
2407 * The vm_pgoff of a purely anonymous vma should be irrelevant
2408 * until its first write fault, when page's anon_vma and index
2409 * are set. But now set the vm_pgoff it will almost certainly
2410 * end up with (unless mremap moves it elsewhere before that
2411 * first wfault), so /proc/pid/maps tells a consistent story.
2412 *
2413 * By setting it to reflect the virtual start address of the
2414 * vma, merges and splits can happen in a seamless way, just
2415 * using the existing file pgoff checks and manipulations.
2416 * Similarly in do_mmap_pgoff and in do_brk.
2417 */
2418 if (!vma->vm_file) {
2419 BUG_ON(vma->anon_vma);
2420 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2421 }
2422 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2423 if (__vma && __vma->vm_start < vma->vm_end)
2424 return -ENOMEM;
2425 if ((vma->vm_flags & VM_ACCOUNT) &&
2426 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2427 return -ENOMEM;
2428 vma_link(mm, vma, prev, rb_link, rb_parent);
2429 return 0;
2430 }
2431
2432 /*
2433 * Copy the vma structure to a new location in the same mm,
2434 * prior to moving page table entries, to effect an mremap move.
2435 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff)2436 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2437 unsigned long addr, unsigned long len, pgoff_t pgoff)
2438 {
2439 struct vm_area_struct *vma = *vmap;
2440 unsigned long vma_start = vma->vm_start;
2441 struct mm_struct *mm = vma->vm_mm;
2442 struct vm_area_struct *new_vma, *prev;
2443 struct rb_node **rb_link, *rb_parent;
2444 struct mempolicy *pol;
2445 bool faulted_in_anon_vma = true;
2446
2447 /*
2448 * If anonymous vma has not yet been faulted, update new pgoff
2449 * to match new location, to increase its chance of merging.
2450 */
2451 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2452 pgoff = addr >> PAGE_SHIFT;
2453 faulted_in_anon_vma = false;
2454 }
2455
2456 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2457 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2458 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2459 if (new_vma) {
2460 /*
2461 * Source vma may have been merged into new_vma
2462 */
2463 if (unlikely(vma_start >= new_vma->vm_start &&
2464 vma_start < new_vma->vm_end)) {
2465 /*
2466 * The only way we can get a vma_merge with
2467 * self during an mremap is if the vma hasn't
2468 * been faulted in yet and we were allowed to
2469 * reset the dst vma->vm_pgoff to the
2470 * destination address of the mremap to allow
2471 * the merge to happen. mremap must change the
2472 * vm_pgoff linearity between src and dst vmas
2473 * (in turn preventing a vma_merge) to be
2474 * safe. It is only safe to keep the vm_pgoff
2475 * linear if there are no pages mapped yet.
2476 */
2477 VM_BUG_ON(faulted_in_anon_vma);
2478 *vmap = new_vma;
2479 } else
2480 anon_vma_moveto_tail(new_vma);
2481 } else {
2482 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2483 if (new_vma) {
2484 *new_vma = *vma;
2485 pol = mpol_dup(vma_policy(vma));
2486 if (IS_ERR(pol))
2487 goto out_free_vma;
2488 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2489 if (anon_vma_clone(new_vma, vma))
2490 goto out_free_mempol;
2491 vma_set_policy(new_vma, pol);
2492 new_vma->vm_start = addr;
2493 new_vma->vm_end = addr + len;
2494 new_vma->vm_pgoff = pgoff;
2495 if (new_vma->vm_file) {
2496 get_file(new_vma->vm_file);
2497 if (vma->vm_flags & VM_EXECUTABLE)
2498 added_exe_file_vma(mm);
2499 }
2500 if (new_vma->vm_ops && new_vma->vm_ops->open)
2501 new_vma->vm_ops->open(new_vma);
2502 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2503 }
2504 }
2505 return new_vma;
2506
2507 out_free_mempol:
2508 mpol_put(pol);
2509 out_free_vma:
2510 kmem_cache_free(vm_area_cachep, new_vma);
2511 return NULL;
2512 }
2513
2514 /*
2515 * Return true if the calling process may expand its vm space by the passed
2516 * number of pages
2517 */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2518 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2519 {
2520 unsigned long cur = mm->total_vm; /* pages */
2521 unsigned long lim;
2522
2523 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2524
2525 if (cur + npages > lim)
2526 return 0;
2527 return 1;
2528 }
2529
2530
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2531 static int special_mapping_fault(struct vm_area_struct *vma,
2532 struct vm_fault *vmf)
2533 {
2534 pgoff_t pgoff;
2535 struct page **pages;
2536
2537 /*
2538 * special mappings have no vm_file, and in that case, the mm
2539 * uses vm_pgoff internally. So we have to subtract it from here.
2540 * We are allowed to do this because we are the mm; do not copy
2541 * this code into drivers!
2542 */
2543 pgoff = vmf->pgoff - vma->vm_pgoff;
2544
2545 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2546 pgoff--;
2547
2548 if (*pages) {
2549 struct page *page = *pages;
2550 get_page(page);
2551 vmf->page = page;
2552 return 0;
2553 }
2554
2555 return VM_FAULT_SIGBUS;
2556 }
2557
2558 /*
2559 * Having a close hook prevents vma merging regardless of flags.
2560 */
special_mapping_close(struct vm_area_struct * vma)2561 static void special_mapping_close(struct vm_area_struct *vma)
2562 {
2563 }
2564
2565 static const struct vm_operations_struct special_mapping_vmops = {
2566 .close = special_mapping_close,
2567 .fault = special_mapping_fault,
2568 };
2569
2570 /*
2571 * Called with mm->mmap_sem held for writing.
2572 * Insert a new vma covering the given region, with the given flags.
2573 * Its pages are supplied by the given array of struct page *.
2574 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2575 * The region past the last page supplied will always produce SIGBUS.
2576 * The array pointer and the pages it points to are assumed to stay alive
2577 * for as long as this mapping might exist.
2578 */
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)2579 int install_special_mapping(struct mm_struct *mm,
2580 unsigned long addr, unsigned long len,
2581 unsigned long vm_flags, struct page **pages)
2582 {
2583 int ret;
2584 struct vm_area_struct *vma;
2585
2586 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2587 if (unlikely(vma == NULL))
2588 return -ENOMEM;
2589
2590 INIT_LIST_HEAD(&vma->anon_vma_chain);
2591 vma->vm_mm = mm;
2592 vma->vm_start = addr;
2593 vma->vm_end = addr + len;
2594
2595 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2596 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2597
2598 vma->vm_ops = &special_mapping_vmops;
2599 vma->vm_private_data = pages;
2600
2601 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2602 if (ret)
2603 goto out;
2604
2605 ret = insert_vm_struct(mm, vma);
2606 if (ret)
2607 goto out;
2608
2609 mm->total_vm += len >> PAGE_SHIFT;
2610
2611 perf_event_mmap(vma);
2612
2613 return 0;
2614
2615 out:
2616 kmem_cache_free(vm_area_cachep, vma);
2617 return ret;
2618 }
2619
2620 static DEFINE_MUTEX(mm_all_locks_mutex);
2621
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2622 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2623 {
2624 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2625 /*
2626 * The LSB of head.next can't change from under us
2627 * because we hold the mm_all_locks_mutex.
2628 */
2629 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2630 /*
2631 * We can safely modify head.next after taking the
2632 * anon_vma->root->mutex. If some other vma in this mm shares
2633 * the same anon_vma we won't take it again.
2634 *
2635 * No need of atomic instructions here, head.next
2636 * can't change from under us thanks to the
2637 * anon_vma->root->mutex.
2638 */
2639 if (__test_and_set_bit(0, (unsigned long *)
2640 &anon_vma->root->head.next))
2641 BUG();
2642 }
2643 }
2644
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2645 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2646 {
2647 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2648 /*
2649 * AS_MM_ALL_LOCKS can't change from under us because
2650 * we hold the mm_all_locks_mutex.
2651 *
2652 * Operations on ->flags have to be atomic because
2653 * even if AS_MM_ALL_LOCKS is stable thanks to the
2654 * mm_all_locks_mutex, there may be other cpus
2655 * changing other bitflags in parallel to us.
2656 */
2657 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2658 BUG();
2659 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2660 }
2661 }
2662
2663 /*
2664 * This operation locks against the VM for all pte/vma/mm related
2665 * operations that could ever happen on a certain mm. This includes
2666 * vmtruncate, try_to_unmap, and all page faults.
2667 *
2668 * The caller must take the mmap_sem in write mode before calling
2669 * mm_take_all_locks(). The caller isn't allowed to release the
2670 * mmap_sem until mm_drop_all_locks() returns.
2671 *
2672 * mmap_sem in write mode is required in order to block all operations
2673 * that could modify pagetables and free pages without need of
2674 * altering the vma layout (for example populate_range() with
2675 * nonlinear vmas). It's also needed in write mode to avoid new
2676 * anon_vmas to be associated with existing vmas.
2677 *
2678 * A single task can't take more than one mm_take_all_locks() in a row
2679 * or it would deadlock.
2680 *
2681 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2682 * mapping->flags avoid to take the same lock twice, if more than one
2683 * vma in this mm is backed by the same anon_vma or address_space.
2684 *
2685 * We can take all the locks in random order because the VM code
2686 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2687 * takes more than one of them in a row. Secondly we're protected
2688 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2689 *
2690 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2691 * that may have to take thousand of locks.
2692 *
2693 * mm_take_all_locks() can fail if it's interrupted by signals.
2694 */
mm_take_all_locks(struct mm_struct * mm)2695 int mm_take_all_locks(struct mm_struct *mm)
2696 {
2697 struct vm_area_struct *vma;
2698 struct anon_vma_chain *avc;
2699
2700 BUG_ON(down_read_trylock(&mm->mmap_sem));
2701
2702 mutex_lock(&mm_all_locks_mutex);
2703
2704 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2705 if (signal_pending(current))
2706 goto out_unlock;
2707 if (vma->vm_file && vma->vm_file->f_mapping)
2708 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2709 }
2710
2711 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2712 if (signal_pending(current))
2713 goto out_unlock;
2714 if (vma->anon_vma)
2715 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2716 vm_lock_anon_vma(mm, avc->anon_vma);
2717 }
2718
2719 return 0;
2720
2721 out_unlock:
2722 mm_drop_all_locks(mm);
2723 return -EINTR;
2724 }
2725
vm_unlock_anon_vma(struct anon_vma * anon_vma)2726 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2727 {
2728 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2729 /*
2730 * The LSB of head.next can't change to 0 from under
2731 * us because we hold the mm_all_locks_mutex.
2732 *
2733 * We must however clear the bitflag before unlocking
2734 * the vma so the users using the anon_vma->head will
2735 * never see our bitflag.
2736 *
2737 * No need of atomic instructions here, head.next
2738 * can't change from under us until we release the
2739 * anon_vma->root->mutex.
2740 */
2741 if (!__test_and_clear_bit(0, (unsigned long *)
2742 &anon_vma->root->head.next))
2743 BUG();
2744 anon_vma_unlock(anon_vma);
2745 }
2746 }
2747
vm_unlock_mapping(struct address_space * mapping)2748 static void vm_unlock_mapping(struct address_space *mapping)
2749 {
2750 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2751 /*
2752 * AS_MM_ALL_LOCKS can't change to 0 from under us
2753 * because we hold the mm_all_locks_mutex.
2754 */
2755 mutex_unlock(&mapping->i_mmap_mutex);
2756 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2757 &mapping->flags))
2758 BUG();
2759 }
2760 }
2761
2762 /*
2763 * The mmap_sem cannot be released by the caller until
2764 * mm_drop_all_locks() returns.
2765 */
mm_drop_all_locks(struct mm_struct * mm)2766 void mm_drop_all_locks(struct mm_struct *mm)
2767 {
2768 struct vm_area_struct *vma;
2769 struct anon_vma_chain *avc;
2770
2771 BUG_ON(down_read_trylock(&mm->mmap_sem));
2772 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2773
2774 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2775 if (vma->anon_vma)
2776 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2777 vm_unlock_anon_vma(avc->anon_vma);
2778 if (vma->vm_file && vma->vm_file->f_mapping)
2779 vm_unlock_mapping(vma->vm_file->f_mapping);
2780 }
2781
2782 mutex_unlock(&mm_all_locks_mutex);
2783 }
2784
2785 /*
2786 * initialise the VMA slab
2787 */
mmap_init(void)2788 void __init mmap_init(void)
2789 {
2790 int ret;
2791
2792 ret = percpu_counter_init(&vm_committed_as, 0);
2793 VM_BUG_ON(ret);
2794 }
2795